Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.133
      1  1.133        ad /*	$NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20    1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21    1.1       mrg  *    must display the following acknowledgement:
     22    1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.62       chs  *      Washington University, the University of California, Berkeley and
     24    1.1       mrg  *      its contributors.
     25    1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26    1.1       mrg  *    may be used to endorse or promote products derived from this software
     27    1.1       mrg  *    without specific prior written permission.
     28    1.1       mrg  *
     29    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39    1.1       mrg  * SUCH DAMAGE.
     40    1.1       mrg  *
     41    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43    1.1       mrg  *
     44    1.1       mrg  *
     45    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46    1.1       mrg  * All rights reserved.
     47   1.62       chs  *
     48    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50    1.1       mrg  * notice and this permission notice appear in all copies of the
     51    1.1       mrg  * software, derivative works or modified versions, and any portions
     52    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.62       chs  *
     54   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.62       chs  *
     58    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59    1.1       mrg  *
     60    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61    1.1       mrg  *  School of Computer Science
     62    1.1       mrg  *  Carnegie Mellon University
     63    1.1       mrg  *  Pittsburgh PA 15213-3890
     64    1.1       mrg  *
     65    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66    1.1       mrg  * rights to redistribute these changes.
     67    1.1       mrg  */
     68    1.1       mrg 
     69    1.1       mrg /*
     70    1.1       mrg  * uvm_page.c: page ops.
     71    1.1       mrg  */
     72   1.71     lukem 
     73   1.71     lukem #include <sys/cdefs.h>
     74  1.133        ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $");
     75    1.6       mrg 
     76   1.44       chs #include "opt_uvmhist.h"
     77  1.113      yamt #include "opt_readahead.h"
     78   1.44       chs 
     79    1.1       mrg #include <sys/param.h>
     80    1.1       mrg #include <sys/systm.h>
     81    1.1       mrg #include <sys/malloc.h>
     82   1.35   thorpej #include <sys/sched.h>
     83   1.44       chs #include <sys/kernel.h>
     84   1.51       chs #include <sys/vnode.h>
     85   1.68       chs #include <sys/proc.h>
     86  1.126        ad #include <sys/atomic.h>
     87  1.133        ad #include <sys/cpu.h>
     88    1.1       mrg 
     89    1.1       mrg #include <uvm/uvm.h>
     90  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     91    1.1       mrg 
     92    1.1       mrg /*
     93    1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     94    1.1       mrg  */
     95    1.1       mrg 
     96    1.1       mrg /*
     97    1.1       mrg  * physical memory config is stored in vm_physmem.
     98    1.1       mrg  */
     99    1.1       mrg 
    100    1.1       mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    101    1.1       mrg int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    102    1.1       mrg 
    103    1.1       mrg /*
    104   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    105   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    106   1.36   thorpej  * We therefore provide a way to disable it from machdep code here.
    107   1.34   thorpej  */
    108   1.44       chs /*
    109   1.44       chs  * XXX disabled until we can find a way to do this without causing
    110   1.95       wiz  * problems for either CPU caches or DMA latency.
    111   1.44       chs  */
    112  1.119   thorpej bool vm_page_zero_enable = false;
    113   1.34   thorpej 
    114   1.34   thorpej /*
    115    1.1       mrg  * local variables
    116    1.1       mrg  */
    117    1.1       mrg 
    118    1.1       mrg /*
    119   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    120   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    121   1.88   thorpej  * and pmap_startup here also uses them internally.
    122   1.88   thorpej  */
    123   1.88   thorpej 
    124   1.88   thorpej static vaddr_t      virtual_space_start;
    125   1.88   thorpej static vaddr_t      virtual_space_end;
    126   1.88   thorpej 
    127   1.88   thorpej /*
    128    1.1       mrg  * we use a hash table with only one bucket during bootup.  we will
    129   1.30   thorpej  * later rehash (resize) the hash table once the allocator is ready.
    130   1.30   thorpej  * we static allocate the one bootstrap bucket below...
    131    1.1       mrg  */
    132    1.1       mrg 
    133    1.1       mrg static struct pglist uvm_bootbucket;
    134    1.1       mrg 
    135    1.1       mrg /*
    136   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    137   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    138   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    139   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    140   1.60   thorpej  * uvm_pageboot_alloc().
    141   1.60   thorpej  */
    142   1.60   thorpej 
    143  1.119   thorpej static bool have_recolored_pages /* = false */;
    144   1.83   thorpej 
    145   1.83   thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    146   1.60   thorpej 
    147   1.91      yamt #ifdef DEBUG
    148   1.91      yamt vaddr_t uvm_zerocheckkva;
    149   1.91      yamt #endif /* DEBUG */
    150   1.91      yamt 
    151   1.60   thorpej /*
    152  1.124        ad  * locks on the hash table.  allocated in 32 byte chunks to try
    153  1.124        ad  * and reduce cache traffic between CPUs.
    154  1.124        ad  */
    155  1.124        ad 
    156  1.124        ad #define	UVM_HASHLOCK_CNT	32
    157  1.124        ad #define	uvm_hashlock(hash)	\
    158  1.124        ad     (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
    159  1.124        ad 
    160  1.124        ad static union {
    161  1.124        ad 	kmutex_t	lock;
    162  1.124        ad 	uint8_t		pad[32];
    163  1.124        ad } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
    164  1.124        ad 
    165  1.124        ad /*
    166    1.1       mrg  * local prototypes
    167    1.1       mrg  */
    168    1.1       mrg 
    169   1.97  junyoung static void uvm_pageinsert(struct vm_page *);
    170   1.97  junyoung static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    171   1.97  junyoung static void uvm_pageremove(struct vm_page *);
    172    1.1       mrg 
    173    1.1       mrg /*
    174    1.1       mrg  * inline functions
    175    1.1       mrg  */
    176    1.1       mrg 
    177    1.1       mrg /*
    178    1.1       mrg  * uvm_pageinsert: insert a page in the object and the hash table
    179   1.96      yamt  * uvm_pageinsert_after: insert a page into the specified place in listq
    180    1.1       mrg  *
    181    1.1       mrg  * => caller must lock object
    182    1.1       mrg  * => caller must lock page queues
    183    1.1       mrg  * => call should have already set pg's object and offset pointers
    184    1.1       mrg  *    and bumped the version counter
    185    1.1       mrg  */
    186    1.1       mrg 
    187  1.109     perry inline static void
    188  1.105   thorpej uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    189    1.1       mrg {
    190    1.7       mrg 	struct pglist *buck;
    191   1.67       chs 	struct uvm_object *uobj = pg->uobject;
    192  1.123        ad 	kmutex_t *lock;
    193  1.123        ad 	u_int hash;
    194    1.1       mrg 
    195  1.127        ad 	KASSERT(mutex_owned(&uobj->vmobjlock));
    196   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    197   1.96      yamt 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    198   1.96      yamt 	KASSERT(where == NULL || (where->uobject == uobj));
    199  1.123        ad 
    200  1.123        ad 	hash = uvm_pagehash(uobj, pg->offset);
    201  1.123        ad 	buck = &uvm.page_hash[hash];
    202  1.123        ad 	lock = uvm_hashlock(hash);
    203  1.123        ad 	mutex_spin_enter(lock);
    204   1.67       chs 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    205  1.123        ad 	mutex_spin_exit(lock);
    206    1.7       mrg 
    207   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    208   1.94      yamt 		if (uobj->uo_npages == 0) {
    209   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    210   1.94      yamt 
    211   1.94      yamt 			vholdl(vp);
    212   1.94      yamt 		}
    213   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    214  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    215   1.94      yamt 		} else {
    216  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    217   1.94      yamt 		}
    218   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    219  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    220   1.78       chs 	}
    221   1.78       chs 
    222   1.96      yamt 	if (where)
    223  1.133        ad 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    224   1.96      yamt 	else
    225  1.133        ad 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    226    1.7       mrg 	pg->flags |= PG_TABLED;
    227   1.67       chs 	uobj->uo_npages++;
    228    1.1       mrg }
    229    1.1       mrg 
    230  1.109     perry inline static void
    231  1.105   thorpej uvm_pageinsert(struct vm_page *pg)
    232   1.96      yamt {
    233   1.96      yamt 
    234   1.96      yamt 	uvm_pageinsert_after(pg, NULL);
    235   1.96      yamt }
    236   1.96      yamt 
    237    1.1       mrg /*
    238    1.1       mrg  * uvm_page_remove: remove page from object and hash
    239    1.1       mrg  *
    240    1.1       mrg  * => caller must lock object
    241    1.1       mrg  * => caller must lock page queues
    242    1.1       mrg  */
    243    1.1       mrg 
    244  1.109     perry static inline void
    245  1.105   thorpej uvm_pageremove(struct vm_page *pg)
    246    1.1       mrg {
    247    1.7       mrg 	struct pglist *buck;
    248   1.67       chs 	struct uvm_object *uobj = pg->uobject;
    249  1.123        ad 	kmutex_t *lock;
    250  1.123        ad 	u_int hash;
    251    1.1       mrg 
    252  1.127        ad 	KASSERT(mutex_owned(&uobj->vmobjlock));
    253   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    254  1.123        ad 
    255  1.123        ad 	hash = uvm_pagehash(uobj, pg->offset);
    256  1.123        ad 	buck = &uvm.page_hash[hash];
    257  1.123        ad 	lock = uvm_hashlock(hash);
    258  1.123        ad 	mutex_spin_enter(lock);
    259    1.7       mrg 	TAILQ_REMOVE(buck, pg, hashq);
    260  1.123        ad 	mutex_spin_exit(lock);
    261    1.7       mrg 
    262   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    263   1.94      yamt 		if (uobj->uo_npages == 1) {
    264   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    265   1.94      yamt 
    266   1.94      yamt 			holdrelel(vp);
    267   1.94      yamt 		}
    268   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    269  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    270   1.94      yamt 		} else {
    271  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    272   1.94      yamt 		}
    273   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    274  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    275   1.51       chs 	}
    276   1.44       chs 
    277    1.7       mrg 	/* object should be locked */
    278   1.67       chs 	uobj->uo_npages--;
    279  1.133        ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    280    1.7       mrg 	pg->flags &= ~PG_TABLED;
    281    1.7       mrg 	pg->uobject = NULL;
    282    1.1       mrg }
    283    1.1       mrg 
    284   1.60   thorpej static void
    285   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    286   1.60   thorpej {
    287   1.60   thorpej 	int color, i;
    288   1.60   thorpej 
    289   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    290   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    291  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    292   1.60   thorpej 		}
    293   1.60   thorpej 	}
    294   1.60   thorpej }
    295   1.60   thorpej 
    296    1.1       mrg /*
    297    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    298   1.62       chs  *
    299    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    300    1.1       mrg  */
    301    1.1       mrg 
    302    1.7       mrg void
    303  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    304    1.1       mrg {
    305   1.60   thorpej 	vsize_t freepages, pagecount, bucketcount, n;
    306  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    307   1.63       chs 	struct vm_page *pagearray;
    308   1.81   thorpej 	int lcv;
    309   1.81   thorpej 	u_int i;
    310   1.14       eeh 	paddr_t paddr;
    311    1.7       mrg 
    312  1.133        ad 	KASSERT(ncpu <= 1);
    313  1.133        ad 	KASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    314  1.133        ad 
    315    1.7       mrg 	/*
    316   1.60   thorpej 	 * init the page queues and page queue locks, except the free
    317   1.60   thorpej 	 * list; we allocate that later (with the initial vm_page
    318   1.60   thorpej 	 * structures).
    319    1.7       mrg 	 */
    320   1.51       chs 
    321  1.133        ad 	curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
    322  1.113      yamt 	uvmpdpol_init();
    323  1.127        ad 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    324  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    325    1.7       mrg 
    326    1.7       mrg 	/*
    327   1.51       chs 	 * init the <obj,offset> => <page> hash table.  for now
    328   1.51       chs 	 * we just have one bucket (the bootstrap bucket).  later on we
    329   1.30   thorpej 	 * will allocate new buckets as we dynamically resize the hash table.
    330    1.7       mrg 	 */
    331    1.7       mrg 
    332    1.7       mrg 	uvm.page_nhash = 1;			/* 1 bucket */
    333   1.44       chs 	uvm.page_hashmask = 0;			/* mask for hash function */
    334    1.7       mrg 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    335    1.7       mrg 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    336  1.123        ad 
    337  1.123        ad 	/*
    338  1.123        ad 	 * init hashtable locks.  these must be spinlocks, as they are
    339  1.123        ad 	 * called from sites in the pmap modules where we cannot block.
    340  1.123        ad 	 * if taking multiple locks, the order is: low numbered first,
    341  1.123        ad 	 * high numbered second.
    342  1.123        ad 	 */
    343  1.123        ad 
    344  1.123        ad 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    345  1.124        ad 		mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
    346    1.7       mrg 
    347   1.62       chs 	/*
    348   1.51       chs 	 * allocate vm_page structures.
    349    1.7       mrg 	 */
    350    1.7       mrg 
    351    1.7       mrg 	/*
    352    1.7       mrg 	 * sanity check:
    353    1.7       mrg 	 * before calling this function the MD code is expected to register
    354    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    355    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    356    1.7       mrg 	 */
    357    1.7       mrg 
    358    1.7       mrg 	if (vm_nphysseg == 0)
    359   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    360   1.62       chs 
    361    1.7       mrg 	/*
    362   1.62       chs 	 * first calculate the number of free pages...
    363    1.7       mrg 	 *
    364    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    365    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    366    1.7       mrg 	 * want to return some memory to the pool after booting.
    367    1.7       mrg 	 */
    368   1.62       chs 
    369    1.7       mrg 	freepages = 0;
    370    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    371    1.7       mrg 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    372    1.7       mrg 
    373    1.7       mrg 	/*
    374   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    375   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    376   1.60   thorpej 	 */
    377   1.60   thorpej 	if (uvmexp.ncolors == 0)
    378   1.60   thorpej 		uvmexp.ncolors = 1;
    379   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    380   1.60   thorpej 
    381   1.60   thorpej 	/*
    382    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    383    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    384    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    385    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    386    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    387    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    388    1.7       mrg 	 * pages).
    389    1.7       mrg 	 */
    390   1.62       chs 
    391   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    392   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    393    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    394   1.60   thorpej 
    395   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    396  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    397   1.60   thorpej 	    sizeof(struct vm_page)));
    398  1.133        ad 	cpuarray = bucketarray + bucketcount;
    399  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    400   1.60   thorpej 
    401   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    402   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    403   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    404   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    405  1.133        ad 		uvm.cpus[0].page_free[lcv].pgfl_buckets =
    406  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    407  1.133        ad 		uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
    408   1.60   thorpej 	}
    409   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    410   1.62       chs 
    411    1.7       mrg 	/*
    412   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    413    1.7       mrg 	 */
    414    1.7       mrg 
    415    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    416    1.7       mrg 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    417   1.51       chs 
    418    1.7       mrg 		/* set up page array pointers */
    419    1.7       mrg 		vm_physmem[lcv].pgs = pagearray;
    420    1.7       mrg 		pagearray += n;
    421    1.7       mrg 		pagecount -= n;
    422    1.7       mrg 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    423    1.7       mrg 
    424   1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    425    1.7       mrg 		paddr = ptoa(vm_physmem[lcv].start);
    426    1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    427    1.7       mrg 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    428   1.56   thorpej #ifdef __HAVE_VM_PAGE_MD
    429   1.55   thorpej 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    430   1.56   thorpej #endif
    431    1.7       mrg 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    432    1.7       mrg 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    433    1.7       mrg 				uvmexp.npages++;
    434    1.7       mrg 				/* add page to free pool */
    435    1.7       mrg 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    436    1.7       mrg 			}
    437    1.7       mrg 		}
    438    1.7       mrg 	}
    439   1.44       chs 
    440    1.7       mrg 	/*
    441   1.88   thorpej 	 * pass up the values of virtual_space_start and
    442   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    443   1.88   thorpej 	 * layers of the VM.
    444   1.88   thorpej 	 */
    445   1.88   thorpej 
    446   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    447   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    448   1.91      yamt #ifdef DEBUG
    449   1.91      yamt 	/*
    450   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    451   1.91      yamt 	 */
    452   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    453   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    454   1.91      yamt #endif /* DEBUG */
    455   1.88   thorpej 
    456   1.88   thorpej 	/*
    457   1.51       chs 	 * init various thresholds.
    458    1.7       mrg 	 */
    459   1.51       chs 
    460    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    461    1.7       mrg 	uvmexp.reserve_kernel = 5;
    462    1.7       mrg 
    463    1.7       mrg 	/*
    464   1.51       chs 	 * determine if we should zero pages in the idle loop.
    465   1.34   thorpej 	 */
    466   1.51       chs 
    467  1.133        ad 	uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
    468   1.34   thorpej 
    469   1.34   thorpej 	/*
    470    1.7       mrg 	 * done!
    471    1.7       mrg 	 */
    472    1.1       mrg 
    473  1.119   thorpej 	uvm.page_init_done = true;
    474    1.1       mrg }
    475    1.1       mrg 
    476    1.1       mrg /*
    477    1.1       mrg  * uvm_setpagesize: set the page size
    478   1.62       chs  *
    479    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    480   1.62       chs  */
    481    1.1       mrg 
    482    1.7       mrg void
    483  1.105   thorpej uvm_setpagesize(void)
    484    1.1       mrg {
    485   1.85   thorpej 
    486   1.85   thorpej 	/*
    487   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    488   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    489   1.85   thorpej 	 */
    490   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    491   1.85   thorpej 		if (PAGE_SIZE == 0)
    492   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    493   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    494   1.85   thorpej 	}
    495    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    496    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    497    1.7       mrg 		panic("uvm_setpagesize: page size not a power of two");
    498    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    499    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    500    1.7       mrg 			break;
    501    1.1       mrg }
    502    1.1       mrg 
    503    1.1       mrg /*
    504    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    505    1.1       mrg  */
    506    1.1       mrg 
    507   1.14       eeh vaddr_t
    508  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    509    1.1       mrg {
    510  1.119   thorpej 	static bool initialized = false;
    511   1.14       eeh 	vaddr_t addr;
    512   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    513   1.52   thorpej 	vaddr_t vaddr;
    514   1.14       eeh 	paddr_t paddr;
    515   1.52   thorpej #endif
    516    1.1       mrg 
    517    1.7       mrg 	/*
    518   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    519    1.7       mrg 	 */
    520  1.119   thorpej 	if (initialized == false) {
    521   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    522    1.1       mrg 
    523    1.7       mrg 		/* round it the way we like it */
    524   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    525   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    526   1.19   thorpej 
    527  1.119   thorpej 		initialized = true;
    528    1.7       mrg 	}
    529   1.52   thorpej 
    530   1.52   thorpej 	/* round to page size */
    531   1.52   thorpej 	size = round_page(size);
    532   1.52   thorpej 
    533   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    534   1.52   thorpej 
    535   1.62       chs 	/*
    536   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    537   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    538   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    539   1.52   thorpej 	 */
    540   1.52   thorpej 
    541   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    542   1.88   thorpej 	    &virtual_space_end);
    543   1.52   thorpej 
    544   1.52   thorpej 	return(addr);
    545   1.52   thorpej 
    546   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    547    1.1       mrg 
    548    1.7       mrg 	/*
    549    1.7       mrg 	 * allocate virtual memory for this request
    550    1.7       mrg 	 */
    551   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    552   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    553   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    554   1.20   thorpej 
    555   1.88   thorpej 	addr = virtual_space_start;
    556   1.20   thorpej 
    557   1.20   thorpej #ifdef PMAP_GROWKERNEL
    558   1.20   thorpej 	/*
    559   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    560   1.20   thorpej 	 * then allocate more resources for it.
    561   1.20   thorpej 	 */
    562   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    563   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    564   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    565   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    566   1.19   thorpej 	}
    567   1.20   thorpej #endif
    568    1.1       mrg 
    569   1.88   thorpej 	virtual_space_start += size;
    570    1.1       mrg 
    571    1.9   thorpej 	/*
    572    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    573    1.7       mrg 	 */
    574    1.1       mrg 
    575    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    576    1.7       mrg 	    vaddr += PAGE_SIZE) {
    577    1.1       mrg 
    578    1.7       mrg 		if (!uvm_page_physget(&paddr))
    579    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    580    1.1       mrg 
    581   1.23   thorpej 		/*
    582   1.23   thorpej 		 * Note this memory is no longer managed, so using
    583   1.23   thorpej 		 * pmap_kenter is safe.
    584   1.23   thorpej 		 */
    585    1.7       mrg 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    586    1.7       mrg 	}
    587   1.66     chris 	pmap_update(pmap_kernel());
    588    1.7       mrg 	return(addr);
    589    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    590    1.1       mrg }
    591    1.1       mrg 
    592    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    593    1.1       mrg /*
    594    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    595    1.1       mrg  *
    596    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    597    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    598    1.1       mrg  *    will advance both values (making them equal, and removing some
    599    1.1       mrg  *    vm_page structures from the non-avail area).
    600    1.1       mrg  * => return false if out of memory.
    601    1.1       mrg  */
    602    1.1       mrg 
    603   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    604  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    605   1.28  drochner 
    606  1.118   thorpej static bool
    607  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    608    1.1       mrg {
    609    1.7       mrg 	int lcv, x;
    610    1.1       mrg 
    611    1.7       mrg 	/* pass 1: try allocating from a matching end */
    612    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    613    1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    614    1.1       mrg #else
    615    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    616    1.1       mrg #endif
    617    1.7       mrg 	{
    618    1.1       mrg 
    619  1.119   thorpej 		if (uvm.page_init_done == true)
    620   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    621    1.1       mrg 
    622   1.28  drochner 		if (vm_physmem[lcv].free_list != freelist)
    623   1.28  drochner 			continue;
    624   1.28  drochner 
    625    1.7       mrg 		/* try from front */
    626    1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    627    1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    628    1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    629    1.7       mrg 			vm_physmem[lcv].avail_start++;
    630    1.7       mrg 			vm_physmem[lcv].start++;
    631    1.7       mrg 			/* nothing left?   nuke it */
    632    1.7       mrg 			if (vm_physmem[lcv].avail_start ==
    633    1.7       mrg 			    vm_physmem[lcv].end) {
    634    1.7       mrg 				if (vm_nphysseg == 1)
    635   1.89       wiz 				    panic("uvm_page_physget: out of memory!");
    636    1.7       mrg 				vm_nphysseg--;
    637    1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    638    1.7       mrg 					/* structure copy */
    639    1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    640    1.7       mrg 			}
    641  1.119   thorpej 			return (true);
    642    1.7       mrg 		}
    643    1.7       mrg 
    644    1.7       mrg 		/* try from rear */
    645    1.7       mrg 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    646    1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    647    1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    648    1.7       mrg 			vm_physmem[lcv].avail_end--;
    649    1.7       mrg 			vm_physmem[lcv].end--;
    650    1.7       mrg 			/* nothing left?   nuke it */
    651    1.7       mrg 			if (vm_physmem[lcv].avail_end ==
    652    1.7       mrg 			    vm_physmem[lcv].start) {
    653    1.7       mrg 				if (vm_nphysseg == 1)
    654   1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    655    1.7       mrg 				vm_nphysseg--;
    656    1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    657    1.7       mrg 					/* structure copy */
    658    1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    659    1.7       mrg 			}
    660  1.119   thorpej 			return (true);
    661    1.7       mrg 		}
    662    1.7       mrg 	}
    663    1.1       mrg 
    664    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    665    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    666    1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    667    1.1       mrg #else
    668    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    669    1.1       mrg #endif
    670    1.7       mrg 	{
    671    1.1       mrg 
    672    1.7       mrg 		/* any room in this bank? */
    673    1.7       mrg 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    674    1.7       mrg 			continue;  /* nope */
    675    1.7       mrg 
    676    1.7       mrg 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    677    1.7       mrg 		vm_physmem[lcv].avail_start++;
    678    1.7       mrg 		/* truncate! */
    679    1.7       mrg 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    680    1.7       mrg 
    681    1.7       mrg 		/* nothing left?   nuke it */
    682    1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    683    1.7       mrg 			if (vm_nphysseg == 1)
    684   1.42       mrg 				panic("uvm_page_physget: out of memory!");
    685    1.7       mrg 			vm_nphysseg--;
    686    1.7       mrg 			for (x = lcv ; x < vm_nphysseg ; x++)
    687    1.7       mrg 				/* structure copy */
    688    1.7       mrg 				vm_physmem[x] = vm_physmem[x+1];
    689    1.7       mrg 		}
    690  1.119   thorpej 		return (true);
    691    1.7       mrg 	}
    692    1.1       mrg 
    693  1.119   thorpej 	return (false);        /* whoops! */
    694   1.28  drochner }
    695   1.28  drochner 
    696  1.118   thorpej bool
    697  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    698   1.28  drochner {
    699   1.28  drochner 	int i;
    700   1.28  drochner 
    701   1.28  drochner 	/* try in the order of freelist preference */
    702   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    703  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    704  1.119   thorpej 			return (true);
    705  1.119   thorpej 	return (false);
    706    1.1       mrg }
    707    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    708    1.1       mrg 
    709    1.1       mrg /*
    710    1.1       mrg  * uvm_page_physload: load physical memory into VM system
    711    1.1       mrg  *
    712    1.1       mrg  * => all args are PFs
    713    1.1       mrg  * => all pages in start/end get vm_page structures
    714    1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    715    1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    716    1.1       mrg  */
    717    1.1       mrg 
    718    1.7       mrg void
    719  1.105   thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    720  1.105   thorpej     paddr_t avail_end, int free_list)
    721    1.1       mrg {
    722   1.14       eeh 	int preload, lcv;
    723   1.14       eeh 	psize_t npages;
    724    1.7       mrg 	struct vm_page *pgs;
    725    1.7       mrg 	struct vm_physseg *ps;
    726    1.7       mrg 
    727    1.7       mrg 	if (uvmexp.pagesize == 0)
    728   1.42       mrg 		panic("uvm_page_physload: page size not set!");
    729   1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    730   1.79    provos 		panic("uvm_page_physload: bad free list %d", free_list);
    731   1.26  drochner 	if (start >= end)
    732   1.26  drochner 		panic("uvm_page_physload: start >= end");
    733   1.12   thorpej 
    734    1.7       mrg 	/*
    735    1.7       mrg 	 * do we have room?
    736    1.7       mrg 	 */
    737   1.67       chs 
    738    1.7       mrg 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    739   1.42       mrg 		printf("uvm_page_physload: unable to load physical memory "
    740    1.7       mrg 		    "segment\n");
    741   1.37      soda 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    742   1.37      soda 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    743   1.43  christos 		printf("\tincrease VM_PHYSSEG_MAX\n");
    744    1.7       mrg 		return;
    745    1.7       mrg 	}
    746    1.7       mrg 
    747    1.7       mrg 	/*
    748    1.7       mrg 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    749    1.7       mrg 	 * called yet, so malloc is not available).
    750    1.7       mrg 	 */
    751   1.67       chs 
    752    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    753    1.7       mrg 		if (vm_physmem[lcv].pgs)
    754    1.7       mrg 			break;
    755    1.7       mrg 	}
    756    1.7       mrg 	preload = (lcv == vm_nphysseg);
    757    1.7       mrg 
    758    1.7       mrg 	/*
    759    1.7       mrg 	 * if VM is already running, attempt to malloc() vm_page structures
    760    1.7       mrg 	 */
    761   1.67       chs 
    762    1.7       mrg 	if (!preload) {
    763    1.1       mrg #if defined(VM_PHYSSEG_NOADD)
    764   1.42       mrg 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    765    1.1       mrg #else
    766    1.7       mrg 		/* XXXCDC: need some sort of lockout for this case */
    767   1.14       eeh 		paddr_t paddr;
    768    1.7       mrg 		npages = end - start;  /* # of pages */
    769   1.40   thorpej 		pgs = malloc(sizeof(struct vm_page) * npages,
    770   1.40   thorpej 		    M_VMPAGE, M_NOWAIT);
    771    1.7       mrg 		if (pgs == NULL) {
    772   1.42       mrg 			printf("uvm_page_physload: can not malloc vm_page "
    773    1.7       mrg 			    "structs for segment\n");
    774    1.7       mrg 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    775    1.7       mrg 			return;
    776    1.7       mrg 		}
    777   1.12   thorpej 		/* zero data, init phys_addr and free_list, and free pages */
    778   1.13     perry 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    779    1.7       mrg 		for (lcv = 0, paddr = ptoa(start) ;
    780    1.7       mrg 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    781    1.7       mrg 			pgs[lcv].phys_addr = paddr;
    782   1.12   thorpej 			pgs[lcv].free_list = free_list;
    783    1.7       mrg 			if (atop(paddr) >= avail_start &&
    784    1.7       mrg 			    atop(paddr) <= avail_end)
    785    1.8     chuck 				uvm_pagefree(&pgs[lcv]);
    786    1.7       mrg 		}
    787    1.7       mrg 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    788    1.7       mrg 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    789    1.1       mrg #endif
    790    1.7       mrg 	} else {
    791    1.7       mrg 		pgs = NULL;
    792    1.7       mrg 		npages = 0;
    793    1.7       mrg 	}
    794    1.1       mrg 
    795    1.7       mrg 	/*
    796    1.7       mrg 	 * now insert us in the proper place in vm_physmem[]
    797    1.7       mrg 	 */
    798    1.1       mrg 
    799    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    800    1.7       mrg 	/* random: put it at the end (easy!) */
    801    1.7       mrg 	ps = &vm_physmem[vm_nphysseg];
    802    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    803    1.7       mrg 	{
    804    1.7       mrg 		int x;
    805    1.7       mrg 		/* sort by address for binary search */
    806    1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    807    1.7       mrg 			if (start < vm_physmem[lcv].start)
    808    1.7       mrg 				break;
    809    1.7       mrg 		ps = &vm_physmem[lcv];
    810    1.7       mrg 		/* move back other entries, if necessary ... */
    811    1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    812    1.7       mrg 			/* structure copy */
    813    1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    814    1.7       mrg 	}
    815    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    816    1.7       mrg 	{
    817    1.7       mrg 		int x;
    818    1.7       mrg 		/* sort by largest segment first */
    819    1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    820    1.7       mrg 			if ((end - start) >
    821    1.7       mrg 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    822    1.7       mrg 				break;
    823    1.7       mrg 		ps = &vm_physmem[lcv];
    824    1.7       mrg 		/* move back other entries, if necessary ... */
    825    1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    826    1.7       mrg 			/* structure copy */
    827    1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    828    1.7       mrg 	}
    829    1.1       mrg #else
    830   1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    831    1.1       mrg #endif
    832    1.1       mrg 
    833    1.7       mrg 	ps->start = start;
    834    1.7       mrg 	ps->end = end;
    835    1.7       mrg 	ps->avail_start = avail_start;
    836    1.7       mrg 	ps->avail_end = avail_end;
    837    1.7       mrg 	if (preload) {
    838    1.7       mrg 		ps->pgs = NULL;
    839    1.7       mrg 	} else {
    840    1.7       mrg 		ps->pgs = pgs;
    841    1.7       mrg 		ps->lastpg = pgs + npages - 1;
    842    1.7       mrg 	}
    843   1.12   thorpej 	ps->free_list = free_list;
    844    1.7       mrg 	vm_nphysseg++;
    845    1.7       mrg 
    846  1.113      yamt 	if (!preload) {
    847    1.7       mrg 		uvm_page_rehash();
    848  1.113      yamt 		uvmpdpol_reinit();
    849  1.113      yamt 	}
    850    1.1       mrg }
    851    1.1       mrg 
    852    1.1       mrg /*
    853    1.1       mrg  * uvm_page_rehash: reallocate hash table based on number of free pages.
    854    1.1       mrg  */
    855    1.1       mrg 
    856    1.7       mrg void
    857  1.105   thorpej uvm_page_rehash(void)
    858    1.1       mrg {
    859  1.123        ad 	int freepages, lcv, bucketcount, oldcount, i;
    860    1.7       mrg 	struct pglist *newbuckets, *oldbuckets;
    861    1.7       mrg 	struct vm_page *pg;
    862   1.30   thorpej 	size_t newsize, oldsize;
    863    1.7       mrg 
    864    1.7       mrg 	/*
    865    1.7       mrg 	 * compute number of pages that can go in the free pool
    866    1.7       mrg 	 */
    867    1.7       mrg 
    868    1.7       mrg 	freepages = 0;
    869    1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    870    1.7       mrg 		freepages +=
    871    1.7       mrg 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    872    1.7       mrg 
    873    1.7       mrg 	/*
    874    1.7       mrg 	 * compute number of buckets needed for this number of pages
    875    1.7       mrg 	 */
    876    1.7       mrg 
    877    1.7       mrg 	bucketcount = 1;
    878    1.7       mrg 	while (bucketcount < freepages)
    879    1.7       mrg 		bucketcount = bucketcount * 2;
    880    1.7       mrg 
    881    1.7       mrg 	/*
    882   1.30   thorpej 	 * compute the size of the current table and new table.
    883    1.7       mrg 	 */
    884    1.7       mrg 
    885   1.30   thorpej 	oldbuckets = uvm.page_hash;
    886   1.30   thorpej 	oldcount = uvm.page_nhash;
    887   1.30   thorpej 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    888   1.30   thorpej 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    889   1.30   thorpej 
    890   1.30   thorpej 	/*
    891   1.30   thorpej 	 * allocate the new buckets
    892   1.30   thorpej 	 */
    893   1.30   thorpej 
    894  1.102      yamt 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    895  1.102      yamt 	    0, UVM_KMF_WIRED);
    896    1.7       mrg 	if (newbuckets == NULL) {
    897   1.30   thorpej 		printf("uvm_page_physrehash: WARNING: could not grow page "
    898    1.7       mrg 		    "hash table\n");
    899    1.7       mrg 		return;
    900    1.7       mrg 	}
    901    1.7       mrg 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    902    1.7       mrg 		TAILQ_INIT(&newbuckets[lcv]);
    903    1.7       mrg 
    904    1.7       mrg 	/*
    905    1.7       mrg 	 * now replace the old buckets with the new ones and rehash everything
    906    1.7       mrg 	 */
    907    1.7       mrg 
    908  1.123        ad 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    909  1.124        ad 		mutex_spin_enter(&uvm_hashlocks[i].lock);
    910  1.123        ad 
    911    1.7       mrg 	uvm.page_hash = newbuckets;
    912    1.7       mrg 	uvm.page_nhash = bucketcount;
    913    1.7       mrg 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    914    1.7       mrg 
    915    1.7       mrg 	/* ... and rehash */
    916    1.7       mrg 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    917    1.7       mrg 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    918    1.7       mrg 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    919    1.7       mrg 			TAILQ_INSERT_TAIL(
    920    1.7       mrg 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    921    1.7       mrg 			  pg, hashq);
    922    1.7       mrg 		}
    923    1.7       mrg 	}
    924  1.123        ad 
    925  1.123        ad 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    926  1.124        ad 		mutex_spin_exit(&uvm_hashlocks[i].lock);
    927    1.7       mrg 
    928    1.7       mrg 	/*
    929   1.30   thorpej 	 * free old bucket array if is not the boot-time table
    930    1.7       mrg 	 */
    931    1.7       mrg 
    932    1.7       mrg 	if (oldbuckets != &uvm_bootbucket)
    933  1.102      yamt 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    934  1.102      yamt 		    UVM_KMF_WIRED);
    935    1.1       mrg }
    936    1.1       mrg 
    937   1.60   thorpej /*
    938   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    939   1.60   thorpej  * larger than the old one.
    940   1.60   thorpej  */
    941   1.60   thorpej 
    942   1.60   thorpej void
    943   1.60   thorpej uvm_page_recolor(int newncolors)
    944   1.60   thorpej {
    945  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    946  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    947   1.63       chs 	struct vm_page *pg;
    948   1.60   thorpej 	vsize_t bucketcount;
    949  1.123        ad 	int lcv, color, i, ocolors;
    950  1.133        ad 	struct uvm_cpu *ucpu;
    951   1.60   thorpej 
    952   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    953   1.60   thorpej 		return;
    954   1.77  wrstuden 
    955  1.119   thorpej 	if (uvm.page_init_done == false) {
    956   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    957   1.77  wrstuden 		return;
    958   1.77  wrstuden 	}
    959   1.60   thorpej 
    960   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    961  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    962   1.60   thorpej 	    M_VMPAGE, M_NOWAIT);
    963  1.133        ad 	cpuarray = bucketarray + bucketcount;
    964   1.60   thorpej 	if (bucketarray == NULL) {
    965   1.60   thorpej 		printf("WARNING: unable to allocate %ld page color buckets\n",
    966   1.60   thorpej 		    (long) bucketcount);
    967   1.60   thorpej 		return;
    968   1.60   thorpej 	}
    969   1.60   thorpej 
    970  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    971   1.60   thorpej 
    972   1.60   thorpej 	/* Make sure we should still do this. */
    973   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
    974  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
    975   1.60   thorpej 		free(bucketarray, M_VMPAGE);
    976   1.60   thorpej 		return;
    977   1.60   thorpej 	}
    978   1.60   thorpej 
    979   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    980   1.60   thorpej 	ocolors = uvmexp.ncolors;
    981   1.60   thorpej 
    982   1.60   thorpej 	uvmexp.ncolors = newncolors;
    983   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    984   1.60   thorpej 
    985  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    986   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    987  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    988  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    989  1.133        ad 		uvm_page_init_buckets(&gpgfl);
    990   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
    991   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
    992   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
    993  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
    994   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    995   1.60   thorpej 				    != NULL) {
    996  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
    997  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
    998  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    999  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1000  1.133        ad 					    i], pg, pageq.list);
   1001  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1002   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1003  1.133        ad 					    i], pg, listq.list);
   1004   1.60   thorpej 				}
   1005   1.60   thorpej 			}
   1006   1.60   thorpej 		}
   1007  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1008  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1009   1.60   thorpej 	}
   1010   1.60   thorpej 
   1011   1.60   thorpej 	if (have_recolored_pages) {
   1012  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
   1013   1.60   thorpej 		free(oldbucketarray, M_VMPAGE);
   1014   1.60   thorpej 		return;
   1015   1.60   thorpej 	}
   1016   1.60   thorpej 
   1017  1.119   thorpej 	have_recolored_pages = true;
   1018  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1019   1.60   thorpej }
   1020    1.1       mrg 
   1021    1.1       mrg /*
   1022  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
   1023  1.133        ad  */
   1024  1.133        ad 
   1025  1.133        ad void
   1026  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
   1027  1.133        ad {
   1028  1.133        ad 	struct pgflbucket *bucketarray;
   1029  1.133        ad 	struct pgfreelist pgfl;
   1030  1.133        ad 	struct uvm_cpu *ucpu;
   1031  1.133        ad 	vsize_t bucketcount;
   1032  1.133        ad 	int lcv;
   1033  1.133        ad 
   1034  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
   1035  1.133        ad 		/* Already done in uvm_page_init(). */
   1036  1.133        ad 		return;
   1037  1.133        ad 	}
   1038  1.133        ad 
   1039  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1040  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1041  1.133        ad 	    M_VMPAGE, M_WAITOK);
   1042  1.133        ad 	ucpu = &uvm.cpus[cpu_index(ci)];
   1043  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
   1044  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1045  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1046  1.133        ad 		uvm_page_init_buckets(&pgfl);
   1047  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1048  1.133        ad 	}
   1049  1.133        ad }
   1050  1.133        ad 
   1051  1.133        ad /*
   1052   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1053   1.54   thorpej  */
   1054   1.54   thorpej 
   1055  1.114   thorpej static struct vm_page *
   1056  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1057   1.69    simonb     int *trycolorp)
   1058   1.54   thorpej {
   1059  1.133        ad 	struct pgflist *freeq;
   1060   1.54   thorpej 	struct vm_page *pg;
   1061   1.58     enami 	int color, trycolor = *trycolorp;
   1062  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
   1063   1.54   thorpej 
   1064  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1065  1.130        ad 
   1066   1.58     enami 	color = trycolor;
   1067  1.133        ad 	cpu = false;
   1068  1.133        ad 	pgfl = &ucpu->page_free[flist];
   1069  1.133        ad 	gpgfl = &uvm.page_free[flist];
   1070   1.58     enami 	do {
   1071  1.133        ad 		/* cpu, try1 */
   1072  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1073  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1074  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1075  1.133        ad 		    	uvmexp.cpuhit++;
   1076  1.133        ad 			goto gotit;
   1077  1.133        ad 		}
   1078  1.133        ad 		/* global, try1 */
   1079  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1080  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1081  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1082  1.133        ad 		    	uvmexp.cpumiss++;
   1083   1.54   thorpej 			goto gotit;
   1084  1.133        ad 		}
   1085  1.133        ad 		/* cpu, try2 */
   1086  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1087  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1088  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1089  1.133        ad 		    	uvmexp.cpuhit++;
   1090   1.54   thorpej 			goto gotit;
   1091  1.133        ad 		}
   1092  1.133        ad 		/* global, try2 */
   1093  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1094  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1095  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1096  1.133        ad 		    	uvmexp.cpumiss++;
   1097  1.133        ad 			goto gotit;
   1098  1.133        ad 		}
   1099   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
   1100   1.58     enami 	} while (color != trycolor);
   1101   1.54   thorpej 
   1102   1.54   thorpej 	return (NULL);
   1103   1.54   thorpej 
   1104   1.54   thorpej  gotit:
   1105  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1106  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1107   1.54   thorpej 	uvmexp.free--;
   1108   1.54   thorpej 
   1109   1.54   thorpej 	/* update zero'd page count */
   1110   1.54   thorpej 	if (pg->flags & PG_ZERO)
   1111   1.54   thorpej 		uvmexp.zeropages--;
   1112   1.54   thorpej 
   1113   1.54   thorpej 	if (color == trycolor)
   1114   1.54   thorpej 		uvmexp.colorhit++;
   1115   1.54   thorpej 	else {
   1116   1.54   thorpej 		uvmexp.colormiss++;
   1117   1.54   thorpej 		*trycolorp = color;
   1118   1.54   thorpej 	}
   1119   1.54   thorpej 
   1120   1.54   thorpej 	return (pg);
   1121   1.54   thorpej }
   1122   1.54   thorpej 
   1123   1.54   thorpej /*
   1124   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1125    1.1       mrg  *
   1126    1.1       mrg  * => return null if no pages free
   1127    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
   1128  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1129    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
   1130    1.1       mrg  * => only one of obj or anon can be non-null
   1131    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
   1132   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1133   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
   1134   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
   1135   1.34   thorpej  *	unknown contents page.  This is because we live with the
   1136   1.34   thorpej  *	consequences of a bad free list decision for the entire
   1137   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
   1138   1.34   thorpej  *	is slower to access.
   1139    1.1       mrg  */
   1140    1.1       mrg 
   1141    1.7       mrg struct vm_page *
   1142  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1143  1.105   thorpej     int flags, int strat, int free_list)
   1144    1.1       mrg {
   1145  1.123        ad 	int lcv, try1, try2, zeroit = 0, color;
   1146  1.133        ad 	struct uvm_cpu *ucpu;
   1147    1.7       mrg 	struct vm_page *pg;
   1148  1.118   thorpej 	bool use_reserve;
   1149    1.1       mrg 
   1150   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
   1151  1.113      yamt 	KASSERT(anon == NULL || off == 0);
   1152   1.44       chs 	KASSERT(off == trunc_page(off));
   1153  1.127        ad 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1154  1.127        ad 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1155   1.48   thorpej 
   1156  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1157    1.1       mrg 
   1158    1.7       mrg 	/*
   1159   1.54   thorpej 	 * This implements a global round-robin page coloring
   1160   1.54   thorpej 	 * algorithm.
   1161   1.54   thorpej 	 *
   1162   1.54   thorpej 	 * XXXJRT: What about virtually-indexed caches?
   1163   1.54   thorpej 	 */
   1164   1.67       chs 
   1165  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1166  1.133        ad 	color = ucpu->page_free_nextcolor;
   1167   1.54   thorpej 
   1168   1.54   thorpej 	/*
   1169    1.7       mrg 	 * check to see if we need to generate some free pages waking
   1170    1.7       mrg 	 * the pagedaemon.
   1171    1.7       mrg 	 */
   1172    1.7       mrg 
   1173  1.113      yamt 	uvm_kick_pdaemon();
   1174    1.7       mrg 
   1175    1.7       mrg 	/*
   1176    1.7       mrg 	 * fail if any of these conditions is true:
   1177    1.7       mrg 	 * [1]  there really are no free pages, or
   1178    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1179    1.7       mrg 	 *        the page isn't being allocated to a kernel object.
   1180    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1181    1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1182    1.7       mrg 	 */
   1183    1.7       mrg 
   1184   1.18       chs 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1185   1.22   thorpej 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1186   1.18       chs 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1187    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1188  1.122        ad 	     !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
   1189   1.12   thorpej 		goto fail;
   1190   1.12   thorpej 
   1191   1.34   thorpej #if PGFL_NQUEUES != 2
   1192   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
   1193   1.34   thorpej #endif
   1194   1.34   thorpej 
   1195   1.34   thorpej 	/*
   1196   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1197   1.34   thorpej 	 * we try the UNKNOWN queue first.
   1198   1.34   thorpej 	 */
   1199   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1200   1.34   thorpej 		try1 = PGFL_ZEROS;
   1201   1.34   thorpej 		try2 = PGFL_UNKNOWN;
   1202   1.34   thorpej 	} else {
   1203   1.34   thorpej 		try1 = PGFL_UNKNOWN;
   1204   1.34   thorpej 		try2 = PGFL_ZEROS;
   1205   1.34   thorpej 	}
   1206   1.34   thorpej 
   1207   1.12   thorpej  again:
   1208   1.12   thorpej 	switch (strat) {
   1209   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1210   1.12   thorpej 		/* Check all freelists in descending priority order. */
   1211   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1212  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1213   1.54   thorpej 			    try1, try2, &color);
   1214   1.54   thorpej 			if (pg != NULL)
   1215   1.12   thorpej 				goto gotit;
   1216   1.12   thorpej 		}
   1217   1.12   thorpej 
   1218   1.12   thorpej 		/* No pages free! */
   1219   1.12   thorpej 		goto fail;
   1220   1.12   thorpej 
   1221   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1222   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1223   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1224   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1225  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1226   1.54   thorpej 		    try1, try2, &color);
   1227   1.54   thorpej 		if (pg != NULL)
   1228   1.12   thorpej 			goto gotit;
   1229   1.12   thorpej 
   1230   1.12   thorpej 		/* Fall back, if possible. */
   1231   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1232   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1233   1.12   thorpej 			goto again;
   1234   1.12   thorpej 		}
   1235   1.12   thorpej 
   1236   1.12   thorpej 		/* No pages free! */
   1237   1.12   thorpej 		goto fail;
   1238   1.12   thorpej 
   1239   1.12   thorpej 	default:
   1240   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1241   1.12   thorpej 		/* NOTREACHED */
   1242    1.7       mrg 	}
   1243    1.7       mrg 
   1244   1.12   thorpej  gotit:
   1245   1.54   thorpej 	/*
   1246   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1247   1.54   thorpej 	 * the next color accordingly.
   1248   1.54   thorpej 	 */
   1249   1.67       chs 
   1250  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1251   1.34   thorpej 
   1252   1.34   thorpej 	/*
   1253   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1254   1.34   thorpej 	 * zero the page
   1255   1.34   thorpej 	 */
   1256   1.67       chs 
   1257   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1258   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1259   1.34   thorpej 			uvmexp.pga_zerohit++;
   1260   1.34   thorpej 			zeroit = 0;
   1261   1.34   thorpej 		} else {
   1262   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1263   1.34   thorpej 			zeroit = 1;
   1264   1.34   thorpej 		}
   1265  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1266  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1267  1.133        ad 		}
   1268   1.34   thorpej 	}
   1269  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1270    1.7       mrg 
   1271    1.7       mrg 	pg->offset = off;
   1272    1.7       mrg 	pg->uobject = obj;
   1273    1.7       mrg 	pg->uanon = anon;
   1274    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1275    1.7       mrg 	if (anon) {
   1276  1.103      yamt 		anon->an_page = pg;
   1277    1.7       mrg 		pg->pqflags = PQ_ANON;
   1278  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1279    1.7       mrg 	} else {
   1280   1.67       chs 		if (obj) {
   1281    1.7       mrg 			uvm_pageinsert(pg);
   1282   1.67       chs 		}
   1283    1.7       mrg 		pg->pqflags = 0;
   1284    1.7       mrg 	}
   1285    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1286    1.7       mrg 	pg->owner_tag = NULL;
   1287    1.1       mrg #endif
   1288    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1289   1.33   thorpej 
   1290   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1291   1.33   thorpej 		/*
   1292   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1293   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1294   1.33   thorpej 		 */
   1295   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1296   1.34   thorpej 		if (zeroit)
   1297   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1298   1.33   thorpej 	}
   1299    1.1       mrg 
   1300    1.7       mrg 	return(pg);
   1301   1.12   thorpej 
   1302   1.12   thorpej  fail:
   1303  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1304   1.12   thorpej 	return (NULL);
   1305    1.1       mrg }
   1306    1.1       mrg 
   1307    1.1       mrg /*
   1308   1.96      yamt  * uvm_pagereplace: replace a page with another
   1309   1.96      yamt  *
   1310   1.96      yamt  * => object must be locked
   1311   1.96      yamt  */
   1312   1.96      yamt 
   1313   1.96      yamt void
   1314  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1315   1.96      yamt {
   1316   1.97  junyoung 
   1317   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1318   1.96      yamt 	KASSERT(oldpg->uobject != NULL);
   1319   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1320   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1321  1.127        ad 	KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
   1322   1.96      yamt 
   1323   1.96      yamt 	newpg->uobject = oldpg->uobject;
   1324   1.96      yamt 	newpg->offset = oldpg->offset;
   1325   1.96      yamt 
   1326   1.96      yamt 	uvm_pageinsert_after(newpg, oldpg);
   1327   1.96      yamt 	uvm_pageremove(oldpg);
   1328   1.96      yamt }
   1329   1.96      yamt 
   1330   1.96      yamt /*
   1331    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1332    1.1       mrg  *
   1333    1.1       mrg  * => both objects must be locked
   1334    1.1       mrg  */
   1335    1.1       mrg 
   1336    1.7       mrg void
   1337  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1338    1.1       mrg {
   1339    1.7       mrg 	/*
   1340    1.7       mrg 	 * remove it from the old object
   1341    1.7       mrg 	 */
   1342    1.7       mrg 
   1343    1.7       mrg 	if (pg->uobject) {
   1344    1.7       mrg 		uvm_pageremove(pg);
   1345    1.7       mrg 	}
   1346    1.7       mrg 
   1347    1.7       mrg 	/*
   1348    1.7       mrg 	 * put it in the new object
   1349    1.7       mrg 	 */
   1350    1.7       mrg 
   1351    1.7       mrg 	if (newobj) {
   1352    1.7       mrg 		pg->uobject = newobj;
   1353    1.7       mrg 		pg->offset = newoff;
   1354    1.7       mrg 		uvm_pageinsert(pg);
   1355    1.7       mrg 	}
   1356    1.1       mrg }
   1357    1.1       mrg 
   1358   1.91      yamt #ifdef DEBUG
   1359   1.91      yamt /*
   1360   1.91      yamt  * check if page is zero-filled
   1361   1.91      yamt  *
   1362   1.91      yamt  *  - called with free page queue lock held.
   1363   1.91      yamt  */
   1364   1.91      yamt void
   1365   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1366   1.91      yamt {
   1367   1.91      yamt 	int *p, *ep;
   1368   1.91      yamt 
   1369   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1370  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1371   1.91      yamt 
   1372   1.91      yamt 	/*
   1373   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1374   1.91      yamt 	 * uvm page allocator.
   1375   1.91      yamt 	 *
   1376   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1377   1.91      yamt 	 */
   1378   1.91      yamt 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1379   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1380   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1381   1.92      yamt 	pmap_update(pmap_kernel());
   1382   1.91      yamt 	while (p < ep) {
   1383   1.91      yamt 		if (*p != 0)
   1384   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1385   1.91      yamt 		p++;
   1386   1.91      yamt 	}
   1387   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1388  1.131      yamt 	/*
   1389  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1390  1.131      yamt 	 * uses this VA.
   1391  1.131      yamt 	 */
   1392   1.91      yamt }
   1393   1.91      yamt #endif /* DEBUG */
   1394   1.91      yamt 
   1395    1.1       mrg /*
   1396    1.1       mrg  * uvm_pagefree: free page
   1397    1.1       mrg  *
   1398  1.133        ad  * => erase page's identity (i.e. remove from object)
   1399    1.1       mrg  * => put page on free list
   1400    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1401    1.1       mrg  * => caller must lock page queues
   1402    1.1       mrg  * => assumes all valid mappings of pg are gone
   1403    1.1       mrg  */
   1404    1.1       mrg 
   1405   1.44       chs void
   1406  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1407    1.1       mrg {
   1408  1.133        ad 	struct pgflist *pgfl;
   1409  1.133        ad 	struct uvm_cpu *ucpu;
   1410  1.133        ad 	int index, color, queue;
   1411  1.118   thorpej 	bool iszero;
   1412   1.67       chs 
   1413   1.44       chs #ifdef DEBUG
   1414   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1415   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1416   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1417   1.44       chs 	}
   1418   1.91      yamt #endif /* DEBUG */
   1419   1.44       chs 
   1420  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1421  1.128      yamt 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1422  1.128      yamt 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1423  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1424  1.127        ad 		mutex_owned(&pg->uanon->an_lock));
   1425  1.123        ad 
   1426    1.7       mrg 	/*
   1427   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1428    1.7       mrg 	 */
   1429    1.7       mrg 
   1430   1.67       chs 	if (pg->loan_count) {
   1431   1.70       chs 		KASSERT(pg->wire_count == 0);
   1432    1.7       mrg 
   1433    1.7       mrg 		/*
   1434   1.67       chs 		 * if the page is owned by an anon then we just want to
   1435   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1436   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1437   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1438   1.70       chs 		 * of possible anon owners.
   1439   1.70       chs 		 *
   1440   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1441   1.70       chs 		 * unbusy the page, and we're done.
   1442    1.7       mrg 		 */
   1443    1.7       mrg 
   1444   1.73       chs 		if (pg->uobject != NULL) {
   1445   1.70       chs 			uvm_pageremove(pg);
   1446   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1447   1.73       chs 		} else if (pg->uanon != NULL) {
   1448   1.73       chs 			if ((pg->pqflags & PQ_ANON) == 0) {
   1449   1.73       chs 				pg->loan_count--;
   1450   1.73       chs 			} else {
   1451   1.73       chs 				pg->pqflags &= ~PQ_ANON;
   1452  1.126        ad 				atomic_dec_uint(&uvmexp.anonpages);
   1453   1.73       chs 			}
   1454  1.103      yamt 			pg->uanon->an_page = NULL;
   1455   1.73       chs 			pg->uanon = NULL;
   1456   1.67       chs 		}
   1457   1.70       chs 		if (pg->flags & PG_WANTED) {
   1458   1.70       chs 			wakeup(pg);
   1459   1.70       chs 		}
   1460   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1461   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1462   1.70       chs 		pg->owner_tag = NULL;
   1463   1.70       chs #endif
   1464   1.73       chs 		if (pg->loan_count) {
   1465  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1466  1.115      yamt 			if (pg->uanon == NULL) {
   1467  1.115      yamt 				uvm_pagedequeue(pg);
   1468  1.115      yamt 			}
   1469   1.73       chs 			return;
   1470   1.73       chs 		}
   1471   1.67       chs 	}
   1472   1.62       chs 
   1473   1.67       chs 	/*
   1474   1.67       chs 	 * remove page from its object or anon.
   1475   1.67       chs 	 */
   1476   1.44       chs 
   1477   1.73       chs 	if (pg->uobject != NULL) {
   1478   1.67       chs 		uvm_pageremove(pg);
   1479   1.73       chs 	} else if (pg->uanon != NULL) {
   1480  1.103      yamt 		pg->uanon->an_page = NULL;
   1481  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1482    1.7       mrg 	}
   1483    1.1       mrg 
   1484    1.7       mrg 	/*
   1485   1.70       chs 	 * now remove the page from the queues.
   1486    1.7       mrg 	 */
   1487    1.7       mrg 
   1488   1.67       chs 	uvm_pagedequeue(pg);
   1489    1.7       mrg 
   1490    1.7       mrg 	/*
   1491    1.7       mrg 	 * if the page was wired, unwire it now.
   1492    1.7       mrg 	 */
   1493   1.44       chs 
   1494   1.34   thorpej 	if (pg->wire_count) {
   1495    1.7       mrg 		pg->wire_count = 0;
   1496    1.7       mrg 		uvmexp.wired--;
   1497   1.44       chs 	}
   1498    1.7       mrg 
   1499    1.7       mrg 	/*
   1500   1.44       chs 	 * and put on free queue
   1501    1.7       mrg 	 */
   1502    1.7       mrg 
   1503   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1504  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1505  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1506  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1507   1.34   thorpej 
   1508    1.7       mrg 	pg->pqflags = PQ_FREE;
   1509    1.3       chs #ifdef DEBUG
   1510    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1511    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1512    1.3       chs #endif
   1513   1.90      yamt 
   1514  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1515   1.91      yamt 
   1516   1.91      yamt #ifdef DEBUG
   1517   1.91      yamt 	if (iszero)
   1518   1.91      yamt 		uvm_pagezerocheck(pg);
   1519   1.91      yamt #endif /* DEBUG */
   1520   1.91      yamt 
   1521  1.133        ad 
   1522  1.133        ad 	/* global list */
   1523  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1524  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1525    1.7       mrg 	uvmexp.free++;
   1526  1.133        ad 	if (iszero) {
   1527   1.90      yamt 		uvmexp.zeropages++;
   1528  1.133        ad 	}
   1529   1.34   thorpej 
   1530  1.133        ad 	/* per-cpu list */
   1531  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1532  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1533  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1534  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1535  1.133        ad 	ucpu->pages[queue]++;
   1536  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1537  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1538  1.133        ad 	}
   1539   1.34   thorpej 
   1540  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1541   1.44       chs }
   1542   1.44       chs 
   1543   1.44       chs /*
   1544   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1545   1.44       chs  *
   1546   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1547   1.44       chs  * => if pages are object-owned, object must be locked.
   1548   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1549   1.76     enami  * => caller must lock page queues if pages may be released.
   1550   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1551   1.44       chs  */
   1552   1.44       chs 
   1553   1.44       chs void
   1554  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1555   1.44       chs {
   1556   1.44       chs 	struct vm_page *pg;
   1557   1.44       chs 	int i;
   1558   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1559   1.44       chs 
   1560   1.44       chs 	for (i = 0; i < npgs; i++) {
   1561   1.44       chs 		pg = pgs[i];
   1562   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1563   1.44       chs 			continue;
   1564   1.44       chs 		}
   1565   1.98      yamt 
   1566  1.127        ad 		KASSERT(pg->uobject == NULL ||
   1567  1.127        ad 		    mutex_owned(&pg->uobject->vmobjlock));
   1568  1.127        ad 		KASSERT(pg->uobject != NULL ||
   1569  1.128      yamt 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1570   1.98      yamt 
   1571   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1572   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1573   1.44       chs 		if (pg->flags & PG_WANTED) {
   1574   1.44       chs 			wakeup(pg);
   1575   1.44       chs 		}
   1576   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1577   1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1578   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1579   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1580   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1581   1.67       chs 			uvm_pagefree(pg);
   1582   1.44       chs 		} else {
   1583   1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1584   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1585   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1586   1.44       chs 		}
   1587   1.44       chs 	}
   1588    1.1       mrg }
   1589    1.1       mrg 
   1590    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1591    1.1       mrg /*
   1592    1.1       mrg  * uvm_page_own: set or release page ownership
   1593    1.1       mrg  *
   1594    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1595    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1596    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1597    1.1       mrg  * => page's object [if any] must be locked
   1598    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1599    1.1       mrg  */
   1600    1.7       mrg void
   1601  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1602    1.1       mrg {
   1603  1.112      yamt 	struct uvm_object *uobj;
   1604  1.112      yamt 	struct vm_anon *anon;
   1605  1.112      yamt 
   1606   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1607   1.67       chs 
   1608  1.112      yamt 	uobj = pg->uobject;
   1609  1.112      yamt 	anon = pg->uanon;
   1610  1.112      yamt 	if (uobj != NULL) {
   1611  1.127        ad 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1612  1.112      yamt 	} else if (anon != NULL) {
   1613  1.127        ad 		KASSERT(mutex_owned(&anon->an_lock));
   1614  1.112      yamt 	}
   1615  1.112      yamt 
   1616  1.112      yamt 	KASSERT((pg->flags & PG_WANTED) == 0);
   1617  1.112      yamt 
   1618    1.7       mrg 	/* gain ownership? */
   1619    1.7       mrg 	if (tag) {
   1620  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1621    1.7       mrg 		if (pg->owner_tag) {
   1622    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1623    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1624   1.74     enami 			    pg->owner, pg->owner_tag);
   1625    1.7       mrg 			panic("uvm_page_own");
   1626    1.7       mrg 		}
   1627    1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1628  1.120  perseant 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1629    1.7       mrg 		pg->owner_tag = tag;
   1630    1.7       mrg 		return;
   1631    1.7       mrg 	}
   1632    1.7       mrg 
   1633    1.7       mrg 	/* drop ownership */
   1634  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1635    1.7       mrg 	if (pg->owner_tag == NULL) {
   1636    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1637    1.7       mrg 		    "page (%p)\n", pg);
   1638    1.7       mrg 		panic("uvm_page_own");
   1639    1.7       mrg 	}
   1640  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1641  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1642  1.115      yamt 		    pg->wire_count > 0);
   1643  1.115      yamt 	} else {
   1644  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1645  1.115      yamt 	}
   1646    1.7       mrg 	pg->owner_tag = NULL;
   1647    1.1       mrg }
   1648    1.1       mrg #endif
   1649   1.34   thorpej 
   1650   1.34   thorpej /*
   1651   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1652   1.34   thorpej  *
   1653   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1654   1.54   thorpej  *	on the CPU cache.
   1655  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1656  1.132        ad  *      to run, or MD code detects a reason to break early.
   1657   1.34   thorpej  */
   1658   1.34   thorpej void
   1659  1.105   thorpej uvm_pageidlezero(void)
   1660   1.34   thorpej {
   1661   1.34   thorpej 	struct vm_page *pg;
   1662  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1663  1.133        ad 	struct uvm_cpu *ucpu;
   1664  1.133        ad 	int free_list, firstbucket, nextbucket;
   1665  1.133        ad 
   1666  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1667  1.133        ad 	if (!ucpu->page_idle_zero ||
   1668  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1669  1.133        ad 	    	ucpu->page_idle_zero = false;
   1670  1.132        ad 		return;
   1671  1.132        ad 	}
   1672  1.133        ad 	mutex_enter(&uvm_fpageqlock);
   1673  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1674  1.133        ad 	nextbucket = firstbucket;
   1675   1.58     enami 	do {
   1676  1.121      yamt 		if (sched_curcpu_runnable_p()) {
   1677  1.133        ad 			break;
   1678   1.34   thorpej 		}
   1679   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1680  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1681  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1682  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1683   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1684  1.132        ad 				if (sched_curcpu_runnable_p()) {
   1685  1.101      yamt 					goto quit;
   1686  1.132        ad 				}
   1687  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1688  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1689  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1690   1.54   thorpej 				uvmexp.free--;
   1691  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1692   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1693   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1694   1.67       chs 
   1695   1.54   thorpej 					/*
   1696   1.54   thorpej 					 * The machine-dependent code detected
   1697   1.54   thorpej 					 * some reason for us to abort zeroing
   1698   1.54   thorpej 					 * pages, probably because there is a
   1699   1.54   thorpej 					 * process now ready to run.
   1700   1.54   thorpej 					 */
   1701   1.67       chs 
   1702  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1703  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1704  1.133        ad 					    nextbucket].pgfl_queues[
   1705  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1706  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1707   1.54   thorpej 					    nextbucket].pgfl_queues[
   1708  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1709  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1710   1.54   thorpej 					uvmexp.free++;
   1711   1.54   thorpej 					uvmexp.zeroaborts++;
   1712  1.101      yamt 					goto quit;
   1713   1.54   thorpej 				}
   1714   1.54   thorpej #else
   1715   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1716   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1717   1.54   thorpej 				pg->flags |= PG_ZERO;
   1718   1.54   thorpej 
   1719  1.123        ad 				mutex_spin_enter(&uvm_fpageqlock);
   1720  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1721  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1722  1.133        ad 				    pg, pageq.list);
   1723  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1724   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1725  1.133        ad 				    pg, listq.list);
   1726  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1727   1.54   thorpej 				uvmexp.free++;
   1728   1.54   thorpej 				uvmexp.zeropages++;
   1729   1.54   thorpej 			}
   1730   1.41   thorpej 		}
   1731  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1732  1.133        ad 			break;
   1733  1.133        ad 		}
   1734   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1735   1.58     enami 	} while (nextbucket != firstbucket);
   1736  1.133        ad 	ucpu->page_idle_zero = false;
   1737  1.133        ad  quit:
   1738  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1739   1.34   thorpej }
   1740  1.110      yamt 
   1741  1.110      yamt /*
   1742  1.110      yamt  * uvm_pagelookup: look up a page
   1743  1.110      yamt  *
   1744  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1745  1.110      yamt  *	out from under it
   1746  1.110      yamt  */
   1747  1.110      yamt 
   1748  1.110      yamt struct vm_page *
   1749  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1750  1.110      yamt {
   1751  1.110      yamt 	struct vm_page *pg;
   1752  1.110      yamt 	struct pglist *buck;
   1753  1.123        ad 	kmutex_t *lock;
   1754  1.123        ad 	u_int hash;
   1755  1.110      yamt 
   1756  1.127        ad 	KASSERT(mutex_owned(&obj->vmobjlock));
   1757  1.123        ad 
   1758  1.123        ad 	hash = uvm_pagehash(obj, off);
   1759  1.123        ad 	buck = &uvm.page_hash[hash];
   1760  1.123        ad 	lock = uvm_hashlock(hash);
   1761  1.123        ad 	mutex_spin_enter(lock);
   1762  1.110      yamt 	TAILQ_FOREACH(pg, buck, hashq) {
   1763  1.110      yamt 		if (pg->uobject == obj && pg->offset == off) {
   1764  1.110      yamt 			break;
   1765  1.110      yamt 		}
   1766  1.110      yamt 	}
   1767  1.123        ad 	mutex_spin_exit(lock);
   1768  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1769  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1770  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1771  1.110      yamt 	return(pg);
   1772  1.110      yamt }
   1773  1.110      yamt 
   1774  1.110      yamt /*
   1775  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1776  1.110      yamt  *
   1777  1.110      yamt  * => caller must lock page queues
   1778  1.110      yamt  */
   1779  1.110      yamt 
   1780  1.110      yamt void
   1781  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1782  1.110      yamt {
   1783  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1784  1.113      yamt #if defined(READAHEAD_STATS)
   1785  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1786  1.113      yamt 		uvm_ra_hit.ev_count++;
   1787  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1788  1.113      yamt 	}
   1789  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1790  1.110      yamt 	if (pg->wire_count == 0) {
   1791  1.110      yamt 		uvm_pagedequeue(pg);
   1792  1.110      yamt 		uvmexp.wired++;
   1793  1.110      yamt 	}
   1794  1.110      yamt 	pg->wire_count++;
   1795  1.110      yamt }
   1796  1.110      yamt 
   1797  1.110      yamt /*
   1798  1.110      yamt  * uvm_pageunwire: unwire the page.
   1799  1.110      yamt  *
   1800  1.110      yamt  * => activate if wire count goes to zero.
   1801  1.110      yamt  * => caller must lock page queues
   1802  1.110      yamt  */
   1803  1.110      yamt 
   1804  1.110      yamt void
   1805  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1806  1.110      yamt {
   1807  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1808  1.110      yamt 	pg->wire_count--;
   1809  1.110      yamt 	if (pg->wire_count == 0) {
   1810  1.111      yamt 		uvm_pageactivate(pg);
   1811  1.110      yamt 		uvmexp.wired--;
   1812  1.110      yamt 	}
   1813  1.110      yamt }
   1814  1.110      yamt 
   1815  1.110      yamt /*
   1816  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1817  1.110      yamt  *
   1818  1.110      yamt  * => caller must lock page queues
   1819  1.110      yamt  * => caller must check to make sure page is not wired
   1820  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1821  1.110      yamt  * => caller must clear the reference on the page before calling
   1822  1.110      yamt  */
   1823  1.110      yamt 
   1824  1.110      yamt void
   1825  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1826  1.110      yamt {
   1827  1.113      yamt 
   1828  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1829  1.113      yamt 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1830  1.113      yamt 	uvmpdpol_pagedeactivate(pg);
   1831  1.110      yamt }
   1832  1.110      yamt 
   1833  1.110      yamt /*
   1834  1.110      yamt  * uvm_pageactivate: activate page
   1835  1.110      yamt  *
   1836  1.110      yamt  * => caller must lock page queues
   1837  1.110      yamt  */
   1838  1.110      yamt 
   1839  1.110      yamt void
   1840  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1841  1.110      yamt {
   1842  1.113      yamt 
   1843  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1844  1.113      yamt #if defined(READAHEAD_STATS)
   1845  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1846  1.113      yamt 		uvm_ra_hit.ev_count++;
   1847  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1848  1.113      yamt 	}
   1849  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1850  1.113      yamt 	if (pg->wire_count != 0) {
   1851  1.113      yamt 		return;
   1852  1.110      yamt 	}
   1853  1.113      yamt 	uvmpdpol_pageactivate(pg);
   1854  1.110      yamt }
   1855  1.110      yamt 
   1856  1.110      yamt /*
   1857  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1858  1.110      yamt  */
   1859  1.110      yamt 
   1860  1.110      yamt void
   1861  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1862  1.110      yamt {
   1863  1.113      yamt 
   1864  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1865  1.127        ad 		KASSERT(mutex_owned(&uvm_pageqlock));
   1866  1.110      yamt 	}
   1867  1.123        ad 
   1868  1.113      yamt 	uvmpdpol_pagedequeue(pg);
   1869  1.113      yamt }
   1870  1.113      yamt 
   1871  1.113      yamt /*
   1872  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1873  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1874  1.113      yamt  */
   1875  1.113      yamt 
   1876  1.113      yamt void
   1877  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1878  1.113      yamt {
   1879  1.113      yamt 
   1880  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1881  1.113      yamt 	if (pg->wire_count != 0) {
   1882  1.113      yamt 		return;
   1883  1.113      yamt 	}
   1884  1.113      yamt 	uvmpdpol_pageenqueue(pg);
   1885  1.110      yamt }
   1886  1.110      yamt 
   1887  1.110      yamt /*
   1888  1.110      yamt  * uvm_pagezero: zero fill a page
   1889  1.110      yamt  *
   1890  1.110      yamt  * => if page is part of an object then the object should be locked
   1891  1.110      yamt  *	to protect pg->flags.
   1892  1.110      yamt  */
   1893  1.110      yamt 
   1894  1.110      yamt void
   1895  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1896  1.110      yamt {
   1897  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1898  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1899  1.110      yamt }
   1900  1.110      yamt 
   1901  1.110      yamt /*
   1902  1.110      yamt  * uvm_pagecopy: copy a page
   1903  1.110      yamt  *
   1904  1.110      yamt  * => if page is part of an object then the object should be locked
   1905  1.110      yamt  *	to protect pg->flags.
   1906  1.110      yamt  */
   1907  1.110      yamt 
   1908  1.110      yamt void
   1909  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1910  1.110      yamt {
   1911  1.110      yamt 
   1912  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1913  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1914  1.110      yamt }
   1915  1.110      yamt 
   1916  1.110      yamt /*
   1917  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   1918  1.110      yamt  */
   1919  1.110      yamt 
   1920  1.110      yamt int
   1921  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   1922  1.110      yamt {
   1923  1.110      yamt 	int lcv;
   1924  1.110      yamt 
   1925  1.110      yamt 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1926  1.110      yamt 	KASSERT(lcv != -1);
   1927  1.110      yamt 	return (vm_physmem[lcv].free_list);
   1928  1.110      yamt }
   1929