uvm_page.c revision 1.134 1 1.134 ad /* $NetBSD: uvm_page.c,v 1.134 2008/06/04 15:06:04 ad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.134 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.134 2008/06/04 15:06:04 ad Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.113 yamt #include "opt_readahead.h"
78 1.44 chs
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.35 thorpej #include <sys/sched.h>
83 1.44 chs #include <sys/kernel.h>
84 1.51 chs #include <sys/vnode.h>
85 1.68 chs #include <sys/proc.h>
86 1.126 ad #include <sys/atomic.h>
87 1.133 ad #include <sys/cpu.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.113 yamt #include <uvm/uvm_pdpolicy.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * physical memory config is stored in vm_physmem.
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102 1.1 mrg
103 1.1 mrg /*
104 1.36 thorpej * Some supported CPUs in a given architecture don't support all
105 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
106 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
107 1.34 thorpej */
108 1.44 chs /*
109 1.44 chs * XXX disabled until we can find a way to do this without causing
110 1.95 wiz * problems for either CPU caches or DMA latency.
111 1.44 chs */
112 1.119 thorpej bool vm_page_zero_enable = false;
113 1.34 thorpej
114 1.34 thorpej /*
115 1.1 mrg * local variables
116 1.1 mrg */
117 1.1 mrg
118 1.1 mrg /*
119 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
120 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
121 1.88 thorpej * and pmap_startup here also uses them internally.
122 1.88 thorpej */
123 1.88 thorpej
124 1.88 thorpej static vaddr_t virtual_space_start;
125 1.88 thorpej static vaddr_t virtual_space_end;
126 1.88 thorpej
127 1.88 thorpej /*
128 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
129 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
130 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
131 1.60 thorpej * free the initial set of buckets, since they are allocated using
132 1.60 thorpej * uvm_pageboot_alloc().
133 1.60 thorpej */
134 1.60 thorpej
135 1.119 thorpej static bool have_recolored_pages /* = false */;
136 1.83 thorpej
137 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
138 1.60 thorpej
139 1.91 yamt #ifdef DEBUG
140 1.91 yamt vaddr_t uvm_zerocheckkva;
141 1.91 yamt #endif /* DEBUG */
142 1.91 yamt
143 1.60 thorpej /*
144 1.134 ad * local prototypes
145 1.124 ad */
146 1.124 ad
147 1.134 ad static void uvm_pageinsert(struct vm_page *);
148 1.134 ad static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
149 1.134 ad static void uvm_pageremove(struct vm_page *);
150 1.124 ad
151 1.124 ad /*
152 1.134 ad * per-object tree of pages
153 1.1 mrg */
154 1.1 mrg
155 1.134 ad static signed int
156 1.134 ad uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
157 1.134 ad {
158 1.134 ad const struct vm_page *pg1 = (const void *)n1;
159 1.134 ad const struct vm_page *pg2 = (const void *)n2;
160 1.134 ad const voff_t a = pg1->offset;
161 1.134 ad const voff_t b = pg2->offset;
162 1.134 ad
163 1.134 ad if (a < b)
164 1.134 ad return 1;
165 1.134 ad if (a > b)
166 1.134 ad return -1;
167 1.134 ad return 0;
168 1.134 ad }
169 1.134 ad
170 1.134 ad static signed int
171 1.134 ad uvm_page_compare_key(const struct rb_node *n, const void *key)
172 1.134 ad {
173 1.134 ad const struct vm_page *pg = (const void *)n;
174 1.134 ad const voff_t a = pg->offset;
175 1.134 ad const voff_t b = *(const voff_t *)key;
176 1.134 ad
177 1.134 ad if (a < b)
178 1.134 ad return 1;
179 1.134 ad if (a > b)
180 1.134 ad return -1;
181 1.134 ad return 0;
182 1.134 ad }
183 1.134 ad
184 1.134 ad const struct rb_tree_ops uvm_page_tree_ops = {
185 1.134 ad .rb_compare_nodes = uvm_page_compare_nodes,
186 1.134 ad .rb_compare_key = uvm_page_compare_key,
187 1.134 ad };
188 1.1 mrg
189 1.1 mrg /*
190 1.1 mrg * inline functions
191 1.1 mrg */
192 1.1 mrg
193 1.1 mrg /*
194 1.134 ad * uvm_pageinsert: insert a page in the object.
195 1.96 yamt * uvm_pageinsert_after: insert a page into the specified place in listq
196 1.1 mrg *
197 1.1 mrg * => caller must lock object
198 1.1 mrg * => caller must lock page queues
199 1.1 mrg * => call should have already set pg's object and offset pointers
200 1.1 mrg * and bumped the version counter
201 1.1 mrg */
202 1.1 mrg
203 1.109 perry inline static void
204 1.105 thorpej uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
205 1.1 mrg {
206 1.67 chs struct uvm_object *uobj = pg->uobject;
207 1.1 mrg
208 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
209 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
210 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
211 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
212 1.123 ad
213 1.134 ad rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
214 1.7 mrg
215 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
216 1.94 yamt if (uobj->uo_npages == 0) {
217 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
218 1.94 yamt
219 1.94 yamt vholdl(vp);
220 1.94 yamt }
221 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
222 1.126 ad atomic_inc_uint(&uvmexp.execpages);
223 1.94 yamt } else {
224 1.126 ad atomic_inc_uint(&uvmexp.filepages);
225 1.94 yamt }
226 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
227 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
228 1.78 chs }
229 1.78 chs
230 1.96 yamt if (where)
231 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
232 1.96 yamt else
233 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
234 1.7 mrg pg->flags |= PG_TABLED;
235 1.67 chs uobj->uo_npages++;
236 1.1 mrg }
237 1.1 mrg
238 1.109 perry inline static void
239 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
240 1.96 yamt {
241 1.96 yamt
242 1.96 yamt uvm_pageinsert_after(pg, NULL);
243 1.96 yamt }
244 1.96 yamt
245 1.1 mrg /*
246 1.134 ad * uvm_page_remove: remove page from object.
247 1.1 mrg *
248 1.1 mrg * => caller must lock object
249 1.1 mrg * => caller must lock page queues
250 1.1 mrg */
251 1.1 mrg
252 1.109 perry static inline void
253 1.105 thorpej uvm_pageremove(struct vm_page *pg)
254 1.1 mrg {
255 1.67 chs struct uvm_object *uobj = pg->uobject;
256 1.1 mrg
257 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
258 1.44 chs KASSERT(pg->flags & PG_TABLED);
259 1.123 ad
260 1.134 ad rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
261 1.7 mrg
262 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
263 1.94 yamt if (uobj->uo_npages == 1) {
264 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
265 1.94 yamt
266 1.94 yamt holdrelel(vp);
267 1.94 yamt }
268 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
269 1.126 ad atomic_dec_uint(&uvmexp.execpages);
270 1.94 yamt } else {
271 1.126 ad atomic_dec_uint(&uvmexp.filepages);
272 1.94 yamt }
273 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
274 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
275 1.51 chs }
276 1.44 chs
277 1.7 mrg /* object should be locked */
278 1.67 chs uobj->uo_npages--;
279 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
280 1.7 mrg pg->flags &= ~PG_TABLED;
281 1.7 mrg pg->uobject = NULL;
282 1.1 mrg }
283 1.1 mrg
284 1.60 thorpej static void
285 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
286 1.60 thorpej {
287 1.60 thorpej int color, i;
288 1.60 thorpej
289 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
290 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
291 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
292 1.60 thorpej }
293 1.60 thorpej }
294 1.60 thorpej }
295 1.60 thorpej
296 1.1 mrg /*
297 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
298 1.62 chs *
299 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
300 1.1 mrg */
301 1.1 mrg
302 1.7 mrg void
303 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
304 1.1 mrg {
305 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
306 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
307 1.63 chs struct vm_page *pagearray;
308 1.81 thorpej int lcv;
309 1.81 thorpej u_int i;
310 1.14 eeh paddr_t paddr;
311 1.7 mrg
312 1.133 ad KASSERT(ncpu <= 1);
313 1.133 ad KASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
314 1.133 ad
315 1.7 mrg /*
316 1.60 thorpej * init the page queues and page queue locks, except the free
317 1.60 thorpej * list; we allocate that later (with the initial vm_page
318 1.60 thorpej * structures).
319 1.7 mrg */
320 1.51 chs
321 1.133 ad curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
322 1.113 yamt uvmpdpol_init();
323 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
324 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
325 1.7 mrg
326 1.7 mrg /*
327 1.51 chs * allocate vm_page structures.
328 1.7 mrg */
329 1.7 mrg
330 1.7 mrg /*
331 1.7 mrg * sanity check:
332 1.7 mrg * before calling this function the MD code is expected to register
333 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
334 1.7 mrg * now is to allocate vm_page structures for this memory.
335 1.7 mrg */
336 1.7 mrg
337 1.7 mrg if (vm_nphysseg == 0)
338 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
339 1.62 chs
340 1.7 mrg /*
341 1.62 chs * first calculate the number of free pages...
342 1.7 mrg *
343 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
344 1.7 mrg * this allows us to allocate extra vm_page structures in case we
345 1.7 mrg * want to return some memory to the pool after booting.
346 1.7 mrg */
347 1.62 chs
348 1.7 mrg freepages = 0;
349 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
350 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
351 1.7 mrg
352 1.7 mrg /*
353 1.60 thorpej * Let MD code initialize the number of colors, or default
354 1.60 thorpej * to 1 color if MD code doesn't care.
355 1.60 thorpej */
356 1.60 thorpej if (uvmexp.ncolors == 0)
357 1.60 thorpej uvmexp.ncolors = 1;
358 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
359 1.60 thorpej
360 1.60 thorpej /*
361 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
362 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
363 1.7 mrg * thus, the total number of pages we can use is the total size of
364 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
365 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
366 1.7 mrg * truncation errors (since we can only allocate in terms of whole
367 1.7 mrg * pages).
368 1.7 mrg */
369 1.62 chs
370 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
371 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
372 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
373 1.60 thorpej
374 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
375 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
376 1.60 thorpej sizeof(struct vm_page)));
377 1.133 ad cpuarray = bucketarray + bucketcount;
378 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
379 1.60 thorpej
380 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
381 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
382 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
383 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
384 1.133 ad uvm.cpus[0].page_free[lcv].pgfl_buckets =
385 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
386 1.133 ad uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
387 1.60 thorpej }
388 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
389 1.62 chs
390 1.7 mrg /*
391 1.51 chs * init the vm_page structures and put them in the correct place.
392 1.7 mrg */
393 1.7 mrg
394 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
395 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
396 1.51 chs
397 1.7 mrg /* set up page array pointers */
398 1.7 mrg vm_physmem[lcv].pgs = pagearray;
399 1.7 mrg pagearray += n;
400 1.7 mrg pagecount -= n;
401 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
402 1.7 mrg
403 1.13 perry /* init and free vm_pages (we've already zeroed them) */
404 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
405 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
406 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
407 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
408 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
409 1.56 thorpej #endif
410 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
411 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
412 1.7 mrg uvmexp.npages++;
413 1.7 mrg /* add page to free pool */
414 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
415 1.7 mrg }
416 1.7 mrg }
417 1.7 mrg }
418 1.44 chs
419 1.7 mrg /*
420 1.88 thorpej * pass up the values of virtual_space_start and
421 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
422 1.88 thorpej * layers of the VM.
423 1.88 thorpej */
424 1.88 thorpej
425 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
426 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
427 1.91 yamt #ifdef DEBUG
428 1.91 yamt /*
429 1.91 yamt * steal kva for uvm_pagezerocheck().
430 1.91 yamt */
431 1.91 yamt uvm_zerocheckkva = *kvm_startp;
432 1.91 yamt *kvm_startp += PAGE_SIZE;
433 1.91 yamt #endif /* DEBUG */
434 1.88 thorpej
435 1.88 thorpej /*
436 1.51 chs * init various thresholds.
437 1.7 mrg */
438 1.51 chs
439 1.7 mrg uvmexp.reserve_pagedaemon = 1;
440 1.7 mrg uvmexp.reserve_kernel = 5;
441 1.7 mrg
442 1.7 mrg /*
443 1.51 chs * determine if we should zero pages in the idle loop.
444 1.34 thorpej */
445 1.51 chs
446 1.133 ad uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
447 1.34 thorpej
448 1.34 thorpej /*
449 1.7 mrg * done!
450 1.7 mrg */
451 1.1 mrg
452 1.119 thorpej uvm.page_init_done = true;
453 1.1 mrg }
454 1.1 mrg
455 1.1 mrg /*
456 1.1 mrg * uvm_setpagesize: set the page size
457 1.62 chs *
458 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
459 1.62 chs */
460 1.1 mrg
461 1.7 mrg void
462 1.105 thorpej uvm_setpagesize(void)
463 1.1 mrg {
464 1.85 thorpej
465 1.85 thorpej /*
466 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
467 1.85 thorpej * to be a constant (indicated by being a non-zero value).
468 1.85 thorpej */
469 1.85 thorpej if (uvmexp.pagesize == 0) {
470 1.85 thorpej if (PAGE_SIZE == 0)
471 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
472 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
473 1.85 thorpej }
474 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
475 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
476 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
477 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
478 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
479 1.7 mrg break;
480 1.1 mrg }
481 1.1 mrg
482 1.1 mrg /*
483 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
484 1.1 mrg */
485 1.1 mrg
486 1.14 eeh vaddr_t
487 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
488 1.1 mrg {
489 1.119 thorpej static bool initialized = false;
490 1.14 eeh vaddr_t addr;
491 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
492 1.52 thorpej vaddr_t vaddr;
493 1.14 eeh paddr_t paddr;
494 1.52 thorpej #endif
495 1.1 mrg
496 1.7 mrg /*
497 1.19 thorpej * on first call to this function, initialize ourselves.
498 1.7 mrg */
499 1.119 thorpej if (initialized == false) {
500 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
501 1.1 mrg
502 1.7 mrg /* round it the way we like it */
503 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
504 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
505 1.19 thorpej
506 1.119 thorpej initialized = true;
507 1.7 mrg }
508 1.52 thorpej
509 1.52 thorpej /* round to page size */
510 1.52 thorpej size = round_page(size);
511 1.52 thorpej
512 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
513 1.52 thorpej
514 1.62 chs /*
515 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
516 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
517 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
518 1.52 thorpej */
519 1.52 thorpej
520 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
521 1.88 thorpej &virtual_space_end);
522 1.52 thorpej
523 1.52 thorpej return(addr);
524 1.52 thorpej
525 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
526 1.1 mrg
527 1.7 mrg /*
528 1.7 mrg * allocate virtual memory for this request
529 1.7 mrg */
530 1.88 thorpej if (virtual_space_start == virtual_space_end ||
531 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
532 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
533 1.20 thorpej
534 1.88 thorpej addr = virtual_space_start;
535 1.20 thorpej
536 1.20 thorpej #ifdef PMAP_GROWKERNEL
537 1.20 thorpej /*
538 1.20 thorpej * If the kernel pmap can't map the requested space,
539 1.20 thorpej * then allocate more resources for it.
540 1.20 thorpej */
541 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
542 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
543 1.20 thorpej if (uvm_maxkaddr < (addr + size))
544 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
545 1.19 thorpej }
546 1.20 thorpej #endif
547 1.1 mrg
548 1.88 thorpej virtual_space_start += size;
549 1.1 mrg
550 1.9 thorpej /*
551 1.7 mrg * allocate and mapin physical pages to back new virtual pages
552 1.7 mrg */
553 1.1 mrg
554 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
555 1.7 mrg vaddr += PAGE_SIZE) {
556 1.1 mrg
557 1.7 mrg if (!uvm_page_physget(&paddr))
558 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
559 1.1 mrg
560 1.23 thorpej /*
561 1.23 thorpej * Note this memory is no longer managed, so using
562 1.23 thorpej * pmap_kenter is safe.
563 1.23 thorpej */
564 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
565 1.7 mrg }
566 1.66 chris pmap_update(pmap_kernel());
567 1.7 mrg return(addr);
568 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
569 1.1 mrg }
570 1.1 mrg
571 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
572 1.1 mrg /*
573 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
574 1.1 mrg *
575 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
576 1.1 mrg * values match the start/end values. if we can't do that, then we
577 1.1 mrg * will advance both values (making them equal, and removing some
578 1.1 mrg * vm_page structures from the non-avail area).
579 1.1 mrg * => return false if out of memory.
580 1.1 mrg */
581 1.1 mrg
582 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
583 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
584 1.28 drochner
585 1.118 thorpej static bool
586 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
587 1.1 mrg {
588 1.7 mrg int lcv, x;
589 1.1 mrg
590 1.7 mrg /* pass 1: try allocating from a matching end */
591 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
592 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
593 1.1 mrg #else
594 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
595 1.1 mrg #endif
596 1.7 mrg {
597 1.1 mrg
598 1.119 thorpej if (uvm.page_init_done == true)
599 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
600 1.1 mrg
601 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
602 1.28 drochner continue;
603 1.28 drochner
604 1.7 mrg /* try from front */
605 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
606 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
607 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
608 1.7 mrg vm_physmem[lcv].avail_start++;
609 1.7 mrg vm_physmem[lcv].start++;
610 1.7 mrg /* nothing left? nuke it */
611 1.7 mrg if (vm_physmem[lcv].avail_start ==
612 1.7 mrg vm_physmem[lcv].end) {
613 1.7 mrg if (vm_nphysseg == 1)
614 1.89 wiz panic("uvm_page_physget: out of memory!");
615 1.7 mrg vm_nphysseg--;
616 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
617 1.7 mrg /* structure copy */
618 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
619 1.7 mrg }
620 1.119 thorpej return (true);
621 1.7 mrg }
622 1.7 mrg
623 1.7 mrg /* try from rear */
624 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
625 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
626 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
627 1.7 mrg vm_physmem[lcv].avail_end--;
628 1.7 mrg vm_physmem[lcv].end--;
629 1.7 mrg /* nothing left? nuke it */
630 1.7 mrg if (vm_physmem[lcv].avail_end ==
631 1.7 mrg vm_physmem[lcv].start) {
632 1.7 mrg if (vm_nphysseg == 1)
633 1.42 mrg panic("uvm_page_physget: out of memory!");
634 1.7 mrg vm_nphysseg--;
635 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
636 1.7 mrg /* structure copy */
637 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
638 1.7 mrg }
639 1.119 thorpej return (true);
640 1.7 mrg }
641 1.7 mrg }
642 1.1 mrg
643 1.7 mrg /* pass2: forget about matching ends, just allocate something */
644 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
645 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
646 1.1 mrg #else
647 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
648 1.1 mrg #endif
649 1.7 mrg {
650 1.1 mrg
651 1.7 mrg /* any room in this bank? */
652 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
653 1.7 mrg continue; /* nope */
654 1.7 mrg
655 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
656 1.7 mrg vm_physmem[lcv].avail_start++;
657 1.7 mrg /* truncate! */
658 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
659 1.7 mrg
660 1.7 mrg /* nothing left? nuke it */
661 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
662 1.7 mrg if (vm_nphysseg == 1)
663 1.42 mrg panic("uvm_page_physget: out of memory!");
664 1.7 mrg vm_nphysseg--;
665 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
666 1.7 mrg /* structure copy */
667 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
668 1.7 mrg }
669 1.119 thorpej return (true);
670 1.7 mrg }
671 1.1 mrg
672 1.119 thorpej return (false); /* whoops! */
673 1.28 drochner }
674 1.28 drochner
675 1.118 thorpej bool
676 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
677 1.28 drochner {
678 1.28 drochner int i;
679 1.28 drochner
680 1.28 drochner /* try in the order of freelist preference */
681 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
682 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
683 1.119 thorpej return (true);
684 1.119 thorpej return (false);
685 1.1 mrg }
686 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
687 1.1 mrg
688 1.1 mrg /*
689 1.1 mrg * uvm_page_physload: load physical memory into VM system
690 1.1 mrg *
691 1.1 mrg * => all args are PFs
692 1.1 mrg * => all pages in start/end get vm_page structures
693 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
694 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
695 1.1 mrg */
696 1.1 mrg
697 1.7 mrg void
698 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
699 1.105 thorpej paddr_t avail_end, int free_list)
700 1.1 mrg {
701 1.14 eeh int preload, lcv;
702 1.14 eeh psize_t npages;
703 1.7 mrg struct vm_page *pgs;
704 1.7 mrg struct vm_physseg *ps;
705 1.7 mrg
706 1.7 mrg if (uvmexp.pagesize == 0)
707 1.42 mrg panic("uvm_page_physload: page size not set!");
708 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
709 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
710 1.26 drochner if (start >= end)
711 1.26 drochner panic("uvm_page_physload: start >= end");
712 1.12 thorpej
713 1.7 mrg /*
714 1.7 mrg * do we have room?
715 1.7 mrg */
716 1.67 chs
717 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
718 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
719 1.7 mrg "segment\n");
720 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
721 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
722 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
723 1.7 mrg return;
724 1.7 mrg }
725 1.7 mrg
726 1.7 mrg /*
727 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
728 1.7 mrg * called yet, so malloc is not available).
729 1.7 mrg */
730 1.67 chs
731 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
732 1.7 mrg if (vm_physmem[lcv].pgs)
733 1.7 mrg break;
734 1.7 mrg }
735 1.7 mrg preload = (lcv == vm_nphysseg);
736 1.7 mrg
737 1.7 mrg /*
738 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
739 1.7 mrg */
740 1.67 chs
741 1.7 mrg if (!preload) {
742 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
743 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
744 1.1 mrg #else
745 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
746 1.14 eeh paddr_t paddr;
747 1.7 mrg npages = end - start; /* # of pages */
748 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
749 1.40 thorpej M_VMPAGE, M_NOWAIT);
750 1.7 mrg if (pgs == NULL) {
751 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
752 1.7 mrg "structs for segment\n");
753 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
754 1.7 mrg return;
755 1.7 mrg }
756 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
757 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
758 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
759 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
760 1.7 mrg pgs[lcv].phys_addr = paddr;
761 1.12 thorpej pgs[lcv].free_list = free_list;
762 1.7 mrg if (atop(paddr) >= avail_start &&
763 1.7 mrg atop(paddr) <= avail_end)
764 1.8 chuck uvm_pagefree(&pgs[lcv]);
765 1.7 mrg }
766 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
767 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
768 1.1 mrg #endif
769 1.7 mrg } else {
770 1.7 mrg pgs = NULL;
771 1.7 mrg npages = 0;
772 1.7 mrg }
773 1.1 mrg
774 1.7 mrg /*
775 1.7 mrg * now insert us in the proper place in vm_physmem[]
776 1.7 mrg */
777 1.1 mrg
778 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
779 1.7 mrg /* random: put it at the end (easy!) */
780 1.7 mrg ps = &vm_physmem[vm_nphysseg];
781 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
782 1.7 mrg {
783 1.7 mrg int x;
784 1.7 mrg /* sort by address for binary search */
785 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
786 1.7 mrg if (start < vm_physmem[lcv].start)
787 1.7 mrg break;
788 1.7 mrg ps = &vm_physmem[lcv];
789 1.7 mrg /* move back other entries, if necessary ... */
790 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
791 1.7 mrg /* structure copy */
792 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
793 1.7 mrg }
794 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
795 1.7 mrg {
796 1.7 mrg int x;
797 1.7 mrg /* sort by largest segment first */
798 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
799 1.7 mrg if ((end - start) >
800 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
801 1.7 mrg break;
802 1.7 mrg ps = &vm_physmem[lcv];
803 1.7 mrg /* move back other entries, if necessary ... */
804 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
805 1.7 mrg /* structure copy */
806 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
807 1.7 mrg }
808 1.1 mrg #else
809 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
810 1.1 mrg #endif
811 1.1 mrg
812 1.7 mrg ps->start = start;
813 1.7 mrg ps->end = end;
814 1.7 mrg ps->avail_start = avail_start;
815 1.7 mrg ps->avail_end = avail_end;
816 1.7 mrg if (preload) {
817 1.7 mrg ps->pgs = NULL;
818 1.7 mrg } else {
819 1.7 mrg ps->pgs = pgs;
820 1.7 mrg ps->lastpg = pgs + npages - 1;
821 1.7 mrg }
822 1.12 thorpej ps->free_list = free_list;
823 1.7 mrg vm_nphysseg++;
824 1.7 mrg
825 1.113 yamt if (!preload) {
826 1.113 yamt uvmpdpol_reinit();
827 1.113 yamt }
828 1.1 mrg }
829 1.1 mrg
830 1.1 mrg /*
831 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
832 1.60 thorpej * larger than the old one.
833 1.60 thorpej */
834 1.60 thorpej
835 1.60 thorpej void
836 1.60 thorpej uvm_page_recolor(int newncolors)
837 1.60 thorpej {
838 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
839 1.133 ad struct pgfreelist gpgfl, pgfl;
840 1.63 chs struct vm_page *pg;
841 1.60 thorpej vsize_t bucketcount;
842 1.123 ad int lcv, color, i, ocolors;
843 1.133 ad struct uvm_cpu *ucpu;
844 1.60 thorpej
845 1.60 thorpej if (newncolors <= uvmexp.ncolors)
846 1.60 thorpej return;
847 1.77 wrstuden
848 1.119 thorpej if (uvm.page_init_done == false) {
849 1.77 wrstuden uvmexp.ncolors = newncolors;
850 1.77 wrstuden return;
851 1.77 wrstuden }
852 1.60 thorpej
853 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
854 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
855 1.60 thorpej M_VMPAGE, M_NOWAIT);
856 1.133 ad cpuarray = bucketarray + bucketcount;
857 1.60 thorpej if (bucketarray == NULL) {
858 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
859 1.60 thorpej (long) bucketcount);
860 1.60 thorpej return;
861 1.60 thorpej }
862 1.60 thorpej
863 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
864 1.60 thorpej
865 1.60 thorpej /* Make sure we should still do this. */
866 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
867 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
868 1.60 thorpej free(bucketarray, M_VMPAGE);
869 1.60 thorpej return;
870 1.60 thorpej }
871 1.60 thorpej
872 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
873 1.60 thorpej ocolors = uvmexp.ncolors;
874 1.60 thorpej
875 1.60 thorpej uvmexp.ncolors = newncolors;
876 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
877 1.60 thorpej
878 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
879 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
880 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
881 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
882 1.133 ad uvm_page_init_buckets(&gpgfl);
883 1.60 thorpej uvm_page_init_buckets(&pgfl);
884 1.60 thorpej for (color = 0; color < ocolors; color++) {
885 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
886 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
887 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
888 1.60 thorpej != NULL) {
889 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
890 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
891 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
892 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
893 1.133 ad i], pg, pageq.list);
894 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
895 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
896 1.133 ad i], pg, listq.list);
897 1.60 thorpej }
898 1.60 thorpej }
899 1.60 thorpej }
900 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
901 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
902 1.60 thorpej }
903 1.60 thorpej
904 1.60 thorpej if (have_recolored_pages) {
905 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
906 1.60 thorpej free(oldbucketarray, M_VMPAGE);
907 1.60 thorpej return;
908 1.60 thorpej }
909 1.60 thorpej
910 1.119 thorpej have_recolored_pages = true;
911 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
912 1.60 thorpej }
913 1.1 mrg
914 1.1 mrg /*
915 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
916 1.133 ad */
917 1.133 ad
918 1.133 ad void
919 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
920 1.133 ad {
921 1.133 ad struct pgflbucket *bucketarray;
922 1.133 ad struct pgfreelist pgfl;
923 1.133 ad struct uvm_cpu *ucpu;
924 1.133 ad vsize_t bucketcount;
925 1.133 ad int lcv;
926 1.133 ad
927 1.133 ad if (CPU_IS_PRIMARY(ci)) {
928 1.133 ad /* Already done in uvm_page_init(). */
929 1.133 ad return;
930 1.133 ad }
931 1.133 ad
932 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
933 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
934 1.133 ad M_VMPAGE, M_WAITOK);
935 1.133 ad ucpu = &uvm.cpus[cpu_index(ci)];
936 1.133 ad ci->ci_data.cpu_uvm = ucpu;
937 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
938 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
939 1.133 ad uvm_page_init_buckets(&pgfl);
940 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
941 1.133 ad }
942 1.133 ad }
943 1.133 ad
944 1.133 ad /*
945 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
946 1.54 thorpej */
947 1.54 thorpej
948 1.114 thorpej static struct vm_page *
949 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
950 1.69 simonb int *trycolorp)
951 1.54 thorpej {
952 1.133 ad struct pgflist *freeq;
953 1.54 thorpej struct vm_page *pg;
954 1.58 enami int color, trycolor = *trycolorp;
955 1.133 ad struct pgfreelist *gpgfl, *pgfl;
956 1.54 thorpej
957 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
958 1.130 ad
959 1.58 enami color = trycolor;
960 1.133 ad cpu = false;
961 1.133 ad pgfl = &ucpu->page_free[flist];
962 1.133 ad gpgfl = &uvm.page_free[flist];
963 1.58 enami do {
964 1.133 ad /* cpu, try1 */
965 1.133 ad if ((pg = LIST_FIRST((freeq =
966 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
967 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
968 1.133 ad uvmexp.cpuhit++;
969 1.133 ad goto gotit;
970 1.133 ad }
971 1.133 ad /* global, try1 */
972 1.133 ad if ((pg = LIST_FIRST((freeq =
973 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
974 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
975 1.133 ad uvmexp.cpumiss++;
976 1.54 thorpej goto gotit;
977 1.133 ad }
978 1.133 ad /* cpu, try2 */
979 1.133 ad if ((pg = LIST_FIRST((freeq =
980 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
981 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
982 1.133 ad uvmexp.cpuhit++;
983 1.54 thorpej goto gotit;
984 1.133 ad }
985 1.133 ad /* global, try2 */
986 1.133 ad if ((pg = LIST_FIRST((freeq =
987 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
988 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
989 1.133 ad uvmexp.cpumiss++;
990 1.133 ad goto gotit;
991 1.133 ad }
992 1.60 thorpej color = (color + 1) & uvmexp.colormask;
993 1.58 enami } while (color != trycolor);
994 1.54 thorpej
995 1.54 thorpej return (NULL);
996 1.54 thorpej
997 1.54 thorpej gotit:
998 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
999 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1000 1.54 thorpej uvmexp.free--;
1001 1.54 thorpej
1002 1.54 thorpej /* update zero'd page count */
1003 1.54 thorpej if (pg->flags & PG_ZERO)
1004 1.54 thorpej uvmexp.zeropages--;
1005 1.54 thorpej
1006 1.54 thorpej if (color == trycolor)
1007 1.54 thorpej uvmexp.colorhit++;
1008 1.54 thorpej else {
1009 1.54 thorpej uvmexp.colormiss++;
1010 1.54 thorpej *trycolorp = color;
1011 1.54 thorpej }
1012 1.54 thorpej
1013 1.54 thorpej return (pg);
1014 1.54 thorpej }
1015 1.54 thorpej
1016 1.54 thorpej /*
1017 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1018 1.1 mrg *
1019 1.1 mrg * => return null if no pages free
1020 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1021 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1022 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1023 1.1 mrg * => only one of obj or anon can be non-null
1024 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1025 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1026 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1027 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1028 1.34 thorpej * unknown contents page. This is because we live with the
1029 1.34 thorpej * consequences of a bad free list decision for the entire
1030 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1031 1.34 thorpej * is slower to access.
1032 1.1 mrg */
1033 1.1 mrg
1034 1.7 mrg struct vm_page *
1035 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1036 1.105 thorpej int flags, int strat, int free_list)
1037 1.1 mrg {
1038 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1039 1.133 ad struct uvm_cpu *ucpu;
1040 1.7 mrg struct vm_page *pg;
1041 1.118 thorpej bool use_reserve;
1042 1.1 mrg
1043 1.44 chs KASSERT(obj == NULL || anon == NULL);
1044 1.113 yamt KASSERT(anon == NULL || off == 0);
1045 1.44 chs KASSERT(off == trunc_page(off));
1046 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1047 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1048 1.48 thorpej
1049 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1050 1.1 mrg
1051 1.7 mrg /*
1052 1.54 thorpej * This implements a global round-robin page coloring
1053 1.54 thorpej * algorithm.
1054 1.54 thorpej *
1055 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1056 1.54 thorpej */
1057 1.67 chs
1058 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1059 1.133 ad color = ucpu->page_free_nextcolor;
1060 1.54 thorpej
1061 1.54 thorpej /*
1062 1.7 mrg * check to see if we need to generate some free pages waking
1063 1.7 mrg * the pagedaemon.
1064 1.7 mrg */
1065 1.7 mrg
1066 1.113 yamt uvm_kick_pdaemon();
1067 1.7 mrg
1068 1.7 mrg /*
1069 1.7 mrg * fail if any of these conditions is true:
1070 1.7 mrg * [1] there really are no free pages, or
1071 1.7 mrg * [2] only kernel "reserved" pages remain and
1072 1.7 mrg * the page isn't being allocated to a kernel object.
1073 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1074 1.7 mrg * the requestor isn't the pagedaemon.
1075 1.7 mrg */
1076 1.7 mrg
1077 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1078 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1079 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1080 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1081 1.122 ad !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
1082 1.12 thorpej goto fail;
1083 1.12 thorpej
1084 1.34 thorpej #if PGFL_NQUEUES != 2
1085 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1086 1.34 thorpej #endif
1087 1.34 thorpej
1088 1.34 thorpej /*
1089 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1090 1.34 thorpej * we try the UNKNOWN queue first.
1091 1.34 thorpej */
1092 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1093 1.34 thorpej try1 = PGFL_ZEROS;
1094 1.34 thorpej try2 = PGFL_UNKNOWN;
1095 1.34 thorpej } else {
1096 1.34 thorpej try1 = PGFL_UNKNOWN;
1097 1.34 thorpej try2 = PGFL_ZEROS;
1098 1.34 thorpej }
1099 1.34 thorpej
1100 1.12 thorpej again:
1101 1.12 thorpej switch (strat) {
1102 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1103 1.12 thorpej /* Check all freelists in descending priority order. */
1104 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1105 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1106 1.54 thorpej try1, try2, &color);
1107 1.54 thorpej if (pg != NULL)
1108 1.12 thorpej goto gotit;
1109 1.12 thorpej }
1110 1.12 thorpej
1111 1.12 thorpej /* No pages free! */
1112 1.12 thorpej goto fail;
1113 1.12 thorpej
1114 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1115 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1116 1.12 thorpej /* Attempt to allocate from the specified free list. */
1117 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1118 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1119 1.54 thorpej try1, try2, &color);
1120 1.54 thorpej if (pg != NULL)
1121 1.12 thorpej goto gotit;
1122 1.12 thorpej
1123 1.12 thorpej /* Fall back, if possible. */
1124 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1125 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1126 1.12 thorpej goto again;
1127 1.12 thorpej }
1128 1.12 thorpej
1129 1.12 thorpej /* No pages free! */
1130 1.12 thorpej goto fail;
1131 1.12 thorpej
1132 1.12 thorpej default:
1133 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1134 1.12 thorpej /* NOTREACHED */
1135 1.7 mrg }
1136 1.7 mrg
1137 1.12 thorpej gotit:
1138 1.54 thorpej /*
1139 1.54 thorpej * We now know which color we actually allocated from; set
1140 1.54 thorpej * the next color accordingly.
1141 1.54 thorpej */
1142 1.67 chs
1143 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1144 1.34 thorpej
1145 1.34 thorpej /*
1146 1.34 thorpej * update allocation statistics and remember if we have to
1147 1.34 thorpej * zero the page
1148 1.34 thorpej */
1149 1.67 chs
1150 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1151 1.34 thorpej if (pg->flags & PG_ZERO) {
1152 1.34 thorpej uvmexp.pga_zerohit++;
1153 1.34 thorpej zeroit = 0;
1154 1.34 thorpej } else {
1155 1.34 thorpej uvmexp.pga_zeromiss++;
1156 1.34 thorpej zeroit = 1;
1157 1.34 thorpej }
1158 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1159 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1160 1.133 ad }
1161 1.34 thorpej }
1162 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1163 1.7 mrg
1164 1.7 mrg pg->offset = off;
1165 1.7 mrg pg->uobject = obj;
1166 1.7 mrg pg->uanon = anon;
1167 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1168 1.7 mrg if (anon) {
1169 1.103 yamt anon->an_page = pg;
1170 1.7 mrg pg->pqflags = PQ_ANON;
1171 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1172 1.7 mrg } else {
1173 1.67 chs if (obj) {
1174 1.7 mrg uvm_pageinsert(pg);
1175 1.67 chs }
1176 1.7 mrg pg->pqflags = 0;
1177 1.7 mrg }
1178 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1179 1.7 mrg pg->owner_tag = NULL;
1180 1.1 mrg #endif
1181 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1182 1.33 thorpej
1183 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1184 1.33 thorpej /*
1185 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1186 1.34 thorpej * zero'd, then we have to zero it ourselves.
1187 1.33 thorpej */
1188 1.33 thorpej pg->flags &= ~PG_CLEAN;
1189 1.34 thorpej if (zeroit)
1190 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1191 1.33 thorpej }
1192 1.1 mrg
1193 1.7 mrg return(pg);
1194 1.12 thorpej
1195 1.12 thorpej fail:
1196 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1197 1.12 thorpej return (NULL);
1198 1.1 mrg }
1199 1.1 mrg
1200 1.1 mrg /*
1201 1.96 yamt * uvm_pagereplace: replace a page with another
1202 1.96 yamt *
1203 1.96 yamt * => object must be locked
1204 1.96 yamt */
1205 1.96 yamt
1206 1.96 yamt void
1207 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1208 1.96 yamt {
1209 1.97 junyoung
1210 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1211 1.96 yamt KASSERT(oldpg->uobject != NULL);
1212 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1213 1.96 yamt KASSERT(newpg->uobject == NULL);
1214 1.127 ad KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
1215 1.96 yamt
1216 1.96 yamt newpg->uobject = oldpg->uobject;
1217 1.96 yamt newpg->offset = oldpg->offset;
1218 1.96 yamt
1219 1.96 yamt uvm_pageinsert_after(newpg, oldpg);
1220 1.96 yamt uvm_pageremove(oldpg);
1221 1.96 yamt }
1222 1.96 yamt
1223 1.96 yamt /*
1224 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1225 1.1 mrg *
1226 1.1 mrg * => both objects must be locked
1227 1.1 mrg */
1228 1.1 mrg
1229 1.7 mrg void
1230 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1231 1.1 mrg {
1232 1.7 mrg /*
1233 1.7 mrg * remove it from the old object
1234 1.7 mrg */
1235 1.7 mrg
1236 1.7 mrg if (pg->uobject) {
1237 1.7 mrg uvm_pageremove(pg);
1238 1.7 mrg }
1239 1.7 mrg
1240 1.7 mrg /*
1241 1.7 mrg * put it in the new object
1242 1.7 mrg */
1243 1.7 mrg
1244 1.7 mrg if (newobj) {
1245 1.7 mrg pg->uobject = newobj;
1246 1.7 mrg pg->offset = newoff;
1247 1.7 mrg uvm_pageinsert(pg);
1248 1.7 mrg }
1249 1.1 mrg }
1250 1.1 mrg
1251 1.91 yamt #ifdef DEBUG
1252 1.91 yamt /*
1253 1.91 yamt * check if page is zero-filled
1254 1.91 yamt *
1255 1.91 yamt * - called with free page queue lock held.
1256 1.91 yamt */
1257 1.91 yamt void
1258 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1259 1.91 yamt {
1260 1.91 yamt int *p, *ep;
1261 1.91 yamt
1262 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1263 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1264 1.91 yamt
1265 1.91 yamt /*
1266 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1267 1.91 yamt * uvm page allocator.
1268 1.91 yamt *
1269 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1270 1.91 yamt */
1271 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1272 1.91 yamt p = (int *)uvm_zerocheckkva;
1273 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1274 1.92 yamt pmap_update(pmap_kernel());
1275 1.91 yamt while (p < ep) {
1276 1.91 yamt if (*p != 0)
1277 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1278 1.91 yamt p++;
1279 1.91 yamt }
1280 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1281 1.131 yamt /*
1282 1.131 yamt * pmap_update() is not necessary here because no one except us
1283 1.131 yamt * uses this VA.
1284 1.131 yamt */
1285 1.91 yamt }
1286 1.91 yamt #endif /* DEBUG */
1287 1.91 yamt
1288 1.1 mrg /*
1289 1.1 mrg * uvm_pagefree: free page
1290 1.1 mrg *
1291 1.133 ad * => erase page's identity (i.e. remove from object)
1292 1.1 mrg * => put page on free list
1293 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1294 1.1 mrg * => caller must lock page queues
1295 1.1 mrg * => assumes all valid mappings of pg are gone
1296 1.1 mrg */
1297 1.1 mrg
1298 1.44 chs void
1299 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1300 1.1 mrg {
1301 1.133 ad struct pgflist *pgfl;
1302 1.133 ad struct uvm_cpu *ucpu;
1303 1.133 ad int index, color, queue;
1304 1.118 thorpej bool iszero;
1305 1.67 chs
1306 1.44 chs #ifdef DEBUG
1307 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1308 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1309 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1310 1.44 chs }
1311 1.91 yamt #endif /* DEBUG */
1312 1.44 chs
1313 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1314 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1315 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1316 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1317 1.127 ad mutex_owned(&pg->uanon->an_lock));
1318 1.123 ad
1319 1.7 mrg /*
1320 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1321 1.7 mrg */
1322 1.7 mrg
1323 1.67 chs if (pg->loan_count) {
1324 1.70 chs KASSERT(pg->wire_count == 0);
1325 1.7 mrg
1326 1.7 mrg /*
1327 1.67 chs * if the page is owned by an anon then we just want to
1328 1.70 chs * drop anon ownership. the kernel will free the page when
1329 1.70 chs * it is done with it. if the page is owned by an object,
1330 1.70 chs * remove it from the object and mark it dirty for the benefit
1331 1.70 chs * of possible anon owners.
1332 1.70 chs *
1333 1.70 chs * regardless of previous ownership, wakeup any waiters,
1334 1.70 chs * unbusy the page, and we're done.
1335 1.7 mrg */
1336 1.7 mrg
1337 1.73 chs if (pg->uobject != NULL) {
1338 1.70 chs uvm_pageremove(pg);
1339 1.67 chs pg->flags &= ~PG_CLEAN;
1340 1.73 chs } else if (pg->uanon != NULL) {
1341 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1342 1.73 chs pg->loan_count--;
1343 1.73 chs } else {
1344 1.73 chs pg->pqflags &= ~PQ_ANON;
1345 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1346 1.73 chs }
1347 1.103 yamt pg->uanon->an_page = NULL;
1348 1.73 chs pg->uanon = NULL;
1349 1.67 chs }
1350 1.70 chs if (pg->flags & PG_WANTED) {
1351 1.70 chs wakeup(pg);
1352 1.70 chs }
1353 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1354 1.70 chs #ifdef UVM_PAGE_TRKOWN
1355 1.70 chs pg->owner_tag = NULL;
1356 1.70 chs #endif
1357 1.73 chs if (pg->loan_count) {
1358 1.115 yamt KASSERT(pg->uobject == NULL);
1359 1.115 yamt if (pg->uanon == NULL) {
1360 1.115 yamt uvm_pagedequeue(pg);
1361 1.115 yamt }
1362 1.73 chs return;
1363 1.73 chs }
1364 1.67 chs }
1365 1.62 chs
1366 1.67 chs /*
1367 1.67 chs * remove page from its object or anon.
1368 1.67 chs */
1369 1.44 chs
1370 1.73 chs if (pg->uobject != NULL) {
1371 1.67 chs uvm_pageremove(pg);
1372 1.73 chs } else if (pg->uanon != NULL) {
1373 1.103 yamt pg->uanon->an_page = NULL;
1374 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1375 1.7 mrg }
1376 1.1 mrg
1377 1.7 mrg /*
1378 1.70 chs * now remove the page from the queues.
1379 1.7 mrg */
1380 1.7 mrg
1381 1.67 chs uvm_pagedequeue(pg);
1382 1.7 mrg
1383 1.7 mrg /*
1384 1.7 mrg * if the page was wired, unwire it now.
1385 1.7 mrg */
1386 1.44 chs
1387 1.34 thorpej if (pg->wire_count) {
1388 1.7 mrg pg->wire_count = 0;
1389 1.7 mrg uvmexp.wired--;
1390 1.44 chs }
1391 1.7 mrg
1392 1.7 mrg /*
1393 1.44 chs * and put on free queue
1394 1.7 mrg */
1395 1.7 mrg
1396 1.90 yamt iszero = (pg->flags & PG_ZERO);
1397 1.133 ad index = uvm_page_lookup_freelist(pg);
1398 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1399 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1400 1.34 thorpej
1401 1.7 mrg pg->pqflags = PQ_FREE;
1402 1.3 chs #ifdef DEBUG
1403 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1404 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1405 1.3 chs #endif
1406 1.90 yamt
1407 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1408 1.91 yamt
1409 1.91 yamt #ifdef DEBUG
1410 1.91 yamt if (iszero)
1411 1.91 yamt uvm_pagezerocheck(pg);
1412 1.91 yamt #endif /* DEBUG */
1413 1.91 yamt
1414 1.133 ad
1415 1.133 ad /* global list */
1416 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1417 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1418 1.7 mrg uvmexp.free++;
1419 1.133 ad if (iszero) {
1420 1.90 yamt uvmexp.zeropages++;
1421 1.133 ad }
1422 1.34 thorpej
1423 1.133 ad /* per-cpu list */
1424 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1425 1.133 ad pg->offset = (uintptr_t)ucpu;
1426 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1427 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1428 1.133 ad ucpu->pages[queue]++;
1429 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1430 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1431 1.133 ad }
1432 1.34 thorpej
1433 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1434 1.44 chs }
1435 1.44 chs
1436 1.44 chs /*
1437 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1438 1.44 chs *
1439 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1440 1.44 chs * => if pages are object-owned, object must be locked.
1441 1.67 chs * => if pages are anon-owned, anons must be locked.
1442 1.76 enami * => caller must lock page queues if pages may be released.
1443 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1444 1.44 chs */
1445 1.44 chs
1446 1.44 chs void
1447 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1448 1.44 chs {
1449 1.44 chs struct vm_page *pg;
1450 1.44 chs int i;
1451 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1452 1.44 chs
1453 1.44 chs for (i = 0; i < npgs; i++) {
1454 1.44 chs pg = pgs[i];
1455 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1456 1.44 chs continue;
1457 1.44 chs }
1458 1.98 yamt
1459 1.127 ad KASSERT(pg->uobject == NULL ||
1460 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1461 1.127 ad KASSERT(pg->uobject != NULL ||
1462 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1463 1.98 yamt
1464 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1465 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1466 1.44 chs if (pg->flags & PG_WANTED) {
1467 1.44 chs wakeup(pg);
1468 1.44 chs }
1469 1.44 chs if (pg->flags & PG_RELEASED) {
1470 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1471 1.98 yamt KASSERT(pg->uobject != NULL ||
1472 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1473 1.67 chs pg->flags &= ~PG_RELEASED;
1474 1.67 chs uvm_pagefree(pg);
1475 1.44 chs } else {
1476 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1477 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1478 1.44 chs UVM_PAGE_OWN(pg, NULL);
1479 1.44 chs }
1480 1.44 chs }
1481 1.1 mrg }
1482 1.1 mrg
1483 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1484 1.1 mrg /*
1485 1.1 mrg * uvm_page_own: set or release page ownership
1486 1.1 mrg *
1487 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1488 1.1 mrg * and where they do it. it can be used to track down problems
1489 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1490 1.1 mrg * => page's object [if any] must be locked
1491 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1492 1.1 mrg */
1493 1.7 mrg void
1494 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1495 1.1 mrg {
1496 1.112 yamt struct uvm_object *uobj;
1497 1.112 yamt struct vm_anon *anon;
1498 1.112 yamt
1499 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1500 1.67 chs
1501 1.112 yamt uobj = pg->uobject;
1502 1.112 yamt anon = pg->uanon;
1503 1.112 yamt if (uobj != NULL) {
1504 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1505 1.112 yamt } else if (anon != NULL) {
1506 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1507 1.112 yamt }
1508 1.112 yamt
1509 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1510 1.112 yamt
1511 1.7 mrg /* gain ownership? */
1512 1.7 mrg if (tag) {
1513 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1514 1.7 mrg if (pg->owner_tag) {
1515 1.7 mrg printf("uvm_page_own: page %p already owned "
1516 1.7 mrg "by proc %d [%s]\n", pg,
1517 1.74 enami pg->owner, pg->owner_tag);
1518 1.7 mrg panic("uvm_page_own");
1519 1.7 mrg }
1520 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1521 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1522 1.7 mrg pg->owner_tag = tag;
1523 1.7 mrg return;
1524 1.7 mrg }
1525 1.7 mrg
1526 1.7 mrg /* drop ownership */
1527 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1528 1.7 mrg if (pg->owner_tag == NULL) {
1529 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1530 1.7 mrg "page (%p)\n", pg);
1531 1.7 mrg panic("uvm_page_own");
1532 1.7 mrg }
1533 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1534 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1535 1.115 yamt pg->wire_count > 0);
1536 1.115 yamt } else {
1537 1.115 yamt KASSERT(pg->wire_count == 0);
1538 1.115 yamt }
1539 1.7 mrg pg->owner_tag = NULL;
1540 1.1 mrg }
1541 1.1 mrg #endif
1542 1.34 thorpej
1543 1.34 thorpej /*
1544 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1545 1.34 thorpej *
1546 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1547 1.54 thorpej * on the CPU cache.
1548 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1549 1.132 ad * to run, or MD code detects a reason to break early.
1550 1.34 thorpej */
1551 1.34 thorpej void
1552 1.105 thorpej uvm_pageidlezero(void)
1553 1.34 thorpej {
1554 1.34 thorpej struct vm_page *pg;
1555 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1556 1.133 ad struct uvm_cpu *ucpu;
1557 1.133 ad int free_list, firstbucket, nextbucket;
1558 1.133 ad
1559 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1560 1.133 ad if (!ucpu->page_idle_zero ||
1561 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1562 1.133 ad ucpu->page_idle_zero = false;
1563 1.132 ad return;
1564 1.132 ad }
1565 1.133 ad mutex_enter(&uvm_fpageqlock);
1566 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1567 1.133 ad nextbucket = firstbucket;
1568 1.58 enami do {
1569 1.121 yamt if (sched_curcpu_runnable_p()) {
1570 1.133 ad break;
1571 1.34 thorpej }
1572 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1573 1.133 ad pgfl = &ucpu->page_free[free_list];
1574 1.133 ad gpgfl = &uvm.page_free[free_list];
1575 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1576 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1577 1.132 ad if (sched_curcpu_runnable_p()) {
1578 1.101 yamt goto quit;
1579 1.132 ad }
1580 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1581 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1582 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1583 1.54 thorpej uvmexp.free--;
1584 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1585 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1586 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1587 1.67 chs
1588 1.54 thorpej /*
1589 1.54 thorpej * The machine-dependent code detected
1590 1.54 thorpej * some reason for us to abort zeroing
1591 1.54 thorpej * pages, probably because there is a
1592 1.54 thorpej * process now ready to run.
1593 1.54 thorpej */
1594 1.67 chs
1595 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1596 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1597 1.133 ad nextbucket].pgfl_queues[
1598 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1599 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1600 1.54 thorpej nextbucket].pgfl_queues[
1601 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1602 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1603 1.54 thorpej uvmexp.free++;
1604 1.54 thorpej uvmexp.zeroaborts++;
1605 1.101 yamt goto quit;
1606 1.54 thorpej }
1607 1.54 thorpej #else
1608 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1609 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1610 1.54 thorpej pg->flags |= PG_ZERO;
1611 1.54 thorpej
1612 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1613 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1614 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1615 1.133 ad pg, pageq.list);
1616 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1617 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1618 1.133 ad pg, listq.list);
1619 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1620 1.54 thorpej uvmexp.free++;
1621 1.54 thorpej uvmexp.zeropages++;
1622 1.54 thorpej }
1623 1.41 thorpej }
1624 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1625 1.133 ad break;
1626 1.133 ad }
1627 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1628 1.58 enami } while (nextbucket != firstbucket);
1629 1.133 ad ucpu->page_idle_zero = false;
1630 1.133 ad quit:
1631 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1632 1.34 thorpej }
1633 1.110 yamt
1634 1.110 yamt /*
1635 1.110 yamt * uvm_pagelookup: look up a page
1636 1.110 yamt *
1637 1.110 yamt * => caller should lock object to keep someone from pulling the page
1638 1.110 yamt * out from under it
1639 1.110 yamt */
1640 1.110 yamt
1641 1.110 yamt struct vm_page *
1642 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1643 1.110 yamt {
1644 1.110 yamt struct vm_page *pg;
1645 1.110 yamt
1646 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1647 1.123 ad
1648 1.134 ad pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1649 1.134 ad
1650 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1651 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1652 1.110 yamt (pg->flags & PG_BUSY) != 0);
1653 1.110 yamt return(pg);
1654 1.110 yamt }
1655 1.110 yamt
1656 1.110 yamt /*
1657 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1658 1.110 yamt *
1659 1.110 yamt * => caller must lock page queues
1660 1.110 yamt */
1661 1.110 yamt
1662 1.110 yamt void
1663 1.110 yamt uvm_pagewire(struct vm_page *pg)
1664 1.110 yamt {
1665 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1666 1.113 yamt #if defined(READAHEAD_STATS)
1667 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1668 1.113 yamt uvm_ra_hit.ev_count++;
1669 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1670 1.113 yamt }
1671 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1672 1.110 yamt if (pg->wire_count == 0) {
1673 1.110 yamt uvm_pagedequeue(pg);
1674 1.110 yamt uvmexp.wired++;
1675 1.110 yamt }
1676 1.110 yamt pg->wire_count++;
1677 1.110 yamt }
1678 1.110 yamt
1679 1.110 yamt /*
1680 1.110 yamt * uvm_pageunwire: unwire the page.
1681 1.110 yamt *
1682 1.110 yamt * => activate if wire count goes to zero.
1683 1.110 yamt * => caller must lock page queues
1684 1.110 yamt */
1685 1.110 yamt
1686 1.110 yamt void
1687 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1688 1.110 yamt {
1689 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1690 1.110 yamt pg->wire_count--;
1691 1.110 yamt if (pg->wire_count == 0) {
1692 1.111 yamt uvm_pageactivate(pg);
1693 1.110 yamt uvmexp.wired--;
1694 1.110 yamt }
1695 1.110 yamt }
1696 1.110 yamt
1697 1.110 yamt /*
1698 1.110 yamt * uvm_pagedeactivate: deactivate page
1699 1.110 yamt *
1700 1.110 yamt * => caller must lock page queues
1701 1.110 yamt * => caller must check to make sure page is not wired
1702 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1703 1.110 yamt * => caller must clear the reference on the page before calling
1704 1.110 yamt */
1705 1.110 yamt
1706 1.110 yamt void
1707 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1708 1.110 yamt {
1709 1.113 yamt
1710 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1711 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1712 1.113 yamt uvmpdpol_pagedeactivate(pg);
1713 1.110 yamt }
1714 1.110 yamt
1715 1.110 yamt /*
1716 1.110 yamt * uvm_pageactivate: activate page
1717 1.110 yamt *
1718 1.110 yamt * => caller must lock page queues
1719 1.110 yamt */
1720 1.110 yamt
1721 1.110 yamt void
1722 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1723 1.110 yamt {
1724 1.113 yamt
1725 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1726 1.113 yamt #if defined(READAHEAD_STATS)
1727 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1728 1.113 yamt uvm_ra_hit.ev_count++;
1729 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1730 1.113 yamt }
1731 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1732 1.113 yamt if (pg->wire_count != 0) {
1733 1.113 yamt return;
1734 1.110 yamt }
1735 1.113 yamt uvmpdpol_pageactivate(pg);
1736 1.110 yamt }
1737 1.110 yamt
1738 1.110 yamt /*
1739 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1740 1.110 yamt */
1741 1.110 yamt
1742 1.110 yamt void
1743 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1744 1.110 yamt {
1745 1.113 yamt
1746 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1747 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1748 1.110 yamt }
1749 1.123 ad
1750 1.113 yamt uvmpdpol_pagedequeue(pg);
1751 1.113 yamt }
1752 1.113 yamt
1753 1.113 yamt /*
1754 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1755 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1756 1.113 yamt */
1757 1.113 yamt
1758 1.113 yamt void
1759 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1760 1.113 yamt {
1761 1.113 yamt
1762 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1763 1.113 yamt if (pg->wire_count != 0) {
1764 1.113 yamt return;
1765 1.113 yamt }
1766 1.113 yamt uvmpdpol_pageenqueue(pg);
1767 1.110 yamt }
1768 1.110 yamt
1769 1.110 yamt /*
1770 1.110 yamt * uvm_pagezero: zero fill a page
1771 1.110 yamt *
1772 1.110 yamt * => if page is part of an object then the object should be locked
1773 1.110 yamt * to protect pg->flags.
1774 1.110 yamt */
1775 1.110 yamt
1776 1.110 yamt void
1777 1.110 yamt uvm_pagezero(struct vm_page *pg)
1778 1.110 yamt {
1779 1.110 yamt pg->flags &= ~PG_CLEAN;
1780 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1781 1.110 yamt }
1782 1.110 yamt
1783 1.110 yamt /*
1784 1.110 yamt * uvm_pagecopy: copy a page
1785 1.110 yamt *
1786 1.110 yamt * => if page is part of an object then the object should be locked
1787 1.110 yamt * to protect pg->flags.
1788 1.110 yamt */
1789 1.110 yamt
1790 1.110 yamt void
1791 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1792 1.110 yamt {
1793 1.110 yamt
1794 1.110 yamt dst->flags &= ~PG_CLEAN;
1795 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1796 1.110 yamt }
1797 1.110 yamt
1798 1.110 yamt /*
1799 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1800 1.110 yamt */
1801 1.110 yamt
1802 1.110 yamt int
1803 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1804 1.110 yamt {
1805 1.110 yamt int lcv;
1806 1.110 yamt
1807 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1808 1.110 yamt KASSERT(lcv != -1);
1809 1.110 yamt return (vm_physmem[lcv].free_list);
1810 1.110 yamt }
1811