uvm_page.c revision 1.150 1 1.150 thorpej /* $NetBSD: uvm_page.c,v 1.150 2009/08/18 18:06:53 thorpej Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.150 thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.150 2009/08/18 18:06:53 thorpej Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.113 yamt #include "opt_readahead.h"
78 1.44 chs
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.35 thorpej #include <sys/sched.h>
83 1.44 chs #include <sys/kernel.h>
84 1.51 chs #include <sys/vnode.h>
85 1.68 chs #include <sys/proc.h>
86 1.126 ad #include <sys/atomic.h>
87 1.133 ad #include <sys/cpu.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.113 yamt #include <uvm/uvm_pdpolicy.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * physical memory config is stored in vm_physmem.
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102 1.1 mrg
103 1.1 mrg /*
104 1.36 thorpej * Some supported CPUs in a given architecture don't support all
105 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
106 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
107 1.34 thorpej */
108 1.44 chs /*
109 1.44 chs * XXX disabled until we can find a way to do this without causing
110 1.95 wiz * problems for either CPU caches or DMA latency.
111 1.44 chs */
112 1.119 thorpej bool vm_page_zero_enable = false;
113 1.34 thorpej
114 1.34 thorpej /*
115 1.140 ad * number of pages per-CPU to reserve for the kernel.
116 1.140 ad */
117 1.140 ad int vm_page_reserve_kernel = 5;
118 1.140 ad
119 1.140 ad /*
120 1.148 matt * physical memory size;
121 1.148 matt */
122 1.149 matt int physmem;
123 1.148 matt
124 1.148 matt /*
125 1.1 mrg * local variables
126 1.1 mrg */
127 1.1 mrg
128 1.1 mrg /*
129 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
130 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
131 1.88 thorpej * and pmap_startup here also uses them internally.
132 1.88 thorpej */
133 1.88 thorpej
134 1.88 thorpej static vaddr_t virtual_space_start;
135 1.88 thorpej static vaddr_t virtual_space_end;
136 1.88 thorpej
137 1.88 thorpej /*
138 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
139 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
140 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
141 1.60 thorpej * free the initial set of buckets, since they are allocated using
142 1.60 thorpej * uvm_pageboot_alloc().
143 1.60 thorpej */
144 1.60 thorpej
145 1.119 thorpej static bool have_recolored_pages /* = false */;
146 1.83 thorpej
147 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
148 1.60 thorpej
149 1.91 yamt #ifdef DEBUG
150 1.91 yamt vaddr_t uvm_zerocheckkva;
151 1.91 yamt #endif /* DEBUG */
152 1.91 yamt
153 1.60 thorpej /*
154 1.134 ad * local prototypes
155 1.124 ad */
156 1.124 ad
157 1.134 ad static void uvm_pageinsert(struct vm_page *);
158 1.134 ad static void uvm_pageremove(struct vm_page *);
159 1.124 ad
160 1.124 ad /*
161 1.134 ad * per-object tree of pages
162 1.1 mrg */
163 1.1 mrg
164 1.134 ad static signed int
165 1.134 ad uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
166 1.134 ad {
167 1.134 ad const struct vm_page *pg1 = (const void *)n1;
168 1.134 ad const struct vm_page *pg2 = (const void *)n2;
169 1.134 ad const voff_t a = pg1->offset;
170 1.134 ad const voff_t b = pg2->offset;
171 1.134 ad
172 1.134 ad if (a < b)
173 1.134 ad return 1;
174 1.134 ad if (a > b)
175 1.134 ad return -1;
176 1.134 ad return 0;
177 1.134 ad }
178 1.134 ad
179 1.134 ad static signed int
180 1.134 ad uvm_page_compare_key(const struct rb_node *n, const void *key)
181 1.134 ad {
182 1.134 ad const struct vm_page *pg = (const void *)n;
183 1.134 ad const voff_t a = pg->offset;
184 1.134 ad const voff_t b = *(const voff_t *)key;
185 1.134 ad
186 1.134 ad if (a < b)
187 1.134 ad return 1;
188 1.134 ad if (a > b)
189 1.134 ad return -1;
190 1.134 ad return 0;
191 1.134 ad }
192 1.134 ad
193 1.134 ad const struct rb_tree_ops uvm_page_tree_ops = {
194 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
195 1.137 matt .rbto_compare_key = uvm_page_compare_key,
196 1.134 ad };
197 1.1 mrg
198 1.1 mrg /*
199 1.1 mrg * inline functions
200 1.1 mrg */
201 1.1 mrg
202 1.1 mrg /*
203 1.134 ad * uvm_pageinsert: insert a page in the object.
204 1.1 mrg *
205 1.1 mrg * => caller must lock object
206 1.1 mrg * => caller must lock page queues
207 1.1 mrg * => call should have already set pg's object and offset pointers
208 1.1 mrg * and bumped the version counter
209 1.1 mrg */
210 1.1 mrg
211 1.136 yamt static inline void
212 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
213 1.136 yamt struct vm_page *where)
214 1.1 mrg {
215 1.1 mrg
216 1.136 yamt KASSERT(uobj == pg->uobject);
217 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
218 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
219 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
220 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
221 1.123 ad
222 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
223 1.94 yamt if (uobj->uo_npages == 0) {
224 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
225 1.94 yamt
226 1.94 yamt vholdl(vp);
227 1.94 yamt }
228 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
229 1.126 ad atomic_inc_uint(&uvmexp.execpages);
230 1.94 yamt } else {
231 1.126 ad atomic_inc_uint(&uvmexp.filepages);
232 1.94 yamt }
233 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
234 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
235 1.78 chs }
236 1.78 chs
237 1.96 yamt if (where)
238 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
239 1.96 yamt else
240 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
241 1.7 mrg pg->flags |= PG_TABLED;
242 1.67 chs uobj->uo_npages++;
243 1.1 mrg }
244 1.1 mrg
245 1.136 yamt
246 1.136 yamt static inline void
247 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
248 1.136 yamt {
249 1.136 yamt bool success;
250 1.136 yamt
251 1.136 yamt KASSERT(uobj == pg->uobject);
252 1.136 yamt success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
253 1.136 yamt KASSERT(success);
254 1.136 yamt }
255 1.136 yamt
256 1.136 yamt static inline void
257 1.105 thorpej uvm_pageinsert(struct vm_page *pg)
258 1.96 yamt {
259 1.136 yamt struct uvm_object *uobj = pg->uobject;
260 1.96 yamt
261 1.136 yamt uvm_pageinsert_tree(uobj, pg);
262 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
263 1.96 yamt }
264 1.96 yamt
265 1.1 mrg /*
266 1.134 ad * uvm_page_remove: remove page from object.
267 1.1 mrg *
268 1.1 mrg * => caller must lock object
269 1.1 mrg * => caller must lock page queues
270 1.1 mrg */
271 1.1 mrg
272 1.109 perry static inline void
273 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
274 1.1 mrg {
275 1.1 mrg
276 1.136 yamt KASSERT(uobj == pg->uobject);
277 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
278 1.44 chs KASSERT(pg->flags & PG_TABLED);
279 1.123 ad
280 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
281 1.94 yamt if (uobj->uo_npages == 1) {
282 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
283 1.94 yamt
284 1.94 yamt holdrelel(vp);
285 1.94 yamt }
286 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
287 1.126 ad atomic_dec_uint(&uvmexp.execpages);
288 1.94 yamt } else {
289 1.126 ad atomic_dec_uint(&uvmexp.filepages);
290 1.94 yamt }
291 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
292 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
293 1.51 chs }
294 1.44 chs
295 1.7 mrg /* object should be locked */
296 1.67 chs uobj->uo_npages--;
297 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
298 1.7 mrg pg->flags &= ~PG_TABLED;
299 1.7 mrg pg->uobject = NULL;
300 1.1 mrg }
301 1.1 mrg
302 1.136 yamt static inline void
303 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
304 1.136 yamt {
305 1.136 yamt
306 1.136 yamt KASSERT(uobj == pg->uobject);
307 1.136 yamt rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
308 1.136 yamt }
309 1.136 yamt
310 1.136 yamt static inline void
311 1.136 yamt uvm_pageremove(struct vm_page *pg)
312 1.136 yamt {
313 1.136 yamt struct uvm_object *uobj = pg->uobject;
314 1.136 yamt
315 1.136 yamt uvm_pageremove_tree(uobj, pg);
316 1.136 yamt uvm_pageremove_list(uobj, pg);
317 1.136 yamt }
318 1.136 yamt
319 1.60 thorpej static void
320 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
321 1.60 thorpej {
322 1.60 thorpej int color, i;
323 1.60 thorpej
324 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
325 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
326 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
327 1.60 thorpej }
328 1.60 thorpej }
329 1.60 thorpej }
330 1.60 thorpej
331 1.1 mrg /*
332 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
333 1.62 chs *
334 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
335 1.1 mrg */
336 1.1 mrg
337 1.7 mrg void
338 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
339 1.1 mrg {
340 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
341 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
342 1.63 chs struct vm_page *pagearray;
343 1.81 thorpej int lcv;
344 1.81 thorpej u_int i;
345 1.14 eeh paddr_t paddr;
346 1.7 mrg
347 1.133 ad KASSERT(ncpu <= 1);
348 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
349 1.133 ad
350 1.7 mrg /*
351 1.60 thorpej * init the page queues and page queue locks, except the free
352 1.60 thorpej * list; we allocate that later (with the initial vm_page
353 1.60 thorpej * structures).
354 1.7 mrg */
355 1.51 chs
356 1.133 ad curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
357 1.146 haad uvm_reclaim_init();
358 1.113 yamt uvmpdpol_init();
359 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
360 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
361 1.7 mrg
362 1.7 mrg /*
363 1.51 chs * allocate vm_page structures.
364 1.7 mrg */
365 1.7 mrg
366 1.7 mrg /*
367 1.7 mrg * sanity check:
368 1.7 mrg * before calling this function the MD code is expected to register
369 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
370 1.7 mrg * now is to allocate vm_page structures for this memory.
371 1.7 mrg */
372 1.7 mrg
373 1.7 mrg if (vm_nphysseg == 0)
374 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
375 1.62 chs
376 1.7 mrg /*
377 1.62 chs * first calculate the number of free pages...
378 1.7 mrg *
379 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
380 1.7 mrg * this allows us to allocate extra vm_page structures in case we
381 1.7 mrg * want to return some memory to the pool after booting.
382 1.7 mrg */
383 1.62 chs
384 1.7 mrg freepages = 0;
385 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
386 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
387 1.7 mrg
388 1.7 mrg /*
389 1.60 thorpej * Let MD code initialize the number of colors, or default
390 1.60 thorpej * to 1 color if MD code doesn't care.
391 1.60 thorpej */
392 1.60 thorpej if (uvmexp.ncolors == 0)
393 1.60 thorpej uvmexp.ncolors = 1;
394 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
395 1.60 thorpej
396 1.60 thorpej /*
397 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
398 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
399 1.7 mrg * thus, the total number of pages we can use is the total size of
400 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
401 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
402 1.7 mrg * truncation errors (since we can only allocate in terms of whole
403 1.7 mrg * pages).
404 1.7 mrg */
405 1.62 chs
406 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
407 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
408 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
409 1.60 thorpej
410 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
411 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
412 1.60 thorpej sizeof(struct vm_page)));
413 1.133 ad cpuarray = bucketarray + bucketcount;
414 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
415 1.60 thorpej
416 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
417 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
418 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
419 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
420 1.133 ad uvm.cpus[0].page_free[lcv].pgfl_buckets =
421 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
422 1.133 ad uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
423 1.60 thorpej }
424 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
425 1.62 chs
426 1.7 mrg /*
427 1.51 chs * init the vm_page structures and put them in the correct place.
428 1.7 mrg */
429 1.7 mrg
430 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
431 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
432 1.51 chs
433 1.7 mrg /* set up page array pointers */
434 1.7 mrg vm_physmem[lcv].pgs = pagearray;
435 1.7 mrg pagearray += n;
436 1.7 mrg pagecount -= n;
437 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
438 1.7 mrg
439 1.13 perry /* init and free vm_pages (we've already zeroed them) */
440 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
441 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
442 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
443 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
444 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
445 1.56 thorpej #endif
446 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
447 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
448 1.7 mrg uvmexp.npages++;
449 1.7 mrg /* add page to free pool */
450 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
451 1.7 mrg }
452 1.7 mrg }
453 1.7 mrg }
454 1.44 chs
455 1.7 mrg /*
456 1.88 thorpej * pass up the values of virtual_space_start and
457 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
458 1.88 thorpej * layers of the VM.
459 1.88 thorpej */
460 1.88 thorpej
461 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
462 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
463 1.91 yamt #ifdef DEBUG
464 1.91 yamt /*
465 1.91 yamt * steal kva for uvm_pagezerocheck().
466 1.91 yamt */
467 1.91 yamt uvm_zerocheckkva = *kvm_startp;
468 1.91 yamt *kvm_startp += PAGE_SIZE;
469 1.91 yamt #endif /* DEBUG */
470 1.88 thorpej
471 1.88 thorpej /*
472 1.51 chs * init various thresholds.
473 1.7 mrg */
474 1.51 chs
475 1.7 mrg uvmexp.reserve_pagedaemon = 1;
476 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
477 1.7 mrg
478 1.7 mrg /*
479 1.51 chs * determine if we should zero pages in the idle loop.
480 1.34 thorpej */
481 1.51 chs
482 1.133 ad uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
483 1.34 thorpej
484 1.34 thorpej /*
485 1.7 mrg * done!
486 1.7 mrg */
487 1.1 mrg
488 1.119 thorpej uvm.page_init_done = true;
489 1.1 mrg }
490 1.1 mrg
491 1.1 mrg /*
492 1.1 mrg * uvm_setpagesize: set the page size
493 1.62 chs *
494 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
495 1.62 chs */
496 1.1 mrg
497 1.7 mrg void
498 1.105 thorpej uvm_setpagesize(void)
499 1.1 mrg {
500 1.85 thorpej
501 1.85 thorpej /*
502 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
503 1.85 thorpej * to be a constant (indicated by being a non-zero value).
504 1.85 thorpej */
505 1.85 thorpej if (uvmexp.pagesize == 0) {
506 1.85 thorpej if (PAGE_SIZE == 0)
507 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
508 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
509 1.85 thorpej }
510 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
511 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
512 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
513 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
514 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
515 1.7 mrg break;
516 1.1 mrg }
517 1.1 mrg
518 1.1 mrg /*
519 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
520 1.1 mrg */
521 1.1 mrg
522 1.14 eeh vaddr_t
523 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
524 1.1 mrg {
525 1.119 thorpej static bool initialized = false;
526 1.14 eeh vaddr_t addr;
527 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
528 1.52 thorpej vaddr_t vaddr;
529 1.14 eeh paddr_t paddr;
530 1.52 thorpej #endif
531 1.1 mrg
532 1.7 mrg /*
533 1.19 thorpej * on first call to this function, initialize ourselves.
534 1.7 mrg */
535 1.119 thorpej if (initialized == false) {
536 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
537 1.1 mrg
538 1.7 mrg /* round it the way we like it */
539 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
540 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
541 1.19 thorpej
542 1.119 thorpej initialized = true;
543 1.7 mrg }
544 1.52 thorpej
545 1.52 thorpej /* round to page size */
546 1.52 thorpej size = round_page(size);
547 1.52 thorpej
548 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
549 1.52 thorpej
550 1.62 chs /*
551 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
552 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
553 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
554 1.52 thorpej */
555 1.52 thorpej
556 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
557 1.88 thorpej &virtual_space_end);
558 1.52 thorpej
559 1.52 thorpej return(addr);
560 1.52 thorpej
561 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
562 1.1 mrg
563 1.7 mrg /*
564 1.7 mrg * allocate virtual memory for this request
565 1.7 mrg */
566 1.88 thorpej if (virtual_space_start == virtual_space_end ||
567 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
568 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
569 1.20 thorpej
570 1.88 thorpej addr = virtual_space_start;
571 1.20 thorpej
572 1.20 thorpej #ifdef PMAP_GROWKERNEL
573 1.20 thorpej /*
574 1.20 thorpej * If the kernel pmap can't map the requested space,
575 1.20 thorpej * then allocate more resources for it.
576 1.20 thorpej */
577 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
578 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
579 1.20 thorpej if (uvm_maxkaddr < (addr + size))
580 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
581 1.19 thorpej }
582 1.20 thorpej #endif
583 1.1 mrg
584 1.88 thorpej virtual_space_start += size;
585 1.1 mrg
586 1.9 thorpej /*
587 1.7 mrg * allocate and mapin physical pages to back new virtual pages
588 1.7 mrg */
589 1.1 mrg
590 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
591 1.7 mrg vaddr += PAGE_SIZE) {
592 1.1 mrg
593 1.7 mrg if (!uvm_page_physget(&paddr))
594 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
595 1.1 mrg
596 1.23 thorpej /*
597 1.23 thorpej * Note this memory is no longer managed, so using
598 1.23 thorpej * pmap_kenter is safe.
599 1.23 thorpej */
600 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
601 1.7 mrg }
602 1.66 chris pmap_update(pmap_kernel());
603 1.7 mrg return(addr);
604 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
605 1.1 mrg }
606 1.1 mrg
607 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
608 1.1 mrg /*
609 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
610 1.1 mrg *
611 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
612 1.1 mrg * values match the start/end values. if we can't do that, then we
613 1.1 mrg * will advance both values (making them equal, and removing some
614 1.1 mrg * vm_page structures from the non-avail area).
615 1.1 mrg * => return false if out of memory.
616 1.1 mrg */
617 1.1 mrg
618 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
619 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
620 1.28 drochner
621 1.118 thorpej static bool
622 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
623 1.1 mrg {
624 1.7 mrg int lcv, x;
625 1.1 mrg
626 1.7 mrg /* pass 1: try allocating from a matching end */
627 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
628 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
629 1.1 mrg #else
630 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
631 1.1 mrg #endif
632 1.7 mrg {
633 1.1 mrg
634 1.119 thorpej if (uvm.page_init_done == true)
635 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
636 1.1 mrg
637 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
638 1.28 drochner continue;
639 1.28 drochner
640 1.7 mrg /* try from front */
641 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
642 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
643 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
644 1.7 mrg vm_physmem[lcv].avail_start++;
645 1.7 mrg vm_physmem[lcv].start++;
646 1.7 mrg /* nothing left? nuke it */
647 1.7 mrg if (vm_physmem[lcv].avail_start ==
648 1.7 mrg vm_physmem[lcv].end) {
649 1.7 mrg if (vm_nphysseg == 1)
650 1.89 wiz panic("uvm_page_physget: out of memory!");
651 1.7 mrg vm_nphysseg--;
652 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
653 1.7 mrg /* structure copy */
654 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
655 1.7 mrg }
656 1.119 thorpej return (true);
657 1.7 mrg }
658 1.7 mrg
659 1.7 mrg /* try from rear */
660 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
661 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
662 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
663 1.7 mrg vm_physmem[lcv].avail_end--;
664 1.7 mrg vm_physmem[lcv].end--;
665 1.7 mrg /* nothing left? nuke it */
666 1.7 mrg if (vm_physmem[lcv].avail_end ==
667 1.7 mrg vm_physmem[lcv].start) {
668 1.7 mrg if (vm_nphysseg == 1)
669 1.42 mrg panic("uvm_page_physget: out of memory!");
670 1.7 mrg vm_nphysseg--;
671 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
672 1.7 mrg /* structure copy */
673 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
674 1.7 mrg }
675 1.119 thorpej return (true);
676 1.7 mrg }
677 1.7 mrg }
678 1.1 mrg
679 1.7 mrg /* pass2: forget about matching ends, just allocate something */
680 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
681 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
682 1.1 mrg #else
683 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
684 1.1 mrg #endif
685 1.7 mrg {
686 1.1 mrg
687 1.7 mrg /* any room in this bank? */
688 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
689 1.7 mrg continue; /* nope */
690 1.7 mrg
691 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
692 1.7 mrg vm_physmem[lcv].avail_start++;
693 1.7 mrg /* truncate! */
694 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
695 1.7 mrg
696 1.7 mrg /* nothing left? nuke it */
697 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
698 1.7 mrg if (vm_nphysseg == 1)
699 1.42 mrg panic("uvm_page_physget: out of memory!");
700 1.7 mrg vm_nphysseg--;
701 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
702 1.7 mrg /* structure copy */
703 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
704 1.7 mrg }
705 1.119 thorpej return (true);
706 1.7 mrg }
707 1.1 mrg
708 1.119 thorpej return (false); /* whoops! */
709 1.28 drochner }
710 1.28 drochner
711 1.118 thorpej bool
712 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
713 1.28 drochner {
714 1.28 drochner int i;
715 1.28 drochner
716 1.28 drochner /* try in the order of freelist preference */
717 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
718 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
719 1.119 thorpej return (true);
720 1.119 thorpej return (false);
721 1.1 mrg }
722 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
723 1.1 mrg
724 1.1 mrg /*
725 1.1 mrg * uvm_page_physload: load physical memory into VM system
726 1.1 mrg *
727 1.1 mrg * => all args are PFs
728 1.1 mrg * => all pages in start/end get vm_page structures
729 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
730 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
731 1.1 mrg */
732 1.1 mrg
733 1.7 mrg void
734 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
735 1.105 thorpej paddr_t avail_end, int free_list)
736 1.1 mrg {
737 1.14 eeh int preload, lcv;
738 1.14 eeh psize_t npages;
739 1.7 mrg struct vm_page *pgs;
740 1.7 mrg struct vm_physseg *ps;
741 1.7 mrg
742 1.7 mrg if (uvmexp.pagesize == 0)
743 1.42 mrg panic("uvm_page_physload: page size not set!");
744 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
745 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
746 1.26 drochner if (start >= end)
747 1.26 drochner panic("uvm_page_physload: start >= end");
748 1.12 thorpej
749 1.7 mrg /*
750 1.7 mrg * do we have room?
751 1.7 mrg */
752 1.67 chs
753 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
754 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
755 1.7 mrg "segment\n");
756 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
757 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
758 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
759 1.7 mrg return;
760 1.7 mrg }
761 1.7 mrg
762 1.7 mrg /*
763 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
764 1.7 mrg * called yet, so malloc is not available).
765 1.7 mrg */
766 1.67 chs
767 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
768 1.7 mrg if (vm_physmem[lcv].pgs)
769 1.7 mrg break;
770 1.7 mrg }
771 1.7 mrg preload = (lcv == vm_nphysseg);
772 1.7 mrg
773 1.7 mrg /*
774 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
775 1.7 mrg */
776 1.67 chs
777 1.7 mrg if (!preload) {
778 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
779 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
780 1.1 mrg #else
781 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
782 1.14 eeh paddr_t paddr;
783 1.7 mrg npages = end - start; /* # of pages */
784 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
785 1.40 thorpej M_VMPAGE, M_NOWAIT);
786 1.7 mrg if (pgs == NULL) {
787 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
788 1.7 mrg "structs for segment\n");
789 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
790 1.7 mrg return;
791 1.7 mrg }
792 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
793 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
794 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
795 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
796 1.7 mrg pgs[lcv].phys_addr = paddr;
797 1.12 thorpej pgs[lcv].free_list = free_list;
798 1.7 mrg if (atop(paddr) >= avail_start &&
799 1.7 mrg atop(paddr) <= avail_end)
800 1.8 chuck uvm_pagefree(&pgs[lcv]);
801 1.7 mrg }
802 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
803 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
804 1.1 mrg #endif
805 1.7 mrg } else {
806 1.7 mrg pgs = NULL;
807 1.7 mrg npages = 0;
808 1.7 mrg }
809 1.1 mrg
810 1.7 mrg /*
811 1.7 mrg * now insert us in the proper place in vm_physmem[]
812 1.7 mrg */
813 1.1 mrg
814 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
815 1.7 mrg /* random: put it at the end (easy!) */
816 1.7 mrg ps = &vm_physmem[vm_nphysseg];
817 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
818 1.7 mrg {
819 1.7 mrg int x;
820 1.7 mrg /* sort by address for binary search */
821 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
822 1.7 mrg if (start < vm_physmem[lcv].start)
823 1.7 mrg break;
824 1.7 mrg ps = &vm_physmem[lcv];
825 1.7 mrg /* move back other entries, if necessary ... */
826 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
827 1.7 mrg /* structure copy */
828 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
829 1.7 mrg }
830 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
831 1.7 mrg {
832 1.7 mrg int x;
833 1.7 mrg /* sort by largest segment first */
834 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
835 1.7 mrg if ((end - start) >
836 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
837 1.7 mrg break;
838 1.7 mrg ps = &vm_physmem[lcv];
839 1.7 mrg /* move back other entries, if necessary ... */
840 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
841 1.7 mrg /* structure copy */
842 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
843 1.7 mrg }
844 1.1 mrg #else
845 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
846 1.1 mrg #endif
847 1.1 mrg
848 1.7 mrg ps->start = start;
849 1.7 mrg ps->end = end;
850 1.7 mrg ps->avail_start = avail_start;
851 1.7 mrg ps->avail_end = avail_end;
852 1.7 mrg if (preload) {
853 1.7 mrg ps->pgs = NULL;
854 1.7 mrg } else {
855 1.7 mrg ps->pgs = pgs;
856 1.7 mrg ps->lastpg = pgs + npages - 1;
857 1.7 mrg }
858 1.12 thorpej ps->free_list = free_list;
859 1.7 mrg vm_nphysseg++;
860 1.7 mrg
861 1.113 yamt if (!preload) {
862 1.113 yamt uvmpdpol_reinit();
863 1.113 yamt }
864 1.1 mrg }
865 1.1 mrg
866 1.1 mrg /*
867 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
868 1.60 thorpej * larger than the old one.
869 1.60 thorpej */
870 1.60 thorpej
871 1.60 thorpej void
872 1.60 thorpej uvm_page_recolor(int newncolors)
873 1.60 thorpej {
874 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
875 1.133 ad struct pgfreelist gpgfl, pgfl;
876 1.63 chs struct vm_page *pg;
877 1.60 thorpej vsize_t bucketcount;
878 1.123 ad int lcv, color, i, ocolors;
879 1.133 ad struct uvm_cpu *ucpu;
880 1.60 thorpej
881 1.60 thorpej if (newncolors <= uvmexp.ncolors)
882 1.60 thorpej return;
883 1.77 wrstuden
884 1.119 thorpej if (uvm.page_init_done == false) {
885 1.77 wrstuden uvmexp.ncolors = newncolors;
886 1.77 wrstuden return;
887 1.77 wrstuden }
888 1.60 thorpej
889 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
890 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
891 1.60 thorpej M_VMPAGE, M_NOWAIT);
892 1.133 ad cpuarray = bucketarray + bucketcount;
893 1.60 thorpej if (bucketarray == NULL) {
894 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
895 1.60 thorpej (long) bucketcount);
896 1.60 thorpej return;
897 1.60 thorpej }
898 1.60 thorpej
899 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
900 1.60 thorpej
901 1.60 thorpej /* Make sure we should still do this. */
902 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
903 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
904 1.60 thorpej free(bucketarray, M_VMPAGE);
905 1.60 thorpej return;
906 1.60 thorpej }
907 1.60 thorpej
908 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
909 1.60 thorpej ocolors = uvmexp.ncolors;
910 1.60 thorpej
911 1.60 thorpej uvmexp.ncolors = newncolors;
912 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
913 1.60 thorpej
914 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
915 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
916 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
917 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
918 1.133 ad uvm_page_init_buckets(&gpgfl);
919 1.60 thorpej uvm_page_init_buckets(&pgfl);
920 1.60 thorpej for (color = 0; color < ocolors; color++) {
921 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
922 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
923 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
924 1.60 thorpej != NULL) {
925 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
926 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
927 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
928 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
929 1.133 ad i], pg, pageq.list);
930 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
931 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
932 1.133 ad i], pg, listq.list);
933 1.60 thorpej }
934 1.60 thorpej }
935 1.60 thorpej }
936 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
937 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
938 1.60 thorpej }
939 1.60 thorpej
940 1.60 thorpej if (have_recolored_pages) {
941 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
942 1.60 thorpej free(oldbucketarray, M_VMPAGE);
943 1.60 thorpej return;
944 1.60 thorpej }
945 1.60 thorpej
946 1.119 thorpej have_recolored_pages = true;
947 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
948 1.60 thorpej }
949 1.1 mrg
950 1.1 mrg /*
951 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
952 1.133 ad */
953 1.133 ad
954 1.133 ad void
955 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
956 1.133 ad {
957 1.133 ad struct pgflbucket *bucketarray;
958 1.133 ad struct pgfreelist pgfl;
959 1.133 ad struct uvm_cpu *ucpu;
960 1.133 ad vsize_t bucketcount;
961 1.133 ad int lcv;
962 1.133 ad
963 1.133 ad if (CPU_IS_PRIMARY(ci)) {
964 1.133 ad /* Already done in uvm_page_init(). */
965 1.133 ad return;
966 1.133 ad }
967 1.133 ad
968 1.140 ad /* Add more reserve pages for this CPU. */
969 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
970 1.140 ad
971 1.140 ad /* Configure this CPU's free lists. */
972 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
973 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
974 1.133 ad M_VMPAGE, M_WAITOK);
975 1.133 ad ucpu = &uvm.cpus[cpu_index(ci)];
976 1.133 ad ci->ci_data.cpu_uvm = ucpu;
977 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
978 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
979 1.133 ad uvm_page_init_buckets(&pgfl);
980 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
981 1.133 ad }
982 1.133 ad }
983 1.133 ad
984 1.133 ad /*
985 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
986 1.54 thorpej */
987 1.54 thorpej
988 1.114 thorpej static struct vm_page *
989 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
990 1.69 simonb int *trycolorp)
991 1.54 thorpej {
992 1.133 ad struct pgflist *freeq;
993 1.54 thorpej struct vm_page *pg;
994 1.58 enami int color, trycolor = *trycolorp;
995 1.133 ad struct pgfreelist *gpgfl, *pgfl;
996 1.54 thorpej
997 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
998 1.130 ad
999 1.58 enami color = trycolor;
1000 1.133 ad pgfl = &ucpu->page_free[flist];
1001 1.133 ad gpgfl = &uvm.page_free[flist];
1002 1.58 enami do {
1003 1.133 ad /* cpu, try1 */
1004 1.133 ad if ((pg = LIST_FIRST((freeq =
1005 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1006 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1007 1.133 ad uvmexp.cpuhit++;
1008 1.133 ad goto gotit;
1009 1.133 ad }
1010 1.133 ad /* global, try1 */
1011 1.133 ad if ((pg = LIST_FIRST((freeq =
1012 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1013 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1014 1.133 ad uvmexp.cpumiss++;
1015 1.54 thorpej goto gotit;
1016 1.133 ad }
1017 1.133 ad /* cpu, try2 */
1018 1.133 ad if ((pg = LIST_FIRST((freeq =
1019 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1020 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1021 1.133 ad uvmexp.cpuhit++;
1022 1.54 thorpej goto gotit;
1023 1.133 ad }
1024 1.133 ad /* global, try2 */
1025 1.133 ad if ((pg = LIST_FIRST((freeq =
1026 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1027 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1028 1.133 ad uvmexp.cpumiss++;
1029 1.133 ad goto gotit;
1030 1.133 ad }
1031 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1032 1.58 enami } while (color != trycolor);
1033 1.54 thorpej
1034 1.54 thorpej return (NULL);
1035 1.54 thorpej
1036 1.54 thorpej gotit:
1037 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1038 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1039 1.54 thorpej uvmexp.free--;
1040 1.54 thorpej
1041 1.54 thorpej /* update zero'd page count */
1042 1.54 thorpej if (pg->flags & PG_ZERO)
1043 1.54 thorpej uvmexp.zeropages--;
1044 1.54 thorpej
1045 1.54 thorpej if (color == trycolor)
1046 1.54 thorpej uvmexp.colorhit++;
1047 1.54 thorpej else {
1048 1.54 thorpej uvmexp.colormiss++;
1049 1.54 thorpej *trycolorp = color;
1050 1.54 thorpej }
1051 1.54 thorpej
1052 1.54 thorpej return (pg);
1053 1.54 thorpej }
1054 1.54 thorpej
1055 1.54 thorpej /*
1056 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1057 1.1 mrg *
1058 1.1 mrg * => return null if no pages free
1059 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1060 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1061 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1062 1.1 mrg * => only one of obj or anon can be non-null
1063 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1064 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1065 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1066 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1067 1.34 thorpej * unknown contents page. This is because we live with the
1068 1.34 thorpej * consequences of a bad free list decision for the entire
1069 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1070 1.34 thorpej * is slower to access.
1071 1.1 mrg */
1072 1.1 mrg
1073 1.7 mrg struct vm_page *
1074 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1075 1.105 thorpej int flags, int strat, int free_list)
1076 1.1 mrg {
1077 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1078 1.133 ad struct uvm_cpu *ucpu;
1079 1.7 mrg struct vm_page *pg;
1080 1.141 ad lwp_t *l;
1081 1.1 mrg
1082 1.44 chs KASSERT(obj == NULL || anon == NULL);
1083 1.113 yamt KASSERT(anon == NULL || off == 0);
1084 1.44 chs KASSERT(off == trunc_page(off));
1085 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1086 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1087 1.48 thorpej
1088 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1089 1.1 mrg
1090 1.7 mrg /*
1091 1.54 thorpej * This implements a global round-robin page coloring
1092 1.54 thorpej * algorithm.
1093 1.54 thorpej *
1094 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1095 1.54 thorpej */
1096 1.67 chs
1097 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1098 1.133 ad color = ucpu->page_free_nextcolor;
1099 1.54 thorpej
1100 1.54 thorpej /*
1101 1.7 mrg * check to see if we need to generate some free pages waking
1102 1.7 mrg * the pagedaemon.
1103 1.7 mrg */
1104 1.7 mrg
1105 1.113 yamt uvm_kick_pdaemon();
1106 1.7 mrg
1107 1.7 mrg /*
1108 1.7 mrg * fail if any of these conditions is true:
1109 1.7 mrg * [1] there really are no free pages, or
1110 1.7 mrg * [2] only kernel "reserved" pages remain and
1111 1.141 ad * reserved pages have not been requested.
1112 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1113 1.7 mrg * the requestor isn't the pagedaemon.
1114 1.141 ad * we make kernel reserve pages available if called by a
1115 1.141 ad * kernel thread or a realtime thread.
1116 1.7 mrg */
1117 1.141 ad l = curlwp;
1118 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1119 1.141 ad flags |= UVM_PGA_USERESERVE;
1120 1.141 ad }
1121 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1122 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1123 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1124 1.141 ad curlwp != uvm.pagedaemon_lwp))
1125 1.12 thorpej goto fail;
1126 1.12 thorpej
1127 1.34 thorpej #if PGFL_NQUEUES != 2
1128 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1129 1.34 thorpej #endif
1130 1.34 thorpej
1131 1.34 thorpej /*
1132 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1133 1.34 thorpej * we try the UNKNOWN queue first.
1134 1.34 thorpej */
1135 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1136 1.34 thorpej try1 = PGFL_ZEROS;
1137 1.34 thorpej try2 = PGFL_UNKNOWN;
1138 1.34 thorpej } else {
1139 1.34 thorpej try1 = PGFL_UNKNOWN;
1140 1.34 thorpej try2 = PGFL_ZEROS;
1141 1.34 thorpej }
1142 1.34 thorpej
1143 1.12 thorpej again:
1144 1.12 thorpej switch (strat) {
1145 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1146 1.145 abs /* Check freelists: descending priority (ascending id) order */
1147 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1148 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1149 1.54 thorpej try1, try2, &color);
1150 1.54 thorpej if (pg != NULL)
1151 1.12 thorpej goto gotit;
1152 1.12 thorpej }
1153 1.12 thorpej
1154 1.12 thorpej /* No pages free! */
1155 1.12 thorpej goto fail;
1156 1.12 thorpej
1157 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1158 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1159 1.12 thorpej /* Attempt to allocate from the specified free list. */
1160 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1161 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1162 1.54 thorpej try1, try2, &color);
1163 1.54 thorpej if (pg != NULL)
1164 1.12 thorpej goto gotit;
1165 1.12 thorpej
1166 1.12 thorpej /* Fall back, if possible. */
1167 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1168 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1169 1.12 thorpej goto again;
1170 1.12 thorpej }
1171 1.12 thorpej
1172 1.12 thorpej /* No pages free! */
1173 1.12 thorpej goto fail;
1174 1.12 thorpej
1175 1.12 thorpej default:
1176 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1177 1.12 thorpej /* NOTREACHED */
1178 1.7 mrg }
1179 1.7 mrg
1180 1.12 thorpej gotit:
1181 1.54 thorpej /*
1182 1.54 thorpej * We now know which color we actually allocated from; set
1183 1.54 thorpej * the next color accordingly.
1184 1.54 thorpej */
1185 1.67 chs
1186 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1187 1.34 thorpej
1188 1.34 thorpej /*
1189 1.34 thorpej * update allocation statistics and remember if we have to
1190 1.34 thorpej * zero the page
1191 1.34 thorpej */
1192 1.67 chs
1193 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1194 1.34 thorpej if (pg->flags & PG_ZERO) {
1195 1.34 thorpej uvmexp.pga_zerohit++;
1196 1.34 thorpej zeroit = 0;
1197 1.34 thorpej } else {
1198 1.34 thorpej uvmexp.pga_zeromiss++;
1199 1.34 thorpej zeroit = 1;
1200 1.34 thorpej }
1201 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1202 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1203 1.133 ad }
1204 1.34 thorpej }
1205 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1206 1.7 mrg
1207 1.7 mrg pg->offset = off;
1208 1.7 mrg pg->uobject = obj;
1209 1.7 mrg pg->uanon = anon;
1210 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1211 1.7 mrg if (anon) {
1212 1.103 yamt anon->an_page = pg;
1213 1.7 mrg pg->pqflags = PQ_ANON;
1214 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1215 1.7 mrg } else {
1216 1.67 chs if (obj) {
1217 1.7 mrg uvm_pageinsert(pg);
1218 1.67 chs }
1219 1.7 mrg pg->pqflags = 0;
1220 1.7 mrg }
1221 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1222 1.143 drochner
1223 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1224 1.7 mrg pg->owner_tag = NULL;
1225 1.1 mrg #endif
1226 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1227 1.33 thorpej
1228 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1229 1.33 thorpej /*
1230 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1231 1.34 thorpej * zero'd, then we have to zero it ourselves.
1232 1.33 thorpej */
1233 1.33 thorpej pg->flags &= ~PG_CLEAN;
1234 1.34 thorpej if (zeroit)
1235 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1236 1.33 thorpej }
1237 1.1 mrg
1238 1.7 mrg return(pg);
1239 1.12 thorpej
1240 1.12 thorpej fail:
1241 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1242 1.12 thorpej return (NULL);
1243 1.1 mrg }
1244 1.1 mrg
1245 1.1 mrg /*
1246 1.96 yamt * uvm_pagereplace: replace a page with another
1247 1.96 yamt *
1248 1.96 yamt * => object must be locked
1249 1.96 yamt */
1250 1.96 yamt
1251 1.96 yamt void
1252 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1253 1.96 yamt {
1254 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1255 1.97 junyoung
1256 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1257 1.136 yamt KASSERT(uobj != NULL);
1258 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1259 1.96 yamt KASSERT(newpg->uobject == NULL);
1260 1.136 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
1261 1.96 yamt
1262 1.136 yamt newpg->uobject = uobj;
1263 1.96 yamt newpg->offset = oldpg->offset;
1264 1.96 yamt
1265 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1266 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1267 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1268 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1269 1.96 yamt }
1270 1.96 yamt
1271 1.96 yamt /*
1272 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1273 1.1 mrg *
1274 1.1 mrg * => both objects must be locked
1275 1.1 mrg */
1276 1.1 mrg
1277 1.7 mrg void
1278 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1279 1.1 mrg {
1280 1.7 mrg /*
1281 1.7 mrg * remove it from the old object
1282 1.7 mrg */
1283 1.7 mrg
1284 1.7 mrg if (pg->uobject) {
1285 1.7 mrg uvm_pageremove(pg);
1286 1.7 mrg }
1287 1.7 mrg
1288 1.7 mrg /*
1289 1.7 mrg * put it in the new object
1290 1.7 mrg */
1291 1.7 mrg
1292 1.7 mrg if (newobj) {
1293 1.7 mrg pg->uobject = newobj;
1294 1.7 mrg pg->offset = newoff;
1295 1.7 mrg uvm_pageinsert(pg);
1296 1.7 mrg }
1297 1.1 mrg }
1298 1.1 mrg
1299 1.91 yamt #ifdef DEBUG
1300 1.91 yamt /*
1301 1.91 yamt * check if page is zero-filled
1302 1.91 yamt *
1303 1.91 yamt * - called with free page queue lock held.
1304 1.91 yamt */
1305 1.91 yamt void
1306 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1307 1.91 yamt {
1308 1.91 yamt int *p, *ep;
1309 1.91 yamt
1310 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1311 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1312 1.91 yamt
1313 1.91 yamt /*
1314 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1315 1.91 yamt * uvm page allocator.
1316 1.91 yamt *
1317 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1318 1.91 yamt */
1319 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1320 1.91 yamt p = (int *)uvm_zerocheckkva;
1321 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1322 1.92 yamt pmap_update(pmap_kernel());
1323 1.91 yamt while (p < ep) {
1324 1.91 yamt if (*p != 0)
1325 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1326 1.91 yamt p++;
1327 1.91 yamt }
1328 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1329 1.131 yamt /*
1330 1.131 yamt * pmap_update() is not necessary here because no one except us
1331 1.131 yamt * uses this VA.
1332 1.131 yamt */
1333 1.91 yamt }
1334 1.91 yamt #endif /* DEBUG */
1335 1.91 yamt
1336 1.1 mrg /*
1337 1.1 mrg * uvm_pagefree: free page
1338 1.1 mrg *
1339 1.133 ad * => erase page's identity (i.e. remove from object)
1340 1.1 mrg * => put page on free list
1341 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1342 1.1 mrg * => caller must lock page queues
1343 1.1 mrg * => assumes all valid mappings of pg are gone
1344 1.1 mrg */
1345 1.1 mrg
1346 1.44 chs void
1347 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1348 1.1 mrg {
1349 1.133 ad struct pgflist *pgfl;
1350 1.133 ad struct uvm_cpu *ucpu;
1351 1.133 ad int index, color, queue;
1352 1.118 thorpej bool iszero;
1353 1.67 chs
1354 1.44 chs #ifdef DEBUG
1355 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1356 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1357 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1358 1.44 chs }
1359 1.91 yamt #endif /* DEBUG */
1360 1.44 chs
1361 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1362 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1363 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1364 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1365 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1366 1.127 ad mutex_owned(&pg->uanon->an_lock));
1367 1.123 ad
1368 1.7 mrg /*
1369 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1370 1.7 mrg */
1371 1.7 mrg
1372 1.67 chs if (pg->loan_count) {
1373 1.70 chs KASSERT(pg->wire_count == 0);
1374 1.7 mrg
1375 1.7 mrg /*
1376 1.67 chs * if the page is owned by an anon then we just want to
1377 1.70 chs * drop anon ownership. the kernel will free the page when
1378 1.70 chs * it is done with it. if the page is owned by an object,
1379 1.70 chs * remove it from the object and mark it dirty for the benefit
1380 1.70 chs * of possible anon owners.
1381 1.70 chs *
1382 1.70 chs * regardless of previous ownership, wakeup any waiters,
1383 1.70 chs * unbusy the page, and we're done.
1384 1.7 mrg */
1385 1.7 mrg
1386 1.73 chs if (pg->uobject != NULL) {
1387 1.70 chs uvm_pageremove(pg);
1388 1.67 chs pg->flags &= ~PG_CLEAN;
1389 1.73 chs } else if (pg->uanon != NULL) {
1390 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1391 1.73 chs pg->loan_count--;
1392 1.73 chs } else {
1393 1.73 chs pg->pqflags &= ~PQ_ANON;
1394 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1395 1.73 chs }
1396 1.103 yamt pg->uanon->an_page = NULL;
1397 1.73 chs pg->uanon = NULL;
1398 1.67 chs }
1399 1.70 chs if (pg->flags & PG_WANTED) {
1400 1.70 chs wakeup(pg);
1401 1.70 chs }
1402 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1403 1.70 chs #ifdef UVM_PAGE_TRKOWN
1404 1.70 chs pg->owner_tag = NULL;
1405 1.70 chs #endif
1406 1.73 chs if (pg->loan_count) {
1407 1.115 yamt KASSERT(pg->uobject == NULL);
1408 1.115 yamt if (pg->uanon == NULL) {
1409 1.115 yamt uvm_pagedequeue(pg);
1410 1.115 yamt }
1411 1.73 chs return;
1412 1.73 chs }
1413 1.67 chs }
1414 1.62 chs
1415 1.67 chs /*
1416 1.67 chs * remove page from its object or anon.
1417 1.67 chs */
1418 1.44 chs
1419 1.73 chs if (pg->uobject != NULL) {
1420 1.67 chs uvm_pageremove(pg);
1421 1.73 chs } else if (pg->uanon != NULL) {
1422 1.103 yamt pg->uanon->an_page = NULL;
1423 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1424 1.7 mrg }
1425 1.1 mrg
1426 1.7 mrg /*
1427 1.70 chs * now remove the page from the queues.
1428 1.7 mrg */
1429 1.7 mrg
1430 1.67 chs uvm_pagedequeue(pg);
1431 1.7 mrg
1432 1.7 mrg /*
1433 1.7 mrg * if the page was wired, unwire it now.
1434 1.7 mrg */
1435 1.44 chs
1436 1.34 thorpej if (pg->wire_count) {
1437 1.7 mrg pg->wire_count = 0;
1438 1.7 mrg uvmexp.wired--;
1439 1.44 chs }
1440 1.7 mrg
1441 1.7 mrg /*
1442 1.44 chs * and put on free queue
1443 1.7 mrg */
1444 1.7 mrg
1445 1.90 yamt iszero = (pg->flags & PG_ZERO);
1446 1.133 ad index = uvm_page_lookup_freelist(pg);
1447 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1448 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1449 1.34 thorpej
1450 1.3 chs #ifdef DEBUG
1451 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1452 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1453 1.3 chs #endif
1454 1.90 yamt
1455 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1456 1.143 drochner pg->pqflags = PQ_FREE;
1457 1.91 yamt
1458 1.91 yamt #ifdef DEBUG
1459 1.91 yamt if (iszero)
1460 1.91 yamt uvm_pagezerocheck(pg);
1461 1.91 yamt #endif /* DEBUG */
1462 1.91 yamt
1463 1.133 ad
1464 1.133 ad /* global list */
1465 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1466 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1467 1.7 mrg uvmexp.free++;
1468 1.133 ad if (iszero) {
1469 1.90 yamt uvmexp.zeropages++;
1470 1.133 ad }
1471 1.34 thorpej
1472 1.133 ad /* per-cpu list */
1473 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1474 1.133 ad pg->offset = (uintptr_t)ucpu;
1475 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1476 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1477 1.133 ad ucpu->pages[queue]++;
1478 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1479 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1480 1.133 ad }
1481 1.34 thorpej
1482 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1483 1.44 chs }
1484 1.44 chs
1485 1.44 chs /*
1486 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1487 1.44 chs *
1488 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1489 1.44 chs * => if pages are object-owned, object must be locked.
1490 1.67 chs * => if pages are anon-owned, anons must be locked.
1491 1.76 enami * => caller must lock page queues if pages may be released.
1492 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1493 1.44 chs */
1494 1.44 chs
1495 1.44 chs void
1496 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1497 1.44 chs {
1498 1.44 chs struct vm_page *pg;
1499 1.44 chs int i;
1500 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1501 1.44 chs
1502 1.44 chs for (i = 0; i < npgs; i++) {
1503 1.44 chs pg = pgs[i];
1504 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1505 1.44 chs continue;
1506 1.44 chs }
1507 1.98 yamt
1508 1.127 ad KASSERT(pg->uobject == NULL ||
1509 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1510 1.127 ad KASSERT(pg->uobject != NULL ||
1511 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1512 1.98 yamt
1513 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1514 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1515 1.44 chs if (pg->flags & PG_WANTED) {
1516 1.44 chs wakeup(pg);
1517 1.44 chs }
1518 1.44 chs if (pg->flags & PG_RELEASED) {
1519 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1520 1.98 yamt KASSERT(pg->uobject != NULL ||
1521 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1522 1.67 chs pg->flags &= ~PG_RELEASED;
1523 1.67 chs uvm_pagefree(pg);
1524 1.44 chs } else {
1525 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1526 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1527 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1528 1.44 chs UVM_PAGE_OWN(pg, NULL);
1529 1.44 chs }
1530 1.44 chs }
1531 1.1 mrg }
1532 1.1 mrg
1533 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1534 1.1 mrg /*
1535 1.1 mrg * uvm_page_own: set or release page ownership
1536 1.1 mrg *
1537 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1538 1.1 mrg * and where they do it. it can be used to track down problems
1539 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1540 1.1 mrg * => page's object [if any] must be locked
1541 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1542 1.1 mrg */
1543 1.7 mrg void
1544 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1545 1.1 mrg {
1546 1.112 yamt struct uvm_object *uobj;
1547 1.112 yamt struct vm_anon *anon;
1548 1.112 yamt
1549 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1550 1.67 chs
1551 1.112 yamt uobj = pg->uobject;
1552 1.112 yamt anon = pg->uanon;
1553 1.112 yamt if (uobj != NULL) {
1554 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1555 1.112 yamt } else if (anon != NULL) {
1556 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1557 1.112 yamt }
1558 1.112 yamt
1559 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1560 1.112 yamt
1561 1.7 mrg /* gain ownership? */
1562 1.7 mrg if (tag) {
1563 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1564 1.7 mrg if (pg->owner_tag) {
1565 1.7 mrg printf("uvm_page_own: page %p already owned "
1566 1.7 mrg "by proc %d [%s]\n", pg,
1567 1.74 enami pg->owner, pg->owner_tag);
1568 1.7 mrg panic("uvm_page_own");
1569 1.7 mrg }
1570 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1571 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1572 1.7 mrg pg->owner_tag = tag;
1573 1.7 mrg return;
1574 1.7 mrg }
1575 1.7 mrg
1576 1.7 mrg /* drop ownership */
1577 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1578 1.7 mrg if (pg->owner_tag == NULL) {
1579 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1580 1.7 mrg "page (%p)\n", pg);
1581 1.7 mrg panic("uvm_page_own");
1582 1.7 mrg }
1583 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1584 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1585 1.115 yamt pg->wire_count > 0);
1586 1.115 yamt } else {
1587 1.115 yamt KASSERT(pg->wire_count == 0);
1588 1.115 yamt }
1589 1.7 mrg pg->owner_tag = NULL;
1590 1.1 mrg }
1591 1.1 mrg #endif
1592 1.34 thorpej
1593 1.34 thorpej /*
1594 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1595 1.34 thorpej *
1596 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1597 1.54 thorpej * on the CPU cache.
1598 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1599 1.132 ad * to run, or MD code detects a reason to break early.
1600 1.34 thorpej */
1601 1.34 thorpej void
1602 1.105 thorpej uvm_pageidlezero(void)
1603 1.34 thorpej {
1604 1.34 thorpej struct vm_page *pg;
1605 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1606 1.133 ad struct uvm_cpu *ucpu;
1607 1.133 ad int free_list, firstbucket, nextbucket;
1608 1.133 ad
1609 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1610 1.133 ad if (!ucpu->page_idle_zero ||
1611 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1612 1.133 ad ucpu->page_idle_zero = false;
1613 1.132 ad return;
1614 1.132 ad }
1615 1.133 ad mutex_enter(&uvm_fpageqlock);
1616 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1617 1.133 ad nextbucket = firstbucket;
1618 1.58 enami do {
1619 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1620 1.139 ad if (sched_curcpu_runnable_p()) {
1621 1.139 ad goto quit;
1622 1.139 ad }
1623 1.133 ad pgfl = &ucpu->page_free[free_list];
1624 1.133 ad gpgfl = &uvm.page_free[free_list];
1625 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1626 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1627 1.132 ad if (sched_curcpu_runnable_p()) {
1628 1.101 yamt goto quit;
1629 1.132 ad }
1630 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1631 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1632 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1633 1.54 thorpej uvmexp.free--;
1634 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1635 1.143 drochner pg->pqflags = 0;
1636 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1637 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1638 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1639 1.67 chs
1640 1.54 thorpej /*
1641 1.54 thorpej * The machine-dependent code detected
1642 1.54 thorpej * some reason for us to abort zeroing
1643 1.54 thorpej * pages, probably because there is a
1644 1.54 thorpej * process now ready to run.
1645 1.54 thorpej */
1646 1.67 chs
1647 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1648 1.144 drochner pg->pqflags = PQ_FREE;
1649 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1650 1.133 ad nextbucket].pgfl_queues[
1651 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1652 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1653 1.54 thorpej nextbucket].pgfl_queues[
1654 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1655 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1656 1.54 thorpej uvmexp.free++;
1657 1.54 thorpej uvmexp.zeroaborts++;
1658 1.101 yamt goto quit;
1659 1.54 thorpej }
1660 1.54 thorpej #else
1661 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1662 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1663 1.54 thorpej pg->flags |= PG_ZERO;
1664 1.54 thorpej
1665 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1666 1.143 drochner pg->pqflags = PQ_FREE;
1667 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1668 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1669 1.133 ad pg, pageq.list);
1670 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1671 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1672 1.133 ad pg, listq.list);
1673 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1674 1.54 thorpej uvmexp.free++;
1675 1.54 thorpej uvmexp.zeropages++;
1676 1.54 thorpej }
1677 1.41 thorpej }
1678 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1679 1.133 ad break;
1680 1.133 ad }
1681 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1682 1.58 enami } while (nextbucket != firstbucket);
1683 1.133 ad ucpu->page_idle_zero = false;
1684 1.133 ad quit:
1685 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1686 1.34 thorpej }
1687 1.110 yamt
1688 1.110 yamt /*
1689 1.110 yamt * uvm_pagelookup: look up a page
1690 1.110 yamt *
1691 1.110 yamt * => caller should lock object to keep someone from pulling the page
1692 1.110 yamt * out from under it
1693 1.110 yamt */
1694 1.110 yamt
1695 1.110 yamt struct vm_page *
1696 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1697 1.110 yamt {
1698 1.110 yamt struct vm_page *pg;
1699 1.110 yamt
1700 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1701 1.123 ad
1702 1.134 ad pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1703 1.134 ad
1704 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1705 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1706 1.110 yamt (pg->flags & PG_BUSY) != 0);
1707 1.110 yamt return(pg);
1708 1.110 yamt }
1709 1.110 yamt
1710 1.110 yamt /*
1711 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1712 1.110 yamt *
1713 1.110 yamt * => caller must lock page queues
1714 1.110 yamt */
1715 1.110 yamt
1716 1.110 yamt void
1717 1.110 yamt uvm_pagewire(struct vm_page *pg)
1718 1.110 yamt {
1719 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1720 1.113 yamt #if defined(READAHEAD_STATS)
1721 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1722 1.113 yamt uvm_ra_hit.ev_count++;
1723 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1724 1.113 yamt }
1725 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1726 1.110 yamt if (pg->wire_count == 0) {
1727 1.110 yamt uvm_pagedequeue(pg);
1728 1.110 yamt uvmexp.wired++;
1729 1.110 yamt }
1730 1.110 yamt pg->wire_count++;
1731 1.110 yamt }
1732 1.110 yamt
1733 1.110 yamt /*
1734 1.110 yamt * uvm_pageunwire: unwire the page.
1735 1.110 yamt *
1736 1.110 yamt * => activate if wire count goes to zero.
1737 1.110 yamt * => caller must lock page queues
1738 1.110 yamt */
1739 1.110 yamt
1740 1.110 yamt void
1741 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1742 1.110 yamt {
1743 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1744 1.110 yamt pg->wire_count--;
1745 1.110 yamt if (pg->wire_count == 0) {
1746 1.111 yamt uvm_pageactivate(pg);
1747 1.110 yamt uvmexp.wired--;
1748 1.110 yamt }
1749 1.110 yamt }
1750 1.110 yamt
1751 1.110 yamt /*
1752 1.110 yamt * uvm_pagedeactivate: deactivate page
1753 1.110 yamt *
1754 1.110 yamt * => caller must lock page queues
1755 1.110 yamt * => caller must check to make sure page is not wired
1756 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1757 1.110 yamt * => caller must clear the reference on the page before calling
1758 1.110 yamt */
1759 1.110 yamt
1760 1.110 yamt void
1761 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1762 1.110 yamt {
1763 1.113 yamt
1764 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1765 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1766 1.113 yamt uvmpdpol_pagedeactivate(pg);
1767 1.110 yamt }
1768 1.110 yamt
1769 1.110 yamt /*
1770 1.110 yamt * uvm_pageactivate: activate page
1771 1.110 yamt *
1772 1.110 yamt * => caller must lock page queues
1773 1.110 yamt */
1774 1.110 yamt
1775 1.110 yamt void
1776 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1777 1.110 yamt {
1778 1.113 yamt
1779 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1780 1.113 yamt #if defined(READAHEAD_STATS)
1781 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1782 1.113 yamt uvm_ra_hit.ev_count++;
1783 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1784 1.113 yamt }
1785 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1786 1.113 yamt if (pg->wire_count != 0) {
1787 1.113 yamt return;
1788 1.110 yamt }
1789 1.113 yamt uvmpdpol_pageactivate(pg);
1790 1.110 yamt }
1791 1.110 yamt
1792 1.110 yamt /*
1793 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1794 1.110 yamt */
1795 1.110 yamt
1796 1.110 yamt void
1797 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1798 1.110 yamt {
1799 1.113 yamt
1800 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1801 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1802 1.110 yamt }
1803 1.123 ad
1804 1.113 yamt uvmpdpol_pagedequeue(pg);
1805 1.113 yamt }
1806 1.113 yamt
1807 1.113 yamt /*
1808 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1809 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1810 1.113 yamt */
1811 1.113 yamt
1812 1.113 yamt void
1813 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1814 1.113 yamt {
1815 1.113 yamt
1816 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1817 1.113 yamt if (pg->wire_count != 0) {
1818 1.113 yamt return;
1819 1.113 yamt }
1820 1.113 yamt uvmpdpol_pageenqueue(pg);
1821 1.110 yamt }
1822 1.110 yamt
1823 1.110 yamt /*
1824 1.110 yamt * uvm_pagezero: zero fill a page
1825 1.110 yamt *
1826 1.110 yamt * => if page is part of an object then the object should be locked
1827 1.110 yamt * to protect pg->flags.
1828 1.110 yamt */
1829 1.110 yamt
1830 1.110 yamt void
1831 1.110 yamt uvm_pagezero(struct vm_page *pg)
1832 1.110 yamt {
1833 1.110 yamt pg->flags &= ~PG_CLEAN;
1834 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1835 1.110 yamt }
1836 1.110 yamt
1837 1.110 yamt /*
1838 1.110 yamt * uvm_pagecopy: copy a page
1839 1.110 yamt *
1840 1.110 yamt * => if page is part of an object then the object should be locked
1841 1.110 yamt * to protect pg->flags.
1842 1.110 yamt */
1843 1.110 yamt
1844 1.110 yamt void
1845 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1846 1.110 yamt {
1847 1.110 yamt
1848 1.110 yamt dst->flags &= ~PG_CLEAN;
1849 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1850 1.110 yamt }
1851 1.110 yamt
1852 1.110 yamt /*
1853 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1854 1.150 thorpej */
1855 1.150 thorpej
1856 1.150 thorpej bool
1857 1.150 thorpej uvm_pageismanaged(paddr_t pa)
1858 1.150 thorpej {
1859 1.150 thorpej
1860 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
1861 1.150 thorpej }
1862 1.150 thorpej
1863 1.150 thorpej /*
1864 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1865 1.110 yamt */
1866 1.110 yamt
1867 1.110 yamt int
1868 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1869 1.110 yamt {
1870 1.110 yamt int lcv;
1871 1.110 yamt
1872 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1873 1.110 yamt KASSERT(lcv != -1);
1874 1.110 yamt return (vm_physmem[lcv].free_list);
1875 1.110 yamt }
1876