uvm_page.c revision 1.133 1 1.133 ad /* $NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.133 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.113 yamt #include "opt_readahead.h"
78 1.44 chs
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.35 thorpej #include <sys/sched.h>
83 1.44 chs #include <sys/kernel.h>
84 1.51 chs #include <sys/vnode.h>
85 1.68 chs #include <sys/proc.h>
86 1.126 ad #include <sys/atomic.h>
87 1.133 ad #include <sys/cpu.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.113 yamt #include <uvm/uvm_pdpolicy.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * physical memory config is stored in vm_physmem.
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102 1.1 mrg
103 1.1 mrg /*
104 1.36 thorpej * Some supported CPUs in a given architecture don't support all
105 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
106 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
107 1.34 thorpej */
108 1.44 chs /*
109 1.44 chs * XXX disabled until we can find a way to do this without causing
110 1.95 wiz * problems for either CPU caches or DMA latency.
111 1.44 chs */
112 1.119 thorpej bool vm_page_zero_enable = false;
113 1.34 thorpej
114 1.34 thorpej /*
115 1.1 mrg * local variables
116 1.1 mrg */
117 1.1 mrg
118 1.1 mrg /*
119 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
120 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
121 1.88 thorpej * and pmap_startup here also uses them internally.
122 1.88 thorpej */
123 1.88 thorpej
124 1.88 thorpej static vaddr_t virtual_space_start;
125 1.88 thorpej static vaddr_t virtual_space_end;
126 1.88 thorpej
127 1.88 thorpej /*
128 1.1 mrg * we use a hash table with only one bucket during bootup. we will
129 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
130 1.30 thorpej * we static allocate the one bootstrap bucket below...
131 1.1 mrg */
132 1.1 mrg
133 1.1 mrg static struct pglist uvm_bootbucket;
134 1.1 mrg
135 1.1 mrg /*
136 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
137 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
138 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
139 1.60 thorpej * free the initial set of buckets, since they are allocated using
140 1.60 thorpej * uvm_pageboot_alloc().
141 1.60 thorpej */
142 1.60 thorpej
143 1.119 thorpej static bool have_recolored_pages /* = false */;
144 1.83 thorpej
145 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
146 1.60 thorpej
147 1.91 yamt #ifdef DEBUG
148 1.91 yamt vaddr_t uvm_zerocheckkva;
149 1.91 yamt #endif /* DEBUG */
150 1.91 yamt
151 1.60 thorpej /*
152 1.124 ad * locks on the hash table. allocated in 32 byte chunks to try
153 1.124 ad * and reduce cache traffic between CPUs.
154 1.124 ad */
155 1.124 ad
156 1.124 ad #define UVM_HASHLOCK_CNT 32
157 1.124 ad #define uvm_hashlock(hash) \
158 1.124 ad (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
159 1.124 ad
160 1.124 ad static union {
161 1.124 ad kmutex_t lock;
162 1.124 ad uint8_t pad[32];
163 1.124 ad } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
164 1.124 ad
165 1.124 ad /*
166 1.1 mrg * local prototypes
167 1.1 mrg */
168 1.1 mrg
169 1.97 junyoung static void uvm_pageinsert(struct vm_page *);
170 1.97 junyoung static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
171 1.97 junyoung static void uvm_pageremove(struct vm_page *);
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * inline functions
175 1.1 mrg */
176 1.1 mrg
177 1.1 mrg /*
178 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
179 1.96 yamt * uvm_pageinsert_after: insert a page into the specified place in listq
180 1.1 mrg *
181 1.1 mrg * => caller must lock object
182 1.1 mrg * => caller must lock page queues
183 1.1 mrg * => call should have already set pg's object and offset pointers
184 1.1 mrg * and bumped the version counter
185 1.1 mrg */
186 1.1 mrg
187 1.109 perry inline static void
188 1.105 thorpej uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
189 1.1 mrg {
190 1.7 mrg struct pglist *buck;
191 1.67 chs struct uvm_object *uobj = pg->uobject;
192 1.123 ad kmutex_t *lock;
193 1.123 ad u_int hash;
194 1.1 mrg
195 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
196 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
197 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
198 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
199 1.123 ad
200 1.123 ad hash = uvm_pagehash(uobj, pg->offset);
201 1.123 ad buck = &uvm.page_hash[hash];
202 1.123 ad lock = uvm_hashlock(hash);
203 1.123 ad mutex_spin_enter(lock);
204 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
205 1.123 ad mutex_spin_exit(lock);
206 1.7 mrg
207 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
208 1.94 yamt if (uobj->uo_npages == 0) {
209 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
210 1.94 yamt
211 1.94 yamt vholdl(vp);
212 1.94 yamt }
213 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
214 1.126 ad atomic_inc_uint(&uvmexp.execpages);
215 1.94 yamt } else {
216 1.126 ad atomic_inc_uint(&uvmexp.filepages);
217 1.94 yamt }
218 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
219 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
220 1.78 chs }
221 1.78 chs
222 1.96 yamt if (where)
223 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
224 1.96 yamt else
225 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
226 1.7 mrg pg->flags |= PG_TABLED;
227 1.67 chs uobj->uo_npages++;
228 1.1 mrg }
229 1.1 mrg
230 1.109 perry inline static void
231 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
232 1.96 yamt {
233 1.96 yamt
234 1.96 yamt uvm_pageinsert_after(pg, NULL);
235 1.96 yamt }
236 1.96 yamt
237 1.1 mrg /*
238 1.1 mrg * uvm_page_remove: remove page from object and hash
239 1.1 mrg *
240 1.1 mrg * => caller must lock object
241 1.1 mrg * => caller must lock page queues
242 1.1 mrg */
243 1.1 mrg
244 1.109 perry static inline void
245 1.105 thorpej uvm_pageremove(struct vm_page *pg)
246 1.1 mrg {
247 1.7 mrg struct pglist *buck;
248 1.67 chs struct uvm_object *uobj = pg->uobject;
249 1.123 ad kmutex_t *lock;
250 1.123 ad u_int hash;
251 1.1 mrg
252 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
253 1.44 chs KASSERT(pg->flags & PG_TABLED);
254 1.123 ad
255 1.123 ad hash = uvm_pagehash(uobj, pg->offset);
256 1.123 ad buck = &uvm.page_hash[hash];
257 1.123 ad lock = uvm_hashlock(hash);
258 1.123 ad mutex_spin_enter(lock);
259 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
260 1.123 ad mutex_spin_exit(lock);
261 1.7 mrg
262 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
263 1.94 yamt if (uobj->uo_npages == 1) {
264 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
265 1.94 yamt
266 1.94 yamt holdrelel(vp);
267 1.94 yamt }
268 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
269 1.126 ad atomic_dec_uint(&uvmexp.execpages);
270 1.94 yamt } else {
271 1.126 ad atomic_dec_uint(&uvmexp.filepages);
272 1.94 yamt }
273 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
274 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
275 1.51 chs }
276 1.44 chs
277 1.7 mrg /* object should be locked */
278 1.67 chs uobj->uo_npages--;
279 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
280 1.7 mrg pg->flags &= ~PG_TABLED;
281 1.7 mrg pg->uobject = NULL;
282 1.1 mrg }
283 1.1 mrg
284 1.60 thorpej static void
285 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
286 1.60 thorpej {
287 1.60 thorpej int color, i;
288 1.60 thorpej
289 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
290 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
291 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
292 1.60 thorpej }
293 1.60 thorpej }
294 1.60 thorpej }
295 1.60 thorpej
296 1.1 mrg /*
297 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
298 1.62 chs *
299 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
300 1.1 mrg */
301 1.1 mrg
302 1.7 mrg void
303 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
304 1.1 mrg {
305 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
306 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
307 1.63 chs struct vm_page *pagearray;
308 1.81 thorpej int lcv;
309 1.81 thorpej u_int i;
310 1.14 eeh paddr_t paddr;
311 1.7 mrg
312 1.133 ad KASSERT(ncpu <= 1);
313 1.133 ad KASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
314 1.133 ad
315 1.7 mrg /*
316 1.60 thorpej * init the page queues and page queue locks, except the free
317 1.60 thorpej * list; we allocate that later (with the initial vm_page
318 1.60 thorpej * structures).
319 1.7 mrg */
320 1.51 chs
321 1.133 ad curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
322 1.113 yamt uvmpdpol_init();
323 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
324 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
325 1.7 mrg
326 1.7 mrg /*
327 1.51 chs * init the <obj,offset> => <page> hash table. for now
328 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
329 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
330 1.7 mrg */
331 1.7 mrg
332 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
333 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
334 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
335 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
336 1.123 ad
337 1.123 ad /*
338 1.123 ad * init hashtable locks. these must be spinlocks, as they are
339 1.123 ad * called from sites in the pmap modules where we cannot block.
340 1.123 ad * if taking multiple locks, the order is: low numbered first,
341 1.123 ad * high numbered second.
342 1.123 ad */
343 1.123 ad
344 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
345 1.124 ad mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
346 1.7 mrg
347 1.62 chs /*
348 1.51 chs * allocate vm_page structures.
349 1.7 mrg */
350 1.7 mrg
351 1.7 mrg /*
352 1.7 mrg * sanity check:
353 1.7 mrg * before calling this function the MD code is expected to register
354 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
355 1.7 mrg * now is to allocate vm_page structures for this memory.
356 1.7 mrg */
357 1.7 mrg
358 1.7 mrg if (vm_nphysseg == 0)
359 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
360 1.62 chs
361 1.7 mrg /*
362 1.62 chs * first calculate the number of free pages...
363 1.7 mrg *
364 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
365 1.7 mrg * this allows us to allocate extra vm_page structures in case we
366 1.7 mrg * want to return some memory to the pool after booting.
367 1.7 mrg */
368 1.62 chs
369 1.7 mrg freepages = 0;
370 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
371 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
372 1.7 mrg
373 1.7 mrg /*
374 1.60 thorpej * Let MD code initialize the number of colors, or default
375 1.60 thorpej * to 1 color if MD code doesn't care.
376 1.60 thorpej */
377 1.60 thorpej if (uvmexp.ncolors == 0)
378 1.60 thorpej uvmexp.ncolors = 1;
379 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
380 1.60 thorpej
381 1.60 thorpej /*
382 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
383 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
384 1.7 mrg * thus, the total number of pages we can use is the total size of
385 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
386 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
387 1.7 mrg * truncation errors (since we can only allocate in terms of whole
388 1.7 mrg * pages).
389 1.7 mrg */
390 1.62 chs
391 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
392 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
393 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
394 1.60 thorpej
395 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
396 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
397 1.60 thorpej sizeof(struct vm_page)));
398 1.133 ad cpuarray = bucketarray + bucketcount;
399 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
400 1.60 thorpej
401 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
402 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
403 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
404 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
405 1.133 ad uvm.cpus[0].page_free[lcv].pgfl_buckets =
406 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
407 1.133 ad uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
408 1.60 thorpej }
409 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
410 1.62 chs
411 1.7 mrg /*
412 1.51 chs * init the vm_page structures and put them in the correct place.
413 1.7 mrg */
414 1.7 mrg
415 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
416 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
417 1.51 chs
418 1.7 mrg /* set up page array pointers */
419 1.7 mrg vm_physmem[lcv].pgs = pagearray;
420 1.7 mrg pagearray += n;
421 1.7 mrg pagecount -= n;
422 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
423 1.7 mrg
424 1.13 perry /* init and free vm_pages (we've already zeroed them) */
425 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
426 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
427 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
428 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
429 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
430 1.56 thorpej #endif
431 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
432 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
433 1.7 mrg uvmexp.npages++;
434 1.7 mrg /* add page to free pool */
435 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
436 1.7 mrg }
437 1.7 mrg }
438 1.7 mrg }
439 1.44 chs
440 1.7 mrg /*
441 1.88 thorpej * pass up the values of virtual_space_start and
442 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
443 1.88 thorpej * layers of the VM.
444 1.88 thorpej */
445 1.88 thorpej
446 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
447 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
448 1.91 yamt #ifdef DEBUG
449 1.91 yamt /*
450 1.91 yamt * steal kva for uvm_pagezerocheck().
451 1.91 yamt */
452 1.91 yamt uvm_zerocheckkva = *kvm_startp;
453 1.91 yamt *kvm_startp += PAGE_SIZE;
454 1.91 yamt #endif /* DEBUG */
455 1.88 thorpej
456 1.88 thorpej /*
457 1.51 chs * init various thresholds.
458 1.7 mrg */
459 1.51 chs
460 1.7 mrg uvmexp.reserve_pagedaemon = 1;
461 1.7 mrg uvmexp.reserve_kernel = 5;
462 1.7 mrg
463 1.7 mrg /*
464 1.51 chs * determine if we should zero pages in the idle loop.
465 1.34 thorpej */
466 1.51 chs
467 1.133 ad uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
468 1.34 thorpej
469 1.34 thorpej /*
470 1.7 mrg * done!
471 1.7 mrg */
472 1.1 mrg
473 1.119 thorpej uvm.page_init_done = true;
474 1.1 mrg }
475 1.1 mrg
476 1.1 mrg /*
477 1.1 mrg * uvm_setpagesize: set the page size
478 1.62 chs *
479 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
480 1.62 chs */
481 1.1 mrg
482 1.7 mrg void
483 1.105 thorpej uvm_setpagesize(void)
484 1.1 mrg {
485 1.85 thorpej
486 1.85 thorpej /*
487 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
488 1.85 thorpej * to be a constant (indicated by being a non-zero value).
489 1.85 thorpej */
490 1.85 thorpej if (uvmexp.pagesize == 0) {
491 1.85 thorpej if (PAGE_SIZE == 0)
492 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
493 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
494 1.85 thorpej }
495 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
496 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
497 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
498 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
499 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
500 1.7 mrg break;
501 1.1 mrg }
502 1.1 mrg
503 1.1 mrg /*
504 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
505 1.1 mrg */
506 1.1 mrg
507 1.14 eeh vaddr_t
508 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
509 1.1 mrg {
510 1.119 thorpej static bool initialized = false;
511 1.14 eeh vaddr_t addr;
512 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
513 1.52 thorpej vaddr_t vaddr;
514 1.14 eeh paddr_t paddr;
515 1.52 thorpej #endif
516 1.1 mrg
517 1.7 mrg /*
518 1.19 thorpej * on first call to this function, initialize ourselves.
519 1.7 mrg */
520 1.119 thorpej if (initialized == false) {
521 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
522 1.1 mrg
523 1.7 mrg /* round it the way we like it */
524 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
525 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
526 1.19 thorpej
527 1.119 thorpej initialized = true;
528 1.7 mrg }
529 1.52 thorpej
530 1.52 thorpej /* round to page size */
531 1.52 thorpej size = round_page(size);
532 1.52 thorpej
533 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
534 1.52 thorpej
535 1.62 chs /*
536 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
537 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
538 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
539 1.52 thorpej */
540 1.52 thorpej
541 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
542 1.88 thorpej &virtual_space_end);
543 1.52 thorpej
544 1.52 thorpej return(addr);
545 1.52 thorpej
546 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
547 1.1 mrg
548 1.7 mrg /*
549 1.7 mrg * allocate virtual memory for this request
550 1.7 mrg */
551 1.88 thorpej if (virtual_space_start == virtual_space_end ||
552 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
553 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
554 1.20 thorpej
555 1.88 thorpej addr = virtual_space_start;
556 1.20 thorpej
557 1.20 thorpej #ifdef PMAP_GROWKERNEL
558 1.20 thorpej /*
559 1.20 thorpej * If the kernel pmap can't map the requested space,
560 1.20 thorpej * then allocate more resources for it.
561 1.20 thorpej */
562 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
563 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
564 1.20 thorpej if (uvm_maxkaddr < (addr + size))
565 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
566 1.19 thorpej }
567 1.20 thorpej #endif
568 1.1 mrg
569 1.88 thorpej virtual_space_start += size;
570 1.1 mrg
571 1.9 thorpej /*
572 1.7 mrg * allocate and mapin physical pages to back new virtual pages
573 1.7 mrg */
574 1.1 mrg
575 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
576 1.7 mrg vaddr += PAGE_SIZE) {
577 1.1 mrg
578 1.7 mrg if (!uvm_page_physget(&paddr))
579 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
580 1.1 mrg
581 1.23 thorpej /*
582 1.23 thorpej * Note this memory is no longer managed, so using
583 1.23 thorpej * pmap_kenter is safe.
584 1.23 thorpej */
585 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
586 1.7 mrg }
587 1.66 chris pmap_update(pmap_kernel());
588 1.7 mrg return(addr);
589 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
590 1.1 mrg }
591 1.1 mrg
592 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
593 1.1 mrg /*
594 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
595 1.1 mrg *
596 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
597 1.1 mrg * values match the start/end values. if we can't do that, then we
598 1.1 mrg * will advance both values (making them equal, and removing some
599 1.1 mrg * vm_page structures from the non-avail area).
600 1.1 mrg * => return false if out of memory.
601 1.1 mrg */
602 1.1 mrg
603 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
604 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
605 1.28 drochner
606 1.118 thorpej static bool
607 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
608 1.1 mrg {
609 1.7 mrg int lcv, x;
610 1.1 mrg
611 1.7 mrg /* pass 1: try allocating from a matching end */
612 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
613 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
614 1.1 mrg #else
615 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
616 1.1 mrg #endif
617 1.7 mrg {
618 1.1 mrg
619 1.119 thorpej if (uvm.page_init_done == true)
620 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
621 1.1 mrg
622 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
623 1.28 drochner continue;
624 1.28 drochner
625 1.7 mrg /* try from front */
626 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
627 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
628 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
629 1.7 mrg vm_physmem[lcv].avail_start++;
630 1.7 mrg vm_physmem[lcv].start++;
631 1.7 mrg /* nothing left? nuke it */
632 1.7 mrg if (vm_physmem[lcv].avail_start ==
633 1.7 mrg vm_physmem[lcv].end) {
634 1.7 mrg if (vm_nphysseg == 1)
635 1.89 wiz panic("uvm_page_physget: out of memory!");
636 1.7 mrg vm_nphysseg--;
637 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
638 1.7 mrg /* structure copy */
639 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
640 1.7 mrg }
641 1.119 thorpej return (true);
642 1.7 mrg }
643 1.7 mrg
644 1.7 mrg /* try from rear */
645 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
646 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
647 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
648 1.7 mrg vm_physmem[lcv].avail_end--;
649 1.7 mrg vm_physmem[lcv].end--;
650 1.7 mrg /* nothing left? nuke it */
651 1.7 mrg if (vm_physmem[lcv].avail_end ==
652 1.7 mrg vm_physmem[lcv].start) {
653 1.7 mrg if (vm_nphysseg == 1)
654 1.42 mrg panic("uvm_page_physget: out of memory!");
655 1.7 mrg vm_nphysseg--;
656 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
657 1.7 mrg /* structure copy */
658 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
659 1.7 mrg }
660 1.119 thorpej return (true);
661 1.7 mrg }
662 1.7 mrg }
663 1.1 mrg
664 1.7 mrg /* pass2: forget about matching ends, just allocate something */
665 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
666 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
667 1.1 mrg #else
668 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
669 1.1 mrg #endif
670 1.7 mrg {
671 1.1 mrg
672 1.7 mrg /* any room in this bank? */
673 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
674 1.7 mrg continue; /* nope */
675 1.7 mrg
676 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
677 1.7 mrg vm_physmem[lcv].avail_start++;
678 1.7 mrg /* truncate! */
679 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
680 1.7 mrg
681 1.7 mrg /* nothing left? nuke it */
682 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
683 1.7 mrg if (vm_nphysseg == 1)
684 1.42 mrg panic("uvm_page_physget: out of memory!");
685 1.7 mrg vm_nphysseg--;
686 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
687 1.7 mrg /* structure copy */
688 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
689 1.7 mrg }
690 1.119 thorpej return (true);
691 1.7 mrg }
692 1.1 mrg
693 1.119 thorpej return (false); /* whoops! */
694 1.28 drochner }
695 1.28 drochner
696 1.118 thorpej bool
697 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
698 1.28 drochner {
699 1.28 drochner int i;
700 1.28 drochner
701 1.28 drochner /* try in the order of freelist preference */
702 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
703 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
704 1.119 thorpej return (true);
705 1.119 thorpej return (false);
706 1.1 mrg }
707 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
708 1.1 mrg
709 1.1 mrg /*
710 1.1 mrg * uvm_page_physload: load physical memory into VM system
711 1.1 mrg *
712 1.1 mrg * => all args are PFs
713 1.1 mrg * => all pages in start/end get vm_page structures
714 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
715 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
716 1.1 mrg */
717 1.1 mrg
718 1.7 mrg void
719 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
720 1.105 thorpej paddr_t avail_end, int free_list)
721 1.1 mrg {
722 1.14 eeh int preload, lcv;
723 1.14 eeh psize_t npages;
724 1.7 mrg struct vm_page *pgs;
725 1.7 mrg struct vm_physseg *ps;
726 1.7 mrg
727 1.7 mrg if (uvmexp.pagesize == 0)
728 1.42 mrg panic("uvm_page_physload: page size not set!");
729 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
730 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
731 1.26 drochner if (start >= end)
732 1.26 drochner panic("uvm_page_physload: start >= end");
733 1.12 thorpej
734 1.7 mrg /*
735 1.7 mrg * do we have room?
736 1.7 mrg */
737 1.67 chs
738 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
739 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
740 1.7 mrg "segment\n");
741 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
742 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
743 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
744 1.7 mrg return;
745 1.7 mrg }
746 1.7 mrg
747 1.7 mrg /*
748 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
749 1.7 mrg * called yet, so malloc is not available).
750 1.7 mrg */
751 1.67 chs
752 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
753 1.7 mrg if (vm_physmem[lcv].pgs)
754 1.7 mrg break;
755 1.7 mrg }
756 1.7 mrg preload = (lcv == vm_nphysseg);
757 1.7 mrg
758 1.7 mrg /*
759 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
760 1.7 mrg */
761 1.67 chs
762 1.7 mrg if (!preload) {
763 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
764 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
765 1.1 mrg #else
766 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
767 1.14 eeh paddr_t paddr;
768 1.7 mrg npages = end - start; /* # of pages */
769 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
770 1.40 thorpej M_VMPAGE, M_NOWAIT);
771 1.7 mrg if (pgs == NULL) {
772 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
773 1.7 mrg "structs for segment\n");
774 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
775 1.7 mrg return;
776 1.7 mrg }
777 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
778 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
779 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
780 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
781 1.7 mrg pgs[lcv].phys_addr = paddr;
782 1.12 thorpej pgs[lcv].free_list = free_list;
783 1.7 mrg if (atop(paddr) >= avail_start &&
784 1.7 mrg atop(paddr) <= avail_end)
785 1.8 chuck uvm_pagefree(&pgs[lcv]);
786 1.7 mrg }
787 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
788 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
789 1.1 mrg #endif
790 1.7 mrg } else {
791 1.7 mrg pgs = NULL;
792 1.7 mrg npages = 0;
793 1.7 mrg }
794 1.1 mrg
795 1.7 mrg /*
796 1.7 mrg * now insert us in the proper place in vm_physmem[]
797 1.7 mrg */
798 1.1 mrg
799 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
800 1.7 mrg /* random: put it at the end (easy!) */
801 1.7 mrg ps = &vm_physmem[vm_nphysseg];
802 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
803 1.7 mrg {
804 1.7 mrg int x;
805 1.7 mrg /* sort by address for binary search */
806 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
807 1.7 mrg if (start < vm_physmem[lcv].start)
808 1.7 mrg break;
809 1.7 mrg ps = &vm_physmem[lcv];
810 1.7 mrg /* move back other entries, if necessary ... */
811 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
812 1.7 mrg /* structure copy */
813 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
814 1.7 mrg }
815 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
816 1.7 mrg {
817 1.7 mrg int x;
818 1.7 mrg /* sort by largest segment first */
819 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
820 1.7 mrg if ((end - start) >
821 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
822 1.7 mrg break;
823 1.7 mrg ps = &vm_physmem[lcv];
824 1.7 mrg /* move back other entries, if necessary ... */
825 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
826 1.7 mrg /* structure copy */
827 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
828 1.7 mrg }
829 1.1 mrg #else
830 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
831 1.1 mrg #endif
832 1.1 mrg
833 1.7 mrg ps->start = start;
834 1.7 mrg ps->end = end;
835 1.7 mrg ps->avail_start = avail_start;
836 1.7 mrg ps->avail_end = avail_end;
837 1.7 mrg if (preload) {
838 1.7 mrg ps->pgs = NULL;
839 1.7 mrg } else {
840 1.7 mrg ps->pgs = pgs;
841 1.7 mrg ps->lastpg = pgs + npages - 1;
842 1.7 mrg }
843 1.12 thorpej ps->free_list = free_list;
844 1.7 mrg vm_nphysseg++;
845 1.7 mrg
846 1.113 yamt if (!preload) {
847 1.7 mrg uvm_page_rehash();
848 1.113 yamt uvmpdpol_reinit();
849 1.113 yamt }
850 1.1 mrg }
851 1.1 mrg
852 1.1 mrg /*
853 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
854 1.1 mrg */
855 1.1 mrg
856 1.7 mrg void
857 1.105 thorpej uvm_page_rehash(void)
858 1.1 mrg {
859 1.123 ad int freepages, lcv, bucketcount, oldcount, i;
860 1.7 mrg struct pglist *newbuckets, *oldbuckets;
861 1.7 mrg struct vm_page *pg;
862 1.30 thorpej size_t newsize, oldsize;
863 1.7 mrg
864 1.7 mrg /*
865 1.7 mrg * compute number of pages that can go in the free pool
866 1.7 mrg */
867 1.7 mrg
868 1.7 mrg freepages = 0;
869 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
870 1.7 mrg freepages +=
871 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
872 1.7 mrg
873 1.7 mrg /*
874 1.7 mrg * compute number of buckets needed for this number of pages
875 1.7 mrg */
876 1.7 mrg
877 1.7 mrg bucketcount = 1;
878 1.7 mrg while (bucketcount < freepages)
879 1.7 mrg bucketcount = bucketcount * 2;
880 1.7 mrg
881 1.7 mrg /*
882 1.30 thorpej * compute the size of the current table and new table.
883 1.7 mrg */
884 1.7 mrg
885 1.30 thorpej oldbuckets = uvm.page_hash;
886 1.30 thorpej oldcount = uvm.page_nhash;
887 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
888 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
889 1.30 thorpej
890 1.30 thorpej /*
891 1.30 thorpej * allocate the new buckets
892 1.30 thorpej */
893 1.30 thorpej
894 1.102 yamt newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
895 1.102 yamt 0, UVM_KMF_WIRED);
896 1.7 mrg if (newbuckets == NULL) {
897 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
898 1.7 mrg "hash table\n");
899 1.7 mrg return;
900 1.7 mrg }
901 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
902 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
903 1.7 mrg
904 1.7 mrg /*
905 1.7 mrg * now replace the old buckets with the new ones and rehash everything
906 1.7 mrg */
907 1.7 mrg
908 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
909 1.124 ad mutex_spin_enter(&uvm_hashlocks[i].lock);
910 1.123 ad
911 1.7 mrg uvm.page_hash = newbuckets;
912 1.7 mrg uvm.page_nhash = bucketcount;
913 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
914 1.7 mrg
915 1.7 mrg /* ... and rehash */
916 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
917 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
918 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
919 1.7 mrg TAILQ_INSERT_TAIL(
920 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
921 1.7 mrg pg, hashq);
922 1.7 mrg }
923 1.7 mrg }
924 1.123 ad
925 1.123 ad for (i = 0; i < UVM_HASHLOCK_CNT; i++)
926 1.124 ad mutex_spin_exit(&uvm_hashlocks[i].lock);
927 1.7 mrg
928 1.7 mrg /*
929 1.30 thorpej * free old bucket array if is not the boot-time table
930 1.7 mrg */
931 1.7 mrg
932 1.7 mrg if (oldbuckets != &uvm_bootbucket)
933 1.102 yamt uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
934 1.102 yamt UVM_KMF_WIRED);
935 1.1 mrg }
936 1.1 mrg
937 1.60 thorpej /*
938 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
939 1.60 thorpej * larger than the old one.
940 1.60 thorpej */
941 1.60 thorpej
942 1.60 thorpej void
943 1.60 thorpej uvm_page_recolor(int newncolors)
944 1.60 thorpej {
945 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
946 1.133 ad struct pgfreelist gpgfl, pgfl;
947 1.63 chs struct vm_page *pg;
948 1.60 thorpej vsize_t bucketcount;
949 1.123 ad int lcv, color, i, ocolors;
950 1.133 ad struct uvm_cpu *ucpu;
951 1.60 thorpej
952 1.60 thorpej if (newncolors <= uvmexp.ncolors)
953 1.60 thorpej return;
954 1.77 wrstuden
955 1.119 thorpej if (uvm.page_init_done == false) {
956 1.77 wrstuden uvmexp.ncolors = newncolors;
957 1.77 wrstuden return;
958 1.77 wrstuden }
959 1.60 thorpej
960 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
961 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
962 1.60 thorpej M_VMPAGE, M_NOWAIT);
963 1.133 ad cpuarray = bucketarray + bucketcount;
964 1.60 thorpej if (bucketarray == NULL) {
965 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
966 1.60 thorpej (long) bucketcount);
967 1.60 thorpej return;
968 1.60 thorpej }
969 1.60 thorpej
970 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
971 1.60 thorpej
972 1.60 thorpej /* Make sure we should still do this. */
973 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
974 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
975 1.60 thorpej free(bucketarray, M_VMPAGE);
976 1.60 thorpej return;
977 1.60 thorpej }
978 1.60 thorpej
979 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
980 1.60 thorpej ocolors = uvmexp.ncolors;
981 1.60 thorpej
982 1.60 thorpej uvmexp.ncolors = newncolors;
983 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
984 1.60 thorpej
985 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
986 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
987 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
988 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
989 1.133 ad uvm_page_init_buckets(&gpgfl);
990 1.60 thorpej uvm_page_init_buckets(&pgfl);
991 1.60 thorpej for (color = 0; color < ocolors; color++) {
992 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
993 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
994 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
995 1.60 thorpej != NULL) {
996 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
997 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
998 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
999 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1000 1.133 ad i], pg, pageq.list);
1001 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1002 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1003 1.133 ad i], pg, listq.list);
1004 1.60 thorpej }
1005 1.60 thorpej }
1006 1.60 thorpej }
1007 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1008 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1009 1.60 thorpej }
1010 1.60 thorpej
1011 1.60 thorpej if (have_recolored_pages) {
1012 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1013 1.60 thorpej free(oldbucketarray, M_VMPAGE);
1014 1.60 thorpej return;
1015 1.60 thorpej }
1016 1.60 thorpej
1017 1.119 thorpej have_recolored_pages = true;
1018 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1019 1.60 thorpej }
1020 1.1 mrg
1021 1.1 mrg /*
1022 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
1023 1.133 ad */
1024 1.133 ad
1025 1.133 ad void
1026 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
1027 1.133 ad {
1028 1.133 ad struct pgflbucket *bucketarray;
1029 1.133 ad struct pgfreelist pgfl;
1030 1.133 ad struct uvm_cpu *ucpu;
1031 1.133 ad vsize_t bucketcount;
1032 1.133 ad int lcv;
1033 1.133 ad
1034 1.133 ad if (CPU_IS_PRIMARY(ci)) {
1035 1.133 ad /* Already done in uvm_page_init(). */
1036 1.133 ad return;
1037 1.133 ad }
1038 1.133 ad
1039 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1040 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1041 1.133 ad M_VMPAGE, M_WAITOK);
1042 1.133 ad ucpu = &uvm.cpus[cpu_index(ci)];
1043 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1044 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1045 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1046 1.133 ad uvm_page_init_buckets(&pgfl);
1047 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1048 1.133 ad }
1049 1.133 ad }
1050 1.133 ad
1051 1.133 ad /*
1052 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1053 1.54 thorpej */
1054 1.54 thorpej
1055 1.114 thorpej static struct vm_page *
1056 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1057 1.69 simonb int *trycolorp)
1058 1.54 thorpej {
1059 1.133 ad struct pgflist *freeq;
1060 1.54 thorpej struct vm_page *pg;
1061 1.58 enami int color, trycolor = *trycolorp;
1062 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1063 1.54 thorpej
1064 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1065 1.130 ad
1066 1.58 enami color = trycolor;
1067 1.133 ad cpu = false;
1068 1.133 ad pgfl = &ucpu->page_free[flist];
1069 1.133 ad gpgfl = &uvm.page_free[flist];
1070 1.58 enami do {
1071 1.133 ad /* cpu, try1 */
1072 1.133 ad if ((pg = LIST_FIRST((freeq =
1073 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1074 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1075 1.133 ad uvmexp.cpuhit++;
1076 1.133 ad goto gotit;
1077 1.133 ad }
1078 1.133 ad /* global, try1 */
1079 1.133 ad if ((pg = LIST_FIRST((freeq =
1080 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1081 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1082 1.133 ad uvmexp.cpumiss++;
1083 1.54 thorpej goto gotit;
1084 1.133 ad }
1085 1.133 ad /* cpu, try2 */
1086 1.133 ad if ((pg = LIST_FIRST((freeq =
1087 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1088 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1089 1.133 ad uvmexp.cpuhit++;
1090 1.54 thorpej goto gotit;
1091 1.133 ad }
1092 1.133 ad /* global, try2 */
1093 1.133 ad if ((pg = LIST_FIRST((freeq =
1094 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1095 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1096 1.133 ad uvmexp.cpumiss++;
1097 1.133 ad goto gotit;
1098 1.133 ad }
1099 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1100 1.58 enami } while (color != trycolor);
1101 1.54 thorpej
1102 1.54 thorpej return (NULL);
1103 1.54 thorpej
1104 1.54 thorpej gotit:
1105 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1106 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1107 1.54 thorpej uvmexp.free--;
1108 1.54 thorpej
1109 1.54 thorpej /* update zero'd page count */
1110 1.54 thorpej if (pg->flags & PG_ZERO)
1111 1.54 thorpej uvmexp.zeropages--;
1112 1.54 thorpej
1113 1.54 thorpej if (color == trycolor)
1114 1.54 thorpej uvmexp.colorhit++;
1115 1.54 thorpej else {
1116 1.54 thorpej uvmexp.colormiss++;
1117 1.54 thorpej *trycolorp = color;
1118 1.54 thorpej }
1119 1.54 thorpej
1120 1.54 thorpej return (pg);
1121 1.54 thorpej }
1122 1.54 thorpej
1123 1.54 thorpej /*
1124 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1125 1.1 mrg *
1126 1.1 mrg * => return null if no pages free
1127 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1128 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1129 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1130 1.1 mrg * => only one of obj or anon can be non-null
1131 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1132 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1133 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1134 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1135 1.34 thorpej * unknown contents page. This is because we live with the
1136 1.34 thorpej * consequences of a bad free list decision for the entire
1137 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1138 1.34 thorpej * is slower to access.
1139 1.1 mrg */
1140 1.1 mrg
1141 1.7 mrg struct vm_page *
1142 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1143 1.105 thorpej int flags, int strat, int free_list)
1144 1.1 mrg {
1145 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1146 1.133 ad struct uvm_cpu *ucpu;
1147 1.7 mrg struct vm_page *pg;
1148 1.118 thorpej bool use_reserve;
1149 1.1 mrg
1150 1.44 chs KASSERT(obj == NULL || anon == NULL);
1151 1.113 yamt KASSERT(anon == NULL || off == 0);
1152 1.44 chs KASSERT(off == trunc_page(off));
1153 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1154 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1155 1.48 thorpej
1156 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1157 1.1 mrg
1158 1.7 mrg /*
1159 1.54 thorpej * This implements a global round-robin page coloring
1160 1.54 thorpej * algorithm.
1161 1.54 thorpej *
1162 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1163 1.54 thorpej */
1164 1.67 chs
1165 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1166 1.133 ad color = ucpu->page_free_nextcolor;
1167 1.54 thorpej
1168 1.54 thorpej /*
1169 1.7 mrg * check to see if we need to generate some free pages waking
1170 1.7 mrg * the pagedaemon.
1171 1.7 mrg */
1172 1.7 mrg
1173 1.113 yamt uvm_kick_pdaemon();
1174 1.7 mrg
1175 1.7 mrg /*
1176 1.7 mrg * fail if any of these conditions is true:
1177 1.7 mrg * [1] there really are no free pages, or
1178 1.7 mrg * [2] only kernel "reserved" pages remain and
1179 1.7 mrg * the page isn't being allocated to a kernel object.
1180 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1181 1.7 mrg * the requestor isn't the pagedaemon.
1182 1.7 mrg */
1183 1.7 mrg
1184 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1185 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1186 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1187 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1188 1.122 ad !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
1189 1.12 thorpej goto fail;
1190 1.12 thorpej
1191 1.34 thorpej #if PGFL_NQUEUES != 2
1192 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1193 1.34 thorpej #endif
1194 1.34 thorpej
1195 1.34 thorpej /*
1196 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1197 1.34 thorpej * we try the UNKNOWN queue first.
1198 1.34 thorpej */
1199 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1200 1.34 thorpej try1 = PGFL_ZEROS;
1201 1.34 thorpej try2 = PGFL_UNKNOWN;
1202 1.34 thorpej } else {
1203 1.34 thorpej try1 = PGFL_UNKNOWN;
1204 1.34 thorpej try2 = PGFL_ZEROS;
1205 1.34 thorpej }
1206 1.34 thorpej
1207 1.12 thorpej again:
1208 1.12 thorpej switch (strat) {
1209 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1210 1.12 thorpej /* Check all freelists in descending priority order. */
1211 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1212 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1213 1.54 thorpej try1, try2, &color);
1214 1.54 thorpej if (pg != NULL)
1215 1.12 thorpej goto gotit;
1216 1.12 thorpej }
1217 1.12 thorpej
1218 1.12 thorpej /* No pages free! */
1219 1.12 thorpej goto fail;
1220 1.12 thorpej
1221 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1222 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1223 1.12 thorpej /* Attempt to allocate from the specified free list. */
1224 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1225 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1226 1.54 thorpej try1, try2, &color);
1227 1.54 thorpej if (pg != NULL)
1228 1.12 thorpej goto gotit;
1229 1.12 thorpej
1230 1.12 thorpej /* Fall back, if possible. */
1231 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1232 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1233 1.12 thorpej goto again;
1234 1.12 thorpej }
1235 1.12 thorpej
1236 1.12 thorpej /* No pages free! */
1237 1.12 thorpej goto fail;
1238 1.12 thorpej
1239 1.12 thorpej default:
1240 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1241 1.12 thorpej /* NOTREACHED */
1242 1.7 mrg }
1243 1.7 mrg
1244 1.12 thorpej gotit:
1245 1.54 thorpej /*
1246 1.54 thorpej * We now know which color we actually allocated from; set
1247 1.54 thorpej * the next color accordingly.
1248 1.54 thorpej */
1249 1.67 chs
1250 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1251 1.34 thorpej
1252 1.34 thorpej /*
1253 1.34 thorpej * update allocation statistics and remember if we have to
1254 1.34 thorpej * zero the page
1255 1.34 thorpej */
1256 1.67 chs
1257 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1258 1.34 thorpej if (pg->flags & PG_ZERO) {
1259 1.34 thorpej uvmexp.pga_zerohit++;
1260 1.34 thorpej zeroit = 0;
1261 1.34 thorpej } else {
1262 1.34 thorpej uvmexp.pga_zeromiss++;
1263 1.34 thorpej zeroit = 1;
1264 1.34 thorpej }
1265 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1266 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1267 1.133 ad }
1268 1.34 thorpej }
1269 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1270 1.7 mrg
1271 1.7 mrg pg->offset = off;
1272 1.7 mrg pg->uobject = obj;
1273 1.7 mrg pg->uanon = anon;
1274 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1275 1.7 mrg if (anon) {
1276 1.103 yamt anon->an_page = pg;
1277 1.7 mrg pg->pqflags = PQ_ANON;
1278 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1279 1.7 mrg } else {
1280 1.67 chs if (obj) {
1281 1.7 mrg uvm_pageinsert(pg);
1282 1.67 chs }
1283 1.7 mrg pg->pqflags = 0;
1284 1.7 mrg }
1285 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1286 1.7 mrg pg->owner_tag = NULL;
1287 1.1 mrg #endif
1288 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1289 1.33 thorpej
1290 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1291 1.33 thorpej /*
1292 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1293 1.34 thorpej * zero'd, then we have to zero it ourselves.
1294 1.33 thorpej */
1295 1.33 thorpej pg->flags &= ~PG_CLEAN;
1296 1.34 thorpej if (zeroit)
1297 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1298 1.33 thorpej }
1299 1.1 mrg
1300 1.7 mrg return(pg);
1301 1.12 thorpej
1302 1.12 thorpej fail:
1303 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1304 1.12 thorpej return (NULL);
1305 1.1 mrg }
1306 1.1 mrg
1307 1.1 mrg /*
1308 1.96 yamt * uvm_pagereplace: replace a page with another
1309 1.96 yamt *
1310 1.96 yamt * => object must be locked
1311 1.96 yamt */
1312 1.96 yamt
1313 1.96 yamt void
1314 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1315 1.96 yamt {
1316 1.97 junyoung
1317 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1318 1.96 yamt KASSERT(oldpg->uobject != NULL);
1319 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1320 1.96 yamt KASSERT(newpg->uobject == NULL);
1321 1.127 ad KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
1322 1.96 yamt
1323 1.96 yamt newpg->uobject = oldpg->uobject;
1324 1.96 yamt newpg->offset = oldpg->offset;
1325 1.96 yamt
1326 1.96 yamt uvm_pageinsert_after(newpg, oldpg);
1327 1.96 yamt uvm_pageremove(oldpg);
1328 1.96 yamt }
1329 1.96 yamt
1330 1.96 yamt /*
1331 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1332 1.1 mrg *
1333 1.1 mrg * => both objects must be locked
1334 1.1 mrg */
1335 1.1 mrg
1336 1.7 mrg void
1337 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1338 1.1 mrg {
1339 1.7 mrg /*
1340 1.7 mrg * remove it from the old object
1341 1.7 mrg */
1342 1.7 mrg
1343 1.7 mrg if (pg->uobject) {
1344 1.7 mrg uvm_pageremove(pg);
1345 1.7 mrg }
1346 1.7 mrg
1347 1.7 mrg /*
1348 1.7 mrg * put it in the new object
1349 1.7 mrg */
1350 1.7 mrg
1351 1.7 mrg if (newobj) {
1352 1.7 mrg pg->uobject = newobj;
1353 1.7 mrg pg->offset = newoff;
1354 1.7 mrg uvm_pageinsert(pg);
1355 1.7 mrg }
1356 1.1 mrg }
1357 1.1 mrg
1358 1.91 yamt #ifdef DEBUG
1359 1.91 yamt /*
1360 1.91 yamt * check if page is zero-filled
1361 1.91 yamt *
1362 1.91 yamt * - called with free page queue lock held.
1363 1.91 yamt */
1364 1.91 yamt void
1365 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1366 1.91 yamt {
1367 1.91 yamt int *p, *ep;
1368 1.91 yamt
1369 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1370 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1371 1.91 yamt
1372 1.91 yamt /*
1373 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1374 1.91 yamt * uvm page allocator.
1375 1.91 yamt *
1376 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1377 1.91 yamt */
1378 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1379 1.91 yamt p = (int *)uvm_zerocheckkva;
1380 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1381 1.92 yamt pmap_update(pmap_kernel());
1382 1.91 yamt while (p < ep) {
1383 1.91 yamt if (*p != 0)
1384 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1385 1.91 yamt p++;
1386 1.91 yamt }
1387 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1388 1.131 yamt /*
1389 1.131 yamt * pmap_update() is not necessary here because no one except us
1390 1.131 yamt * uses this VA.
1391 1.131 yamt */
1392 1.91 yamt }
1393 1.91 yamt #endif /* DEBUG */
1394 1.91 yamt
1395 1.1 mrg /*
1396 1.1 mrg * uvm_pagefree: free page
1397 1.1 mrg *
1398 1.133 ad * => erase page's identity (i.e. remove from object)
1399 1.1 mrg * => put page on free list
1400 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1401 1.1 mrg * => caller must lock page queues
1402 1.1 mrg * => assumes all valid mappings of pg are gone
1403 1.1 mrg */
1404 1.1 mrg
1405 1.44 chs void
1406 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1407 1.1 mrg {
1408 1.133 ad struct pgflist *pgfl;
1409 1.133 ad struct uvm_cpu *ucpu;
1410 1.133 ad int index, color, queue;
1411 1.118 thorpej bool iszero;
1412 1.67 chs
1413 1.44 chs #ifdef DEBUG
1414 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1415 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1416 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1417 1.44 chs }
1418 1.91 yamt #endif /* DEBUG */
1419 1.44 chs
1420 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1421 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1422 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1423 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1424 1.127 ad mutex_owned(&pg->uanon->an_lock));
1425 1.123 ad
1426 1.7 mrg /*
1427 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1428 1.7 mrg */
1429 1.7 mrg
1430 1.67 chs if (pg->loan_count) {
1431 1.70 chs KASSERT(pg->wire_count == 0);
1432 1.7 mrg
1433 1.7 mrg /*
1434 1.67 chs * if the page is owned by an anon then we just want to
1435 1.70 chs * drop anon ownership. the kernel will free the page when
1436 1.70 chs * it is done with it. if the page is owned by an object,
1437 1.70 chs * remove it from the object and mark it dirty for the benefit
1438 1.70 chs * of possible anon owners.
1439 1.70 chs *
1440 1.70 chs * regardless of previous ownership, wakeup any waiters,
1441 1.70 chs * unbusy the page, and we're done.
1442 1.7 mrg */
1443 1.7 mrg
1444 1.73 chs if (pg->uobject != NULL) {
1445 1.70 chs uvm_pageremove(pg);
1446 1.67 chs pg->flags &= ~PG_CLEAN;
1447 1.73 chs } else if (pg->uanon != NULL) {
1448 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1449 1.73 chs pg->loan_count--;
1450 1.73 chs } else {
1451 1.73 chs pg->pqflags &= ~PQ_ANON;
1452 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1453 1.73 chs }
1454 1.103 yamt pg->uanon->an_page = NULL;
1455 1.73 chs pg->uanon = NULL;
1456 1.67 chs }
1457 1.70 chs if (pg->flags & PG_WANTED) {
1458 1.70 chs wakeup(pg);
1459 1.70 chs }
1460 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1461 1.70 chs #ifdef UVM_PAGE_TRKOWN
1462 1.70 chs pg->owner_tag = NULL;
1463 1.70 chs #endif
1464 1.73 chs if (pg->loan_count) {
1465 1.115 yamt KASSERT(pg->uobject == NULL);
1466 1.115 yamt if (pg->uanon == NULL) {
1467 1.115 yamt uvm_pagedequeue(pg);
1468 1.115 yamt }
1469 1.73 chs return;
1470 1.73 chs }
1471 1.67 chs }
1472 1.62 chs
1473 1.67 chs /*
1474 1.67 chs * remove page from its object or anon.
1475 1.67 chs */
1476 1.44 chs
1477 1.73 chs if (pg->uobject != NULL) {
1478 1.67 chs uvm_pageremove(pg);
1479 1.73 chs } else if (pg->uanon != NULL) {
1480 1.103 yamt pg->uanon->an_page = NULL;
1481 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1482 1.7 mrg }
1483 1.1 mrg
1484 1.7 mrg /*
1485 1.70 chs * now remove the page from the queues.
1486 1.7 mrg */
1487 1.7 mrg
1488 1.67 chs uvm_pagedequeue(pg);
1489 1.7 mrg
1490 1.7 mrg /*
1491 1.7 mrg * if the page was wired, unwire it now.
1492 1.7 mrg */
1493 1.44 chs
1494 1.34 thorpej if (pg->wire_count) {
1495 1.7 mrg pg->wire_count = 0;
1496 1.7 mrg uvmexp.wired--;
1497 1.44 chs }
1498 1.7 mrg
1499 1.7 mrg /*
1500 1.44 chs * and put on free queue
1501 1.7 mrg */
1502 1.7 mrg
1503 1.90 yamt iszero = (pg->flags & PG_ZERO);
1504 1.133 ad index = uvm_page_lookup_freelist(pg);
1505 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1506 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1507 1.34 thorpej
1508 1.7 mrg pg->pqflags = PQ_FREE;
1509 1.3 chs #ifdef DEBUG
1510 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1511 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1512 1.3 chs #endif
1513 1.90 yamt
1514 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1515 1.91 yamt
1516 1.91 yamt #ifdef DEBUG
1517 1.91 yamt if (iszero)
1518 1.91 yamt uvm_pagezerocheck(pg);
1519 1.91 yamt #endif /* DEBUG */
1520 1.91 yamt
1521 1.133 ad
1522 1.133 ad /* global list */
1523 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1524 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1525 1.7 mrg uvmexp.free++;
1526 1.133 ad if (iszero) {
1527 1.90 yamt uvmexp.zeropages++;
1528 1.133 ad }
1529 1.34 thorpej
1530 1.133 ad /* per-cpu list */
1531 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1532 1.133 ad pg->offset = (uintptr_t)ucpu;
1533 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1534 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1535 1.133 ad ucpu->pages[queue]++;
1536 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1537 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1538 1.133 ad }
1539 1.34 thorpej
1540 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1541 1.44 chs }
1542 1.44 chs
1543 1.44 chs /*
1544 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1545 1.44 chs *
1546 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1547 1.44 chs * => if pages are object-owned, object must be locked.
1548 1.67 chs * => if pages are anon-owned, anons must be locked.
1549 1.76 enami * => caller must lock page queues if pages may be released.
1550 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1551 1.44 chs */
1552 1.44 chs
1553 1.44 chs void
1554 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1555 1.44 chs {
1556 1.44 chs struct vm_page *pg;
1557 1.44 chs int i;
1558 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1559 1.44 chs
1560 1.44 chs for (i = 0; i < npgs; i++) {
1561 1.44 chs pg = pgs[i];
1562 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1563 1.44 chs continue;
1564 1.44 chs }
1565 1.98 yamt
1566 1.127 ad KASSERT(pg->uobject == NULL ||
1567 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1568 1.127 ad KASSERT(pg->uobject != NULL ||
1569 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1570 1.98 yamt
1571 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1572 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1573 1.44 chs if (pg->flags & PG_WANTED) {
1574 1.44 chs wakeup(pg);
1575 1.44 chs }
1576 1.44 chs if (pg->flags & PG_RELEASED) {
1577 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1578 1.98 yamt KASSERT(pg->uobject != NULL ||
1579 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1580 1.67 chs pg->flags &= ~PG_RELEASED;
1581 1.67 chs uvm_pagefree(pg);
1582 1.44 chs } else {
1583 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1584 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1585 1.44 chs UVM_PAGE_OWN(pg, NULL);
1586 1.44 chs }
1587 1.44 chs }
1588 1.1 mrg }
1589 1.1 mrg
1590 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1591 1.1 mrg /*
1592 1.1 mrg * uvm_page_own: set or release page ownership
1593 1.1 mrg *
1594 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1595 1.1 mrg * and where they do it. it can be used to track down problems
1596 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1597 1.1 mrg * => page's object [if any] must be locked
1598 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1599 1.1 mrg */
1600 1.7 mrg void
1601 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1602 1.1 mrg {
1603 1.112 yamt struct uvm_object *uobj;
1604 1.112 yamt struct vm_anon *anon;
1605 1.112 yamt
1606 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1607 1.67 chs
1608 1.112 yamt uobj = pg->uobject;
1609 1.112 yamt anon = pg->uanon;
1610 1.112 yamt if (uobj != NULL) {
1611 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1612 1.112 yamt } else if (anon != NULL) {
1613 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1614 1.112 yamt }
1615 1.112 yamt
1616 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1617 1.112 yamt
1618 1.7 mrg /* gain ownership? */
1619 1.7 mrg if (tag) {
1620 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1621 1.7 mrg if (pg->owner_tag) {
1622 1.7 mrg printf("uvm_page_own: page %p already owned "
1623 1.7 mrg "by proc %d [%s]\n", pg,
1624 1.74 enami pg->owner, pg->owner_tag);
1625 1.7 mrg panic("uvm_page_own");
1626 1.7 mrg }
1627 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1628 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1629 1.7 mrg pg->owner_tag = tag;
1630 1.7 mrg return;
1631 1.7 mrg }
1632 1.7 mrg
1633 1.7 mrg /* drop ownership */
1634 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1635 1.7 mrg if (pg->owner_tag == NULL) {
1636 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1637 1.7 mrg "page (%p)\n", pg);
1638 1.7 mrg panic("uvm_page_own");
1639 1.7 mrg }
1640 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1641 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1642 1.115 yamt pg->wire_count > 0);
1643 1.115 yamt } else {
1644 1.115 yamt KASSERT(pg->wire_count == 0);
1645 1.115 yamt }
1646 1.7 mrg pg->owner_tag = NULL;
1647 1.1 mrg }
1648 1.1 mrg #endif
1649 1.34 thorpej
1650 1.34 thorpej /*
1651 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1652 1.34 thorpej *
1653 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1654 1.54 thorpej * on the CPU cache.
1655 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1656 1.132 ad * to run, or MD code detects a reason to break early.
1657 1.34 thorpej */
1658 1.34 thorpej void
1659 1.105 thorpej uvm_pageidlezero(void)
1660 1.34 thorpej {
1661 1.34 thorpej struct vm_page *pg;
1662 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1663 1.133 ad struct uvm_cpu *ucpu;
1664 1.133 ad int free_list, firstbucket, nextbucket;
1665 1.133 ad
1666 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1667 1.133 ad if (!ucpu->page_idle_zero ||
1668 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1669 1.133 ad ucpu->page_idle_zero = false;
1670 1.132 ad return;
1671 1.132 ad }
1672 1.133 ad mutex_enter(&uvm_fpageqlock);
1673 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1674 1.133 ad nextbucket = firstbucket;
1675 1.58 enami do {
1676 1.121 yamt if (sched_curcpu_runnable_p()) {
1677 1.133 ad break;
1678 1.34 thorpej }
1679 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1680 1.133 ad pgfl = &ucpu->page_free[free_list];
1681 1.133 ad gpgfl = &uvm.page_free[free_list];
1682 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1683 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1684 1.132 ad if (sched_curcpu_runnable_p()) {
1685 1.101 yamt goto quit;
1686 1.132 ad }
1687 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1688 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1689 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1690 1.54 thorpej uvmexp.free--;
1691 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1692 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1693 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1694 1.67 chs
1695 1.54 thorpej /*
1696 1.54 thorpej * The machine-dependent code detected
1697 1.54 thorpej * some reason for us to abort zeroing
1698 1.54 thorpej * pages, probably because there is a
1699 1.54 thorpej * process now ready to run.
1700 1.54 thorpej */
1701 1.67 chs
1702 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1703 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1704 1.133 ad nextbucket].pgfl_queues[
1705 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1706 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1707 1.54 thorpej nextbucket].pgfl_queues[
1708 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1709 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1710 1.54 thorpej uvmexp.free++;
1711 1.54 thorpej uvmexp.zeroaborts++;
1712 1.101 yamt goto quit;
1713 1.54 thorpej }
1714 1.54 thorpej #else
1715 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1716 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1717 1.54 thorpej pg->flags |= PG_ZERO;
1718 1.54 thorpej
1719 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1720 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1721 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1722 1.133 ad pg, pageq.list);
1723 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1724 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1725 1.133 ad pg, listq.list);
1726 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1727 1.54 thorpej uvmexp.free++;
1728 1.54 thorpej uvmexp.zeropages++;
1729 1.54 thorpej }
1730 1.41 thorpej }
1731 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1732 1.133 ad break;
1733 1.133 ad }
1734 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1735 1.58 enami } while (nextbucket != firstbucket);
1736 1.133 ad ucpu->page_idle_zero = false;
1737 1.133 ad quit:
1738 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1739 1.34 thorpej }
1740 1.110 yamt
1741 1.110 yamt /*
1742 1.110 yamt * uvm_pagelookup: look up a page
1743 1.110 yamt *
1744 1.110 yamt * => caller should lock object to keep someone from pulling the page
1745 1.110 yamt * out from under it
1746 1.110 yamt */
1747 1.110 yamt
1748 1.110 yamt struct vm_page *
1749 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1750 1.110 yamt {
1751 1.110 yamt struct vm_page *pg;
1752 1.110 yamt struct pglist *buck;
1753 1.123 ad kmutex_t *lock;
1754 1.123 ad u_int hash;
1755 1.110 yamt
1756 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1757 1.123 ad
1758 1.123 ad hash = uvm_pagehash(obj, off);
1759 1.123 ad buck = &uvm.page_hash[hash];
1760 1.123 ad lock = uvm_hashlock(hash);
1761 1.123 ad mutex_spin_enter(lock);
1762 1.110 yamt TAILQ_FOREACH(pg, buck, hashq) {
1763 1.110 yamt if (pg->uobject == obj && pg->offset == off) {
1764 1.110 yamt break;
1765 1.110 yamt }
1766 1.110 yamt }
1767 1.123 ad mutex_spin_exit(lock);
1768 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1769 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1770 1.110 yamt (pg->flags & PG_BUSY) != 0);
1771 1.110 yamt return(pg);
1772 1.110 yamt }
1773 1.110 yamt
1774 1.110 yamt /*
1775 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1776 1.110 yamt *
1777 1.110 yamt * => caller must lock page queues
1778 1.110 yamt */
1779 1.110 yamt
1780 1.110 yamt void
1781 1.110 yamt uvm_pagewire(struct vm_page *pg)
1782 1.110 yamt {
1783 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1784 1.113 yamt #if defined(READAHEAD_STATS)
1785 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1786 1.113 yamt uvm_ra_hit.ev_count++;
1787 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1788 1.113 yamt }
1789 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1790 1.110 yamt if (pg->wire_count == 0) {
1791 1.110 yamt uvm_pagedequeue(pg);
1792 1.110 yamt uvmexp.wired++;
1793 1.110 yamt }
1794 1.110 yamt pg->wire_count++;
1795 1.110 yamt }
1796 1.110 yamt
1797 1.110 yamt /*
1798 1.110 yamt * uvm_pageunwire: unwire the page.
1799 1.110 yamt *
1800 1.110 yamt * => activate if wire count goes to zero.
1801 1.110 yamt * => caller must lock page queues
1802 1.110 yamt */
1803 1.110 yamt
1804 1.110 yamt void
1805 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1806 1.110 yamt {
1807 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1808 1.110 yamt pg->wire_count--;
1809 1.110 yamt if (pg->wire_count == 0) {
1810 1.111 yamt uvm_pageactivate(pg);
1811 1.110 yamt uvmexp.wired--;
1812 1.110 yamt }
1813 1.110 yamt }
1814 1.110 yamt
1815 1.110 yamt /*
1816 1.110 yamt * uvm_pagedeactivate: deactivate page
1817 1.110 yamt *
1818 1.110 yamt * => caller must lock page queues
1819 1.110 yamt * => caller must check to make sure page is not wired
1820 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1821 1.110 yamt * => caller must clear the reference on the page before calling
1822 1.110 yamt */
1823 1.110 yamt
1824 1.110 yamt void
1825 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1826 1.110 yamt {
1827 1.113 yamt
1828 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1829 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1830 1.113 yamt uvmpdpol_pagedeactivate(pg);
1831 1.110 yamt }
1832 1.110 yamt
1833 1.110 yamt /*
1834 1.110 yamt * uvm_pageactivate: activate page
1835 1.110 yamt *
1836 1.110 yamt * => caller must lock page queues
1837 1.110 yamt */
1838 1.110 yamt
1839 1.110 yamt void
1840 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1841 1.110 yamt {
1842 1.113 yamt
1843 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1844 1.113 yamt #if defined(READAHEAD_STATS)
1845 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1846 1.113 yamt uvm_ra_hit.ev_count++;
1847 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1848 1.113 yamt }
1849 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1850 1.113 yamt if (pg->wire_count != 0) {
1851 1.113 yamt return;
1852 1.110 yamt }
1853 1.113 yamt uvmpdpol_pageactivate(pg);
1854 1.110 yamt }
1855 1.110 yamt
1856 1.110 yamt /*
1857 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1858 1.110 yamt */
1859 1.110 yamt
1860 1.110 yamt void
1861 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1862 1.110 yamt {
1863 1.113 yamt
1864 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1865 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1866 1.110 yamt }
1867 1.123 ad
1868 1.113 yamt uvmpdpol_pagedequeue(pg);
1869 1.113 yamt }
1870 1.113 yamt
1871 1.113 yamt /*
1872 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1873 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1874 1.113 yamt */
1875 1.113 yamt
1876 1.113 yamt void
1877 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1878 1.113 yamt {
1879 1.113 yamt
1880 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1881 1.113 yamt if (pg->wire_count != 0) {
1882 1.113 yamt return;
1883 1.113 yamt }
1884 1.113 yamt uvmpdpol_pageenqueue(pg);
1885 1.110 yamt }
1886 1.110 yamt
1887 1.110 yamt /*
1888 1.110 yamt * uvm_pagezero: zero fill a page
1889 1.110 yamt *
1890 1.110 yamt * => if page is part of an object then the object should be locked
1891 1.110 yamt * to protect pg->flags.
1892 1.110 yamt */
1893 1.110 yamt
1894 1.110 yamt void
1895 1.110 yamt uvm_pagezero(struct vm_page *pg)
1896 1.110 yamt {
1897 1.110 yamt pg->flags &= ~PG_CLEAN;
1898 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1899 1.110 yamt }
1900 1.110 yamt
1901 1.110 yamt /*
1902 1.110 yamt * uvm_pagecopy: copy a page
1903 1.110 yamt *
1904 1.110 yamt * => if page is part of an object then the object should be locked
1905 1.110 yamt * to protect pg->flags.
1906 1.110 yamt */
1907 1.110 yamt
1908 1.110 yamt void
1909 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1910 1.110 yamt {
1911 1.110 yamt
1912 1.110 yamt dst->flags &= ~PG_CLEAN;
1913 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1914 1.110 yamt }
1915 1.110 yamt
1916 1.110 yamt /*
1917 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1918 1.110 yamt */
1919 1.110 yamt
1920 1.110 yamt int
1921 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1922 1.110 yamt {
1923 1.110 yamt int lcv;
1924 1.110 yamt
1925 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1926 1.110 yamt KASSERT(lcv != -1);
1927 1.110 yamt return (vm_physmem[lcv].free_list);
1928 1.110 yamt }
1929