uvm_page.c revision 1.146 1 1.146 haad /* $NetBSD: uvm_page.c,v 1.146 2009/08/10 23:17:29 haad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.146 haad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.146 2009/08/10 23:17:29 haad Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.113 yamt #include "opt_readahead.h"
78 1.44 chs
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.35 thorpej #include <sys/sched.h>
83 1.44 chs #include <sys/kernel.h>
84 1.51 chs #include <sys/vnode.h>
85 1.68 chs #include <sys/proc.h>
86 1.126 ad #include <sys/atomic.h>
87 1.133 ad #include <sys/cpu.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.113 yamt #include <uvm/uvm_pdpolicy.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * physical memory config is stored in vm_physmem.
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102 1.1 mrg
103 1.1 mrg /*
104 1.36 thorpej * Some supported CPUs in a given architecture don't support all
105 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
106 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
107 1.34 thorpej */
108 1.44 chs /*
109 1.44 chs * XXX disabled until we can find a way to do this without causing
110 1.95 wiz * problems for either CPU caches or DMA latency.
111 1.44 chs */
112 1.119 thorpej bool vm_page_zero_enable = false;
113 1.34 thorpej
114 1.34 thorpej /*
115 1.140 ad * number of pages per-CPU to reserve for the kernel.
116 1.140 ad */
117 1.140 ad int vm_page_reserve_kernel = 5;
118 1.140 ad
119 1.146 haad /* Physical memory size */
120 1.146 haad uintptr_t physmem;
121 1.146 haad
122 1.140 ad /*
123 1.1 mrg * local variables
124 1.1 mrg */
125 1.1 mrg
126 1.1 mrg /*
127 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
128 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
129 1.88 thorpej * and pmap_startup here also uses them internally.
130 1.88 thorpej */
131 1.88 thorpej
132 1.88 thorpej static vaddr_t virtual_space_start;
133 1.88 thorpej static vaddr_t virtual_space_end;
134 1.88 thorpej
135 1.88 thorpej /*
136 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
137 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
138 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
139 1.60 thorpej * free the initial set of buckets, since they are allocated using
140 1.60 thorpej * uvm_pageboot_alloc().
141 1.60 thorpej */
142 1.60 thorpej
143 1.119 thorpej static bool have_recolored_pages /* = false */;
144 1.83 thorpej
145 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
146 1.60 thorpej
147 1.91 yamt #ifdef DEBUG
148 1.91 yamt vaddr_t uvm_zerocheckkva;
149 1.91 yamt #endif /* DEBUG */
150 1.91 yamt
151 1.60 thorpej /*
152 1.134 ad * local prototypes
153 1.124 ad */
154 1.124 ad
155 1.134 ad static void uvm_pageinsert(struct vm_page *);
156 1.134 ad static void uvm_pageremove(struct vm_page *);
157 1.124 ad
158 1.124 ad /*
159 1.134 ad * per-object tree of pages
160 1.1 mrg */
161 1.1 mrg
162 1.134 ad static signed int
163 1.134 ad uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
164 1.134 ad {
165 1.134 ad const struct vm_page *pg1 = (const void *)n1;
166 1.134 ad const struct vm_page *pg2 = (const void *)n2;
167 1.134 ad const voff_t a = pg1->offset;
168 1.134 ad const voff_t b = pg2->offset;
169 1.134 ad
170 1.134 ad if (a < b)
171 1.134 ad return 1;
172 1.134 ad if (a > b)
173 1.134 ad return -1;
174 1.134 ad return 0;
175 1.134 ad }
176 1.134 ad
177 1.134 ad static signed int
178 1.134 ad uvm_page_compare_key(const struct rb_node *n, const void *key)
179 1.134 ad {
180 1.134 ad const struct vm_page *pg = (const void *)n;
181 1.134 ad const voff_t a = pg->offset;
182 1.134 ad const voff_t b = *(const voff_t *)key;
183 1.134 ad
184 1.134 ad if (a < b)
185 1.134 ad return 1;
186 1.134 ad if (a > b)
187 1.134 ad return -1;
188 1.134 ad return 0;
189 1.134 ad }
190 1.134 ad
191 1.134 ad const struct rb_tree_ops uvm_page_tree_ops = {
192 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
193 1.137 matt .rbto_compare_key = uvm_page_compare_key,
194 1.134 ad };
195 1.1 mrg
196 1.1 mrg /*
197 1.1 mrg * inline functions
198 1.1 mrg */
199 1.1 mrg
200 1.1 mrg /*
201 1.134 ad * uvm_pageinsert: insert a page in the object.
202 1.1 mrg *
203 1.1 mrg * => caller must lock object
204 1.1 mrg * => caller must lock page queues
205 1.1 mrg * => call should have already set pg's object and offset pointers
206 1.1 mrg * and bumped the version counter
207 1.1 mrg */
208 1.1 mrg
209 1.136 yamt static inline void
210 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211 1.136 yamt struct vm_page *where)
212 1.1 mrg {
213 1.1 mrg
214 1.136 yamt KASSERT(uobj == pg->uobject);
215 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
216 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
217 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
218 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
219 1.123 ad
220 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
221 1.94 yamt if (uobj->uo_npages == 0) {
222 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
223 1.94 yamt
224 1.94 yamt vholdl(vp);
225 1.94 yamt }
226 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
227 1.126 ad atomic_inc_uint(&uvmexp.execpages);
228 1.94 yamt } else {
229 1.126 ad atomic_inc_uint(&uvmexp.filepages);
230 1.94 yamt }
231 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
233 1.78 chs }
234 1.78 chs
235 1.96 yamt if (where)
236 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 1.96 yamt else
238 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 1.7 mrg pg->flags |= PG_TABLED;
240 1.67 chs uobj->uo_npages++;
241 1.1 mrg }
242 1.1 mrg
243 1.136 yamt
244 1.136 yamt static inline void
245 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 1.136 yamt {
247 1.136 yamt bool success;
248 1.136 yamt
249 1.136 yamt KASSERT(uobj == pg->uobject);
250 1.136 yamt success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
251 1.136 yamt KASSERT(success);
252 1.136 yamt }
253 1.136 yamt
254 1.136 yamt static inline void
255 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
256 1.96 yamt {
257 1.136 yamt struct uvm_object *uobj = pg->uobject;
258 1.96 yamt
259 1.136 yamt uvm_pageinsert_tree(uobj, pg);
260 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
261 1.96 yamt }
262 1.96 yamt
263 1.1 mrg /*
264 1.134 ad * uvm_page_remove: remove page from object.
265 1.1 mrg *
266 1.1 mrg * => caller must lock object
267 1.1 mrg * => caller must lock page queues
268 1.1 mrg */
269 1.1 mrg
270 1.109 perry static inline void
271 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 1.1 mrg {
273 1.1 mrg
274 1.136 yamt KASSERT(uobj == pg->uobject);
275 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
276 1.44 chs KASSERT(pg->flags & PG_TABLED);
277 1.123 ad
278 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
279 1.94 yamt if (uobj->uo_npages == 1) {
280 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
281 1.94 yamt
282 1.94 yamt holdrelel(vp);
283 1.94 yamt }
284 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
285 1.126 ad atomic_dec_uint(&uvmexp.execpages);
286 1.94 yamt } else {
287 1.126 ad atomic_dec_uint(&uvmexp.filepages);
288 1.94 yamt }
289 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
291 1.51 chs }
292 1.44 chs
293 1.7 mrg /* object should be locked */
294 1.67 chs uobj->uo_npages--;
295 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 1.7 mrg pg->flags &= ~PG_TABLED;
297 1.7 mrg pg->uobject = NULL;
298 1.1 mrg }
299 1.1 mrg
300 1.136 yamt static inline void
301 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 1.136 yamt {
303 1.136 yamt
304 1.136 yamt KASSERT(uobj == pg->uobject);
305 1.136 yamt rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
306 1.136 yamt }
307 1.136 yamt
308 1.136 yamt static inline void
309 1.136 yamt uvm_pageremove(struct vm_page *pg)
310 1.136 yamt {
311 1.136 yamt struct uvm_object *uobj = pg->uobject;
312 1.136 yamt
313 1.136 yamt uvm_pageremove_tree(uobj, pg);
314 1.136 yamt uvm_pageremove_list(uobj, pg);
315 1.136 yamt }
316 1.136 yamt
317 1.60 thorpej static void
318 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
319 1.60 thorpej {
320 1.60 thorpej int color, i;
321 1.60 thorpej
322 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
323 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
324 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 1.60 thorpej }
326 1.60 thorpej }
327 1.60 thorpej }
328 1.60 thorpej
329 1.1 mrg /*
330 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
331 1.62 chs *
332 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333 1.1 mrg */
334 1.1 mrg
335 1.7 mrg void
336 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 1.1 mrg {
338 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
339 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
340 1.63 chs struct vm_page *pagearray;
341 1.81 thorpej int lcv;
342 1.81 thorpej u_int i;
343 1.14 eeh paddr_t paddr;
344 1.7 mrg
345 1.133 ad KASSERT(ncpu <= 1);
346 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347 1.133 ad
348 1.7 mrg /*
349 1.60 thorpej * init the page queues and page queue locks, except the free
350 1.60 thorpej * list; we allocate that later (with the initial vm_page
351 1.60 thorpej * structures).
352 1.7 mrg */
353 1.51 chs
354 1.133 ad curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
355 1.146 haad uvm_reclaim_init();
356 1.113 yamt uvmpdpol_init();
357 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359 1.7 mrg
360 1.7 mrg /*
361 1.51 chs * allocate vm_page structures.
362 1.7 mrg */
363 1.7 mrg
364 1.7 mrg /*
365 1.7 mrg * sanity check:
366 1.7 mrg * before calling this function the MD code is expected to register
367 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
368 1.7 mrg * now is to allocate vm_page structures for this memory.
369 1.7 mrg */
370 1.7 mrg
371 1.7 mrg if (vm_nphysseg == 0)
372 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
373 1.62 chs
374 1.7 mrg /*
375 1.62 chs * first calculate the number of free pages...
376 1.7 mrg *
377 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
378 1.7 mrg * this allows us to allocate extra vm_page structures in case we
379 1.7 mrg * want to return some memory to the pool after booting.
380 1.7 mrg */
381 1.62 chs
382 1.7 mrg freepages = 0;
383 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
384 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
385 1.7 mrg
386 1.7 mrg /*
387 1.60 thorpej * Let MD code initialize the number of colors, or default
388 1.60 thorpej * to 1 color if MD code doesn't care.
389 1.60 thorpej */
390 1.60 thorpej if (uvmexp.ncolors == 0)
391 1.60 thorpej uvmexp.ncolors = 1;
392 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
393 1.60 thorpej
394 1.60 thorpej /*
395 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
396 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
397 1.7 mrg * thus, the total number of pages we can use is the total size of
398 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
399 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
400 1.7 mrg * truncation errors (since we can only allocate in terms of whole
401 1.7 mrg * pages).
402 1.7 mrg */
403 1.62 chs
404 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
405 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
406 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
407 1.60 thorpej
408 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
409 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
410 1.60 thorpej sizeof(struct vm_page)));
411 1.133 ad cpuarray = bucketarray + bucketcount;
412 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
413 1.60 thorpej
414 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
415 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
416 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
417 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
418 1.133 ad uvm.cpus[0].page_free[lcv].pgfl_buckets =
419 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
420 1.133 ad uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
421 1.60 thorpej }
422 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
423 1.62 chs
424 1.7 mrg /*
425 1.51 chs * init the vm_page structures and put them in the correct place.
426 1.7 mrg */
427 1.7 mrg
428 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
429 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
430 1.51 chs
431 1.7 mrg /* set up page array pointers */
432 1.7 mrg vm_physmem[lcv].pgs = pagearray;
433 1.7 mrg pagearray += n;
434 1.7 mrg pagecount -= n;
435 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
436 1.7 mrg
437 1.13 perry /* init and free vm_pages (we've already zeroed them) */
438 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
439 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
440 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
441 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
442 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
443 1.56 thorpej #endif
444 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
445 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
446 1.7 mrg uvmexp.npages++;
447 1.7 mrg /* add page to free pool */
448 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
449 1.7 mrg }
450 1.7 mrg }
451 1.7 mrg }
452 1.44 chs
453 1.7 mrg /*
454 1.88 thorpej * pass up the values of virtual_space_start and
455 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
456 1.88 thorpej * layers of the VM.
457 1.88 thorpej */
458 1.88 thorpej
459 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
460 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
461 1.91 yamt #ifdef DEBUG
462 1.91 yamt /*
463 1.91 yamt * steal kva for uvm_pagezerocheck().
464 1.91 yamt */
465 1.91 yamt uvm_zerocheckkva = *kvm_startp;
466 1.91 yamt *kvm_startp += PAGE_SIZE;
467 1.91 yamt #endif /* DEBUG */
468 1.88 thorpej
469 1.88 thorpej /*
470 1.51 chs * init various thresholds.
471 1.7 mrg */
472 1.51 chs
473 1.7 mrg uvmexp.reserve_pagedaemon = 1;
474 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
475 1.7 mrg
476 1.7 mrg /*
477 1.51 chs * determine if we should zero pages in the idle loop.
478 1.34 thorpej */
479 1.51 chs
480 1.133 ad uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
481 1.34 thorpej
482 1.34 thorpej /*
483 1.7 mrg * done!
484 1.7 mrg */
485 1.1 mrg
486 1.119 thorpej uvm.page_init_done = true;
487 1.1 mrg }
488 1.1 mrg
489 1.1 mrg /*
490 1.1 mrg * uvm_setpagesize: set the page size
491 1.62 chs *
492 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
493 1.62 chs */
494 1.1 mrg
495 1.7 mrg void
496 1.105 thorpej uvm_setpagesize(void)
497 1.1 mrg {
498 1.85 thorpej
499 1.85 thorpej /*
500 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
501 1.85 thorpej * to be a constant (indicated by being a non-zero value).
502 1.85 thorpej */
503 1.85 thorpej if (uvmexp.pagesize == 0) {
504 1.85 thorpej if (PAGE_SIZE == 0)
505 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
506 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
507 1.85 thorpej }
508 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
509 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
510 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
511 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
512 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
513 1.7 mrg break;
514 1.1 mrg }
515 1.1 mrg
516 1.1 mrg /*
517 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
518 1.1 mrg */
519 1.1 mrg
520 1.14 eeh vaddr_t
521 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
522 1.1 mrg {
523 1.119 thorpej static bool initialized = false;
524 1.14 eeh vaddr_t addr;
525 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
526 1.52 thorpej vaddr_t vaddr;
527 1.14 eeh paddr_t paddr;
528 1.52 thorpej #endif
529 1.1 mrg
530 1.7 mrg /*
531 1.19 thorpej * on first call to this function, initialize ourselves.
532 1.7 mrg */
533 1.119 thorpej if (initialized == false) {
534 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
535 1.1 mrg
536 1.7 mrg /* round it the way we like it */
537 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
538 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
539 1.19 thorpej
540 1.119 thorpej initialized = true;
541 1.7 mrg }
542 1.52 thorpej
543 1.52 thorpej /* round to page size */
544 1.52 thorpej size = round_page(size);
545 1.52 thorpej
546 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
547 1.52 thorpej
548 1.62 chs /*
549 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
550 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
551 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
552 1.52 thorpej */
553 1.52 thorpej
554 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
555 1.88 thorpej &virtual_space_end);
556 1.52 thorpej
557 1.52 thorpej return(addr);
558 1.52 thorpej
559 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
560 1.1 mrg
561 1.7 mrg /*
562 1.7 mrg * allocate virtual memory for this request
563 1.7 mrg */
564 1.88 thorpej if (virtual_space_start == virtual_space_end ||
565 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
566 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
567 1.20 thorpej
568 1.88 thorpej addr = virtual_space_start;
569 1.20 thorpej
570 1.20 thorpej #ifdef PMAP_GROWKERNEL
571 1.20 thorpej /*
572 1.20 thorpej * If the kernel pmap can't map the requested space,
573 1.20 thorpej * then allocate more resources for it.
574 1.20 thorpej */
575 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
576 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
577 1.20 thorpej if (uvm_maxkaddr < (addr + size))
578 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
579 1.19 thorpej }
580 1.20 thorpej #endif
581 1.1 mrg
582 1.88 thorpej virtual_space_start += size;
583 1.1 mrg
584 1.9 thorpej /*
585 1.7 mrg * allocate and mapin physical pages to back new virtual pages
586 1.7 mrg */
587 1.1 mrg
588 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
589 1.7 mrg vaddr += PAGE_SIZE) {
590 1.1 mrg
591 1.7 mrg if (!uvm_page_physget(&paddr))
592 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
593 1.1 mrg
594 1.23 thorpej /*
595 1.23 thorpej * Note this memory is no longer managed, so using
596 1.23 thorpej * pmap_kenter is safe.
597 1.23 thorpej */
598 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
599 1.7 mrg }
600 1.66 chris pmap_update(pmap_kernel());
601 1.7 mrg return(addr);
602 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
603 1.1 mrg }
604 1.1 mrg
605 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
606 1.1 mrg /*
607 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
608 1.1 mrg *
609 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
610 1.1 mrg * values match the start/end values. if we can't do that, then we
611 1.1 mrg * will advance both values (making them equal, and removing some
612 1.1 mrg * vm_page structures from the non-avail area).
613 1.1 mrg * => return false if out of memory.
614 1.1 mrg */
615 1.1 mrg
616 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
617 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
618 1.28 drochner
619 1.118 thorpej static bool
620 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
621 1.1 mrg {
622 1.7 mrg int lcv, x;
623 1.1 mrg
624 1.7 mrg /* pass 1: try allocating from a matching end */
625 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
626 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
627 1.1 mrg #else
628 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
629 1.1 mrg #endif
630 1.7 mrg {
631 1.1 mrg
632 1.119 thorpej if (uvm.page_init_done == true)
633 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
634 1.1 mrg
635 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
636 1.28 drochner continue;
637 1.28 drochner
638 1.7 mrg /* try from front */
639 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
640 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
641 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
642 1.7 mrg vm_physmem[lcv].avail_start++;
643 1.7 mrg vm_physmem[lcv].start++;
644 1.7 mrg /* nothing left? nuke it */
645 1.7 mrg if (vm_physmem[lcv].avail_start ==
646 1.7 mrg vm_physmem[lcv].end) {
647 1.7 mrg if (vm_nphysseg == 1)
648 1.89 wiz panic("uvm_page_physget: out of memory!");
649 1.7 mrg vm_nphysseg--;
650 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
651 1.7 mrg /* structure copy */
652 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
653 1.7 mrg }
654 1.119 thorpej return (true);
655 1.7 mrg }
656 1.7 mrg
657 1.7 mrg /* try from rear */
658 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
659 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
660 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
661 1.7 mrg vm_physmem[lcv].avail_end--;
662 1.7 mrg vm_physmem[lcv].end--;
663 1.7 mrg /* nothing left? nuke it */
664 1.7 mrg if (vm_physmem[lcv].avail_end ==
665 1.7 mrg vm_physmem[lcv].start) {
666 1.7 mrg if (vm_nphysseg == 1)
667 1.42 mrg panic("uvm_page_physget: out of memory!");
668 1.7 mrg vm_nphysseg--;
669 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
670 1.7 mrg /* structure copy */
671 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
672 1.7 mrg }
673 1.119 thorpej return (true);
674 1.7 mrg }
675 1.7 mrg }
676 1.1 mrg
677 1.7 mrg /* pass2: forget about matching ends, just allocate something */
678 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
679 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
680 1.1 mrg #else
681 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
682 1.1 mrg #endif
683 1.7 mrg {
684 1.1 mrg
685 1.7 mrg /* any room in this bank? */
686 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
687 1.7 mrg continue; /* nope */
688 1.7 mrg
689 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
690 1.7 mrg vm_physmem[lcv].avail_start++;
691 1.7 mrg /* truncate! */
692 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
693 1.7 mrg
694 1.7 mrg /* nothing left? nuke it */
695 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
696 1.7 mrg if (vm_nphysseg == 1)
697 1.42 mrg panic("uvm_page_physget: out of memory!");
698 1.7 mrg vm_nphysseg--;
699 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
700 1.7 mrg /* structure copy */
701 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
702 1.7 mrg }
703 1.119 thorpej return (true);
704 1.7 mrg }
705 1.1 mrg
706 1.119 thorpej return (false); /* whoops! */
707 1.28 drochner }
708 1.28 drochner
709 1.118 thorpej bool
710 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
711 1.28 drochner {
712 1.28 drochner int i;
713 1.28 drochner
714 1.28 drochner /* try in the order of freelist preference */
715 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
716 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
717 1.119 thorpej return (true);
718 1.119 thorpej return (false);
719 1.1 mrg }
720 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
721 1.1 mrg
722 1.1 mrg /*
723 1.1 mrg * uvm_page_physload: load physical memory into VM system
724 1.1 mrg *
725 1.1 mrg * => all args are PFs
726 1.1 mrg * => all pages in start/end get vm_page structures
727 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
728 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
729 1.1 mrg */
730 1.1 mrg
731 1.7 mrg void
732 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
733 1.105 thorpej paddr_t avail_end, int free_list)
734 1.1 mrg {
735 1.14 eeh int preload, lcv;
736 1.14 eeh psize_t npages;
737 1.7 mrg struct vm_page *pgs;
738 1.7 mrg struct vm_physseg *ps;
739 1.7 mrg
740 1.7 mrg if (uvmexp.pagesize == 0)
741 1.42 mrg panic("uvm_page_physload: page size not set!");
742 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
743 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
744 1.26 drochner if (start >= end)
745 1.26 drochner panic("uvm_page_physload: start >= end");
746 1.12 thorpej
747 1.7 mrg /*
748 1.7 mrg * do we have room?
749 1.7 mrg */
750 1.67 chs
751 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
752 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
753 1.7 mrg "segment\n");
754 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
755 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
756 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
757 1.7 mrg return;
758 1.7 mrg }
759 1.7 mrg
760 1.7 mrg /*
761 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
762 1.7 mrg * called yet, so malloc is not available).
763 1.7 mrg */
764 1.67 chs
765 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
766 1.7 mrg if (vm_physmem[lcv].pgs)
767 1.7 mrg break;
768 1.7 mrg }
769 1.7 mrg preload = (lcv == vm_nphysseg);
770 1.7 mrg
771 1.7 mrg /*
772 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
773 1.7 mrg */
774 1.67 chs
775 1.7 mrg if (!preload) {
776 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
777 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
778 1.1 mrg #else
779 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
780 1.14 eeh paddr_t paddr;
781 1.7 mrg npages = end - start; /* # of pages */
782 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
783 1.40 thorpej M_VMPAGE, M_NOWAIT);
784 1.7 mrg if (pgs == NULL) {
785 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
786 1.7 mrg "structs for segment\n");
787 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
788 1.7 mrg return;
789 1.7 mrg }
790 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
791 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
792 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
793 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
794 1.7 mrg pgs[lcv].phys_addr = paddr;
795 1.12 thorpej pgs[lcv].free_list = free_list;
796 1.7 mrg if (atop(paddr) >= avail_start &&
797 1.7 mrg atop(paddr) <= avail_end)
798 1.8 chuck uvm_pagefree(&pgs[lcv]);
799 1.7 mrg }
800 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
801 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
802 1.1 mrg #endif
803 1.7 mrg } else {
804 1.7 mrg pgs = NULL;
805 1.7 mrg npages = 0;
806 1.7 mrg }
807 1.1 mrg
808 1.7 mrg /*
809 1.7 mrg * now insert us in the proper place in vm_physmem[]
810 1.7 mrg */
811 1.1 mrg
812 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
813 1.7 mrg /* random: put it at the end (easy!) */
814 1.7 mrg ps = &vm_physmem[vm_nphysseg];
815 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
816 1.7 mrg {
817 1.7 mrg int x;
818 1.7 mrg /* sort by address for binary search */
819 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
820 1.7 mrg if (start < vm_physmem[lcv].start)
821 1.7 mrg break;
822 1.7 mrg ps = &vm_physmem[lcv];
823 1.7 mrg /* move back other entries, if necessary ... */
824 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
825 1.7 mrg /* structure copy */
826 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
827 1.7 mrg }
828 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
829 1.7 mrg {
830 1.7 mrg int x;
831 1.7 mrg /* sort by largest segment first */
832 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
833 1.7 mrg if ((end - start) >
834 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
835 1.7 mrg break;
836 1.7 mrg ps = &vm_physmem[lcv];
837 1.7 mrg /* move back other entries, if necessary ... */
838 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
839 1.7 mrg /* structure copy */
840 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
841 1.7 mrg }
842 1.1 mrg #else
843 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
844 1.1 mrg #endif
845 1.1 mrg
846 1.7 mrg ps->start = start;
847 1.7 mrg ps->end = end;
848 1.7 mrg ps->avail_start = avail_start;
849 1.7 mrg ps->avail_end = avail_end;
850 1.7 mrg if (preload) {
851 1.7 mrg ps->pgs = NULL;
852 1.7 mrg } else {
853 1.7 mrg ps->pgs = pgs;
854 1.7 mrg ps->lastpg = pgs + npages - 1;
855 1.7 mrg }
856 1.12 thorpej ps->free_list = free_list;
857 1.7 mrg vm_nphysseg++;
858 1.7 mrg
859 1.113 yamt if (!preload) {
860 1.113 yamt uvmpdpol_reinit();
861 1.113 yamt }
862 1.1 mrg }
863 1.1 mrg
864 1.1 mrg /*
865 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
866 1.60 thorpej * larger than the old one.
867 1.60 thorpej */
868 1.60 thorpej
869 1.60 thorpej void
870 1.60 thorpej uvm_page_recolor(int newncolors)
871 1.60 thorpej {
872 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
873 1.133 ad struct pgfreelist gpgfl, pgfl;
874 1.63 chs struct vm_page *pg;
875 1.60 thorpej vsize_t bucketcount;
876 1.123 ad int lcv, color, i, ocolors;
877 1.133 ad struct uvm_cpu *ucpu;
878 1.60 thorpej
879 1.60 thorpej if (newncolors <= uvmexp.ncolors)
880 1.60 thorpej return;
881 1.77 wrstuden
882 1.119 thorpej if (uvm.page_init_done == false) {
883 1.77 wrstuden uvmexp.ncolors = newncolors;
884 1.77 wrstuden return;
885 1.77 wrstuden }
886 1.60 thorpej
887 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
888 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
889 1.60 thorpej M_VMPAGE, M_NOWAIT);
890 1.133 ad cpuarray = bucketarray + bucketcount;
891 1.60 thorpej if (bucketarray == NULL) {
892 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
893 1.60 thorpej (long) bucketcount);
894 1.60 thorpej return;
895 1.60 thorpej }
896 1.60 thorpej
897 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
898 1.60 thorpej
899 1.60 thorpej /* Make sure we should still do this. */
900 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
901 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
902 1.60 thorpej free(bucketarray, M_VMPAGE);
903 1.60 thorpej return;
904 1.60 thorpej }
905 1.60 thorpej
906 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
907 1.60 thorpej ocolors = uvmexp.ncolors;
908 1.60 thorpej
909 1.60 thorpej uvmexp.ncolors = newncolors;
910 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
911 1.60 thorpej
912 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
913 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
914 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
915 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
916 1.133 ad uvm_page_init_buckets(&gpgfl);
917 1.60 thorpej uvm_page_init_buckets(&pgfl);
918 1.60 thorpej for (color = 0; color < ocolors; color++) {
919 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
920 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
921 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
922 1.60 thorpej != NULL) {
923 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
924 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
925 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
926 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
927 1.133 ad i], pg, pageq.list);
928 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
929 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
930 1.133 ad i], pg, listq.list);
931 1.60 thorpej }
932 1.60 thorpej }
933 1.60 thorpej }
934 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
935 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
936 1.60 thorpej }
937 1.60 thorpej
938 1.60 thorpej if (have_recolored_pages) {
939 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
940 1.60 thorpej free(oldbucketarray, M_VMPAGE);
941 1.60 thorpej return;
942 1.60 thorpej }
943 1.60 thorpej
944 1.119 thorpej have_recolored_pages = true;
945 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
946 1.60 thorpej }
947 1.1 mrg
948 1.1 mrg /*
949 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
950 1.133 ad */
951 1.133 ad
952 1.133 ad void
953 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
954 1.133 ad {
955 1.133 ad struct pgflbucket *bucketarray;
956 1.133 ad struct pgfreelist pgfl;
957 1.133 ad struct uvm_cpu *ucpu;
958 1.133 ad vsize_t bucketcount;
959 1.133 ad int lcv;
960 1.133 ad
961 1.133 ad if (CPU_IS_PRIMARY(ci)) {
962 1.133 ad /* Already done in uvm_page_init(). */
963 1.133 ad return;
964 1.133 ad }
965 1.133 ad
966 1.140 ad /* Add more reserve pages for this CPU. */
967 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
968 1.140 ad
969 1.140 ad /* Configure this CPU's free lists. */
970 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
971 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
972 1.133 ad M_VMPAGE, M_WAITOK);
973 1.133 ad ucpu = &uvm.cpus[cpu_index(ci)];
974 1.133 ad ci->ci_data.cpu_uvm = ucpu;
975 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
976 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
977 1.133 ad uvm_page_init_buckets(&pgfl);
978 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
979 1.133 ad }
980 1.133 ad }
981 1.133 ad
982 1.133 ad /*
983 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
984 1.54 thorpej */
985 1.54 thorpej
986 1.114 thorpej static struct vm_page *
987 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
988 1.69 simonb int *trycolorp)
989 1.54 thorpej {
990 1.133 ad struct pgflist *freeq;
991 1.54 thorpej struct vm_page *pg;
992 1.58 enami int color, trycolor = *trycolorp;
993 1.133 ad struct pgfreelist *gpgfl, *pgfl;
994 1.54 thorpej
995 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
996 1.130 ad
997 1.58 enami color = trycolor;
998 1.133 ad pgfl = &ucpu->page_free[flist];
999 1.133 ad gpgfl = &uvm.page_free[flist];
1000 1.58 enami do {
1001 1.133 ad /* cpu, try1 */
1002 1.133 ad if ((pg = LIST_FIRST((freeq =
1003 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1004 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1005 1.133 ad uvmexp.cpuhit++;
1006 1.133 ad goto gotit;
1007 1.133 ad }
1008 1.133 ad /* global, try1 */
1009 1.133 ad if ((pg = LIST_FIRST((freeq =
1010 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1011 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1012 1.133 ad uvmexp.cpumiss++;
1013 1.54 thorpej goto gotit;
1014 1.133 ad }
1015 1.133 ad /* cpu, try2 */
1016 1.133 ad if ((pg = LIST_FIRST((freeq =
1017 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1018 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1019 1.133 ad uvmexp.cpuhit++;
1020 1.54 thorpej goto gotit;
1021 1.133 ad }
1022 1.133 ad /* global, try2 */
1023 1.133 ad if ((pg = LIST_FIRST((freeq =
1024 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1025 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1026 1.133 ad uvmexp.cpumiss++;
1027 1.133 ad goto gotit;
1028 1.133 ad }
1029 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1030 1.58 enami } while (color != trycolor);
1031 1.54 thorpej
1032 1.54 thorpej return (NULL);
1033 1.54 thorpej
1034 1.54 thorpej gotit:
1035 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1036 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1037 1.54 thorpej uvmexp.free--;
1038 1.54 thorpej
1039 1.54 thorpej /* update zero'd page count */
1040 1.54 thorpej if (pg->flags & PG_ZERO)
1041 1.54 thorpej uvmexp.zeropages--;
1042 1.54 thorpej
1043 1.54 thorpej if (color == trycolor)
1044 1.54 thorpej uvmexp.colorhit++;
1045 1.54 thorpej else {
1046 1.54 thorpej uvmexp.colormiss++;
1047 1.54 thorpej *trycolorp = color;
1048 1.54 thorpej }
1049 1.54 thorpej
1050 1.54 thorpej return (pg);
1051 1.54 thorpej }
1052 1.54 thorpej
1053 1.54 thorpej /*
1054 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1055 1.1 mrg *
1056 1.1 mrg * => return null if no pages free
1057 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1058 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1059 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1060 1.1 mrg * => only one of obj or anon can be non-null
1061 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1062 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1063 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1064 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1065 1.34 thorpej * unknown contents page. This is because we live with the
1066 1.34 thorpej * consequences of a bad free list decision for the entire
1067 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1068 1.34 thorpej * is slower to access.
1069 1.1 mrg */
1070 1.1 mrg
1071 1.7 mrg struct vm_page *
1072 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1073 1.105 thorpej int flags, int strat, int free_list)
1074 1.1 mrg {
1075 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1076 1.133 ad struct uvm_cpu *ucpu;
1077 1.7 mrg struct vm_page *pg;
1078 1.141 ad lwp_t *l;
1079 1.1 mrg
1080 1.44 chs KASSERT(obj == NULL || anon == NULL);
1081 1.113 yamt KASSERT(anon == NULL || off == 0);
1082 1.44 chs KASSERT(off == trunc_page(off));
1083 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1084 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1085 1.48 thorpej
1086 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1087 1.1 mrg
1088 1.7 mrg /*
1089 1.54 thorpej * This implements a global round-robin page coloring
1090 1.54 thorpej * algorithm.
1091 1.54 thorpej *
1092 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1093 1.54 thorpej */
1094 1.67 chs
1095 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1096 1.133 ad color = ucpu->page_free_nextcolor;
1097 1.54 thorpej
1098 1.54 thorpej /*
1099 1.7 mrg * check to see if we need to generate some free pages waking
1100 1.7 mrg * the pagedaemon.
1101 1.7 mrg */
1102 1.7 mrg
1103 1.113 yamt uvm_kick_pdaemon();
1104 1.7 mrg
1105 1.7 mrg /*
1106 1.7 mrg * fail if any of these conditions is true:
1107 1.7 mrg * [1] there really are no free pages, or
1108 1.7 mrg * [2] only kernel "reserved" pages remain and
1109 1.141 ad * reserved pages have not been requested.
1110 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1111 1.7 mrg * the requestor isn't the pagedaemon.
1112 1.141 ad * we make kernel reserve pages available if called by a
1113 1.141 ad * kernel thread or a realtime thread.
1114 1.7 mrg */
1115 1.141 ad l = curlwp;
1116 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1117 1.141 ad flags |= UVM_PGA_USERESERVE;
1118 1.141 ad }
1119 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1120 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1121 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1122 1.141 ad curlwp != uvm.pagedaemon_lwp))
1123 1.12 thorpej goto fail;
1124 1.12 thorpej
1125 1.34 thorpej #if PGFL_NQUEUES != 2
1126 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1127 1.34 thorpej #endif
1128 1.34 thorpej
1129 1.34 thorpej /*
1130 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1131 1.34 thorpej * we try the UNKNOWN queue first.
1132 1.34 thorpej */
1133 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1134 1.34 thorpej try1 = PGFL_ZEROS;
1135 1.34 thorpej try2 = PGFL_UNKNOWN;
1136 1.34 thorpej } else {
1137 1.34 thorpej try1 = PGFL_UNKNOWN;
1138 1.34 thorpej try2 = PGFL_ZEROS;
1139 1.34 thorpej }
1140 1.34 thorpej
1141 1.12 thorpej again:
1142 1.12 thorpej switch (strat) {
1143 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1144 1.145 abs /* Check freelists: descending priority (ascending id) order */
1145 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1146 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1147 1.54 thorpej try1, try2, &color);
1148 1.54 thorpej if (pg != NULL)
1149 1.12 thorpej goto gotit;
1150 1.12 thorpej }
1151 1.12 thorpej
1152 1.12 thorpej /* No pages free! */
1153 1.12 thorpej goto fail;
1154 1.12 thorpej
1155 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1156 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1157 1.12 thorpej /* Attempt to allocate from the specified free list. */
1158 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1159 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1160 1.54 thorpej try1, try2, &color);
1161 1.54 thorpej if (pg != NULL)
1162 1.12 thorpej goto gotit;
1163 1.12 thorpej
1164 1.12 thorpej /* Fall back, if possible. */
1165 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1166 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1167 1.12 thorpej goto again;
1168 1.12 thorpej }
1169 1.12 thorpej
1170 1.12 thorpej /* No pages free! */
1171 1.12 thorpej goto fail;
1172 1.12 thorpej
1173 1.12 thorpej default:
1174 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1175 1.12 thorpej /* NOTREACHED */
1176 1.7 mrg }
1177 1.7 mrg
1178 1.12 thorpej gotit:
1179 1.54 thorpej /*
1180 1.54 thorpej * We now know which color we actually allocated from; set
1181 1.54 thorpej * the next color accordingly.
1182 1.54 thorpej */
1183 1.67 chs
1184 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1185 1.34 thorpej
1186 1.34 thorpej /*
1187 1.34 thorpej * update allocation statistics and remember if we have to
1188 1.34 thorpej * zero the page
1189 1.34 thorpej */
1190 1.67 chs
1191 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1192 1.34 thorpej if (pg->flags & PG_ZERO) {
1193 1.34 thorpej uvmexp.pga_zerohit++;
1194 1.34 thorpej zeroit = 0;
1195 1.34 thorpej } else {
1196 1.34 thorpej uvmexp.pga_zeromiss++;
1197 1.34 thorpej zeroit = 1;
1198 1.34 thorpej }
1199 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1200 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1201 1.133 ad }
1202 1.34 thorpej }
1203 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1204 1.7 mrg
1205 1.7 mrg pg->offset = off;
1206 1.7 mrg pg->uobject = obj;
1207 1.7 mrg pg->uanon = anon;
1208 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1209 1.7 mrg if (anon) {
1210 1.103 yamt anon->an_page = pg;
1211 1.7 mrg pg->pqflags = PQ_ANON;
1212 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1213 1.7 mrg } else {
1214 1.67 chs if (obj) {
1215 1.7 mrg uvm_pageinsert(pg);
1216 1.67 chs }
1217 1.7 mrg pg->pqflags = 0;
1218 1.7 mrg }
1219 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1220 1.143 drochner
1221 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1222 1.7 mrg pg->owner_tag = NULL;
1223 1.1 mrg #endif
1224 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1225 1.33 thorpej
1226 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1227 1.33 thorpej /*
1228 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1229 1.34 thorpej * zero'd, then we have to zero it ourselves.
1230 1.33 thorpej */
1231 1.33 thorpej pg->flags &= ~PG_CLEAN;
1232 1.34 thorpej if (zeroit)
1233 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1234 1.33 thorpej }
1235 1.1 mrg
1236 1.7 mrg return(pg);
1237 1.12 thorpej
1238 1.12 thorpej fail:
1239 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1240 1.12 thorpej return (NULL);
1241 1.1 mrg }
1242 1.1 mrg
1243 1.1 mrg /*
1244 1.96 yamt * uvm_pagereplace: replace a page with another
1245 1.96 yamt *
1246 1.96 yamt * => object must be locked
1247 1.96 yamt */
1248 1.96 yamt
1249 1.96 yamt void
1250 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1251 1.96 yamt {
1252 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1253 1.97 junyoung
1254 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1255 1.136 yamt KASSERT(uobj != NULL);
1256 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1257 1.96 yamt KASSERT(newpg->uobject == NULL);
1258 1.136 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
1259 1.96 yamt
1260 1.136 yamt newpg->uobject = uobj;
1261 1.96 yamt newpg->offset = oldpg->offset;
1262 1.96 yamt
1263 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1264 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1265 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1266 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1267 1.96 yamt }
1268 1.96 yamt
1269 1.96 yamt /*
1270 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1271 1.1 mrg *
1272 1.1 mrg * => both objects must be locked
1273 1.1 mrg */
1274 1.1 mrg
1275 1.7 mrg void
1276 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1277 1.1 mrg {
1278 1.7 mrg /*
1279 1.7 mrg * remove it from the old object
1280 1.7 mrg */
1281 1.7 mrg
1282 1.7 mrg if (pg->uobject) {
1283 1.7 mrg uvm_pageremove(pg);
1284 1.7 mrg }
1285 1.7 mrg
1286 1.7 mrg /*
1287 1.7 mrg * put it in the new object
1288 1.7 mrg */
1289 1.7 mrg
1290 1.7 mrg if (newobj) {
1291 1.7 mrg pg->uobject = newobj;
1292 1.7 mrg pg->offset = newoff;
1293 1.7 mrg uvm_pageinsert(pg);
1294 1.7 mrg }
1295 1.1 mrg }
1296 1.1 mrg
1297 1.91 yamt #ifdef DEBUG
1298 1.91 yamt /*
1299 1.91 yamt * check if page is zero-filled
1300 1.91 yamt *
1301 1.91 yamt * - called with free page queue lock held.
1302 1.91 yamt */
1303 1.91 yamt void
1304 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1305 1.91 yamt {
1306 1.91 yamt int *p, *ep;
1307 1.91 yamt
1308 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1309 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1310 1.91 yamt
1311 1.91 yamt /*
1312 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1313 1.91 yamt * uvm page allocator.
1314 1.91 yamt *
1315 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1316 1.91 yamt */
1317 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1318 1.91 yamt p = (int *)uvm_zerocheckkva;
1319 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1320 1.92 yamt pmap_update(pmap_kernel());
1321 1.91 yamt while (p < ep) {
1322 1.91 yamt if (*p != 0)
1323 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1324 1.91 yamt p++;
1325 1.91 yamt }
1326 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1327 1.131 yamt /*
1328 1.131 yamt * pmap_update() is not necessary here because no one except us
1329 1.131 yamt * uses this VA.
1330 1.131 yamt */
1331 1.91 yamt }
1332 1.91 yamt #endif /* DEBUG */
1333 1.91 yamt
1334 1.1 mrg /*
1335 1.1 mrg * uvm_pagefree: free page
1336 1.1 mrg *
1337 1.133 ad * => erase page's identity (i.e. remove from object)
1338 1.1 mrg * => put page on free list
1339 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1340 1.1 mrg * => caller must lock page queues
1341 1.1 mrg * => assumes all valid mappings of pg are gone
1342 1.1 mrg */
1343 1.1 mrg
1344 1.44 chs void
1345 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1346 1.1 mrg {
1347 1.133 ad struct pgflist *pgfl;
1348 1.133 ad struct uvm_cpu *ucpu;
1349 1.133 ad int index, color, queue;
1350 1.118 thorpej bool iszero;
1351 1.67 chs
1352 1.44 chs #ifdef DEBUG
1353 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1354 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1355 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1356 1.44 chs }
1357 1.91 yamt #endif /* DEBUG */
1358 1.44 chs
1359 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1360 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1361 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1362 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1363 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1364 1.127 ad mutex_owned(&pg->uanon->an_lock));
1365 1.123 ad
1366 1.7 mrg /*
1367 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1368 1.7 mrg */
1369 1.7 mrg
1370 1.67 chs if (pg->loan_count) {
1371 1.70 chs KASSERT(pg->wire_count == 0);
1372 1.7 mrg
1373 1.7 mrg /*
1374 1.67 chs * if the page is owned by an anon then we just want to
1375 1.70 chs * drop anon ownership. the kernel will free the page when
1376 1.70 chs * it is done with it. if the page is owned by an object,
1377 1.70 chs * remove it from the object and mark it dirty for the benefit
1378 1.70 chs * of possible anon owners.
1379 1.70 chs *
1380 1.70 chs * regardless of previous ownership, wakeup any waiters,
1381 1.70 chs * unbusy the page, and we're done.
1382 1.7 mrg */
1383 1.7 mrg
1384 1.73 chs if (pg->uobject != NULL) {
1385 1.70 chs uvm_pageremove(pg);
1386 1.67 chs pg->flags &= ~PG_CLEAN;
1387 1.73 chs } else if (pg->uanon != NULL) {
1388 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1389 1.73 chs pg->loan_count--;
1390 1.73 chs } else {
1391 1.73 chs pg->pqflags &= ~PQ_ANON;
1392 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1393 1.73 chs }
1394 1.103 yamt pg->uanon->an_page = NULL;
1395 1.73 chs pg->uanon = NULL;
1396 1.67 chs }
1397 1.70 chs if (pg->flags & PG_WANTED) {
1398 1.70 chs wakeup(pg);
1399 1.70 chs }
1400 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1401 1.70 chs #ifdef UVM_PAGE_TRKOWN
1402 1.70 chs pg->owner_tag = NULL;
1403 1.70 chs #endif
1404 1.73 chs if (pg->loan_count) {
1405 1.115 yamt KASSERT(pg->uobject == NULL);
1406 1.115 yamt if (pg->uanon == NULL) {
1407 1.115 yamt uvm_pagedequeue(pg);
1408 1.115 yamt }
1409 1.73 chs return;
1410 1.73 chs }
1411 1.67 chs }
1412 1.62 chs
1413 1.67 chs /*
1414 1.67 chs * remove page from its object or anon.
1415 1.67 chs */
1416 1.44 chs
1417 1.73 chs if (pg->uobject != NULL) {
1418 1.67 chs uvm_pageremove(pg);
1419 1.73 chs } else if (pg->uanon != NULL) {
1420 1.103 yamt pg->uanon->an_page = NULL;
1421 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1422 1.7 mrg }
1423 1.1 mrg
1424 1.7 mrg /*
1425 1.70 chs * now remove the page from the queues.
1426 1.7 mrg */
1427 1.7 mrg
1428 1.67 chs uvm_pagedequeue(pg);
1429 1.7 mrg
1430 1.7 mrg /*
1431 1.7 mrg * if the page was wired, unwire it now.
1432 1.7 mrg */
1433 1.44 chs
1434 1.34 thorpej if (pg->wire_count) {
1435 1.7 mrg pg->wire_count = 0;
1436 1.7 mrg uvmexp.wired--;
1437 1.44 chs }
1438 1.7 mrg
1439 1.7 mrg /*
1440 1.44 chs * and put on free queue
1441 1.7 mrg */
1442 1.7 mrg
1443 1.90 yamt iszero = (pg->flags & PG_ZERO);
1444 1.133 ad index = uvm_page_lookup_freelist(pg);
1445 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1446 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1447 1.34 thorpej
1448 1.3 chs #ifdef DEBUG
1449 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1450 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1451 1.3 chs #endif
1452 1.90 yamt
1453 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1454 1.143 drochner pg->pqflags = PQ_FREE;
1455 1.91 yamt
1456 1.91 yamt #ifdef DEBUG
1457 1.91 yamt if (iszero)
1458 1.91 yamt uvm_pagezerocheck(pg);
1459 1.91 yamt #endif /* DEBUG */
1460 1.91 yamt
1461 1.133 ad
1462 1.133 ad /* global list */
1463 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1464 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1465 1.7 mrg uvmexp.free++;
1466 1.133 ad if (iszero) {
1467 1.90 yamt uvmexp.zeropages++;
1468 1.133 ad }
1469 1.34 thorpej
1470 1.133 ad /* per-cpu list */
1471 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1472 1.133 ad pg->offset = (uintptr_t)ucpu;
1473 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1474 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1475 1.133 ad ucpu->pages[queue]++;
1476 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1477 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1478 1.133 ad }
1479 1.34 thorpej
1480 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1481 1.44 chs }
1482 1.44 chs
1483 1.44 chs /*
1484 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1485 1.44 chs *
1486 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1487 1.44 chs * => if pages are object-owned, object must be locked.
1488 1.67 chs * => if pages are anon-owned, anons must be locked.
1489 1.76 enami * => caller must lock page queues if pages may be released.
1490 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1491 1.44 chs */
1492 1.44 chs
1493 1.44 chs void
1494 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1495 1.44 chs {
1496 1.44 chs struct vm_page *pg;
1497 1.44 chs int i;
1498 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1499 1.44 chs
1500 1.44 chs for (i = 0; i < npgs; i++) {
1501 1.44 chs pg = pgs[i];
1502 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1503 1.44 chs continue;
1504 1.44 chs }
1505 1.98 yamt
1506 1.127 ad KASSERT(pg->uobject == NULL ||
1507 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1508 1.127 ad KASSERT(pg->uobject != NULL ||
1509 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1510 1.98 yamt
1511 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1512 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1513 1.44 chs if (pg->flags & PG_WANTED) {
1514 1.44 chs wakeup(pg);
1515 1.44 chs }
1516 1.44 chs if (pg->flags & PG_RELEASED) {
1517 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1518 1.98 yamt KASSERT(pg->uobject != NULL ||
1519 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1520 1.67 chs pg->flags &= ~PG_RELEASED;
1521 1.67 chs uvm_pagefree(pg);
1522 1.44 chs } else {
1523 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1524 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1525 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1526 1.44 chs UVM_PAGE_OWN(pg, NULL);
1527 1.44 chs }
1528 1.44 chs }
1529 1.1 mrg }
1530 1.1 mrg
1531 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1532 1.1 mrg /*
1533 1.1 mrg * uvm_page_own: set or release page ownership
1534 1.1 mrg *
1535 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1536 1.1 mrg * and where they do it. it can be used to track down problems
1537 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1538 1.1 mrg * => page's object [if any] must be locked
1539 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1540 1.1 mrg */
1541 1.7 mrg void
1542 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1543 1.1 mrg {
1544 1.112 yamt struct uvm_object *uobj;
1545 1.112 yamt struct vm_anon *anon;
1546 1.112 yamt
1547 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1548 1.67 chs
1549 1.112 yamt uobj = pg->uobject;
1550 1.112 yamt anon = pg->uanon;
1551 1.112 yamt if (uobj != NULL) {
1552 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1553 1.112 yamt } else if (anon != NULL) {
1554 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1555 1.112 yamt }
1556 1.112 yamt
1557 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1558 1.112 yamt
1559 1.7 mrg /* gain ownership? */
1560 1.7 mrg if (tag) {
1561 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1562 1.7 mrg if (pg->owner_tag) {
1563 1.7 mrg printf("uvm_page_own: page %p already owned "
1564 1.7 mrg "by proc %d [%s]\n", pg,
1565 1.74 enami pg->owner, pg->owner_tag);
1566 1.7 mrg panic("uvm_page_own");
1567 1.7 mrg }
1568 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1569 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1570 1.7 mrg pg->owner_tag = tag;
1571 1.7 mrg return;
1572 1.7 mrg }
1573 1.7 mrg
1574 1.7 mrg /* drop ownership */
1575 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1576 1.7 mrg if (pg->owner_tag == NULL) {
1577 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1578 1.7 mrg "page (%p)\n", pg);
1579 1.7 mrg panic("uvm_page_own");
1580 1.7 mrg }
1581 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1582 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1583 1.115 yamt pg->wire_count > 0);
1584 1.115 yamt } else {
1585 1.115 yamt KASSERT(pg->wire_count == 0);
1586 1.115 yamt }
1587 1.7 mrg pg->owner_tag = NULL;
1588 1.1 mrg }
1589 1.1 mrg #endif
1590 1.34 thorpej
1591 1.34 thorpej /*
1592 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1593 1.34 thorpej *
1594 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1595 1.54 thorpej * on the CPU cache.
1596 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1597 1.132 ad * to run, or MD code detects a reason to break early.
1598 1.34 thorpej */
1599 1.34 thorpej void
1600 1.105 thorpej uvm_pageidlezero(void)
1601 1.34 thorpej {
1602 1.34 thorpej struct vm_page *pg;
1603 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1604 1.133 ad struct uvm_cpu *ucpu;
1605 1.133 ad int free_list, firstbucket, nextbucket;
1606 1.133 ad
1607 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1608 1.133 ad if (!ucpu->page_idle_zero ||
1609 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1610 1.133 ad ucpu->page_idle_zero = false;
1611 1.132 ad return;
1612 1.132 ad }
1613 1.133 ad mutex_enter(&uvm_fpageqlock);
1614 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1615 1.133 ad nextbucket = firstbucket;
1616 1.58 enami do {
1617 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1618 1.139 ad if (sched_curcpu_runnable_p()) {
1619 1.139 ad goto quit;
1620 1.139 ad }
1621 1.133 ad pgfl = &ucpu->page_free[free_list];
1622 1.133 ad gpgfl = &uvm.page_free[free_list];
1623 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1624 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1625 1.132 ad if (sched_curcpu_runnable_p()) {
1626 1.101 yamt goto quit;
1627 1.132 ad }
1628 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1629 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1630 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1631 1.54 thorpej uvmexp.free--;
1632 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1633 1.143 drochner pg->pqflags = 0;
1634 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1635 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1636 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1637 1.67 chs
1638 1.54 thorpej /*
1639 1.54 thorpej * The machine-dependent code detected
1640 1.54 thorpej * some reason for us to abort zeroing
1641 1.54 thorpej * pages, probably because there is a
1642 1.54 thorpej * process now ready to run.
1643 1.54 thorpej */
1644 1.67 chs
1645 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1646 1.144 drochner pg->pqflags = PQ_FREE;
1647 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1648 1.133 ad nextbucket].pgfl_queues[
1649 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1650 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1651 1.54 thorpej nextbucket].pgfl_queues[
1652 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1653 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1654 1.54 thorpej uvmexp.free++;
1655 1.54 thorpej uvmexp.zeroaborts++;
1656 1.101 yamt goto quit;
1657 1.54 thorpej }
1658 1.54 thorpej #else
1659 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1660 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1661 1.54 thorpej pg->flags |= PG_ZERO;
1662 1.54 thorpej
1663 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1664 1.143 drochner pg->pqflags = PQ_FREE;
1665 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1666 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1667 1.133 ad pg, pageq.list);
1668 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1669 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1670 1.133 ad pg, listq.list);
1671 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1672 1.54 thorpej uvmexp.free++;
1673 1.54 thorpej uvmexp.zeropages++;
1674 1.54 thorpej }
1675 1.41 thorpej }
1676 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1677 1.133 ad break;
1678 1.133 ad }
1679 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1680 1.58 enami } while (nextbucket != firstbucket);
1681 1.133 ad ucpu->page_idle_zero = false;
1682 1.133 ad quit:
1683 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1684 1.34 thorpej }
1685 1.110 yamt
1686 1.110 yamt /*
1687 1.110 yamt * uvm_pagelookup: look up a page
1688 1.110 yamt *
1689 1.110 yamt * => caller should lock object to keep someone from pulling the page
1690 1.110 yamt * out from under it
1691 1.110 yamt */
1692 1.110 yamt
1693 1.110 yamt struct vm_page *
1694 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1695 1.110 yamt {
1696 1.110 yamt struct vm_page *pg;
1697 1.110 yamt
1698 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1699 1.123 ad
1700 1.134 ad pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1701 1.134 ad
1702 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1703 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1704 1.110 yamt (pg->flags & PG_BUSY) != 0);
1705 1.110 yamt return(pg);
1706 1.110 yamt }
1707 1.110 yamt
1708 1.110 yamt /*
1709 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1710 1.110 yamt *
1711 1.110 yamt * => caller must lock page queues
1712 1.110 yamt */
1713 1.110 yamt
1714 1.110 yamt void
1715 1.110 yamt uvm_pagewire(struct vm_page *pg)
1716 1.110 yamt {
1717 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1718 1.113 yamt #if defined(READAHEAD_STATS)
1719 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1720 1.113 yamt uvm_ra_hit.ev_count++;
1721 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1722 1.113 yamt }
1723 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1724 1.110 yamt if (pg->wire_count == 0) {
1725 1.110 yamt uvm_pagedequeue(pg);
1726 1.110 yamt uvmexp.wired++;
1727 1.110 yamt }
1728 1.110 yamt pg->wire_count++;
1729 1.110 yamt }
1730 1.110 yamt
1731 1.110 yamt /*
1732 1.110 yamt * uvm_pageunwire: unwire the page.
1733 1.110 yamt *
1734 1.110 yamt * => activate if wire count goes to zero.
1735 1.110 yamt * => caller must lock page queues
1736 1.110 yamt */
1737 1.110 yamt
1738 1.110 yamt void
1739 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1740 1.110 yamt {
1741 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1742 1.110 yamt pg->wire_count--;
1743 1.110 yamt if (pg->wire_count == 0) {
1744 1.111 yamt uvm_pageactivate(pg);
1745 1.110 yamt uvmexp.wired--;
1746 1.110 yamt }
1747 1.110 yamt }
1748 1.110 yamt
1749 1.110 yamt /*
1750 1.110 yamt * uvm_pagedeactivate: deactivate page
1751 1.110 yamt *
1752 1.110 yamt * => caller must lock page queues
1753 1.110 yamt * => caller must check to make sure page is not wired
1754 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1755 1.110 yamt * => caller must clear the reference on the page before calling
1756 1.110 yamt */
1757 1.110 yamt
1758 1.110 yamt void
1759 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1760 1.110 yamt {
1761 1.113 yamt
1762 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1763 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1764 1.113 yamt uvmpdpol_pagedeactivate(pg);
1765 1.110 yamt }
1766 1.110 yamt
1767 1.110 yamt /*
1768 1.110 yamt * uvm_pageactivate: activate page
1769 1.110 yamt *
1770 1.110 yamt * => caller must lock page queues
1771 1.110 yamt */
1772 1.110 yamt
1773 1.110 yamt void
1774 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1775 1.110 yamt {
1776 1.113 yamt
1777 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1778 1.113 yamt #if defined(READAHEAD_STATS)
1779 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1780 1.113 yamt uvm_ra_hit.ev_count++;
1781 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1782 1.113 yamt }
1783 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1784 1.113 yamt if (pg->wire_count != 0) {
1785 1.113 yamt return;
1786 1.110 yamt }
1787 1.113 yamt uvmpdpol_pageactivate(pg);
1788 1.110 yamt }
1789 1.110 yamt
1790 1.110 yamt /*
1791 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1792 1.110 yamt */
1793 1.110 yamt
1794 1.110 yamt void
1795 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1796 1.110 yamt {
1797 1.113 yamt
1798 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1799 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1800 1.110 yamt }
1801 1.123 ad
1802 1.113 yamt uvmpdpol_pagedequeue(pg);
1803 1.113 yamt }
1804 1.113 yamt
1805 1.113 yamt /*
1806 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1807 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1808 1.113 yamt */
1809 1.113 yamt
1810 1.113 yamt void
1811 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1812 1.113 yamt {
1813 1.113 yamt
1814 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1815 1.113 yamt if (pg->wire_count != 0) {
1816 1.113 yamt return;
1817 1.113 yamt }
1818 1.113 yamt uvmpdpol_pageenqueue(pg);
1819 1.110 yamt }
1820 1.110 yamt
1821 1.110 yamt /*
1822 1.110 yamt * uvm_pagezero: zero fill a page
1823 1.110 yamt *
1824 1.110 yamt * => if page is part of an object then the object should be locked
1825 1.110 yamt * to protect pg->flags.
1826 1.110 yamt */
1827 1.110 yamt
1828 1.110 yamt void
1829 1.110 yamt uvm_pagezero(struct vm_page *pg)
1830 1.110 yamt {
1831 1.110 yamt pg->flags &= ~PG_CLEAN;
1832 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1833 1.110 yamt }
1834 1.110 yamt
1835 1.110 yamt /*
1836 1.110 yamt * uvm_pagecopy: copy a page
1837 1.110 yamt *
1838 1.110 yamt * => if page is part of an object then the object should be locked
1839 1.110 yamt * to protect pg->flags.
1840 1.110 yamt */
1841 1.110 yamt
1842 1.110 yamt void
1843 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1844 1.110 yamt {
1845 1.110 yamt
1846 1.110 yamt dst->flags &= ~PG_CLEAN;
1847 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1848 1.110 yamt }
1849 1.110 yamt
1850 1.110 yamt /*
1851 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1852 1.110 yamt */
1853 1.110 yamt
1854 1.110 yamt int
1855 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1856 1.110 yamt {
1857 1.110 yamt int lcv;
1858 1.110 yamt
1859 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1860 1.110 yamt KASSERT(lcv != -1);
1861 1.110 yamt return (vm_physmem[lcv].free_list);
1862 1.110 yamt }
1863