uvm_page.c revision 1.156 1 1.156 rmind /* $NetBSD: uvm_page.c,v 1.156 2010/09/24 22:51:51 rmind Exp $ */
2 1.155 ad
3 1.155 ad /*
4 1.155 ad * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 1.155 ad * All rights reserved.
6 1.155 ad *
7 1.155 ad * Redistribution and use in source and binary forms, with or without
8 1.155 ad * modification, are permitted provided that the following conditions
9 1.155 ad * are met:
10 1.155 ad * 1. Redistributions of source code must retain the above copyright
11 1.155 ad * notice, this list of conditions and the following disclaimer.
12 1.155 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.155 ad * notice, this list of conditions and the following disclaimer in the
14 1.155 ad * documentation and/or other materials provided with the distribution.
15 1.155 ad *
16 1.155 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.155 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.155 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.155 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.155 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.155 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.155 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.155 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.155 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.155 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.155 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.155 ad */
28 1.1 mrg
29 1.62 chs /*
30 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
32 1.1 mrg *
33 1.1 mrg * All rights reserved.
34 1.1 mrg *
35 1.1 mrg * This code is derived from software contributed to Berkeley by
36 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
37 1.1 mrg *
38 1.1 mrg * Redistribution and use in source and binary forms, with or without
39 1.1 mrg * modification, are permitted provided that the following conditions
40 1.1 mrg * are met:
41 1.1 mrg * 1. Redistributions of source code must retain the above copyright
42 1.1 mrg * notice, this list of conditions and the following disclaimer.
43 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 mrg * notice, this list of conditions and the following disclaimer in the
45 1.1 mrg * documentation and/or other materials provided with the distribution.
46 1.1 mrg * 3. All advertising materials mentioning features or use of this software
47 1.1 mrg * must display the following acknowledgement:
48 1.1 mrg * This product includes software developed by Charles D. Cranor,
49 1.62 chs * Washington University, the University of California, Berkeley and
50 1.1 mrg * its contributors.
51 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
52 1.1 mrg * may be used to endorse or promote products derived from this software
53 1.1 mrg * without specific prior written permission.
54 1.1 mrg *
55 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 mrg * SUCH DAMAGE.
66 1.1 mrg *
67 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 1.1 mrg *
70 1.1 mrg *
71 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 1.1 mrg * All rights reserved.
73 1.62 chs *
74 1.1 mrg * Permission to use, copy, modify and distribute this software and
75 1.1 mrg * its documentation is hereby granted, provided that both the copyright
76 1.1 mrg * notice and this permission notice appear in all copies of the
77 1.1 mrg * software, derivative works or modified versions, and any portions
78 1.1 mrg * thereof, and that both notices appear in supporting documentation.
79 1.62 chs *
80 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 1.62 chs *
84 1.1 mrg * Carnegie Mellon requests users of this software to return to
85 1.1 mrg *
86 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 1.1 mrg * School of Computer Science
88 1.1 mrg * Carnegie Mellon University
89 1.1 mrg * Pittsburgh PA 15213-3890
90 1.1 mrg *
91 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
92 1.1 mrg * rights to redistribute these changes.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * uvm_page.c: page ops.
97 1.1 mrg */
98 1.71 lukem
99 1.71 lukem #include <sys/cdefs.h>
100 1.156 rmind __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.156 2010/09/24 22:51:51 rmind Exp $");
101 1.6 mrg
102 1.151 thorpej #include "opt_ddb.h"
103 1.44 chs #include "opt_uvmhist.h"
104 1.113 yamt #include "opt_readahead.h"
105 1.44 chs
106 1.1 mrg #include <sys/param.h>
107 1.1 mrg #include <sys/systm.h>
108 1.1 mrg #include <sys/malloc.h>
109 1.35 thorpej #include <sys/sched.h>
110 1.44 chs #include <sys/kernel.h>
111 1.51 chs #include <sys/vnode.h>
112 1.68 chs #include <sys/proc.h>
113 1.126 ad #include <sys/atomic.h>
114 1.133 ad #include <sys/cpu.h>
115 1.1 mrg
116 1.1 mrg #include <uvm/uvm.h>
117 1.151 thorpej #include <uvm/uvm_ddb.h>
118 1.113 yamt #include <uvm/uvm_pdpolicy.h>
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
122 1.1 mrg */
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * physical memory config is stored in vm_physmem.
126 1.1 mrg */
127 1.1 mrg
128 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130 1.1 mrg
131 1.1 mrg /*
132 1.36 thorpej * Some supported CPUs in a given architecture don't support all
133 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
134 1.155 ad * We therefore provide a way to enable it from machdep code here.
135 1.44 chs */
136 1.119 thorpej bool vm_page_zero_enable = false;
137 1.34 thorpej
138 1.34 thorpej /*
139 1.140 ad * number of pages per-CPU to reserve for the kernel.
140 1.140 ad */
141 1.140 ad int vm_page_reserve_kernel = 5;
142 1.140 ad
143 1.140 ad /*
144 1.148 matt * physical memory size;
145 1.148 matt */
146 1.149 matt int physmem;
147 1.148 matt
148 1.148 matt /*
149 1.1 mrg * local variables
150 1.1 mrg */
151 1.1 mrg
152 1.1 mrg /*
153 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
154 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
155 1.88 thorpej * and pmap_startup here also uses them internally.
156 1.88 thorpej */
157 1.88 thorpej
158 1.88 thorpej static vaddr_t virtual_space_start;
159 1.88 thorpej static vaddr_t virtual_space_end;
160 1.88 thorpej
161 1.88 thorpej /*
162 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
163 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
164 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
165 1.60 thorpej * free the initial set of buckets, since they are allocated using
166 1.60 thorpej * uvm_pageboot_alloc().
167 1.60 thorpej */
168 1.60 thorpej
169 1.119 thorpej static bool have_recolored_pages /* = false */;
170 1.83 thorpej
171 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
172 1.60 thorpej
173 1.91 yamt #ifdef DEBUG
174 1.91 yamt vaddr_t uvm_zerocheckkva;
175 1.91 yamt #endif /* DEBUG */
176 1.91 yamt
177 1.60 thorpej /*
178 1.134 ad * local prototypes
179 1.124 ad */
180 1.124 ad
181 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
182 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
183 1.124 ad
184 1.124 ad /*
185 1.134 ad * per-object tree of pages
186 1.1 mrg */
187 1.1 mrg
188 1.134 ad static signed int
189 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
190 1.134 ad {
191 1.156 rmind const struct vm_page *pg1 = n1;
192 1.156 rmind const struct vm_page *pg2 = n2;
193 1.134 ad const voff_t a = pg1->offset;
194 1.134 ad const voff_t b = pg2->offset;
195 1.134 ad
196 1.134 ad if (a < b)
197 1.156 rmind return -1;
198 1.156 rmind if (a > b)
199 1.134 ad return 1;
200 1.134 ad return 0;
201 1.134 ad }
202 1.134 ad
203 1.134 ad static signed int
204 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
205 1.134 ad {
206 1.156 rmind const struct vm_page *pg = n;
207 1.134 ad const voff_t a = pg->offset;
208 1.134 ad const voff_t b = *(const voff_t *)key;
209 1.134 ad
210 1.134 ad if (a < b)
211 1.156 rmind return -1;
212 1.156 rmind if (a > b)
213 1.134 ad return 1;
214 1.134 ad return 0;
215 1.134 ad }
216 1.134 ad
217 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
218 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
219 1.137 matt .rbto_compare_key = uvm_page_compare_key,
220 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
221 1.156 rmind .rbto_context = NULL
222 1.134 ad };
223 1.1 mrg
224 1.1 mrg /*
225 1.1 mrg * inline functions
226 1.1 mrg */
227 1.1 mrg
228 1.1 mrg /*
229 1.134 ad * uvm_pageinsert: insert a page in the object.
230 1.1 mrg *
231 1.1 mrg * => caller must lock object
232 1.1 mrg * => caller must lock page queues
233 1.1 mrg * => call should have already set pg's object and offset pointers
234 1.1 mrg * and bumped the version counter
235 1.1 mrg */
236 1.1 mrg
237 1.136 yamt static inline void
238 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
239 1.136 yamt struct vm_page *where)
240 1.1 mrg {
241 1.1 mrg
242 1.136 yamt KASSERT(uobj == pg->uobject);
243 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
244 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
245 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
246 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
247 1.123 ad
248 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
249 1.94 yamt if (uobj->uo_npages == 0) {
250 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
251 1.94 yamt
252 1.94 yamt vholdl(vp);
253 1.94 yamt }
254 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
255 1.126 ad atomic_inc_uint(&uvmexp.execpages);
256 1.94 yamt } else {
257 1.126 ad atomic_inc_uint(&uvmexp.filepages);
258 1.94 yamt }
259 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
260 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
261 1.78 chs }
262 1.78 chs
263 1.96 yamt if (where)
264 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
265 1.96 yamt else
266 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
267 1.7 mrg pg->flags |= PG_TABLED;
268 1.67 chs uobj->uo_npages++;
269 1.1 mrg }
270 1.1 mrg
271 1.136 yamt
272 1.136 yamt static inline void
273 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
274 1.136 yamt {
275 1.156 rmind struct vm_page *ret;
276 1.136 yamt
277 1.136 yamt KASSERT(uobj == pg->uobject);
278 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
279 1.156 rmind KASSERT(ret == pg);
280 1.136 yamt }
281 1.136 yamt
282 1.136 yamt static inline void
283 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
284 1.96 yamt {
285 1.96 yamt
286 1.153 uebayasi KDASSERT(uobj != NULL);
287 1.136 yamt uvm_pageinsert_tree(uobj, pg);
288 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
289 1.96 yamt }
290 1.96 yamt
291 1.1 mrg /*
292 1.134 ad * uvm_page_remove: remove page from object.
293 1.1 mrg *
294 1.1 mrg * => caller must lock object
295 1.1 mrg * => caller must lock page queues
296 1.1 mrg */
297 1.1 mrg
298 1.109 perry static inline void
299 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
300 1.1 mrg {
301 1.1 mrg
302 1.136 yamt KASSERT(uobj == pg->uobject);
303 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
304 1.44 chs KASSERT(pg->flags & PG_TABLED);
305 1.123 ad
306 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
307 1.94 yamt if (uobj->uo_npages == 1) {
308 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
309 1.94 yamt
310 1.94 yamt holdrelel(vp);
311 1.94 yamt }
312 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
313 1.126 ad atomic_dec_uint(&uvmexp.execpages);
314 1.94 yamt } else {
315 1.126 ad atomic_dec_uint(&uvmexp.filepages);
316 1.94 yamt }
317 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
318 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
319 1.51 chs }
320 1.44 chs
321 1.7 mrg /* object should be locked */
322 1.67 chs uobj->uo_npages--;
323 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
324 1.7 mrg pg->flags &= ~PG_TABLED;
325 1.7 mrg pg->uobject = NULL;
326 1.1 mrg }
327 1.1 mrg
328 1.136 yamt static inline void
329 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
330 1.136 yamt {
331 1.136 yamt
332 1.136 yamt KASSERT(uobj == pg->uobject);
333 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
334 1.136 yamt }
335 1.136 yamt
336 1.136 yamt static inline void
337 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
338 1.136 yamt {
339 1.136 yamt
340 1.153 uebayasi KDASSERT(uobj != NULL);
341 1.136 yamt uvm_pageremove_tree(uobj, pg);
342 1.136 yamt uvm_pageremove_list(uobj, pg);
343 1.136 yamt }
344 1.136 yamt
345 1.60 thorpej static void
346 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
347 1.60 thorpej {
348 1.60 thorpej int color, i;
349 1.60 thorpej
350 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
351 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
352 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
353 1.60 thorpej }
354 1.60 thorpej }
355 1.60 thorpej }
356 1.60 thorpej
357 1.1 mrg /*
358 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
359 1.62 chs *
360 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
361 1.1 mrg */
362 1.1 mrg
363 1.7 mrg void
364 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
365 1.1 mrg {
366 1.155 ad static struct uvm_cpu boot_cpu;
367 1.154 jym psize_t freepages, pagecount, bucketcount, n;
368 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
369 1.63 chs struct vm_page *pagearray;
370 1.81 thorpej int lcv;
371 1.81 thorpej u_int i;
372 1.14 eeh paddr_t paddr;
373 1.7 mrg
374 1.133 ad KASSERT(ncpu <= 1);
375 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
376 1.133 ad
377 1.7 mrg /*
378 1.60 thorpej * init the page queues and page queue locks, except the free
379 1.60 thorpej * list; we allocate that later (with the initial vm_page
380 1.60 thorpej * structures).
381 1.7 mrg */
382 1.51 chs
383 1.155 ad uvm.cpus[0] = &boot_cpu;
384 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
385 1.146 haad uvm_reclaim_init();
386 1.113 yamt uvmpdpol_init();
387 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
388 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
389 1.7 mrg
390 1.7 mrg /*
391 1.51 chs * allocate vm_page structures.
392 1.7 mrg */
393 1.7 mrg
394 1.7 mrg /*
395 1.7 mrg * sanity check:
396 1.7 mrg * before calling this function the MD code is expected to register
397 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
398 1.7 mrg * now is to allocate vm_page structures for this memory.
399 1.7 mrg */
400 1.7 mrg
401 1.7 mrg if (vm_nphysseg == 0)
402 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
403 1.62 chs
404 1.7 mrg /*
405 1.62 chs * first calculate the number of free pages...
406 1.7 mrg *
407 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
408 1.7 mrg * this allows us to allocate extra vm_page structures in case we
409 1.7 mrg * want to return some memory to the pool after booting.
410 1.7 mrg */
411 1.62 chs
412 1.7 mrg freepages = 0;
413 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
414 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
415 1.7 mrg
416 1.7 mrg /*
417 1.60 thorpej * Let MD code initialize the number of colors, or default
418 1.60 thorpej * to 1 color if MD code doesn't care.
419 1.60 thorpej */
420 1.60 thorpej if (uvmexp.ncolors == 0)
421 1.60 thorpej uvmexp.ncolors = 1;
422 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
423 1.60 thorpej
424 1.60 thorpej /*
425 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
426 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
427 1.7 mrg * thus, the total number of pages we can use is the total size of
428 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
429 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
430 1.7 mrg * truncation errors (since we can only allocate in terms of whole
431 1.7 mrg * pages).
432 1.7 mrg */
433 1.62 chs
434 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
435 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
436 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
437 1.60 thorpej
438 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
439 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
440 1.60 thorpej sizeof(struct vm_page)));
441 1.133 ad cpuarray = bucketarray + bucketcount;
442 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
443 1.60 thorpej
444 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
445 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
446 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
447 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
448 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
449 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
450 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
451 1.60 thorpej }
452 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
453 1.62 chs
454 1.7 mrg /*
455 1.51 chs * init the vm_page structures and put them in the correct place.
456 1.7 mrg */
457 1.7 mrg
458 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
459 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
460 1.51 chs
461 1.7 mrg /* set up page array pointers */
462 1.7 mrg vm_physmem[lcv].pgs = pagearray;
463 1.7 mrg pagearray += n;
464 1.7 mrg pagecount -= n;
465 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
466 1.7 mrg
467 1.13 perry /* init and free vm_pages (we've already zeroed them) */
468 1.154 jym paddr = ctob(vm_physmem[lcv].start);
469 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
470 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
471 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
472 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
473 1.56 thorpej #endif
474 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
475 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
476 1.7 mrg uvmexp.npages++;
477 1.7 mrg /* add page to free pool */
478 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
479 1.7 mrg }
480 1.7 mrg }
481 1.7 mrg }
482 1.44 chs
483 1.7 mrg /*
484 1.88 thorpej * pass up the values of virtual_space_start and
485 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
486 1.88 thorpej * layers of the VM.
487 1.88 thorpej */
488 1.88 thorpej
489 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
490 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
491 1.91 yamt #ifdef DEBUG
492 1.91 yamt /*
493 1.91 yamt * steal kva for uvm_pagezerocheck().
494 1.91 yamt */
495 1.91 yamt uvm_zerocheckkva = *kvm_startp;
496 1.91 yamt *kvm_startp += PAGE_SIZE;
497 1.91 yamt #endif /* DEBUG */
498 1.88 thorpej
499 1.88 thorpej /*
500 1.51 chs * init various thresholds.
501 1.7 mrg */
502 1.51 chs
503 1.7 mrg uvmexp.reserve_pagedaemon = 1;
504 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
505 1.7 mrg
506 1.7 mrg /*
507 1.51 chs * determine if we should zero pages in the idle loop.
508 1.34 thorpej */
509 1.51 chs
510 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
511 1.34 thorpej
512 1.34 thorpej /*
513 1.7 mrg * done!
514 1.7 mrg */
515 1.1 mrg
516 1.119 thorpej uvm.page_init_done = true;
517 1.1 mrg }
518 1.1 mrg
519 1.1 mrg /*
520 1.1 mrg * uvm_setpagesize: set the page size
521 1.62 chs *
522 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
523 1.62 chs */
524 1.1 mrg
525 1.7 mrg void
526 1.105 thorpej uvm_setpagesize(void)
527 1.1 mrg {
528 1.85 thorpej
529 1.85 thorpej /*
530 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
531 1.85 thorpej * to be a constant (indicated by being a non-zero value).
532 1.85 thorpej */
533 1.85 thorpej if (uvmexp.pagesize == 0) {
534 1.85 thorpej if (PAGE_SIZE == 0)
535 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
536 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
537 1.85 thorpej }
538 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
539 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
540 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
541 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
542 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
543 1.7 mrg break;
544 1.1 mrg }
545 1.1 mrg
546 1.1 mrg /*
547 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
548 1.1 mrg */
549 1.1 mrg
550 1.14 eeh vaddr_t
551 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
552 1.1 mrg {
553 1.119 thorpej static bool initialized = false;
554 1.14 eeh vaddr_t addr;
555 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
556 1.52 thorpej vaddr_t vaddr;
557 1.14 eeh paddr_t paddr;
558 1.52 thorpej #endif
559 1.1 mrg
560 1.7 mrg /*
561 1.19 thorpej * on first call to this function, initialize ourselves.
562 1.7 mrg */
563 1.119 thorpej if (initialized == false) {
564 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
565 1.1 mrg
566 1.7 mrg /* round it the way we like it */
567 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
568 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
569 1.19 thorpej
570 1.119 thorpej initialized = true;
571 1.7 mrg }
572 1.52 thorpej
573 1.52 thorpej /* round to page size */
574 1.52 thorpej size = round_page(size);
575 1.52 thorpej
576 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
577 1.52 thorpej
578 1.62 chs /*
579 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
580 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
581 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
582 1.52 thorpej */
583 1.52 thorpej
584 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
585 1.88 thorpej &virtual_space_end);
586 1.52 thorpej
587 1.52 thorpej return(addr);
588 1.52 thorpej
589 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
590 1.1 mrg
591 1.7 mrg /*
592 1.7 mrg * allocate virtual memory for this request
593 1.7 mrg */
594 1.88 thorpej if (virtual_space_start == virtual_space_end ||
595 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
596 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
597 1.20 thorpej
598 1.88 thorpej addr = virtual_space_start;
599 1.20 thorpej
600 1.20 thorpej #ifdef PMAP_GROWKERNEL
601 1.20 thorpej /*
602 1.20 thorpej * If the kernel pmap can't map the requested space,
603 1.20 thorpej * then allocate more resources for it.
604 1.20 thorpej */
605 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
606 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
607 1.20 thorpej if (uvm_maxkaddr < (addr + size))
608 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
609 1.19 thorpej }
610 1.20 thorpej #endif
611 1.1 mrg
612 1.88 thorpej virtual_space_start += size;
613 1.1 mrg
614 1.9 thorpej /*
615 1.7 mrg * allocate and mapin physical pages to back new virtual pages
616 1.7 mrg */
617 1.1 mrg
618 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
619 1.7 mrg vaddr += PAGE_SIZE) {
620 1.1 mrg
621 1.7 mrg if (!uvm_page_physget(&paddr))
622 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
623 1.1 mrg
624 1.23 thorpej /*
625 1.23 thorpej * Note this memory is no longer managed, so using
626 1.23 thorpej * pmap_kenter is safe.
627 1.23 thorpej */
628 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
629 1.7 mrg }
630 1.66 chris pmap_update(pmap_kernel());
631 1.7 mrg return(addr);
632 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
633 1.1 mrg }
634 1.1 mrg
635 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
636 1.1 mrg /*
637 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
638 1.1 mrg *
639 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
640 1.1 mrg * values match the start/end values. if we can't do that, then we
641 1.1 mrg * will advance both values (making them equal, and removing some
642 1.1 mrg * vm_page structures from the non-avail area).
643 1.1 mrg * => return false if out of memory.
644 1.1 mrg */
645 1.1 mrg
646 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
647 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
648 1.28 drochner
649 1.118 thorpej static bool
650 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
651 1.1 mrg {
652 1.7 mrg int lcv, x;
653 1.1 mrg
654 1.7 mrg /* pass 1: try allocating from a matching end */
655 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
656 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
657 1.1 mrg #else
658 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
659 1.1 mrg #endif
660 1.7 mrg {
661 1.1 mrg
662 1.119 thorpej if (uvm.page_init_done == true)
663 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
664 1.1 mrg
665 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
666 1.28 drochner continue;
667 1.28 drochner
668 1.7 mrg /* try from front */
669 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
670 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
671 1.154 jym *paddrp = ctob(vm_physmem[lcv].avail_start);
672 1.7 mrg vm_physmem[lcv].avail_start++;
673 1.7 mrg vm_physmem[lcv].start++;
674 1.7 mrg /* nothing left? nuke it */
675 1.7 mrg if (vm_physmem[lcv].avail_start ==
676 1.7 mrg vm_physmem[lcv].end) {
677 1.7 mrg if (vm_nphysseg == 1)
678 1.89 wiz panic("uvm_page_physget: out of memory!");
679 1.7 mrg vm_nphysseg--;
680 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
681 1.7 mrg /* structure copy */
682 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
683 1.7 mrg }
684 1.119 thorpej return (true);
685 1.7 mrg }
686 1.7 mrg
687 1.7 mrg /* try from rear */
688 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
689 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
690 1.154 jym *paddrp = ctob(vm_physmem[lcv].avail_end - 1);
691 1.7 mrg vm_physmem[lcv].avail_end--;
692 1.7 mrg vm_physmem[lcv].end--;
693 1.7 mrg /* nothing left? nuke it */
694 1.7 mrg if (vm_physmem[lcv].avail_end ==
695 1.7 mrg vm_physmem[lcv].start) {
696 1.7 mrg if (vm_nphysseg == 1)
697 1.42 mrg panic("uvm_page_physget: out of memory!");
698 1.7 mrg vm_nphysseg--;
699 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
700 1.7 mrg /* structure copy */
701 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
702 1.7 mrg }
703 1.119 thorpej return (true);
704 1.7 mrg }
705 1.7 mrg }
706 1.1 mrg
707 1.7 mrg /* pass2: forget about matching ends, just allocate something */
708 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
709 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
710 1.1 mrg #else
711 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712 1.1 mrg #endif
713 1.7 mrg {
714 1.1 mrg
715 1.7 mrg /* any room in this bank? */
716 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
717 1.7 mrg continue; /* nope */
718 1.7 mrg
719 1.154 jym *paddrp = ctob(vm_physmem[lcv].avail_start);
720 1.7 mrg vm_physmem[lcv].avail_start++;
721 1.7 mrg /* truncate! */
722 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
723 1.7 mrg
724 1.7 mrg /* nothing left? nuke it */
725 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
726 1.7 mrg if (vm_nphysseg == 1)
727 1.42 mrg panic("uvm_page_physget: out of memory!");
728 1.7 mrg vm_nphysseg--;
729 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
730 1.7 mrg /* structure copy */
731 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
732 1.7 mrg }
733 1.119 thorpej return (true);
734 1.7 mrg }
735 1.1 mrg
736 1.119 thorpej return (false); /* whoops! */
737 1.28 drochner }
738 1.28 drochner
739 1.118 thorpej bool
740 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
741 1.28 drochner {
742 1.28 drochner int i;
743 1.28 drochner
744 1.28 drochner /* try in the order of freelist preference */
745 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
746 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
747 1.119 thorpej return (true);
748 1.119 thorpej return (false);
749 1.1 mrg }
750 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
751 1.1 mrg
752 1.1 mrg /*
753 1.1 mrg * uvm_page_physload: load physical memory into VM system
754 1.1 mrg *
755 1.1 mrg * => all args are PFs
756 1.1 mrg * => all pages in start/end get vm_page structures
757 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
758 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
759 1.1 mrg */
760 1.1 mrg
761 1.7 mrg void
762 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
763 1.105 thorpej paddr_t avail_end, int free_list)
764 1.1 mrg {
765 1.14 eeh int preload, lcv;
766 1.14 eeh psize_t npages;
767 1.7 mrg struct vm_page *pgs;
768 1.7 mrg struct vm_physseg *ps;
769 1.7 mrg
770 1.7 mrg if (uvmexp.pagesize == 0)
771 1.42 mrg panic("uvm_page_physload: page size not set!");
772 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
773 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
774 1.26 drochner if (start >= end)
775 1.26 drochner panic("uvm_page_physload: start >= end");
776 1.12 thorpej
777 1.7 mrg /*
778 1.7 mrg * do we have room?
779 1.7 mrg */
780 1.67 chs
781 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
782 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
783 1.7 mrg "segment\n");
784 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
785 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
786 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
787 1.7 mrg return;
788 1.7 mrg }
789 1.7 mrg
790 1.7 mrg /*
791 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
792 1.7 mrg * called yet, so malloc is not available).
793 1.7 mrg */
794 1.67 chs
795 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
796 1.7 mrg if (vm_physmem[lcv].pgs)
797 1.7 mrg break;
798 1.7 mrg }
799 1.7 mrg preload = (lcv == vm_nphysseg);
800 1.7 mrg
801 1.7 mrg /*
802 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
803 1.7 mrg */
804 1.67 chs
805 1.7 mrg if (!preload) {
806 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
807 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
808 1.1 mrg #else
809 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
810 1.14 eeh paddr_t paddr;
811 1.7 mrg npages = end - start; /* # of pages */
812 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
813 1.40 thorpej M_VMPAGE, M_NOWAIT);
814 1.7 mrg if (pgs == NULL) {
815 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
816 1.7 mrg "structs for segment\n");
817 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
818 1.7 mrg return;
819 1.7 mrg }
820 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
821 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
822 1.154 jym for (lcv = 0, paddr = ctob(start) ;
823 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
824 1.7 mrg pgs[lcv].phys_addr = paddr;
825 1.12 thorpej pgs[lcv].free_list = free_list;
826 1.7 mrg if (atop(paddr) >= avail_start &&
827 1.7 mrg atop(paddr) <= avail_end)
828 1.8 chuck uvm_pagefree(&pgs[lcv]);
829 1.7 mrg }
830 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
831 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
832 1.1 mrg #endif
833 1.7 mrg } else {
834 1.7 mrg pgs = NULL;
835 1.7 mrg npages = 0;
836 1.7 mrg }
837 1.1 mrg
838 1.7 mrg /*
839 1.7 mrg * now insert us in the proper place in vm_physmem[]
840 1.7 mrg */
841 1.1 mrg
842 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
843 1.7 mrg /* random: put it at the end (easy!) */
844 1.7 mrg ps = &vm_physmem[vm_nphysseg];
845 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
846 1.7 mrg {
847 1.7 mrg int x;
848 1.7 mrg /* sort by address for binary search */
849 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
850 1.7 mrg if (start < vm_physmem[lcv].start)
851 1.7 mrg break;
852 1.7 mrg ps = &vm_physmem[lcv];
853 1.7 mrg /* move back other entries, if necessary ... */
854 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
855 1.7 mrg /* structure copy */
856 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
857 1.7 mrg }
858 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
859 1.7 mrg {
860 1.7 mrg int x;
861 1.7 mrg /* sort by largest segment first */
862 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
863 1.7 mrg if ((end - start) >
864 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
865 1.7 mrg break;
866 1.7 mrg ps = &vm_physmem[lcv];
867 1.7 mrg /* move back other entries, if necessary ... */
868 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
869 1.7 mrg /* structure copy */
870 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
871 1.7 mrg }
872 1.1 mrg #else
873 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
874 1.1 mrg #endif
875 1.1 mrg
876 1.7 mrg ps->start = start;
877 1.7 mrg ps->end = end;
878 1.7 mrg ps->avail_start = avail_start;
879 1.7 mrg ps->avail_end = avail_end;
880 1.7 mrg if (preload) {
881 1.7 mrg ps->pgs = NULL;
882 1.7 mrg } else {
883 1.7 mrg ps->pgs = pgs;
884 1.7 mrg ps->lastpg = pgs + npages - 1;
885 1.7 mrg }
886 1.12 thorpej ps->free_list = free_list;
887 1.7 mrg vm_nphysseg++;
888 1.7 mrg
889 1.113 yamt if (!preload) {
890 1.113 yamt uvmpdpol_reinit();
891 1.113 yamt }
892 1.1 mrg }
893 1.1 mrg
894 1.1 mrg /*
895 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
896 1.60 thorpej * larger than the old one.
897 1.60 thorpej */
898 1.60 thorpej
899 1.60 thorpej void
900 1.60 thorpej uvm_page_recolor(int newncolors)
901 1.60 thorpej {
902 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
903 1.133 ad struct pgfreelist gpgfl, pgfl;
904 1.63 chs struct vm_page *pg;
905 1.60 thorpej vsize_t bucketcount;
906 1.123 ad int lcv, color, i, ocolors;
907 1.133 ad struct uvm_cpu *ucpu;
908 1.60 thorpej
909 1.60 thorpej if (newncolors <= uvmexp.ncolors)
910 1.60 thorpej return;
911 1.77 wrstuden
912 1.119 thorpej if (uvm.page_init_done == false) {
913 1.77 wrstuden uvmexp.ncolors = newncolors;
914 1.77 wrstuden return;
915 1.77 wrstuden }
916 1.60 thorpej
917 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
918 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
919 1.60 thorpej M_VMPAGE, M_NOWAIT);
920 1.133 ad cpuarray = bucketarray + bucketcount;
921 1.60 thorpej if (bucketarray == NULL) {
922 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
923 1.60 thorpej (long) bucketcount);
924 1.60 thorpej return;
925 1.60 thorpej }
926 1.60 thorpej
927 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
928 1.60 thorpej
929 1.60 thorpej /* Make sure we should still do this. */
930 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
931 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
932 1.60 thorpej free(bucketarray, M_VMPAGE);
933 1.60 thorpej return;
934 1.60 thorpej }
935 1.60 thorpej
936 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
937 1.60 thorpej ocolors = uvmexp.ncolors;
938 1.60 thorpej
939 1.60 thorpej uvmexp.ncolors = newncolors;
940 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
941 1.60 thorpej
942 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
943 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
944 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
945 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
946 1.133 ad uvm_page_init_buckets(&gpgfl);
947 1.60 thorpej uvm_page_init_buckets(&pgfl);
948 1.60 thorpej for (color = 0; color < ocolors; color++) {
949 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
950 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
951 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
952 1.60 thorpej != NULL) {
953 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
954 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
955 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
956 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
957 1.133 ad i], pg, pageq.list);
958 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
959 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
960 1.133 ad i], pg, listq.list);
961 1.60 thorpej }
962 1.60 thorpej }
963 1.60 thorpej }
964 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
965 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
966 1.60 thorpej }
967 1.60 thorpej
968 1.60 thorpej if (have_recolored_pages) {
969 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
970 1.60 thorpej free(oldbucketarray, M_VMPAGE);
971 1.60 thorpej return;
972 1.60 thorpej }
973 1.60 thorpej
974 1.119 thorpej have_recolored_pages = true;
975 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
976 1.60 thorpej }
977 1.1 mrg
978 1.1 mrg /*
979 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
980 1.133 ad */
981 1.133 ad
982 1.133 ad void
983 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
984 1.133 ad {
985 1.133 ad struct pgflbucket *bucketarray;
986 1.133 ad struct pgfreelist pgfl;
987 1.133 ad struct uvm_cpu *ucpu;
988 1.133 ad vsize_t bucketcount;
989 1.133 ad int lcv;
990 1.133 ad
991 1.133 ad if (CPU_IS_PRIMARY(ci)) {
992 1.133 ad /* Already done in uvm_page_init(). */
993 1.133 ad return;
994 1.133 ad }
995 1.133 ad
996 1.140 ad /* Add more reserve pages for this CPU. */
997 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
998 1.140 ad
999 1.140 ad /* Configure this CPU's free lists. */
1000 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1001 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1002 1.133 ad M_VMPAGE, M_WAITOK);
1003 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1004 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
1005 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1006 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1007 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1008 1.133 ad uvm_page_init_buckets(&pgfl);
1009 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1010 1.133 ad }
1011 1.133 ad }
1012 1.133 ad
1013 1.133 ad /*
1014 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1015 1.54 thorpej */
1016 1.54 thorpej
1017 1.114 thorpej static struct vm_page *
1018 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1019 1.69 simonb int *trycolorp)
1020 1.54 thorpej {
1021 1.133 ad struct pgflist *freeq;
1022 1.54 thorpej struct vm_page *pg;
1023 1.58 enami int color, trycolor = *trycolorp;
1024 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1025 1.54 thorpej
1026 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1027 1.130 ad
1028 1.58 enami color = trycolor;
1029 1.133 ad pgfl = &ucpu->page_free[flist];
1030 1.133 ad gpgfl = &uvm.page_free[flist];
1031 1.58 enami do {
1032 1.133 ad /* cpu, try1 */
1033 1.133 ad if ((pg = LIST_FIRST((freeq =
1034 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1035 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1036 1.133 ad uvmexp.cpuhit++;
1037 1.133 ad goto gotit;
1038 1.133 ad }
1039 1.133 ad /* global, try1 */
1040 1.133 ad if ((pg = LIST_FIRST((freeq =
1041 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1042 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1043 1.133 ad uvmexp.cpumiss++;
1044 1.54 thorpej goto gotit;
1045 1.133 ad }
1046 1.133 ad /* cpu, try2 */
1047 1.133 ad if ((pg = LIST_FIRST((freeq =
1048 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1049 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1050 1.133 ad uvmexp.cpuhit++;
1051 1.54 thorpej goto gotit;
1052 1.133 ad }
1053 1.133 ad /* global, try2 */
1054 1.133 ad if ((pg = LIST_FIRST((freeq =
1055 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1056 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1057 1.133 ad uvmexp.cpumiss++;
1058 1.133 ad goto gotit;
1059 1.133 ad }
1060 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1061 1.58 enami } while (color != trycolor);
1062 1.54 thorpej
1063 1.54 thorpej return (NULL);
1064 1.54 thorpej
1065 1.54 thorpej gotit:
1066 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1067 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1068 1.54 thorpej uvmexp.free--;
1069 1.54 thorpej
1070 1.54 thorpej /* update zero'd page count */
1071 1.54 thorpej if (pg->flags & PG_ZERO)
1072 1.54 thorpej uvmexp.zeropages--;
1073 1.54 thorpej
1074 1.54 thorpej if (color == trycolor)
1075 1.54 thorpej uvmexp.colorhit++;
1076 1.54 thorpej else {
1077 1.54 thorpej uvmexp.colormiss++;
1078 1.54 thorpej *trycolorp = color;
1079 1.54 thorpej }
1080 1.54 thorpej
1081 1.54 thorpej return (pg);
1082 1.54 thorpej }
1083 1.54 thorpej
1084 1.54 thorpej /*
1085 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1086 1.1 mrg *
1087 1.1 mrg * => return null if no pages free
1088 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1089 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1090 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1091 1.1 mrg * => only one of obj or anon can be non-null
1092 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1093 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1094 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1095 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1096 1.34 thorpej * unknown contents page. This is because we live with the
1097 1.34 thorpej * consequences of a bad free list decision for the entire
1098 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1099 1.34 thorpej * is slower to access.
1100 1.1 mrg */
1101 1.1 mrg
1102 1.7 mrg struct vm_page *
1103 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1104 1.105 thorpej int flags, int strat, int free_list)
1105 1.1 mrg {
1106 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1107 1.133 ad struct uvm_cpu *ucpu;
1108 1.7 mrg struct vm_page *pg;
1109 1.141 ad lwp_t *l;
1110 1.1 mrg
1111 1.44 chs KASSERT(obj == NULL || anon == NULL);
1112 1.113 yamt KASSERT(anon == NULL || off == 0);
1113 1.44 chs KASSERT(off == trunc_page(off));
1114 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1115 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1116 1.48 thorpej
1117 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1118 1.1 mrg
1119 1.7 mrg /*
1120 1.54 thorpej * This implements a global round-robin page coloring
1121 1.54 thorpej * algorithm.
1122 1.54 thorpej *
1123 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1124 1.54 thorpej */
1125 1.67 chs
1126 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1127 1.133 ad color = ucpu->page_free_nextcolor;
1128 1.54 thorpej
1129 1.54 thorpej /*
1130 1.7 mrg * check to see if we need to generate some free pages waking
1131 1.7 mrg * the pagedaemon.
1132 1.7 mrg */
1133 1.7 mrg
1134 1.113 yamt uvm_kick_pdaemon();
1135 1.7 mrg
1136 1.7 mrg /*
1137 1.7 mrg * fail if any of these conditions is true:
1138 1.7 mrg * [1] there really are no free pages, or
1139 1.7 mrg * [2] only kernel "reserved" pages remain and
1140 1.141 ad * reserved pages have not been requested.
1141 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1142 1.7 mrg * the requestor isn't the pagedaemon.
1143 1.141 ad * we make kernel reserve pages available if called by a
1144 1.141 ad * kernel thread or a realtime thread.
1145 1.7 mrg */
1146 1.141 ad l = curlwp;
1147 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1148 1.141 ad flags |= UVM_PGA_USERESERVE;
1149 1.141 ad }
1150 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1151 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1152 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1153 1.141 ad curlwp != uvm.pagedaemon_lwp))
1154 1.12 thorpej goto fail;
1155 1.12 thorpej
1156 1.34 thorpej #if PGFL_NQUEUES != 2
1157 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1158 1.34 thorpej #endif
1159 1.34 thorpej
1160 1.34 thorpej /*
1161 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1162 1.34 thorpej * we try the UNKNOWN queue first.
1163 1.34 thorpej */
1164 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1165 1.34 thorpej try1 = PGFL_ZEROS;
1166 1.34 thorpej try2 = PGFL_UNKNOWN;
1167 1.34 thorpej } else {
1168 1.34 thorpej try1 = PGFL_UNKNOWN;
1169 1.34 thorpej try2 = PGFL_ZEROS;
1170 1.34 thorpej }
1171 1.34 thorpej
1172 1.12 thorpej again:
1173 1.12 thorpej switch (strat) {
1174 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1175 1.145 abs /* Check freelists: descending priority (ascending id) order */
1176 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1177 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1178 1.54 thorpej try1, try2, &color);
1179 1.54 thorpej if (pg != NULL)
1180 1.12 thorpej goto gotit;
1181 1.12 thorpej }
1182 1.12 thorpej
1183 1.12 thorpej /* No pages free! */
1184 1.12 thorpej goto fail;
1185 1.12 thorpej
1186 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1187 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1188 1.12 thorpej /* Attempt to allocate from the specified free list. */
1189 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1190 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1191 1.54 thorpej try1, try2, &color);
1192 1.54 thorpej if (pg != NULL)
1193 1.12 thorpej goto gotit;
1194 1.12 thorpej
1195 1.12 thorpej /* Fall back, if possible. */
1196 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1197 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1198 1.12 thorpej goto again;
1199 1.12 thorpej }
1200 1.12 thorpej
1201 1.12 thorpej /* No pages free! */
1202 1.12 thorpej goto fail;
1203 1.12 thorpej
1204 1.12 thorpej default:
1205 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1206 1.12 thorpej /* NOTREACHED */
1207 1.7 mrg }
1208 1.7 mrg
1209 1.12 thorpej gotit:
1210 1.54 thorpej /*
1211 1.54 thorpej * We now know which color we actually allocated from; set
1212 1.54 thorpej * the next color accordingly.
1213 1.54 thorpej */
1214 1.67 chs
1215 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1216 1.34 thorpej
1217 1.34 thorpej /*
1218 1.34 thorpej * update allocation statistics and remember if we have to
1219 1.34 thorpej * zero the page
1220 1.34 thorpej */
1221 1.67 chs
1222 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1223 1.34 thorpej if (pg->flags & PG_ZERO) {
1224 1.34 thorpej uvmexp.pga_zerohit++;
1225 1.34 thorpej zeroit = 0;
1226 1.34 thorpej } else {
1227 1.34 thorpej uvmexp.pga_zeromiss++;
1228 1.34 thorpej zeroit = 1;
1229 1.34 thorpej }
1230 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1231 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1232 1.133 ad }
1233 1.34 thorpej }
1234 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1235 1.7 mrg
1236 1.7 mrg pg->offset = off;
1237 1.7 mrg pg->uobject = obj;
1238 1.7 mrg pg->uanon = anon;
1239 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1240 1.7 mrg if (anon) {
1241 1.103 yamt anon->an_page = pg;
1242 1.7 mrg pg->pqflags = PQ_ANON;
1243 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1244 1.7 mrg } else {
1245 1.67 chs if (obj) {
1246 1.153 uebayasi uvm_pageinsert(obj, pg);
1247 1.67 chs }
1248 1.7 mrg pg->pqflags = 0;
1249 1.7 mrg }
1250 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1251 1.143 drochner
1252 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1253 1.7 mrg pg->owner_tag = NULL;
1254 1.1 mrg #endif
1255 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1256 1.33 thorpej
1257 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1258 1.33 thorpej /*
1259 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1260 1.34 thorpej * zero'd, then we have to zero it ourselves.
1261 1.33 thorpej */
1262 1.33 thorpej pg->flags &= ~PG_CLEAN;
1263 1.34 thorpej if (zeroit)
1264 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1265 1.33 thorpej }
1266 1.1 mrg
1267 1.7 mrg return(pg);
1268 1.12 thorpej
1269 1.12 thorpej fail:
1270 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1271 1.12 thorpej return (NULL);
1272 1.1 mrg }
1273 1.1 mrg
1274 1.1 mrg /*
1275 1.96 yamt * uvm_pagereplace: replace a page with another
1276 1.96 yamt *
1277 1.96 yamt * => object must be locked
1278 1.96 yamt */
1279 1.96 yamt
1280 1.96 yamt void
1281 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1282 1.96 yamt {
1283 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1284 1.97 junyoung
1285 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1286 1.136 yamt KASSERT(uobj != NULL);
1287 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1288 1.96 yamt KASSERT(newpg->uobject == NULL);
1289 1.136 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
1290 1.96 yamt
1291 1.136 yamt newpg->uobject = uobj;
1292 1.96 yamt newpg->offset = oldpg->offset;
1293 1.96 yamt
1294 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1295 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1296 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1297 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1298 1.96 yamt }
1299 1.96 yamt
1300 1.96 yamt /*
1301 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1302 1.1 mrg *
1303 1.1 mrg * => both objects must be locked
1304 1.1 mrg */
1305 1.1 mrg
1306 1.7 mrg void
1307 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1308 1.1 mrg {
1309 1.7 mrg /*
1310 1.7 mrg * remove it from the old object
1311 1.7 mrg */
1312 1.7 mrg
1313 1.7 mrg if (pg->uobject) {
1314 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1315 1.7 mrg }
1316 1.7 mrg
1317 1.7 mrg /*
1318 1.7 mrg * put it in the new object
1319 1.7 mrg */
1320 1.7 mrg
1321 1.7 mrg if (newobj) {
1322 1.7 mrg pg->uobject = newobj;
1323 1.7 mrg pg->offset = newoff;
1324 1.153 uebayasi uvm_pageinsert(newobj, pg);
1325 1.7 mrg }
1326 1.1 mrg }
1327 1.1 mrg
1328 1.91 yamt #ifdef DEBUG
1329 1.91 yamt /*
1330 1.91 yamt * check if page is zero-filled
1331 1.91 yamt *
1332 1.91 yamt * - called with free page queue lock held.
1333 1.91 yamt */
1334 1.91 yamt void
1335 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1336 1.91 yamt {
1337 1.91 yamt int *p, *ep;
1338 1.91 yamt
1339 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1340 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1341 1.91 yamt
1342 1.91 yamt /*
1343 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1344 1.91 yamt * uvm page allocator.
1345 1.91 yamt *
1346 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1347 1.91 yamt */
1348 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1349 1.91 yamt p = (int *)uvm_zerocheckkva;
1350 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1351 1.92 yamt pmap_update(pmap_kernel());
1352 1.91 yamt while (p < ep) {
1353 1.91 yamt if (*p != 0)
1354 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1355 1.91 yamt p++;
1356 1.91 yamt }
1357 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1358 1.131 yamt /*
1359 1.131 yamt * pmap_update() is not necessary here because no one except us
1360 1.131 yamt * uses this VA.
1361 1.131 yamt */
1362 1.91 yamt }
1363 1.91 yamt #endif /* DEBUG */
1364 1.91 yamt
1365 1.1 mrg /*
1366 1.1 mrg * uvm_pagefree: free page
1367 1.1 mrg *
1368 1.133 ad * => erase page's identity (i.e. remove from object)
1369 1.1 mrg * => put page on free list
1370 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1371 1.1 mrg * => caller must lock page queues
1372 1.1 mrg * => assumes all valid mappings of pg are gone
1373 1.1 mrg */
1374 1.1 mrg
1375 1.44 chs void
1376 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1377 1.1 mrg {
1378 1.133 ad struct pgflist *pgfl;
1379 1.133 ad struct uvm_cpu *ucpu;
1380 1.133 ad int index, color, queue;
1381 1.118 thorpej bool iszero;
1382 1.67 chs
1383 1.44 chs #ifdef DEBUG
1384 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1385 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1386 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1387 1.44 chs }
1388 1.91 yamt #endif /* DEBUG */
1389 1.44 chs
1390 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1391 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1392 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1393 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1394 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1395 1.127 ad mutex_owned(&pg->uanon->an_lock));
1396 1.123 ad
1397 1.7 mrg /*
1398 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1399 1.7 mrg */
1400 1.7 mrg
1401 1.67 chs if (pg->loan_count) {
1402 1.70 chs KASSERT(pg->wire_count == 0);
1403 1.7 mrg
1404 1.7 mrg /*
1405 1.67 chs * if the page is owned by an anon then we just want to
1406 1.70 chs * drop anon ownership. the kernel will free the page when
1407 1.70 chs * it is done with it. if the page is owned by an object,
1408 1.70 chs * remove it from the object and mark it dirty for the benefit
1409 1.70 chs * of possible anon owners.
1410 1.70 chs *
1411 1.70 chs * regardless of previous ownership, wakeup any waiters,
1412 1.70 chs * unbusy the page, and we're done.
1413 1.7 mrg */
1414 1.7 mrg
1415 1.73 chs if (pg->uobject != NULL) {
1416 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1417 1.67 chs pg->flags &= ~PG_CLEAN;
1418 1.73 chs } else if (pg->uanon != NULL) {
1419 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1420 1.73 chs pg->loan_count--;
1421 1.73 chs } else {
1422 1.73 chs pg->pqflags &= ~PQ_ANON;
1423 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1424 1.73 chs }
1425 1.103 yamt pg->uanon->an_page = NULL;
1426 1.73 chs pg->uanon = NULL;
1427 1.67 chs }
1428 1.70 chs if (pg->flags & PG_WANTED) {
1429 1.70 chs wakeup(pg);
1430 1.70 chs }
1431 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1432 1.70 chs #ifdef UVM_PAGE_TRKOWN
1433 1.70 chs pg->owner_tag = NULL;
1434 1.70 chs #endif
1435 1.73 chs if (pg->loan_count) {
1436 1.115 yamt KASSERT(pg->uobject == NULL);
1437 1.115 yamt if (pg->uanon == NULL) {
1438 1.115 yamt uvm_pagedequeue(pg);
1439 1.115 yamt }
1440 1.73 chs return;
1441 1.73 chs }
1442 1.67 chs }
1443 1.62 chs
1444 1.67 chs /*
1445 1.67 chs * remove page from its object or anon.
1446 1.67 chs */
1447 1.44 chs
1448 1.73 chs if (pg->uobject != NULL) {
1449 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1450 1.73 chs } else if (pg->uanon != NULL) {
1451 1.103 yamt pg->uanon->an_page = NULL;
1452 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1453 1.7 mrg }
1454 1.1 mrg
1455 1.7 mrg /*
1456 1.70 chs * now remove the page from the queues.
1457 1.7 mrg */
1458 1.7 mrg
1459 1.67 chs uvm_pagedequeue(pg);
1460 1.7 mrg
1461 1.7 mrg /*
1462 1.7 mrg * if the page was wired, unwire it now.
1463 1.7 mrg */
1464 1.44 chs
1465 1.34 thorpej if (pg->wire_count) {
1466 1.7 mrg pg->wire_count = 0;
1467 1.7 mrg uvmexp.wired--;
1468 1.44 chs }
1469 1.7 mrg
1470 1.7 mrg /*
1471 1.44 chs * and put on free queue
1472 1.7 mrg */
1473 1.7 mrg
1474 1.90 yamt iszero = (pg->flags & PG_ZERO);
1475 1.133 ad index = uvm_page_lookup_freelist(pg);
1476 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1477 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1478 1.34 thorpej
1479 1.3 chs #ifdef DEBUG
1480 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1481 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1482 1.3 chs #endif
1483 1.90 yamt
1484 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1485 1.143 drochner pg->pqflags = PQ_FREE;
1486 1.91 yamt
1487 1.91 yamt #ifdef DEBUG
1488 1.91 yamt if (iszero)
1489 1.91 yamt uvm_pagezerocheck(pg);
1490 1.91 yamt #endif /* DEBUG */
1491 1.91 yamt
1492 1.133 ad
1493 1.133 ad /* global list */
1494 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1495 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1496 1.7 mrg uvmexp.free++;
1497 1.133 ad if (iszero) {
1498 1.90 yamt uvmexp.zeropages++;
1499 1.133 ad }
1500 1.34 thorpej
1501 1.133 ad /* per-cpu list */
1502 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1503 1.133 ad pg->offset = (uintptr_t)ucpu;
1504 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1505 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1506 1.133 ad ucpu->pages[queue]++;
1507 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1508 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1509 1.133 ad }
1510 1.34 thorpej
1511 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1512 1.44 chs }
1513 1.44 chs
1514 1.44 chs /*
1515 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1516 1.44 chs *
1517 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1518 1.44 chs * => if pages are object-owned, object must be locked.
1519 1.67 chs * => if pages are anon-owned, anons must be locked.
1520 1.76 enami * => caller must lock page queues if pages may be released.
1521 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1522 1.44 chs */
1523 1.44 chs
1524 1.44 chs void
1525 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1526 1.44 chs {
1527 1.44 chs struct vm_page *pg;
1528 1.44 chs int i;
1529 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1530 1.44 chs
1531 1.44 chs for (i = 0; i < npgs; i++) {
1532 1.44 chs pg = pgs[i];
1533 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1534 1.44 chs continue;
1535 1.44 chs }
1536 1.98 yamt
1537 1.127 ad KASSERT(pg->uobject == NULL ||
1538 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1539 1.127 ad KASSERT(pg->uobject != NULL ||
1540 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1541 1.98 yamt
1542 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1543 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1544 1.44 chs if (pg->flags & PG_WANTED) {
1545 1.44 chs wakeup(pg);
1546 1.44 chs }
1547 1.44 chs if (pg->flags & PG_RELEASED) {
1548 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1549 1.98 yamt KASSERT(pg->uobject != NULL ||
1550 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1551 1.67 chs pg->flags &= ~PG_RELEASED;
1552 1.67 chs uvm_pagefree(pg);
1553 1.44 chs } else {
1554 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1555 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1556 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1557 1.44 chs UVM_PAGE_OWN(pg, NULL);
1558 1.44 chs }
1559 1.44 chs }
1560 1.1 mrg }
1561 1.1 mrg
1562 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1563 1.1 mrg /*
1564 1.1 mrg * uvm_page_own: set or release page ownership
1565 1.1 mrg *
1566 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1567 1.1 mrg * and where they do it. it can be used to track down problems
1568 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1569 1.1 mrg * => page's object [if any] must be locked
1570 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1571 1.1 mrg */
1572 1.7 mrg void
1573 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1574 1.1 mrg {
1575 1.112 yamt struct uvm_object *uobj;
1576 1.112 yamt struct vm_anon *anon;
1577 1.112 yamt
1578 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1579 1.67 chs
1580 1.112 yamt uobj = pg->uobject;
1581 1.112 yamt anon = pg->uanon;
1582 1.112 yamt if (uobj != NULL) {
1583 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1584 1.112 yamt } else if (anon != NULL) {
1585 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1586 1.112 yamt }
1587 1.112 yamt
1588 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1589 1.112 yamt
1590 1.7 mrg /* gain ownership? */
1591 1.7 mrg if (tag) {
1592 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1593 1.7 mrg if (pg->owner_tag) {
1594 1.7 mrg printf("uvm_page_own: page %p already owned "
1595 1.7 mrg "by proc %d [%s]\n", pg,
1596 1.74 enami pg->owner, pg->owner_tag);
1597 1.7 mrg panic("uvm_page_own");
1598 1.7 mrg }
1599 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1600 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1601 1.7 mrg pg->owner_tag = tag;
1602 1.7 mrg return;
1603 1.7 mrg }
1604 1.7 mrg
1605 1.7 mrg /* drop ownership */
1606 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1607 1.7 mrg if (pg->owner_tag == NULL) {
1608 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1609 1.7 mrg "page (%p)\n", pg);
1610 1.7 mrg panic("uvm_page_own");
1611 1.7 mrg }
1612 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1613 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1614 1.115 yamt pg->wire_count > 0);
1615 1.115 yamt } else {
1616 1.115 yamt KASSERT(pg->wire_count == 0);
1617 1.115 yamt }
1618 1.7 mrg pg->owner_tag = NULL;
1619 1.1 mrg }
1620 1.1 mrg #endif
1621 1.34 thorpej
1622 1.34 thorpej /*
1623 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1624 1.34 thorpej *
1625 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1626 1.54 thorpej * on the CPU cache.
1627 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1628 1.132 ad * to run, or MD code detects a reason to break early.
1629 1.34 thorpej */
1630 1.34 thorpej void
1631 1.105 thorpej uvm_pageidlezero(void)
1632 1.34 thorpej {
1633 1.34 thorpej struct vm_page *pg;
1634 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1635 1.133 ad struct uvm_cpu *ucpu;
1636 1.133 ad int free_list, firstbucket, nextbucket;
1637 1.133 ad
1638 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1639 1.133 ad if (!ucpu->page_idle_zero ||
1640 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1641 1.133 ad ucpu->page_idle_zero = false;
1642 1.132 ad return;
1643 1.132 ad }
1644 1.133 ad mutex_enter(&uvm_fpageqlock);
1645 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1646 1.133 ad nextbucket = firstbucket;
1647 1.58 enami do {
1648 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1649 1.139 ad if (sched_curcpu_runnable_p()) {
1650 1.139 ad goto quit;
1651 1.139 ad }
1652 1.133 ad pgfl = &ucpu->page_free[free_list];
1653 1.133 ad gpgfl = &uvm.page_free[free_list];
1654 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1655 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1656 1.132 ad if (sched_curcpu_runnable_p()) {
1657 1.101 yamt goto quit;
1658 1.132 ad }
1659 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1660 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1661 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1662 1.54 thorpej uvmexp.free--;
1663 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1664 1.143 drochner pg->pqflags = 0;
1665 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1666 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1667 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1668 1.67 chs
1669 1.54 thorpej /*
1670 1.54 thorpej * The machine-dependent code detected
1671 1.54 thorpej * some reason for us to abort zeroing
1672 1.54 thorpej * pages, probably because there is a
1673 1.54 thorpej * process now ready to run.
1674 1.54 thorpej */
1675 1.67 chs
1676 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1677 1.144 drochner pg->pqflags = PQ_FREE;
1678 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1679 1.133 ad nextbucket].pgfl_queues[
1680 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1681 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1682 1.54 thorpej nextbucket].pgfl_queues[
1683 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1684 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1685 1.54 thorpej uvmexp.free++;
1686 1.54 thorpej uvmexp.zeroaborts++;
1687 1.101 yamt goto quit;
1688 1.54 thorpej }
1689 1.54 thorpej #else
1690 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1691 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1692 1.54 thorpej pg->flags |= PG_ZERO;
1693 1.54 thorpej
1694 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1695 1.143 drochner pg->pqflags = PQ_FREE;
1696 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1697 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1698 1.133 ad pg, pageq.list);
1699 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1700 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1701 1.133 ad pg, listq.list);
1702 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1703 1.54 thorpej uvmexp.free++;
1704 1.54 thorpej uvmexp.zeropages++;
1705 1.54 thorpej }
1706 1.41 thorpej }
1707 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1708 1.133 ad break;
1709 1.133 ad }
1710 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1711 1.58 enami } while (nextbucket != firstbucket);
1712 1.133 ad ucpu->page_idle_zero = false;
1713 1.133 ad quit:
1714 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1715 1.34 thorpej }
1716 1.110 yamt
1717 1.110 yamt /*
1718 1.110 yamt * uvm_pagelookup: look up a page
1719 1.110 yamt *
1720 1.110 yamt * => caller should lock object to keep someone from pulling the page
1721 1.110 yamt * out from under it
1722 1.110 yamt */
1723 1.110 yamt
1724 1.110 yamt struct vm_page *
1725 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1726 1.110 yamt {
1727 1.110 yamt struct vm_page *pg;
1728 1.110 yamt
1729 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1730 1.123 ad
1731 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1732 1.134 ad
1733 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1734 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1735 1.110 yamt (pg->flags & PG_BUSY) != 0);
1736 1.156 rmind return pg;
1737 1.110 yamt }
1738 1.110 yamt
1739 1.110 yamt /*
1740 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1741 1.110 yamt *
1742 1.110 yamt * => caller must lock page queues
1743 1.110 yamt */
1744 1.110 yamt
1745 1.110 yamt void
1746 1.110 yamt uvm_pagewire(struct vm_page *pg)
1747 1.110 yamt {
1748 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1749 1.113 yamt #if defined(READAHEAD_STATS)
1750 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1751 1.113 yamt uvm_ra_hit.ev_count++;
1752 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1753 1.113 yamt }
1754 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1755 1.110 yamt if (pg->wire_count == 0) {
1756 1.110 yamt uvm_pagedequeue(pg);
1757 1.110 yamt uvmexp.wired++;
1758 1.110 yamt }
1759 1.110 yamt pg->wire_count++;
1760 1.110 yamt }
1761 1.110 yamt
1762 1.110 yamt /*
1763 1.110 yamt * uvm_pageunwire: unwire the page.
1764 1.110 yamt *
1765 1.110 yamt * => activate if wire count goes to zero.
1766 1.110 yamt * => caller must lock page queues
1767 1.110 yamt */
1768 1.110 yamt
1769 1.110 yamt void
1770 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1771 1.110 yamt {
1772 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1773 1.110 yamt pg->wire_count--;
1774 1.110 yamt if (pg->wire_count == 0) {
1775 1.111 yamt uvm_pageactivate(pg);
1776 1.110 yamt uvmexp.wired--;
1777 1.110 yamt }
1778 1.110 yamt }
1779 1.110 yamt
1780 1.110 yamt /*
1781 1.110 yamt * uvm_pagedeactivate: deactivate page
1782 1.110 yamt *
1783 1.110 yamt * => caller must lock page queues
1784 1.110 yamt * => caller must check to make sure page is not wired
1785 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1786 1.110 yamt * => caller must clear the reference on the page before calling
1787 1.110 yamt */
1788 1.110 yamt
1789 1.110 yamt void
1790 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1791 1.110 yamt {
1792 1.113 yamt
1793 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1794 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1795 1.113 yamt uvmpdpol_pagedeactivate(pg);
1796 1.110 yamt }
1797 1.110 yamt
1798 1.110 yamt /*
1799 1.110 yamt * uvm_pageactivate: activate page
1800 1.110 yamt *
1801 1.110 yamt * => caller must lock page queues
1802 1.110 yamt */
1803 1.110 yamt
1804 1.110 yamt void
1805 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1806 1.110 yamt {
1807 1.113 yamt
1808 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1809 1.113 yamt #if defined(READAHEAD_STATS)
1810 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1811 1.113 yamt uvm_ra_hit.ev_count++;
1812 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1813 1.113 yamt }
1814 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1815 1.113 yamt if (pg->wire_count != 0) {
1816 1.113 yamt return;
1817 1.110 yamt }
1818 1.113 yamt uvmpdpol_pageactivate(pg);
1819 1.110 yamt }
1820 1.110 yamt
1821 1.110 yamt /*
1822 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1823 1.110 yamt */
1824 1.110 yamt
1825 1.110 yamt void
1826 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1827 1.110 yamt {
1828 1.113 yamt
1829 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1830 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1831 1.110 yamt }
1832 1.123 ad
1833 1.113 yamt uvmpdpol_pagedequeue(pg);
1834 1.113 yamt }
1835 1.113 yamt
1836 1.113 yamt /*
1837 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1838 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1839 1.113 yamt */
1840 1.113 yamt
1841 1.113 yamt void
1842 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1843 1.113 yamt {
1844 1.113 yamt
1845 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1846 1.113 yamt if (pg->wire_count != 0) {
1847 1.113 yamt return;
1848 1.113 yamt }
1849 1.113 yamt uvmpdpol_pageenqueue(pg);
1850 1.110 yamt }
1851 1.110 yamt
1852 1.110 yamt /*
1853 1.110 yamt * uvm_pagezero: zero fill a page
1854 1.110 yamt *
1855 1.110 yamt * => if page is part of an object then the object should be locked
1856 1.110 yamt * to protect pg->flags.
1857 1.110 yamt */
1858 1.110 yamt
1859 1.110 yamt void
1860 1.110 yamt uvm_pagezero(struct vm_page *pg)
1861 1.110 yamt {
1862 1.110 yamt pg->flags &= ~PG_CLEAN;
1863 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1864 1.110 yamt }
1865 1.110 yamt
1866 1.110 yamt /*
1867 1.110 yamt * uvm_pagecopy: copy a page
1868 1.110 yamt *
1869 1.110 yamt * => if page is part of an object then the object should be locked
1870 1.110 yamt * to protect pg->flags.
1871 1.110 yamt */
1872 1.110 yamt
1873 1.110 yamt void
1874 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1875 1.110 yamt {
1876 1.110 yamt
1877 1.110 yamt dst->flags &= ~PG_CLEAN;
1878 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1879 1.110 yamt }
1880 1.110 yamt
1881 1.110 yamt /*
1882 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1883 1.150 thorpej */
1884 1.150 thorpej
1885 1.150 thorpej bool
1886 1.150 thorpej uvm_pageismanaged(paddr_t pa)
1887 1.150 thorpej {
1888 1.150 thorpej
1889 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
1890 1.150 thorpej }
1891 1.150 thorpej
1892 1.150 thorpej /*
1893 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1894 1.110 yamt */
1895 1.110 yamt
1896 1.110 yamt int
1897 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1898 1.110 yamt {
1899 1.110 yamt int lcv;
1900 1.110 yamt
1901 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1902 1.110 yamt KASSERT(lcv != -1);
1903 1.110 yamt return (vm_physmem[lcv].free_list);
1904 1.110 yamt }
1905 1.151 thorpej
1906 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
1907 1.151 thorpej
1908 1.151 thorpej /*
1909 1.151 thorpej * uvm_page_printit: actually print the page
1910 1.151 thorpej */
1911 1.151 thorpej
1912 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
1913 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1914 1.151 thorpej
1915 1.151 thorpej void
1916 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
1917 1.151 thorpej void (*pr)(const char *, ...))
1918 1.151 thorpej {
1919 1.151 thorpej struct vm_page *tpg;
1920 1.151 thorpej struct uvm_object *uobj;
1921 1.151 thorpej struct pgflist *pgl;
1922 1.151 thorpej char pgbuf[128];
1923 1.151 thorpej char pqbuf[128];
1924 1.151 thorpej
1925 1.151 thorpej (*pr)("PAGE %p:\n", pg);
1926 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1927 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1928 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1929 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1930 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1931 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1932 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
1933 1.151 thorpej if (pg->flags & PG_BUSY)
1934 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
1935 1.151 thorpej pg->owner, pg->owner_tag);
1936 1.151 thorpej else
1937 1.151 thorpej (*pr)(" page not busy, no owner\n");
1938 1.151 thorpej #else
1939 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
1940 1.151 thorpej #endif
1941 1.151 thorpej
1942 1.151 thorpej if (!full)
1943 1.151 thorpej return;
1944 1.151 thorpej
1945 1.151 thorpej /* cross-verify object/anon */
1946 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
1947 1.151 thorpej if (pg->pqflags & PQ_ANON) {
1948 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
1949 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1950 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
1951 1.151 thorpej else
1952 1.151 thorpej (*pr)(" anon backpointer is OK\n");
1953 1.151 thorpej } else {
1954 1.151 thorpej uobj = pg->uobject;
1955 1.151 thorpej if (uobj) {
1956 1.151 thorpej (*pr)(" checking object list\n");
1957 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1958 1.151 thorpej if (tpg == pg) {
1959 1.151 thorpej break;
1960 1.151 thorpej }
1961 1.151 thorpej }
1962 1.151 thorpej if (tpg)
1963 1.151 thorpej (*pr)(" page found on object list\n");
1964 1.151 thorpej else
1965 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1966 1.151 thorpej }
1967 1.151 thorpej }
1968 1.151 thorpej }
1969 1.151 thorpej
1970 1.151 thorpej /* cross-verify page queue */
1971 1.151 thorpej if (pg->pqflags & PQ_FREE) {
1972 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
1973 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
1974 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1975 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1976 1.151 thorpej } else {
1977 1.151 thorpej pgl = NULL;
1978 1.151 thorpej }
1979 1.151 thorpej
1980 1.151 thorpej if (pgl) {
1981 1.151 thorpej (*pr)(" checking pageq list\n");
1982 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
1983 1.151 thorpej if (tpg == pg) {
1984 1.151 thorpej break;
1985 1.151 thorpej }
1986 1.151 thorpej }
1987 1.151 thorpej if (tpg)
1988 1.151 thorpej (*pr)(" page found on pageq list\n");
1989 1.151 thorpej else
1990 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1991 1.151 thorpej }
1992 1.151 thorpej }
1993 1.151 thorpej
1994 1.151 thorpej /*
1995 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
1996 1.151 thorpej */
1997 1.151 thorpej
1998 1.151 thorpej void
1999 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2000 1.151 thorpej {
2001 1.151 thorpej unsigned i;
2002 1.151 thorpej struct vm_page *pg;
2003 1.151 thorpej
2004 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2005 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2006 1.151 thorpej " OWNER"
2007 1.151 thorpej #endif
2008 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2009 1.151 thorpej for (i = 0; i < vm_nphysseg; i++) {
2010 1.151 thorpej for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
2011 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
2012 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2013 1.151 thorpej pg->uanon);
2014 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2015 1.151 thorpej if (pg->flags & PG_BUSY)
2016 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2017 1.151 thorpej #endif
2018 1.151 thorpej (*pr)("\n");
2019 1.151 thorpej }
2020 1.151 thorpej }
2021 1.151 thorpej }
2022 1.151 thorpej
2023 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2024