Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.164
      1  1.157  uebayasi /*	$NetBSD: uvm_page.c,v 1.164 2010/11/14 15:06:34 uebayasi Exp $	*/
      2  1.155        ad 
      3  1.155        ad /*
      4  1.155        ad  * Copyright (c) 2010 The NetBSD Foundation, Inc.
      5  1.155        ad  * All rights reserved.
      6  1.155        ad  *
      7  1.155        ad  * Redistribution and use in source and binary forms, with or without
      8  1.155        ad  * modification, are permitted provided that the following conditions
      9  1.155        ad  * are met:
     10  1.155        ad  * 1. Redistributions of source code must retain the above copyright
     11  1.155        ad  *    notice, this list of conditions and the following disclaimer.
     12  1.155        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.155        ad  *    notice, this list of conditions and the following disclaimer in the
     14  1.155        ad  *    documentation and/or other materials provided with the distribution.
     15  1.155        ad  *
     16  1.155        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.155        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.155        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.155        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.155        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.155        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.155        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.155        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.155        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.155        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.155        ad  * POSSIBILITY OF SUCH DAMAGE.
     27  1.155        ad  */
     28    1.1       mrg 
     29   1.62       chs /*
     30    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     31   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
     32    1.1       mrg  *
     33    1.1       mrg  * All rights reserved.
     34    1.1       mrg  *
     35    1.1       mrg  * This code is derived from software contributed to Berkeley by
     36    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     37    1.1       mrg  *
     38    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     39    1.1       mrg  * modification, are permitted provided that the following conditions
     40    1.1       mrg  * are met:
     41    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     42    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     43    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     44    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     45    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     46    1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     47    1.1       mrg  *    must display the following acknowledgement:
     48    1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     49   1.62       chs  *      Washington University, the University of California, Berkeley and
     50    1.1       mrg  *      its contributors.
     51    1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     52    1.1       mrg  *    may be used to endorse or promote products derived from this software
     53    1.1       mrg  *    without specific prior written permission.
     54    1.1       mrg  *
     55    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       mrg  * SUCH DAMAGE.
     66    1.1       mrg  *
     67    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     68    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     69    1.1       mrg  *
     70    1.1       mrg  *
     71    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     72    1.1       mrg  * All rights reserved.
     73   1.62       chs  *
     74    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     75    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     76    1.1       mrg  * notice and this permission notice appear in all copies of the
     77    1.1       mrg  * software, derivative works or modified versions, and any portions
     78    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     79   1.62       chs  *
     80   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     81   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     82    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     83   1.62       chs  *
     84    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     85    1.1       mrg  *
     86    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     87    1.1       mrg  *  School of Computer Science
     88    1.1       mrg  *  Carnegie Mellon University
     89    1.1       mrg  *  Pittsburgh PA 15213-3890
     90    1.1       mrg  *
     91    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     92    1.1       mrg  * rights to redistribute these changes.
     93    1.1       mrg  */
     94    1.1       mrg 
     95    1.1       mrg /*
     96    1.1       mrg  * uvm_page.c: page ops.
     97    1.1       mrg  */
     98   1.71     lukem 
     99   1.71     lukem #include <sys/cdefs.h>
    100  1.157  uebayasi __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.164 2010/11/14 15:06:34 uebayasi Exp $");
    101    1.6       mrg 
    102  1.151   thorpej #include "opt_ddb.h"
    103   1.44       chs #include "opt_uvmhist.h"
    104  1.113      yamt #include "opt_readahead.h"
    105   1.44       chs 
    106    1.1       mrg #include <sys/param.h>
    107    1.1       mrg #include <sys/systm.h>
    108    1.1       mrg #include <sys/malloc.h>
    109   1.35   thorpej #include <sys/sched.h>
    110   1.44       chs #include <sys/kernel.h>
    111   1.51       chs #include <sys/vnode.h>
    112   1.68       chs #include <sys/proc.h>
    113  1.126        ad #include <sys/atomic.h>
    114  1.133        ad #include <sys/cpu.h>
    115    1.1       mrg 
    116    1.1       mrg #include <uvm/uvm.h>
    117  1.151   thorpej #include <uvm/uvm_ddb.h>
    118  1.113      yamt #include <uvm/uvm_pdpolicy.h>
    119    1.1       mrg 
    120    1.1       mrg /*
    121    1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
    122    1.1       mrg  */
    123    1.1       mrg 
    124    1.1       mrg /*
    125    1.1       mrg  * physical memory config is stored in vm_physmem.
    126    1.1       mrg  */
    127    1.1       mrg 
    128  1.164  uebayasi SIMPLEQ_HEAD(vm_physseg_freelist, vm_physseg);
    129  1.164  uebayasi 
    130  1.164  uebayasi struct vm_physseg *vm_physmem_ptrs[VM_PHYSSEG_MAX];
    131  1.164  uebayasi int vm_nphysmem = 0;
    132  1.164  uebayasi static struct vm_physseg vm_physmem_store[VM_PHYSSEG_MAX];
    133  1.164  uebayasi static struct vm_physseg_freelist vm_physmem_freelist =
    134  1.164  uebayasi     SIMPLEQ_HEAD_INITIALIZER(vm_physmem_freelist);
    135    1.1       mrg 
    136    1.1       mrg /*
    137   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    138   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    139  1.155        ad  * We therefore provide a way to enable it from machdep code here.
    140   1.44       chs  */
    141  1.119   thorpej bool vm_page_zero_enable = false;
    142   1.34   thorpej 
    143   1.34   thorpej /*
    144  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    145  1.140        ad  */
    146  1.140        ad int vm_page_reserve_kernel = 5;
    147  1.140        ad 
    148  1.140        ad /*
    149  1.148      matt  * physical memory size;
    150  1.148      matt  */
    151  1.149      matt int physmem;
    152  1.148      matt 
    153  1.148      matt /*
    154    1.1       mrg  * local variables
    155    1.1       mrg  */
    156    1.1       mrg 
    157    1.1       mrg /*
    158   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    159   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    160   1.88   thorpej  * and pmap_startup here also uses them internally.
    161   1.88   thorpej  */
    162   1.88   thorpej 
    163   1.88   thorpej static vaddr_t      virtual_space_start;
    164   1.88   thorpej static vaddr_t      virtual_space_end;
    165   1.88   thorpej 
    166   1.88   thorpej /*
    167   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    168   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    169   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    170   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    171   1.60   thorpej  * uvm_pageboot_alloc().
    172   1.60   thorpej  */
    173   1.60   thorpej 
    174  1.119   thorpej static bool have_recolored_pages /* = false */;
    175   1.83   thorpej 
    176   1.83   thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    177   1.60   thorpej 
    178   1.91      yamt #ifdef DEBUG
    179   1.91      yamt vaddr_t uvm_zerocheckkva;
    180   1.91      yamt #endif /* DEBUG */
    181   1.91      yamt 
    182   1.60   thorpej /*
    183  1.134        ad  * local prototypes
    184  1.124        ad  */
    185  1.124        ad 
    186  1.153  uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    187  1.153  uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    188  1.164  uebayasi static struct vm_physseg *uvm_physseg_alloc(
    189  1.164  uebayasi     struct vm_physseg_freelist * const, struct vm_physseg **, int,
    190  1.164  uebayasi     const paddr_t, const paddr_t);
    191  1.164  uebayasi static void uvm_physseg_free(struct vm_physseg_freelist *,
    192  1.164  uebayasi     struct vm_physseg **, struct vm_physseg *);
    193  1.164  uebayasi static void uvm_physseg_init(void);
    194  1.164  uebayasi static void uvm_physseg_insert(struct vm_physseg *,
    195  1.164  uebayasi     struct vm_physseg **, int);
    196  1.164  uebayasi static void uvm_physseg_remove(struct vm_physseg **, struct vm_physseg *);
    197  1.124        ad 
    198  1.124        ad /*
    199  1.134        ad  * per-object tree of pages
    200    1.1       mrg  */
    201    1.1       mrg 
    202  1.134        ad static signed int
    203  1.156     rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    204  1.134        ad {
    205  1.156     rmind 	const struct vm_page *pg1 = n1;
    206  1.156     rmind 	const struct vm_page *pg2 = n2;
    207  1.134        ad 	const voff_t a = pg1->offset;
    208  1.134        ad 	const voff_t b = pg2->offset;
    209  1.134        ad 
    210  1.134        ad 	if (a < b)
    211  1.156     rmind 		return -1;
    212  1.156     rmind 	if (a > b)
    213  1.134        ad 		return 1;
    214  1.134        ad 	return 0;
    215  1.134        ad }
    216  1.134        ad 
    217  1.134        ad static signed int
    218  1.156     rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
    219  1.134        ad {
    220  1.156     rmind 	const struct vm_page *pg = n;
    221  1.134        ad 	const voff_t a = pg->offset;
    222  1.134        ad 	const voff_t b = *(const voff_t *)key;
    223  1.134        ad 
    224  1.134        ad 	if (a < b)
    225  1.156     rmind 		return -1;
    226  1.156     rmind 	if (a > b)
    227  1.134        ad 		return 1;
    228  1.134        ad 	return 0;
    229  1.134        ad }
    230  1.134        ad 
    231  1.156     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    232  1.137      matt 	.rbto_compare_nodes = uvm_page_compare_nodes,
    233  1.137      matt 	.rbto_compare_key = uvm_page_compare_key,
    234  1.156     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    235  1.156     rmind 	.rbto_context = NULL
    236  1.134        ad };
    237    1.1       mrg 
    238    1.1       mrg /*
    239    1.1       mrg  * inline functions
    240    1.1       mrg  */
    241    1.1       mrg 
    242    1.1       mrg /*
    243  1.134        ad  * uvm_pageinsert: insert a page in the object.
    244    1.1       mrg  *
    245    1.1       mrg  * => caller must lock object
    246    1.1       mrg  * => caller must lock page queues
    247    1.1       mrg  * => call should have already set pg's object and offset pointers
    248    1.1       mrg  *    and bumped the version counter
    249    1.1       mrg  */
    250    1.1       mrg 
    251  1.136      yamt static inline void
    252  1.136      yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    253  1.136      yamt     struct vm_page *where)
    254    1.1       mrg {
    255    1.1       mrg 
    256  1.136      yamt 	KASSERT(uobj == pg->uobject);
    257  1.127        ad 	KASSERT(mutex_owned(&uobj->vmobjlock));
    258   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    259   1.96      yamt 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    260   1.96      yamt 	KASSERT(where == NULL || (where->uobject == uobj));
    261  1.123        ad 
    262   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    263   1.94      yamt 		if (uobj->uo_npages == 0) {
    264   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    265   1.94      yamt 
    266   1.94      yamt 			vholdl(vp);
    267   1.94      yamt 		}
    268   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    269  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    270   1.94      yamt 		} else {
    271  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    272   1.94      yamt 		}
    273   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    274  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    275   1.78       chs 	}
    276   1.78       chs 
    277   1.96      yamt 	if (where)
    278  1.133        ad 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    279   1.96      yamt 	else
    280  1.133        ad 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    281    1.7       mrg 	pg->flags |= PG_TABLED;
    282   1.67       chs 	uobj->uo_npages++;
    283    1.1       mrg }
    284    1.1       mrg 
    285  1.136      yamt 
    286  1.136      yamt static inline void
    287  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    288  1.136      yamt {
    289  1.156     rmind 	struct vm_page *ret;
    290  1.136      yamt 
    291  1.136      yamt 	KASSERT(uobj == pg->uobject);
    292  1.156     rmind 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    293  1.156     rmind 	KASSERT(ret == pg);
    294  1.136      yamt }
    295  1.136      yamt 
    296  1.136      yamt static inline void
    297  1.153  uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    298   1.96      yamt {
    299   1.96      yamt 
    300  1.153  uebayasi 	KDASSERT(uobj != NULL);
    301  1.136      yamt 	uvm_pageinsert_tree(uobj, pg);
    302  1.136      yamt 	uvm_pageinsert_list(uobj, pg, NULL);
    303   1.96      yamt }
    304   1.96      yamt 
    305    1.1       mrg /*
    306  1.134        ad  * uvm_page_remove: remove page from object.
    307    1.1       mrg  *
    308    1.1       mrg  * => caller must lock object
    309    1.1       mrg  * => caller must lock page queues
    310    1.1       mrg  */
    311    1.1       mrg 
    312  1.109     perry static inline void
    313  1.136      yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    314    1.1       mrg {
    315    1.1       mrg 
    316  1.136      yamt 	KASSERT(uobj == pg->uobject);
    317  1.127        ad 	KASSERT(mutex_owned(&uobj->vmobjlock));
    318   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    319  1.123        ad 
    320   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    321   1.94      yamt 		if (uobj->uo_npages == 1) {
    322   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    323   1.94      yamt 
    324   1.94      yamt 			holdrelel(vp);
    325   1.94      yamt 		}
    326   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    327  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    328   1.94      yamt 		} else {
    329  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    330   1.94      yamt 		}
    331   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    332  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    333   1.51       chs 	}
    334   1.44       chs 
    335    1.7       mrg 	/* object should be locked */
    336   1.67       chs 	uobj->uo_npages--;
    337  1.133        ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    338    1.7       mrg 	pg->flags &= ~PG_TABLED;
    339    1.7       mrg 	pg->uobject = NULL;
    340    1.1       mrg }
    341    1.1       mrg 
    342  1.136      yamt static inline void
    343  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    344  1.136      yamt {
    345  1.136      yamt 
    346  1.136      yamt 	KASSERT(uobj == pg->uobject);
    347  1.156     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    348  1.136      yamt }
    349  1.136      yamt 
    350  1.136      yamt static inline void
    351  1.153  uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    352  1.136      yamt {
    353  1.136      yamt 
    354  1.153  uebayasi 	KDASSERT(uobj != NULL);
    355  1.136      yamt 	uvm_pageremove_tree(uobj, pg);
    356  1.136      yamt 	uvm_pageremove_list(uobj, pg);
    357  1.136      yamt }
    358  1.136      yamt 
    359   1.60   thorpej static void
    360   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    361   1.60   thorpej {
    362   1.60   thorpej 	int color, i;
    363   1.60   thorpej 
    364   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    365   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    366  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    367   1.60   thorpej 		}
    368   1.60   thorpej 	}
    369   1.60   thorpej }
    370   1.60   thorpej 
    371    1.1       mrg /*
    372    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    373   1.62       chs  *
    374    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    375    1.1       mrg  */
    376    1.1       mrg 
    377    1.7       mrg void
    378  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    379    1.1       mrg {
    380  1.155        ad 	static struct uvm_cpu boot_cpu;
    381  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    382  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    383  1.159  uebayasi 	struct vm_physseg *seg;
    384   1.63       chs 	struct vm_page *pagearray;
    385   1.81   thorpej 	int lcv;
    386   1.81   thorpej 	u_int i;
    387   1.14       eeh 	paddr_t paddr;
    388    1.7       mrg 
    389  1.133        ad 	KASSERT(ncpu <= 1);
    390  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    391  1.133        ad 
    392    1.7       mrg 	/*
    393   1.60   thorpej 	 * init the page queues and page queue locks, except the free
    394   1.60   thorpej 	 * list; we allocate that later (with the initial vm_page
    395   1.60   thorpej 	 * structures).
    396    1.7       mrg 	 */
    397   1.51       chs 
    398  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    399  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    400  1.146      haad 	uvm_reclaim_init();
    401  1.113      yamt 	uvmpdpol_init();
    402  1.127        ad 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    403  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    404    1.7       mrg 
    405    1.7       mrg 	/*
    406   1.51       chs 	 * allocate vm_page structures.
    407    1.7       mrg 	 */
    408    1.7       mrg 
    409    1.7       mrg 	/*
    410    1.7       mrg 	 * sanity check:
    411    1.7       mrg 	 * before calling this function the MD code is expected to register
    412    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    413    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    414    1.7       mrg 	 */
    415    1.7       mrg 
    416  1.158  uebayasi 	if (vm_nphysmem == 0)
    417   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    418   1.62       chs 
    419    1.7       mrg 	/*
    420   1.62       chs 	 * first calculate the number of free pages...
    421    1.7       mrg 	 *
    422    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    423    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    424    1.7       mrg 	 * want to return some memory to the pool after booting.
    425    1.7       mrg 	 */
    426   1.62       chs 
    427    1.7       mrg 	freepages = 0;
    428  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    429  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    430  1.158  uebayasi 		freepages += (seg->end - seg->start);
    431  1.158  uebayasi 	}
    432    1.7       mrg 
    433    1.7       mrg 	/*
    434   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    435   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    436   1.60   thorpej 	 */
    437   1.60   thorpej 	if (uvmexp.ncolors == 0)
    438   1.60   thorpej 		uvmexp.ncolors = 1;
    439   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    440   1.60   thorpej 
    441   1.60   thorpej 	/*
    442    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    443    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    444    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    445    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    446    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    447    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    448    1.7       mrg 	 * pages).
    449    1.7       mrg 	 */
    450   1.62       chs 
    451   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    452   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    453    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    454   1.60   thorpej 
    455   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    456  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    457   1.60   thorpej 	    sizeof(struct vm_page)));
    458  1.133        ad 	cpuarray = bucketarray + bucketcount;
    459  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    460   1.60   thorpej 
    461   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    462   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    463   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    464   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    465  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    466  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    467  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    468   1.60   thorpej 	}
    469   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    470   1.62       chs 
    471    1.7       mrg 	/*
    472   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    473    1.7       mrg 	 */
    474    1.7       mrg 
    475  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    476  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    477  1.158  uebayasi 		n = seg->end - seg->start;
    478   1.51       chs 
    479    1.7       mrg 		/* set up page array pointers */
    480  1.158  uebayasi 		seg->pgs = pagearray;
    481    1.7       mrg 		pagearray += n;
    482    1.7       mrg 		pagecount -= n;
    483  1.161  uebayasi 		seg->lastpg = seg->pgs + n;
    484    1.7       mrg 
    485   1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    486  1.158  uebayasi 		paddr = ctob(seg->start);
    487    1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    488  1.158  uebayasi 			seg->pgs[i].phys_addr = paddr;
    489   1.56   thorpej #ifdef __HAVE_VM_PAGE_MD
    490  1.158  uebayasi 			VM_MDPAGE_INIT(&seg->pgs[i]);
    491   1.56   thorpej #endif
    492  1.158  uebayasi 			if (atop(paddr) >= seg->avail_start &&
    493  1.158  uebayasi 			    atop(paddr) <= seg->avail_end) {
    494    1.7       mrg 				uvmexp.npages++;
    495    1.7       mrg 				/* add page to free pool */
    496  1.158  uebayasi 				uvm_pagefree(&seg->pgs[i]);
    497    1.7       mrg 			}
    498    1.7       mrg 		}
    499    1.7       mrg 	}
    500   1.44       chs 
    501    1.7       mrg 	/*
    502   1.88   thorpej 	 * pass up the values of virtual_space_start and
    503   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    504   1.88   thorpej 	 * layers of the VM.
    505   1.88   thorpej 	 */
    506   1.88   thorpej 
    507   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    508   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    509   1.91      yamt #ifdef DEBUG
    510   1.91      yamt 	/*
    511   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    512   1.91      yamt 	 */
    513   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    514   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    515   1.91      yamt #endif /* DEBUG */
    516   1.88   thorpej 
    517   1.88   thorpej 	/*
    518   1.51       chs 	 * init various thresholds.
    519    1.7       mrg 	 */
    520   1.51       chs 
    521    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    522  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    523    1.7       mrg 
    524    1.7       mrg 	/*
    525   1.51       chs 	 * determine if we should zero pages in the idle loop.
    526   1.34   thorpej 	 */
    527   1.51       chs 
    528  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    529   1.34   thorpej 
    530   1.34   thorpej 	/*
    531    1.7       mrg 	 * done!
    532    1.7       mrg 	 */
    533    1.1       mrg 
    534  1.119   thorpej 	uvm.page_init_done = true;
    535    1.1       mrg }
    536    1.1       mrg 
    537    1.1       mrg /*
    538    1.1       mrg  * uvm_setpagesize: set the page size
    539   1.62       chs  *
    540    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    541   1.62       chs  */
    542    1.1       mrg 
    543    1.7       mrg void
    544  1.105   thorpej uvm_setpagesize(void)
    545    1.1       mrg {
    546   1.85   thorpej 
    547   1.85   thorpej 	/*
    548   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    549   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    550   1.85   thorpej 	 */
    551   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    552   1.85   thorpej 		if (PAGE_SIZE == 0)
    553   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    554   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    555   1.85   thorpej 	}
    556    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    557    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    558    1.7       mrg 		panic("uvm_setpagesize: page size not a power of two");
    559    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    560    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    561    1.7       mrg 			break;
    562    1.1       mrg }
    563    1.1       mrg 
    564    1.1       mrg /*
    565    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    566    1.1       mrg  */
    567    1.1       mrg 
    568   1.14       eeh vaddr_t
    569  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    570    1.1       mrg {
    571  1.119   thorpej 	static bool initialized = false;
    572   1.14       eeh 	vaddr_t addr;
    573   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    574   1.52   thorpej 	vaddr_t vaddr;
    575   1.14       eeh 	paddr_t paddr;
    576   1.52   thorpej #endif
    577    1.1       mrg 
    578    1.7       mrg 	/*
    579   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    580    1.7       mrg 	 */
    581  1.119   thorpej 	if (initialized == false) {
    582   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    583    1.1       mrg 
    584    1.7       mrg 		/* round it the way we like it */
    585   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    586   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    587   1.19   thorpej 
    588  1.119   thorpej 		initialized = true;
    589    1.7       mrg 	}
    590   1.52   thorpej 
    591   1.52   thorpej 	/* round to page size */
    592   1.52   thorpej 	size = round_page(size);
    593   1.52   thorpej 
    594   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    595   1.52   thorpej 
    596   1.62       chs 	/*
    597   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    598   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    599   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    600   1.52   thorpej 	 */
    601   1.52   thorpej 
    602   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    603   1.88   thorpej 	    &virtual_space_end);
    604   1.52   thorpej 
    605   1.52   thorpej 	return(addr);
    606   1.52   thorpej 
    607   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    608    1.1       mrg 
    609    1.7       mrg 	/*
    610    1.7       mrg 	 * allocate virtual memory for this request
    611    1.7       mrg 	 */
    612   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    613   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    614   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    615   1.20   thorpej 
    616   1.88   thorpej 	addr = virtual_space_start;
    617   1.20   thorpej 
    618   1.20   thorpej #ifdef PMAP_GROWKERNEL
    619   1.20   thorpej 	/*
    620   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    621   1.20   thorpej 	 * then allocate more resources for it.
    622   1.20   thorpej 	 */
    623   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    624   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    625   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    626   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    627   1.19   thorpej 	}
    628   1.20   thorpej #endif
    629    1.1       mrg 
    630   1.88   thorpej 	virtual_space_start += size;
    631    1.1       mrg 
    632    1.9   thorpej 	/*
    633    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    634    1.7       mrg 	 */
    635    1.1       mrg 
    636    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    637    1.7       mrg 	    vaddr += PAGE_SIZE) {
    638    1.1       mrg 
    639    1.7       mrg 		if (!uvm_page_physget(&paddr))
    640    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    641    1.1       mrg 
    642   1.23   thorpej 		/*
    643   1.23   thorpej 		 * Note this memory is no longer managed, so using
    644   1.23   thorpej 		 * pmap_kenter is safe.
    645   1.23   thorpej 		 */
    646  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    647    1.7       mrg 	}
    648   1.66     chris 	pmap_update(pmap_kernel());
    649    1.7       mrg 	return(addr);
    650    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    651    1.1       mrg }
    652    1.1       mrg 
    653    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    654    1.1       mrg /*
    655    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    656    1.1       mrg  *
    657    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    658    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    659    1.1       mrg  *    will advance both values (making them equal, and removing some
    660    1.1       mrg  *    vm_page structures from the non-avail area).
    661    1.1       mrg  * => return false if out of memory.
    662    1.1       mrg  */
    663    1.1       mrg 
    664   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    665  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    666   1.28  drochner 
    667  1.118   thorpej static bool
    668  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    669    1.1       mrg {
    670  1.159  uebayasi 	struct vm_physseg *seg;
    671    1.7       mrg 	int lcv, x;
    672    1.1       mrg 
    673    1.7       mrg 	/* pass 1: try allocating from a matching end */
    674    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    675  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    676    1.1       mrg #else
    677  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    678    1.1       mrg #endif
    679    1.7       mrg 	{
    680  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    681    1.1       mrg 
    682  1.119   thorpej 		if (uvm.page_init_done == true)
    683   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    684    1.1       mrg 
    685  1.159  uebayasi 		if (seg->free_list != freelist)
    686   1.28  drochner 			continue;
    687   1.28  drochner 
    688    1.7       mrg 		/* try from front */
    689  1.159  uebayasi 		if (seg->avail_start == seg->start &&
    690  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    691  1.159  uebayasi 			*paddrp = ctob(seg->avail_start);
    692  1.159  uebayasi 			seg->avail_start++;
    693  1.159  uebayasi 			seg->start++;
    694    1.7       mrg 			/* nothing left?   nuke it */
    695  1.159  uebayasi 			if (seg->avail_start == seg->end) {
    696  1.158  uebayasi 				if (vm_nphysmem == 1)
    697   1.89       wiz 				    panic("uvm_page_physget: out of memory!");
    698  1.158  uebayasi 				vm_nphysmem--;
    699  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    700  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    701    1.7       mrg 			}
    702  1.119   thorpej 			return (true);
    703    1.7       mrg 		}
    704    1.7       mrg 
    705    1.7       mrg 		/* try from rear */
    706  1.159  uebayasi 		if (seg->avail_end == seg->end &&
    707  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    708  1.159  uebayasi 			*paddrp = ctob(seg->avail_end - 1);
    709  1.159  uebayasi 			seg->avail_end--;
    710  1.159  uebayasi 			seg->end--;
    711    1.7       mrg 			/* nothing left?   nuke it */
    712  1.159  uebayasi 			if (seg->avail_end == seg->start) {
    713  1.158  uebayasi 				if (vm_nphysmem == 1)
    714   1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    715  1.158  uebayasi 				vm_nphysmem--;
    716  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    717  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    718    1.7       mrg 			}
    719  1.119   thorpej 			return (true);
    720    1.7       mrg 		}
    721    1.7       mrg 	}
    722    1.1       mrg 
    723    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    724    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    725  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    726    1.1       mrg #else
    727  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    728    1.1       mrg #endif
    729    1.7       mrg 	{
    730  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    731    1.1       mrg 
    732    1.7       mrg 		/* any room in this bank? */
    733  1.159  uebayasi 		if (seg->avail_start >= seg->avail_end)
    734    1.7       mrg 			continue;  /* nope */
    735    1.7       mrg 
    736  1.159  uebayasi 		*paddrp = ctob(seg->avail_start);
    737  1.159  uebayasi 		seg->avail_start++;
    738    1.7       mrg 		/* truncate! */
    739  1.159  uebayasi 		seg->start = seg->avail_start;
    740    1.7       mrg 
    741    1.7       mrg 		/* nothing left?   nuke it */
    742  1.159  uebayasi 		if (seg->avail_start == seg->end) {
    743  1.158  uebayasi 			if (vm_nphysmem == 1)
    744   1.42       mrg 				panic("uvm_page_physget: out of memory!");
    745  1.158  uebayasi 			vm_nphysmem--;
    746  1.158  uebayasi 			for (x = lcv ; x < vm_nphysmem ; x++)
    747  1.158  uebayasi 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    748    1.7       mrg 		}
    749  1.119   thorpej 		return (true);
    750    1.7       mrg 	}
    751    1.1       mrg 
    752  1.119   thorpej 	return (false);        /* whoops! */
    753   1.28  drochner }
    754   1.28  drochner 
    755  1.118   thorpej bool
    756  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    757   1.28  drochner {
    758   1.28  drochner 	int i;
    759   1.28  drochner 
    760   1.28  drochner 	/* try in the order of freelist preference */
    761   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    762  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    763  1.119   thorpej 			return (true);
    764  1.119   thorpej 	return (false);
    765    1.1       mrg }
    766    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    767    1.1       mrg 
    768    1.1       mrg /*
    769    1.1       mrg  * uvm_page_physload: load physical memory into VM system
    770    1.1       mrg  *
    771    1.1       mrg  * => all args are PFs
    772    1.1       mrg  * => all pages in start/end get vm_page structures
    773    1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    774    1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    775    1.1       mrg  */
    776    1.1       mrg 
    777    1.7       mrg void
    778  1.105   thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    779  1.105   thorpej     paddr_t avail_end, int free_list)
    780    1.1       mrg {
    781  1.164  uebayasi 	struct vm_physseg *seg;
    782  1.164  uebayasi 	int lcv;
    783    1.7       mrg 
    784   1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    785   1.79    provos 		panic("uvm_page_physload: bad free list %d", free_list);
    786   1.67       chs 
    787  1.164  uebayasi 	seg = uvm_physseg_alloc(&vm_physmem_freelist, vm_physmem_ptrs,
    788  1.164  uebayasi 	    vm_nphysmem, start, end);
    789  1.164  uebayasi 	KASSERT(seg != NULL);
    790    1.7       mrg 
    791  1.164  uebayasi 	seg->avail_start = avail_start;
    792  1.164  uebayasi 	seg->avail_end = avail_end;
    793    1.7       mrg 	/*
    794  1.160  uebayasi 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    795    1.7       mrg 	 * called yet, so malloc is not available).
    796    1.7       mrg 	 */
    797   1.67       chs 
    798  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    799  1.159  uebayasi 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    800    1.7       mrg 			break;
    801    1.7       mrg 	}
    802  1.164  uebayasi 	if (lcv == vm_nphysmem) {
    803  1.164  uebayasi 		seg->pgs = NULL;
    804  1.164  uebayasi 		seg->lastpg = NULL;
    805  1.164  uebayasi 		seg->free_list = free_list;
    806  1.164  uebayasi 	} else {
    807  1.164  uebayasi 		panic("uvm_page_physload: "
    808  1.164  uebayasi 		    "tried to add RAM after uvm_page_init");
    809  1.164  uebayasi 	}
    810  1.164  uebayasi 	vm_nphysmem++;
    811  1.164  uebayasi }
    812  1.164  uebayasi 
    813  1.164  uebayasi #if 0
    814  1.164  uebayasi void
    815  1.164  uebayasi uvm_page_physunload(void *cookie)
    816  1.164  uebayasi {
    817  1.164  uebayasi 	struct vm_physseg *seg = cookie;
    818  1.164  uebayasi 
    819  1.164  uebayasi 	panic("memory unload is not supported yet");
    820  1.164  uebayasi 
    821  1.164  uebayasi 	uvm_physseg_free(&vm_physmem_freelist, vm_physmem_ptrs, seg);
    822  1.164  uebayasi 	vm_nphysmem--;
    823  1.164  uebayasi }
    824  1.164  uebayasi #endif
    825  1.164  uebayasi 
    826  1.164  uebayasi int uvm_physseg_inited;
    827  1.164  uebayasi 
    828  1.164  uebayasi static struct vm_physseg *
    829  1.164  uebayasi uvm_physseg_alloc(struct vm_physseg_freelist *freelist,
    830  1.164  uebayasi     struct vm_physseg **segs, int nsegs,
    831  1.164  uebayasi     const paddr_t start, const paddr_t end)
    832  1.164  uebayasi {
    833  1.164  uebayasi 	struct vm_physseg *ps;
    834  1.164  uebayasi 
    835  1.164  uebayasi 	if (uvmexp.pagesize == 0)
    836  1.164  uebayasi 		panic("uvm_page_physload: page size not set!");
    837  1.164  uebayasi 	if (start >= end)
    838  1.164  uebayasi 		panic("uvm_page_physload: start >= end");
    839  1.164  uebayasi 	if (nsegs == VM_PHYSSEG_MAX)
    840  1.164  uebayasi 		panic("uvm_page_physload: unable to load physical memory "
    841  1.164  uebayasi 		    "segment\n"
    842  1.164  uebayasi 		    "\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n"
    843  1.164  uebayasi 		    "\tincrease VM_PHYSSEG_MAX\n",
    844  1.164  uebayasi 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    845  1.164  uebayasi 
    846  1.164  uebayasi 	if (uvm_physseg_inited == 0) {
    847  1.164  uebayasi 		uvm_physseg_inited = 1;
    848  1.164  uebayasi 		uvm_physseg_init();
    849  1.164  uebayasi 	}
    850  1.164  uebayasi 
    851  1.164  uebayasi 	ps = SIMPLEQ_FIRST(freelist);
    852  1.164  uebayasi 	KASSERT(ps != NULL);
    853  1.164  uebayasi 	SIMPLEQ_REMOVE_HEAD(freelist, list);
    854  1.164  uebayasi 
    855  1.164  uebayasi 	ps->start = start;
    856  1.164  uebayasi 	ps->end = end;
    857  1.164  uebayasi 	uvm_physseg_insert(ps, segs, nsegs);
    858  1.164  uebayasi 	return ps;
    859  1.164  uebayasi }
    860    1.7       mrg 
    861  1.164  uebayasi void
    862  1.164  uebayasi uvm_physseg_free(struct vm_physseg_freelist *freelist,
    863  1.164  uebayasi     struct vm_physseg **segs, struct vm_physseg *seg)
    864  1.164  uebayasi {
    865  1.164  uebayasi 
    866  1.164  uebayasi 	uvm_physseg_remove(segs, seg);
    867  1.164  uebayasi 	SIMPLEQ_INSERT_TAIL(freelist, seg, list);
    868  1.164  uebayasi }
    869  1.164  uebayasi 
    870  1.164  uebayasi static void
    871  1.164  uebayasi uvm_physseg_init(void)
    872  1.164  uebayasi {
    873  1.164  uebayasi 	int lcv;
    874   1.67       chs 
    875  1.164  uebayasi 	for (lcv = 0; lcv < VM_PHYSSEG_MAX; lcv++) {
    876  1.164  uebayasi 		SIMPLEQ_INSERT_TAIL(&vm_physmem_freelist,
    877  1.164  uebayasi 		    &vm_physmem_store[lcv], list);
    878    1.7       mrg 	}
    879  1.164  uebayasi }
    880    1.1       mrg 
    881  1.164  uebayasi static void
    882  1.164  uebayasi uvm_physseg_insert(struct vm_physseg *ps,
    883  1.164  uebayasi     struct vm_physseg **segs, int nsegs)
    884  1.164  uebayasi {
    885    1.1       mrg 
    886    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    887    1.7       mrg 	/* random: put it at the end (easy!) */
    888  1.164  uebayasi 	segs[nsegs] = ps;
    889    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    890    1.7       mrg 	{
    891  1.164  uebayasi 		int lcv;
    892    1.7       mrg 		int x;
    893    1.7       mrg 		/* sort by address for binary search */
    894  1.164  uebayasi 		for (lcv = 0 ; lcv < nsegs ; lcv++)
    895  1.164  uebayasi 			if (ps->start < segs[lcv]->start)
    896    1.7       mrg 				break;
    897    1.7       mrg 		/* move back other entries, if necessary ... */
    898  1.164  uebayasi 		for (x = nsegs ; x > lcv ; x--)
    899  1.164  uebayasi 			segs[x] = segs[x - 1];
    900  1.164  uebayasi 		segs[lcv] = ps;
    901    1.7       mrg 	}
    902    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    903    1.7       mrg 	{
    904  1.164  uebayasi 		int lcv;
    905    1.7       mrg 		int x;
    906    1.7       mrg 		/* sort by largest segment first */
    907  1.164  uebayasi 		for (lcv = 0 ; lcv < nsegs ; lcv++)
    908  1.164  uebayasi 			if ((ps->end - ps->start) >
    909  1.164  uebayasi 			    (segs[lcv]->end - segs[lcv]->start))
    910    1.7       mrg 				break;
    911    1.7       mrg 		/* move back other entries, if necessary ... */
    912  1.164  uebayasi 		for (x = nsegs ; x > lcv ; x--)
    913  1.164  uebayasi 			segs[x] = segs[x - 1];
    914  1.164  uebayasi 		segs[lcv] = ps;
    915    1.7       mrg 	}
    916    1.1       mrg #else
    917   1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    918    1.1       mrg #endif
    919  1.164  uebayasi }
    920    1.1       mrg 
    921  1.164  uebayasi static void
    922  1.164  uebayasi uvm_physseg_remove(struct vm_physseg **segs, struct vm_physseg *seg)
    923  1.164  uebayasi {
    924  1.164  uebayasi 	struct vm_physseg **segp;
    925    1.7       mrg 
    926  1.164  uebayasi 	for (segp = segs; segp < segs + VM_PHYSSEG_MAX; segp++)
    927  1.164  uebayasi 		if (*segp == seg)
    928  1.164  uebayasi 			break;
    929  1.164  uebayasi 	if (segp == segs + VM_PHYSSEG_MAX)
    930  1.164  uebayasi 		panic("unknown segment: %p", seg);
    931  1.164  uebayasi 	while (segp + 1 < segs + VM_PHYSSEG_MAX) {
    932  1.164  uebayasi 		*segp = *(segp + 1);
    933  1.164  uebayasi 		segp++;
    934  1.113      yamt 	}
    935  1.164  uebayasi 	*segp = NULL;
    936    1.1       mrg }
    937    1.1       mrg 
    938    1.1       mrg /*
    939  1.164  uebayasi  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    940  1.162  uebayasi  */
    941  1.162  uebayasi 
    942  1.164  uebayasi #define	VM_PHYSSEG_OP_PF	1
    943  1.164  uebayasi #define	VM_PHYSSEG_OP_PG	2
    944  1.164  uebayasi 
    945  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    946  1.164  uebayasi #define	VM_PHYSSEG_FIND	vm_physseg_find_contig
    947  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    948  1.164  uebayasi #define	VM_PHYSSEG_FIND	vm_physseg_find_bsearch
    949  1.162  uebayasi #else
    950  1.164  uebayasi #define	VM_PHYSSEG_FIND	vm_physseg_find_linear
    951  1.162  uebayasi #endif
    952  1.162  uebayasi 
    953  1.164  uebayasi static inline int VM_PHYSSEG_FIND(struct vm_physseg **, int, int,
    954  1.164  uebayasi     paddr_t, const struct vm_page *, int *);
    955  1.164  uebayasi static inline bool vm_physseg_within_p(struct vm_physseg *, int, paddr_t,
    956  1.164  uebayasi     const struct vm_page *, int *);
    957  1.164  uebayasi static inline bool vm_physseg_ge_p(struct vm_physseg *, int, paddr_t,
    958  1.164  uebayasi     const struct vm_page *, int *);
    959  1.164  uebayasi static inline bool vm_physseg_lt_p(struct vm_physseg *, int, paddr_t,
    960  1.164  uebayasi     const struct vm_page *, int *);
    961  1.164  uebayasi 
    962  1.162  uebayasi int
    963  1.162  uebayasi vm_physseg_find(paddr_t pframe, int *offp)
    964  1.162  uebayasi {
    965  1.162  uebayasi 
    966  1.164  uebayasi 	return VM_PHYSSEG_FIND(vm_physmem_ptrs, vm_nphysmem, VM_PHYSSEG_OP_PF,
    967  1.164  uebayasi 	    pframe, NULL, offp);
    968  1.162  uebayasi }
    969  1.162  uebayasi 
    970  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    971  1.162  uebayasi static inline int
    972  1.164  uebayasi vm_physseg_find_contig(struct vm_physseg **segs, int nsegs, int op,
    973  1.164  uebayasi     paddr_t pframe, const struct vm_page *pg, int *offp)
    974  1.162  uebayasi {
    975  1.162  uebayasi 
    976  1.162  uebayasi 	/* 'contig' case */
    977  1.164  uebayasi 	if (nsegs == 0)
    978  1.164  uebayasi 		return(-1);
    979  1.164  uebayasi 	if (vm_physseg_within_p(segs[0], op, pframe, pg, offp)) {
    980  1.162  uebayasi 		return(0);
    981  1.162  uebayasi 	}
    982  1.162  uebayasi 	return(-1);
    983  1.162  uebayasi }
    984  1.162  uebayasi 
    985  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    986  1.162  uebayasi 
    987  1.162  uebayasi static inline int
    988  1.164  uebayasi vm_physseg_find_bsearch(struct vm_physseg **segs, int nsegs, int op,
    989  1.164  uebayasi     paddr_t pframe, const struct vm_page *pg, int *offp)
    990  1.162  uebayasi {
    991  1.162  uebayasi 	/* binary search for it */
    992  1.162  uebayasi 	u_int	start, len, try;
    993  1.162  uebayasi 
    994  1.162  uebayasi 	/*
    995  1.162  uebayasi 	 * if try is too large (thus target is less than try) we reduce
    996  1.162  uebayasi 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    997  1.162  uebayasi 	 *
    998  1.162  uebayasi 	 * if the try is too small (thus target is greater than try) then
    999  1.162  uebayasi 	 * we set the new start to be (try + 1).   this means we need to
   1000  1.162  uebayasi 	 * reduce the length to (round(len/2) - 1).
   1001  1.162  uebayasi 	 *
   1002  1.162  uebayasi 	 * note "adjust" below which takes advantage of the fact that
   1003  1.162  uebayasi 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
   1004  1.162  uebayasi 	 * for any value of len we may have
   1005  1.162  uebayasi 	 */
   1006  1.162  uebayasi 
   1007  1.162  uebayasi 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
   1008  1.162  uebayasi 		try = start + (len / 2);	/* try in the middle */
   1009  1.162  uebayasi 
   1010  1.162  uebayasi 		/* start past our try? */
   1011  1.164  uebayasi 		if (vm_physseg_ge_p(segs[try], op, pframe, pg, offp)) {
   1012  1.162  uebayasi 			/* was try correct? */
   1013  1.164  uebayasi 			if (vm_physseg_lt_p(segs[try], op, pframe, pg, offp)) {
   1014  1.162  uebayasi 				return(try);            /* got it */
   1015  1.162  uebayasi 			}
   1016  1.162  uebayasi 			start = try + 1;	/* next time, start here */
   1017  1.162  uebayasi 			len--;			/* "adjust" */
   1018  1.162  uebayasi 		} else {
   1019  1.162  uebayasi 			/*
   1020  1.162  uebayasi 			 * pframe before try, just reduce length of
   1021  1.162  uebayasi 			 * region, done in "for" loop
   1022  1.162  uebayasi 			 */
   1023  1.162  uebayasi 		}
   1024  1.162  uebayasi 	}
   1025  1.162  uebayasi 	return(-1);
   1026  1.162  uebayasi }
   1027  1.162  uebayasi 
   1028  1.162  uebayasi #else
   1029  1.162  uebayasi 
   1030  1.162  uebayasi static inline int
   1031  1.164  uebayasi vm_physseg_find_linear(struct vm_physseg **segs, int nsegs, int op,
   1032  1.164  uebayasi     paddr_t pframe, const struct vm_page *pg, int *offp)
   1033  1.162  uebayasi {
   1034  1.162  uebayasi 	/* linear search for it */
   1035  1.162  uebayasi 	int	lcv;
   1036  1.162  uebayasi 
   1037  1.162  uebayasi 	for (lcv = 0; lcv < nsegs; lcv++) {
   1038  1.164  uebayasi 		if (vm_physseg_within_p(segs[lcv], op, pframe, pg, offp)) {
   1039  1.162  uebayasi 			return(lcv);		   /* got it */
   1040  1.162  uebayasi 		}
   1041  1.162  uebayasi 	}
   1042  1.162  uebayasi 	return(-1);
   1043  1.162  uebayasi }
   1044  1.162  uebayasi #endif
   1045  1.162  uebayasi 
   1046  1.164  uebayasi static inline bool
   1047  1.164  uebayasi vm_physseg_within_p(struct vm_physseg *seg, int op, paddr_t pframe,
   1048  1.164  uebayasi     const struct vm_page *pg, int *offp)
   1049  1.164  uebayasi {
   1050  1.164  uebayasi 
   1051  1.164  uebayasi 	return vm_physseg_ge_p(seg, op, pframe, pg, offp) &&
   1052  1.164  uebayasi 	    vm_physseg_lt_p(seg, op, pframe, pg, offp);
   1053  1.164  uebayasi }
   1054  1.164  uebayasi 
   1055  1.164  uebayasi static inline bool
   1056  1.164  uebayasi vm_physseg_ge_p(struct vm_physseg *seg, int op, paddr_t pframe,
   1057  1.164  uebayasi     const struct vm_page *pg, int *offp)
   1058  1.164  uebayasi {
   1059  1.164  uebayasi 
   1060  1.164  uebayasi 	switch (op) {
   1061  1.164  uebayasi 	case VM_PHYSSEG_OP_PF:
   1062  1.164  uebayasi 		if (offp)
   1063  1.164  uebayasi 			*offp = pframe - seg->start;
   1064  1.164  uebayasi 		return pframe >= seg->start;
   1065  1.164  uebayasi 	case VM_PHYSSEG_OP_PG:
   1066  1.164  uebayasi 		if (offp)
   1067  1.164  uebayasi 			*offp = pg - seg->pgs;
   1068  1.164  uebayasi 		return pg >= seg->pgs;
   1069  1.164  uebayasi 	default:
   1070  1.164  uebayasi 		return false;
   1071  1.164  uebayasi 	}
   1072  1.164  uebayasi }
   1073  1.164  uebayasi 
   1074  1.164  uebayasi static inline bool
   1075  1.164  uebayasi vm_physseg_lt_p(struct vm_physseg *seg, int op, paddr_t pframe,
   1076  1.164  uebayasi     const struct vm_page *pg, int *offp)
   1077  1.164  uebayasi {
   1078  1.164  uebayasi 
   1079  1.164  uebayasi 	switch (op) {
   1080  1.164  uebayasi 	case VM_PHYSSEG_OP_PF:
   1081  1.164  uebayasi 		return pframe < seg->end;
   1082  1.164  uebayasi 	case VM_PHYSSEG_OP_PG:
   1083  1.164  uebayasi 		return pg < seg->lastpg;
   1084  1.164  uebayasi 	default:
   1085  1.164  uebayasi 		return false;
   1086  1.164  uebayasi 	}
   1087  1.164  uebayasi }
   1088  1.164  uebayasi 
   1089  1.162  uebayasi /*
   1090  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
   1091  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
   1092  1.163  uebayasi  */
   1093  1.163  uebayasi struct vm_page *
   1094  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
   1095  1.163  uebayasi {
   1096  1.163  uebayasi 	paddr_t pf = atop(pa);
   1097  1.163  uebayasi 	int	off;
   1098  1.163  uebayasi 	int	psi;
   1099  1.163  uebayasi 
   1100  1.163  uebayasi 	psi = vm_physseg_find(pf, &off);
   1101  1.163  uebayasi 	if (psi != -1)
   1102  1.163  uebayasi 		return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
   1103  1.163  uebayasi 	return(NULL);
   1104  1.163  uebayasi }
   1105  1.163  uebayasi 
   1106  1.163  uebayasi paddr_t
   1107  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
   1108  1.163  uebayasi {
   1109  1.163  uebayasi 
   1110  1.163  uebayasi 	return pg->phys_addr;
   1111  1.163  uebayasi }
   1112  1.163  uebayasi 
   1113  1.163  uebayasi /*
   1114   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
   1115   1.60   thorpej  * larger than the old one.
   1116   1.60   thorpej  */
   1117   1.60   thorpej 
   1118   1.60   thorpej void
   1119   1.60   thorpej uvm_page_recolor(int newncolors)
   1120   1.60   thorpej {
   1121  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
   1122  1.133        ad 	struct pgfreelist gpgfl, pgfl;
   1123   1.63       chs 	struct vm_page *pg;
   1124   1.60   thorpej 	vsize_t bucketcount;
   1125  1.123        ad 	int lcv, color, i, ocolors;
   1126  1.133        ad 	struct uvm_cpu *ucpu;
   1127   1.60   thorpej 
   1128   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
   1129   1.60   thorpej 		return;
   1130   1.77  wrstuden 
   1131  1.119   thorpej 	if (uvm.page_init_done == false) {
   1132   1.77  wrstuden 		uvmexp.ncolors = newncolors;
   1133   1.77  wrstuden 		return;
   1134   1.77  wrstuden 	}
   1135   1.60   thorpej 
   1136   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
   1137  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
   1138   1.60   thorpej 	    M_VMPAGE, M_NOWAIT);
   1139  1.133        ad 	cpuarray = bucketarray + bucketcount;
   1140   1.60   thorpej 	if (bucketarray == NULL) {
   1141   1.60   thorpej 		printf("WARNING: unable to allocate %ld page color buckets\n",
   1142   1.60   thorpej 		    (long) bucketcount);
   1143   1.60   thorpej 		return;
   1144   1.60   thorpej 	}
   1145   1.60   thorpej 
   1146  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1147   1.60   thorpej 
   1148   1.60   thorpej 	/* Make sure we should still do this. */
   1149   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
   1150  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
   1151   1.60   thorpej 		free(bucketarray, M_VMPAGE);
   1152   1.60   thorpej 		return;
   1153   1.60   thorpej 	}
   1154   1.60   thorpej 
   1155   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
   1156   1.60   thorpej 	ocolors = uvmexp.ncolors;
   1157   1.60   thorpej 
   1158   1.60   thorpej 	uvmexp.ncolors = newncolors;
   1159   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
   1160   1.60   thorpej 
   1161  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1162   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1163  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
   1164  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
   1165  1.133        ad 		uvm_page_init_buckets(&gpgfl);
   1166   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
   1167   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
   1168   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
   1169  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
   1170   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
   1171   1.60   thorpej 				    != NULL) {
   1172  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
   1173  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
   1174  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
   1175  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1176  1.133        ad 					    i], pg, pageq.list);
   1177  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1178   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1179  1.133        ad 					    i], pg, listq.list);
   1180   1.60   thorpej 				}
   1181   1.60   thorpej 			}
   1182   1.60   thorpej 		}
   1183  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1184  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1185   1.60   thorpej 	}
   1186   1.60   thorpej 
   1187   1.60   thorpej 	if (have_recolored_pages) {
   1188  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
   1189   1.60   thorpej 		free(oldbucketarray, M_VMPAGE);
   1190   1.60   thorpej 		return;
   1191   1.60   thorpej 	}
   1192   1.60   thorpej 
   1193  1.119   thorpej 	have_recolored_pages = true;
   1194  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1195   1.60   thorpej }
   1196    1.1       mrg 
   1197    1.1       mrg /*
   1198  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
   1199  1.133        ad  */
   1200  1.133        ad 
   1201  1.133        ad void
   1202  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
   1203  1.133        ad {
   1204  1.133        ad 	struct pgflbucket *bucketarray;
   1205  1.133        ad 	struct pgfreelist pgfl;
   1206  1.133        ad 	struct uvm_cpu *ucpu;
   1207  1.133        ad 	vsize_t bucketcount;
   1208  1.133        ad 	int lcv;
   1209  1.133        ad 
   1210  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
   1211  1.133        ad 		/* Already done in uvm_page_init(). */
   1212  1.133        ad 		return;
   1213  1.133        ad 	}
   1214  1.133        ad 
   1215  1.140        ad 	/* Add more reserve pages for this CPU. */
   1216  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
   1217  1.140        ad 
   1218  1.140        ad 	/* Configure this CPU's free lists. */
   1219  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1220  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1221  1.133        ad 	    M_VMPAGE, M_WAITOK);
   1222  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
   1223  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
   1224  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
   1225  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1226  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1227  1.133        ad 		uvm_page_init_buckets(&pgfl);
   1228  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1229  1.133        ad 	}
   1230  1.133        ad }
   1231  1.133        ad 
   1232  1.133        ad /*
   1233   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1234   1.54   thorpej  */
   1235   1.54   thorpej 
   1236  1.114   thorpej static struct vm_page *
   1237  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1238   1.69    simonb     int *trycolorp)
   1239   1.54   thorpej {
   1240  1.133        ad 	struct pgflist *freeq;
   1241   1.54   thorpej 	struct vm_page *pg;
   1242   1.58     enami 	int color, trycolor = *trycolorp;
   1243  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
   1244   1.54   thorpej 
   1245  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1246  1.130        ad 
   1247   1.58     enami 	color = trycolor;
   1248  1.133        ad 	pgfl = &ucpu->page_free[flist];
   1249  1.133        ad 	gpgfl = &uvm.page_free[flist];
   1250   1.58     enami 	do {
   1251  1.133        ad 		/* cpu, try1 */
   1252  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1253  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1254  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1255  1.133        ad 		    	uvmexp.cpuhit++;
   1256  1.133        ad 			goto gotit;
   1257  1.133        ad 		}
   1258  1.133        ad 		/* global, try1 */
   1259  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1260  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1261  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1262  1.133        ad 		    	uvmexp.cpumiss++;
   1263   1.54   thorpej 			goto gotit;
   1264  1.133        ad 		}
   1265  1.133        ad 		/* cpu, try2 */
   1266  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1267  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1268  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1269  1.133        ad 		    	uvmexp.cpuhit++;
   1270   1.54   thorpej 			goto gotit;
   1271  1.133        ad 		}
   1272  1.133        ad 		/* global, try2 */
   1273  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1274  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1275  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1276  1.133        ad 		    	uvmexp.cpumiss++;
   1277  1.133        ad 			goto gotit;
   1278  1.133        ad 		}
   1279   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
   1280   1.58     enami 	} while (color != trycolor);
   1281   1.54   thorpej 
   1282   1.54   thorpej 	return (NULL);
   1283   1.54   thorpej 
   1284   1.54   thorpej  gotit:
   1285  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1286  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1287   1.54   thorpej 	uvmexp.free--;
   1288   1.54   thorpej 
   1289   1.54   thorpej 	/* update zero'd page count */
   1290   1.54   thorpej 	if (pg->flags & PG_ZERO)
   1291   1.54   thorpej 		uvmexp.zeropages--;
   1292   1.54   thorpej 
   1293   1.54   thorpej 	if (color == trycolor)
   1294   1.54   thorpej 		uvmexp.colorhit++;
   1295   1.54   thorpej 	else {
   1296   1.54   thorpej 		uvmexp.colormiss++;
   1297   1.54   thorpej 		*trycolorp = color;
   1298   1.54   thorpej 	}
   1299   1.54   thorpej 
   1300   1.54   thorpej 	return (pg);
   1301   1.54   thorpej }
   1302   1.54   thorpej 
   1303   1.54   thorpej /*
   1304   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1305    1.1       mrg  *
   1306    1.1       mrg  * => return null if no pages free
   1307    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
   1308  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1309    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
   1310    1.1       mrg  * => only one of obj or anon can be non-null
   1311    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
   1312   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1313   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
   1314   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
   1315   1.34   thorpej  *	unknown contents page.  This is because we live with the
   1316   1.34   thorpej  *	consequences of a bad free list decision for the entire
   1317   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
   1318   1.34   thorpej  *	is slower to access.
   1319    1.1       mrg  */
   1320    1.1       mrg 
   1321    1.7       mrg struct vm_page *
   1322  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1323  1.105   thorpej     int flags, int strat, int free_list)
   1324    1.1       mrg {
   1325  1.123        ad 	int lcv, try1, try2, zeroit = 0, color;
   1326  1.133        ad 	struct uvm_cpu *ucpu;
   1327    1.7       mrg 	struct vm_page *pg;
   1328  1.141        ad 	lwp_t *l;
   1329    1.1       mrg 
   1330   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
   1331  1.113      yamt 	KASSERT(anon == NULL || off == 0);
   1332   1.44       chs 	KASSERT(off == trunc_page(off));
   1333  1.127        ad 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1334  1.127        ad 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1335   1.48   thorpej 
   1336  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1337    1.1       mrg 
   1338    1.7       mrg 	/*
   1339   1.54   thorpej 	 * This implements a global round-robin page coloring
   1340   1.54   thorpej 	 * algorithm.
   1341   1.54   thorpej 	 *
   1342   1.54   thorpej 	 * XXXJRT: What about virtually-indexed caches?
   1343   1.54   thorpej 	 */
   1344   1.67       chs 
   1345  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1346  1.133        ad 	color = ucpu->page_free_nextcolor;
   1347   1.54   thorpej 
   1348   1.54   thorpej 	/*
   1349    1.7       mrg 	 * check to see if we need to generate some free pages waking
   1350    1.7       mrg 	 * the pagedaemon.
   1351    1.7       mrg 	 */
   1352    1.7       mrg 
   1353  1.113      yamt 	uvm_kick_pdaemon();
   1354    1.7       mrg 
   1355    1.7       mrg 	/*
   1356    1.7       mrg 	 * fail if any of these conditions is true:
   1357    1.7       mrg 	 * [1]  there really are no free pages, or
   1358    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1359  1.141        ad 	 *        reserved pages have not been requested.
   1360    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1361    1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1362  1.141        ad 	 * we make kernel reserve pages available if called by a
   1363  1.141        ad 	 * kernel thread or a realtime thread.
   1364    1.7       mrg 	 */
   1365  1.141        ad 	l = curlwp;
   1366  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1367  1.141        ad 		flags |= UVM_PGA_USERESERVE;
   1368  1.141        ad 	}
   1369  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1370  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1371    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1372  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
   1373   1.12   thorpej 		goto fail;
   1374   1.12   thorpej 
   1375   1.34   thorpej #if PGFL_NQUEUES != 2
   1376   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
   1377   1.34   thorpej #endif
   1378   1.34   thorpej 
   1379   1.34   thorpej 	/*
   1380   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1381   1.34   thorpej 	 * we try the UNKNOWN queue first.
   1382   1.34   thorpej 	 */
   1383   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1384   1.34   thorpej 		try1 = PGFL_ZEROS;
   1385   1.34   thorpej 		try2 = PGFL_UNKNOWN;
   1386   1.34   thorpej 	} else {
   1387   1.34   thorpej 		try1 = PGFL_UNKNOWN;
   1388   1.34   thorpej 		try2 = PGFL_ZEROS;
   1389   1.34   thorpej 	}
   1390   1.34   thorpej 
   1391   1.12   thorpej  again:
   1392   1.12   thorpej 	switch (strat) {
   1393   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1394  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
   1395   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1396  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1397   1.54   thorpej 			    try1, try2, &color);
   1398   1.54   thorpej 			if (pg != NULL)
   1399   1.12   thorpej 				goto gotit;
   1400   1.12   thorpej 		}
   1401   1.12   thorpej 
   1402   1.12   thorpej 		/* No pages free! */
   1403   1.12   thorpej 		goto fail;
   1404   1.12   thorpej 
   1405   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1406   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1407   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1408   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1409  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1410   1.54   thorpej 		    try1, try2, &color);
   1411   1.54   thorpej 		if (pg != NULL)
   1412   1.12   thorpej 			goto gotit;
   1413   1.12   thorpej 
   1414   1.12   thorpej 		/* Fall back, if possible. */
   1415   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1416   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1417   1.12   thorpej 			goto again;
   1418   1.12   thorpej 		}
   1419   1.12   thorpej 
   1420   1.12   thorpej 		/* No pages free! */
   1421   1.12   thorpej 		goto fail;
   1422   1.12   thorpej 
   1423   1.12   thorpej 	default:
   1424   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1425   1.12   thorpej 		/* NOTREACHED */
   1426    1.7       mrg 	}
   1427    1.7       mrg 
   1428   1.12   thorpej  gotit:
   1429   1.54   thorpej 	/*
   1430   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1431   1.54   thorpej 	 * the next color accordingly.
   1432   1.54   thorpej 	 */
   1433   1.67       chs 
   1434  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1435   1.34   thorpej 
   1436   1.34   thorpej 	/*
   1437   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1438   1.34   thorpej 	 * zero the page
   1439   1.34   thorpej 	 */
   1440   1.67       chs 
   1441   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1442   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1443   1.34   thorpej 			uvmexp.pga_zerohit++;
   1444   1.34   thorpej 			zeroit = 0;
   1445   1.34   thorpej 		} else {
   1446   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1447   1.34   thorpej 			zeroit = 1;
   1448   1.34   thorpej 		}
   1449  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1450  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1451  1.133        ad 		}
   1452   1.34   thorpej 	}
   1453  1.143  drochner 	KASSERT(pg->pqflags == PQ_FREE);
   1454    1.7       mrg 
   1455    1.7       mrg 	pg->offset = off;
   1456    1.7       mrg 	pg->uobject = obj;
   1457    1.7       mrg 	pg->uanon = anon;
   1458    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1459    1.7       mrg 	if (anon) {
   1460  1.103      yamt 		anon->an_page = pg;
   1461    1.7       mrg 		pg->pqflags = PQ_ANON;
   1462  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1463    1.7       mrg 	} else {
   1464   1.67       chs 		if (obj) {
   1465  1.153  uebayasi 			uvm_pageinsert(obj, pg);
   1466   1.67       chs 		}
   1467    1.7       mrg 		pg->pqflags = 0;
   1468    1.7       mrg 	}
   1469  1.143  drochner 	mutex_spin_exit(&uvm_fpageqlock);
   1470  1.143  drochner 
   1471    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1472    1.7       mrg 	pg->owner_tag = NULL;
   1473    1.1       mrg #endif
   1474    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1475   1.33   thorpej 
   1476   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1477   1.33   thorpej 		/*
   1478   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1479   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1480   1.33   thorpej 		 */
   1481   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1482   1.34   thorpej 		if (zeroit)
   1483   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1484   1.33   thorpej 	}
   1485    1.1       mrg 
   1486    1.7       mrg 	return(pg);
   1487   1.12   thorpej 
   1488   1.12   thorpej  fail:
   1489  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1490   1.12   thorpej 	return (NULL);
   1491    1.1       mrg }
   1492    1.1       mrg 
   1493    1.1       mrg /*
   1494   1.96      yamt  * uvm_pagereplace: replace a page with another
   1495   1.96      yamt  *
   1496   1.96      yamt  * => object must be locked
   1497   1.96      yamt  */
   1498   1.96      yamt 
   1499   1.96      yamt void
   1500  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1501   1.96      yamt {
   1502  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1503   1.97  junyoung 
   1504   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1505  1.136      yamt 	KASSERT(uobj != NULL);
   1506   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1507   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1508  1.136      yamt 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1509   1.96      yamt 
   1510  1.136      yamt 	newpg->uobject = uobj;
   1511   1.96      yamt 	newpg->offset = oldpg->offset;
   1512   1.96      yamt 
   1513  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1514  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1515  1.136      yamt 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1516  1.136      yamt 	uvm_pageremove_list(uobj, oldpg);
   1517   1.96      yamt }
   1518   1.96      yamt 
   1519   1.96      yamt /*
   1520    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1521    1.1       mrg  *
   1522    1.1       mrg  * => both objects must be locked
   1523    1.1       mrg  */
   1524    1.1       mrg 
   1525    1.7       mrg void
   1526  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1527    1.1       mrg {
   1528    1.7       mrg 	/*
   1529    1.7       mrg 	 * remove it from the old object
   1530    1.7       mrg 	 */
   1531    1.7       mrg 
   1532    1.7       mrg 	if (pg->uobject) {
   1533  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1534    1.7       mrg 	}
   1535    1.7       mrg 
   1536    1.7       mrg 	/*
   1537    1.7       mrg 	 * put it in the new object
   1538    1.7       mrg 	 */
   1539    1.7       mrg 
   1540    1.7       mrg 	if (newobj) {
   1541    1.7       mrg 		pg->uobject = newobj;
   1542    1.7       mrg 		pg->offset = newoff;
   1543  1.153  uebayasi 		uvm_pageinsert(newobj, pg);
   1544    1.7       mrg 	}
   1545    1.1       mrg }
   1546    1.1       mrg 
   1547   1.91      yamt #ifdef DEBUG
   1548   1.91      yamt /*
   1549   1.91      yamt  * check if page is zero-filled
   1550   1.91      yamt  *
   1551   1.91      yamt  *  - called with free page queue lock held.
   1552   1.91      yamt  */
   1553   1.91      yamt void
   1554   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1555   1.91      yamt {
   1556   1.91      yamt 	int *p, *ep;
   1557   1.91      yamt 
   1558   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1559  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1560   1.91      yamt 
   1561   1.91      yamt 	/*
   1562   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1563   1.91      yamt 	 * uvm page allocator.
   1564   1.91      yamt 	 *
   1565   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1566   1.91      yamt 	 */
   1567  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1568   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1569   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1570   1.92      yamt 	pmap_update(pmap_kernel());
   1571   1.91      yamt 	while (p < ep) {
   1572   1.91      yamt 		if (*p != 0)
   1573   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1574   1.91      yamt 		p++;
   1575   1.91      yamt 	}
   1576   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1577  1.131      yamt 	/*
   1578  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1579  1.131      yamt 	 * uses this VA.
   1580  1.131      yamt 	 */
   1581   1.91      yamt }
   1582   1.91      yamt #endif /* DEBUG */
   1583   1.91      yamt 
   1584    1.1       mrg /*
   1585    1.1       mrg  * uvm_pagefree: free page
   1586    1.1       mrg  *
   1587  1.133        ad  * => erase page's identity (i.e. remove from object)
   1588    1.1       mrg  * => put page on free list
   1589    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1590    1.1       mrg  * => caller must lock page queues
   1591    1.1       mrg  * => assumes all valid mappings of pg are gone
   1592    1.1       mrg  */
   1593    1.1       mrg 
   1594   1.44       chs void
   1595  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1596    1.1       mrg {
   1597  1.133        ad 	struct pgflist *pgfl;
   1598  1.133        ad 	struct uvm_cpu *ucpu;
   1599  1.133        ad 	int index, color, queue;
   1600  1.118   thorpej 	bool iszero;
   1601   1.67       chs 
   1602   1.44       chs #ifdef DEBUG
   1603   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1604   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1605   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1606   1.44       chs 	}
   1607   1.91      yamt #endif /* DEBUG */
   1608   1.44       chs 
   1609  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1610  1.143  drochner 	KASSERT(!(pg->pqflags & PQ_FREE));
   1611  1.128      yamt 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1612  1.128      yamt 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1613  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1614  1.127        ad 		mutex_owned(&pg->uanon->an_lock));
   1615  1.123        ad 
   1616    1.7       mrg 	/*
   1617   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1618    1.7       mrg 	 */
   1619    1.7       mrg 
   1620   1.67       chs 	if (pg->loan_count) {
   1621   1.70       chs 		KASSERT(pg->wire_count == 0);
   1622    1.7       mrg 
   1623    1.7       mrg 		/*
   1624   1.67       chs 		 * if the page is owned by an anon then we just want to
   1625   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1626   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1627   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1628   1.70       chs 		 * of possible anon owners.
   1629   1.70       chs 		 *
   1630   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1631   1.70       chs 		 * unbusy the page, and we're done.
   1632    1.7       mrg 		 */
   1633    1.7       mrg 
   1634   1.73       chs 		if (pg->uobject != NULL) {
   1635  1.153  uebayasi 			uvm_pageremove(pg->uobject, pg);
   1636   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1637   1.73       chs 		} else if (pg->uanon != NULL) {
   1638   1.73       chs 			if ((pg->pqflags & PQ_ANON) == 0) {
   1639   1.73       chs 				pg->loan_count--;
   1640   1.73       chs 			} else {
   1641   1.73       chs 				pg->pqflags &= ~PQ_ANON;
   1642  1.126        ad 				atomic_dec_uint(&uvmexp.anonpages);
   1643   1.73       chs 			}
   1644  1.103      yamt 			pg->uanon->an_page = NULL;
   1645   1.73       chs 			pg->uanon = NULL;
   1646   1.67       chs 		}
   1647   1.70       chs 		if (pg->flags & PG_WANTED) {
   1648   1.70       chs 			wakeup(pg);
   1649   1.70       chs 		}
   1650   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1651   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1652   1.70       chs 		pg->owner_tag = NULL;
   1653   1.70       chs #endif
   1654   1.73       chs 		if (pg->loan_count) {
   1655  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1656  1.115      yamt 			if (pg->uanon == NULL) {
   1657  1.115      yamt 				uvm_pagedequeue(pg);
   1658  1.115      yamt 			}
   1659   1.73       chs 			return;
   1660   1.73       chs 		}
   1661   1.67       chs 	}
   1662   1.62       chs 
   1663   1.67       chs 	/*
   1664   1.67       chs 	 * remove page from its object or anon.
   1665   1.67       chs 	 */
   1666   1.44       chs 
   1667   1.73       chs 	if (pg->uobject != NULL) {
   1668  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1669   1.73       chs 	} else if (pg->uanon != NULL) {
   1670  1.103      yamt 		pg->uanon->an_page = NULL;
   1671  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1672    1.7       mrg 	}
   1673    1.1       mrg 
   1674    1.7       mrg 	/*
   1675   1.70       chs 	 * now remove the page from the queues.
   1676    1.7       mrg 	 */
   1677    1.7       mrg 
   1678   1.67       chs 	uvm_pagedequeue(pg);
   1679    1.7       mrg 
   1680    1.7       mrg 	/*
   1681    1.7       mrg 	 * if the page was wired, unwire it now.
   1682    1.7       mrg 	 */
   1683   1.44       chs 
   1684   1.34   thorpej 	if (pg->wire_count) {
   1685    1.7       mrg 		pg->wire_count = 0;
   1686    1.7       mrg 		uvmexp.wired--;
   1687   1.44       chs 	}
   1688    1.7       mrg 
   1689    1.7       mrg 	/*
   1690   1.44       chs 	 * and put on free queue
   1691    1.7       mrg 	 */
   1692    1.7       mrg 
   1693   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1694  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1695  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1696  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1697   1.34   thorpej 
   1698    1.3       chs #ifdef DEBUG
   1699    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1700    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1701    1.3       chs #endif
   1702   1.90      yamt 
   1703  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1704  1.143  drochner 	pg->pqflags = PQ_FREE;
   1705   1.91      yamt 
   1706   1.91      yamt #ifdef DEBUG
   1707   1.91      yamt 	if (iszero)
   1708   1.91      yamt 		uvm_pagezerocheck(pg);
   1709   1.91      yamt #endif /* DEBUG */
   1710   1.91      yamt 
   1711  1.133        ad 
   1712  1.133        ad 	/* global list */
   1713  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1714  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1715    1.7       mrg 	uvmexp.free++;
   1716  1.133        ad 	if (iszero) {
   1717   1.90      yamt 		uvmexp.zeropages++;
   1718  1.133        ad 	}
   1719   1.34   thorpej 
   1720  1.133        ad 	/* per-cpu list */
   1721  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1722  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1723  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1724  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1725  1.133        ad 	ucpu->pages[queue]++;
   1726  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1727  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1728  1.133        ad 	}
   1729   1.34   thorpej 
   1730  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1731   1.44       chs }
   1732   1.44       chs 
   1733   1.44       chs /*
   1734   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1735   1.44       chs  *
   1736   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1737   1.44       chs  * => if pages are object-owned, object must be locked.
   1738   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1739   1.76     enami  * => caller must lock page queues if pages may be released.
   1740   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1741   1.44       chs  */
   1742   1.44       chs 
   1743   1.44       chs void
   1744  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1745   1.44       chs {
   1746   1.44       chs 	struct vm_page *pg;
   1747   1.44       chs 	int i;
   1748   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1749   1.44       chs 
   1750   1.44       chs 	for (i = 0; i < npgs; i++) {
   1751   1.44       chs 		pg = pgs[i];
   1752   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1753   1.44       chs 			continue;
   1754   1.44       chs 		}
   1755   1.98      yamt 
   1756  1.127        ad 		KASSERT(pg->uobject == NULL ||
   1757  1.127        ad 		    mutex_owned(&pg->uobject->vmobjlock));
   1758  1.127        ad 		KASSERT(pg->uobject != NULL ||
   1759  1.128      yamt 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1760   1.98      yamt 
   1761   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1762   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1763   1.44       chs 		if (pg->flags & PG_WANTED) {
   1764   1.44       chs 			wakeup(pg);
   1765   1.44       chs 		}
   1766   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1767   1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1768   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1769   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1770   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1771   1.67       chs 			uvm_pagefree(pg);
   1772   1.44       chs 		} else {
   1773   1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1774  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1775   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1776   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1777   1.44       chs 		}
   1778   1.44       chs 	}
   1779    1.1       mrg }
   1780    1.1       mrg 
   1781    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1782    1.1       mrg /*
   1783    1.1       mrg  * uvm_page_own: set or release page ownership
   1784    1.1       mrg  *
   1785    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1786    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1787    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1788    1.1       mrg  * => page's object [if any] must be locked
   1789    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1790    1.1       mrg  */
   1791    1.7       mrg void
   1792  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1793    1.1       mrg {
   1794  1.112      yamt 	struct uvm_object *uobj;
   1795  1.112      yamt 	struct vm_anon *anon;
   1796  1.112      yamt 
   1797   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1798   1.67       chs 
   1799  1.112      yamt 	uobj = pg->uobject;
   1800  1.112      yamt 	anon = pg->uanon;
   1801  1.112      yamt 	if (uobj != NULL) {
   1802  1.127        ad 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1803  1.112      yamt 	} else if (anon != NULL) {
   1804  1.127        ad 		KASSERT(mutex_owned(&anon->an_lock));
   1805  1.112      yamt 	}
   1806  1.112      yamt 
   1807  1.112      yamt 	KASSERT((pg->flags & PG_WANTED) == 0);
   1808  1.112      yamt 
   1809    1.7       mrg 	/* gain ownership? */
   1810    1.7       mrg 	if (tag) {
   1811  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1812    1.7       mrg 		if (pg->owner_tag) {
   1813    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1814    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1815   1.74     enami 			    pg->owner, pg->owner_tag);
   1816    1.7       mrg 			panic("uvm_page_own");
   1817    1.7       mrg 		}
   1818    1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1819  1.120  perseant 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1820    1.7       mrg 		pg->owner_tag = tag;
   1821    1.7       mrg 		return;
   1822    1.7       mrg 	}
   1823    1.7       mrg 
   1824    1.7       mrg 	/* drop ownership */
   1825  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1826    1.7       mrg 	if (pg->owner_tag == NULL) {
   1827    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1828    1.7       mrg 		    "page (%p)\n", pg);
   1829    1.7       mrg 		panic("uvm_page_own");
   1830    1.7       mrg 	}
   1831  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1832  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1833  1.115      yamt 		    pg->wire_count > 0);
   1834  1.115      yamt 	} else {
   1835  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1836  1.115      yamt 	}
   1837    1.7       mrg 	pg->owner_tag = NULL;
   1838    1.1       mrg }
   1839    1.1       mrg #endif
   1840   1.34   thorpej 
   1841   1.34   thorpej /*
   1842   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1843   1.34   thorpej  *
   1844   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1845   1.54   thorpej  *	on the CPU cache.
   1846  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1847  1.132        ad  *      to run, or MD code detects a reason to break early.
   1848   1.34   thorpej  */
   1849   1.34   thorpej void
   1850  1.105   thorpej uvm_pageidlezero(void)
   1851   1.34   thorpej {
   1852   1.34   thorpej 	struct vm_page *pg;
   1853  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1854  1.133        ad 	struct uvm_cpu *ucpu;
   1855  1.133        ad 	int free_list, firstbucket, nextbucket;
   1856  1.133        ad 
   1857  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1858  1.133        ad 	if (!ucpu->page_idle_zero ||
   1859  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1860  1.133        ad 	    	ucpu->page_idle_zero = false;
   1861  1.132        ad 		return;
   1862  1.132        ad 	}
   1863  1.133        ad 	mutex_enter(&uvm_fpageqlock);
   1864  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1865  1.133        ad 	nextbucket = firstbucket;
   1866   1.58     enami 	do {
   1867   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1868  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1869  1.139        ad 				goto quit;
   1870  1.139        ad 			}
   1871  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1872  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1873  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1874   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1875  1.132        ad 				if (sched_curcpu_runnable_p()) {
   1876  1.101      yamt 					goto quit;
   1877  1.132        ad 				}
   1878  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1879  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1880  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1881   1.54   thorpej 				uvmexp.free--;
   1882  1.143  drochner 				KASSERT(pg->pqflags == PQ_FREE);
   1883  1.143  drochner 				pg->pqflags = 0;
   1884  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1885   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1886   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1887   1.67       chs 
   1888   1.54   thorpej 					/*
   1889   1.54   thorpej 					 * The machine-dependent code detected
   1890   1.54   thorpej 					 * some reason for us to abort zeroing
   1891   1.54   thorpej 					 * pages, probably because there is a
   1892   1.54   thorpej 					 * process now ready to run.
   1893   1.54   thorpej 					 */
   1894   1.67       chs 
   1895  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1896  1.144  drochner 					pg->pqflags = PQ_FREE;
   1897  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1898  1.133        ad 					    nextbucket].pgfl_queues[
   1899  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1900  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1901   1.54   thorpej 					    nextbucket].pgfl_queues[
   1902  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1903  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1904   1.54   thorpej 					uvmexp.free++;
   1905   1.54   thorpej 					uvmexp.zeroaborts++;
   1906  1.101      yamt 					goto quit;
   1907   1.54   thorpej 				}
   1908   1.54   thorpej #else
   1909   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1910   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1911   1.54   thorpej 				pg->flags |= PG_ZERO;
   1912   1.54   thorpej 
   1913  1.123        ad 				mutex_spin_enter(&uvm_fpageqlock);
   1914  1.143  drochner 				pg->pqflags = PQ_FREE;
   1915  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1916  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1917  1.133        ad 				    pg, pageq.list);
   1918  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1919   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1920  1.133        ad 				    pg, listq.list);
   1921  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1922   1.54   thorpej 				uvmexp.free++;
   1923   1.54   thorpej 				uvmexp.zeropages++;
   1924   1.54   thorpej 			}
   1925   1.41   thorpej 		}
   1926  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1927  1.133        ad 			break;
   1928  1.133        ad 		}
   1929   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1930   1.58     enami 	} while (nextbucket != firstbucket);
   1931  1.133        ad 	ucpu->page_idle_zero = false;
   1932  1.133        ad  quit:
   1933  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1934   1.34   thorpej }
   1935  1.110      yamt 
   1936  1.110      yamt /*
   1937  1.110      yamt  * uvm_pagelookup: look up a page
   1938  1.110      yamt  *
   1939  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1940  1.110      yamt  *	out from under it
   1941  1.110      yamt  */
   1942  1.110      yamt 
   1943  1.110      yamt struct vm_page *
   1944  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1945  1.110      yamt {
   1946  1.110      yamt 	struct vm_page *pg;
   1947  1.110      yamt 
   1948  1.127        ad 	KASSERT(mutex_owned(&obj->vmobjlock));
   1949  1.123        ad 
   1950  1.156     rmind 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1951  1.134        ad 
   1952  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1953  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1954  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1955  1.156     rmind 	return pg;
   1956  1.110      yamt }
   1957  1.110      yamt 
   1958  1.110      yamt /*
   1959  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1960  1.110      yamt  *
   1961  1.110      yamt  * => caller must lock page queues
   1962  1.110      yamt  */
   1963  1.110      yamt 
   1964  1.110      yamt void
   1965  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1966  1.110      yamt {
   1967  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1968  1.113      yamt #if defined(READAHEAD_STATS)
   1969  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1970  1.113      yamt 		uvm_ra_hit.ev_count++;
   1971  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1972  1.113      yamt 	}
   1973  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1974  1.110      yamt 	if (pg->wire_count == 0) {
   1975  1.110      yamt 		uvm_pagedequeue(pg);
   1976  1.110      yamt 		uvmexp.wired++;
   1977  1.110      yamt 	}
   1978  1.110      yamt 	pg->wire_count++;
   1979  1.110      yamt }
   1980  1.110      yamt 
   1981  1.110      yamt /*
   1982  1.110      yamt  * uvm_pageunwire: unwire the page.
   1983  1.110      yamt  *
   1984  1.110      yamt  * => activate if wire count goes to zero.
   1985  1.110      yamt  * => caller must lock page queues
   1986  1.110      yamt  */
   1987  1.110      yamt 
   1988  1.110      yamt void
   1989  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1990  1.110      yamt {
   1991  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1992  1.110      yamt 	pg->wire_count--;
   1993  1.110      yamt 	if (pg->wire_count == 0) {
   1994  1.111      yamt 		uvm_pageactivate(pg);
   1995  1.110      yamt 		uvmexp.wired--;
   1996  1.110      yamt 	}
   1997  1.110      yamt }
   1998  1.110      yamt 
   1999  1.110      yamt /*
   2000  1.110      yamt  * uvm_pagedeactivate: deactivate page
   2001  1.110      yamt  *
   2002  1.110      yamt  * => caller must lock page queues
   2003  1.110      yamt  * => caller must check to make sure page is not wired
   2004  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   2005  1.110      yamt  * => caller must clear the reference on the page before calling
   2006  1.110      yamt  */
   2007  1.110      yamt 
   2008  1.110      yamt void
   2009  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   2010  1.110      yamt {
   2011  1.113      yamt 
   2012  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   2013  1.113      yamt 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   2014  1.113      yamt 	uvmpdpol_pagedeactivate(pg);
   2015  1.110      yamt }
   2016  1.110      yamt 
   2017  1.110      yamt /*
   2018  1.110      yamt  * uvm_pageactivate: activate page
   2019  1.110      yamt  *
   2020  1.110      yamt  * => caller must lock page queues
   2021  1.110      yamt  */
   2022  1.110      yamt 
   2023  1.110      yamt void
   2024  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   2025  1.110      yamt {
   2026  1.113      yamt 
   2027  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   2028  1.113      yamt #if defined(READAHEAD_STATS)
   2029  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   2030  1.113      yamt 		uvm_ra_hit.ev_count++;
   2031  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   2032  1.113      yamt 	}
   2033  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   2034  1.113      yamt 	if (pg->wire_count != 0) {
   2035  1.113      yamt 		return;
   2036  1.110      yamt 	}
   2037  1.113      yamt 	uvmpdpol_pageactivate(pg);
   2038  1.110      yamt }
   2039  1.110      yamt 
   2040  1.110      yamt /*
   2041  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   2042  1.110      yamt  */
   2043  1.110      yamt 
   2044  1.110      yamt void
   2045  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   2046  1.110      yamt {
   2047  1.113      yamt 
   2048  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   2049  1.127        ad 		KASSERT(mutex_owned(&uvm_pageqlock));
   2050  1.110      yamt 	}
   2051  1.123        ad 
   2052  1.113      yamt 	uvmpdpol_pagedequeue(pg);
   2053  1.113      yamt }
   2054  1.113      yamt 
   2055  1.113      yamt /*
   2056  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   2057  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   2058  1.113      yamt  */
   2059  1.113      yamt 
   2060  1.113      yamt void
   2061  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   2062  1.113      yamt {
   2063  1.113      yamt 
   2064  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   2065  1.113      yamt 	if (pg->wire_count != 0) {
   2066  1.113      yamt 		return;
   2067  1.113      yamt 	}
   2068  1.113      yamt 	uvmpdpol_pageenqueue(pg);
   2069  1.110      yamt }
   2070  1.110      yamt 
   2071  1.110      yamt /*
   2072  1.110      yamt  * uvm_pagezero: zero fill a page
   2073  1.110      yamt  *
   2074  1.110      yamt  * => if page is part of an object then the object should be locked
   2075  1.110      yamt  *	to protect pg->flags.
   2076  1.110      yamt  */
   2077  1.110      yamt 
   2078  1.110      yamt void
   2079  1.110      yamt uvm_pagezero(struct vm_page *pg)
   2080  1.110      yamt {
   2081  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   2082  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   2083  1.110      yamt }
   2084  1.110      yamt 
   2085  1.110      yamt /*
   2086  1.110      yamt  * uvm_pagecopy: copy a page
   2087  1.110      yamt  *
   2088  1.110      yamt  * => if page is part of an object then the object should be locked
   2089  1.110      yamt  *	to protect pg->flags.
   2090  1.110      yamt  */
   2091  1.110      yamt 
   2092  1.110      yamt void
   2093  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   2094  1.110      yamt {
   2095  1.110      yamt 
   2096  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   2097  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   2098  1.110      yamt }
   2099  1.110      yamt 
   2100  1.110      yamt /*
   2101  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   2102  1.150   thorpej  */
   2103  1.150   thorpej 
   2104  1.150   thorpej bool
   2105  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   2106  1.150   thorpej {
   2107  1.150   thorpej 
   2108  1.150   thorpej 	return (vm_physseg_find(atop(pa), NULL) != -1);
   2109  1.150   thorpej }
   2110  1.150   thorpej 
   2111  1.150   thorpej /*
   2112  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   2113  1.110      yamt  */
   2114  1.110      yamt 
   2115  1.110      yamt int
   2116  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   2117  1.110      yamt {
   2118  1.110      yamt 	int lcv;
   2119  1.110      yamt 
   2120  1.110      yamt 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2121  1.110      yamt 	KASSERT(lcv != -1);
   2122  1.159  uebayasi 	return (VM_PHYSMEM_PTR(lcv)->free_list);
   2123  1.110      yamt }
   2124  1.151   thorpej 
   2125  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   2126  1.151   thorpej 
   2127  1.151   thorpej /*
   2128  1.151   thorpej  * uvm_page_printit: actually print the page
   2129  1.151   thorpej  */
   2130  1.151   thorpej 
   2131  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   2132  1.151   thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2133  1.151   thorpej 
   2134  1.151   thorpej void
   2135  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   2136  1.151   thorpej     void (*pr)(const char *, ...))
   2137  1.151   thorpej {
   2138  1.151   thorpej 	struct vm_page *tpg;
   2139  1.151   thorpej 	struct uvm_object *uobj;
   2140  1.151   thorpej 	struct pgflist *pgl;
   2141  1.151   thorpej 	char pgbuf[128];
   2142  1.151   thorpej 	char pqbuf[128];
   2143  1.151   thorpej 
   2144  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   2145  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2146  1.151   thorpej 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   2147  1.151   thorpej 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   2148  1.151   thorpej 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2149  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2150  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2151  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   2152  1.151   thorpej 	if (pg->flags & PG_BUSY)
   2153  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   2154  1.151   thorpej 		    pg->owner, pg->owner_tag);
   2155  1.151   thorpej 	else
   2156  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   2157  1.151   thorpej #else
   2158  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   2159  1.151   thorpej #endif
   2160  1.151   thorpej 
   2161  1.151   thorpej 	if (!full)
   2162  1.151   thorpej 		return;
   2163  1.151   thorpej 
   2164  1.151   thorpej 	/* cross-verify object/anon */
   2165  1.151   thorpej 	if ((pg->pqflags & PQ_FREE) == 0) {
   2166  1.151   thorpej 		if (pg->pqflags & PQ_ANON) {
   2167  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2168  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2169  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2170  1.151   thorpej 			else
   2171  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   2172  1.151   thorpej 		} else {
   2173  1.151   thorpej 			uobj = pg->uobject;
   2174  1.151   thorpej 			if (uobj) {
   2175  1.151   thorpej 				(*pr)("  checking object list\n");
   2176  1.151   thorpej 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   2177  1.151   thorpej 					if (tpg == pg) {
   2178  1.151   thorpej 						break;
   2179  1.151   thorpej 					}
   2180  1.151   thorpej 				}
   2181  1.151   thorpej 				if (tpg)
   2182  1.151   thorpej 					(*pr)("  page found on object list\n");
   2183  1.151   thorpej 				else
   2184  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2185  1.151   thorpej 			}
   2186  1.151   thorpej 		}
   2187  1.151   thorpej 	}
   2188  1.151   thorpej 
   2189  1.151   thorpej 	/* cross-verify page queue */
   2190  1.151   thorpej 	if (pg->pqflags & PQ_FREE) {
   2191  1.151   thorpej 		int fl = uvm_page_lookup_freelist(pg);
   2192  1.151   thorpej 		int color = VM_PGCOLOR_BUCKET(pg);
   2193  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   2194  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   2195  1.151   thorpej 	} else {
   2196  1.151   thorpej 		pgl = NULL;
   2197  1.151   thorpej 	}
   2198  1.151   thorpej 
   2199  1.151   thorpej 	if (pgl) {
   2200  1.151   thorpej 		(*pr)("  checking pageq list\n");
   2201  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2202  1.151   thorpej 			if (tpg == pg) {
   2203  1.151   thorpej 				break;
   2204  1.151   thorpej 			}
   2205  1.151   thorpej 		}
   2206  1.151   thorpej 		if (tpg)
   2207  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   2208  1.151   thorpej 		else
   2209  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2210  1.151   thorpej 	}
   2211  1.151   thorpej }
   2212  1.151   thorpej 
   2213  1.151   thorpej /*
   2214  1.151   thorpej  * uvm_pages_printthem - print a summary of all managed pages
   2215  1.151   thorpej  */
   2216  1.151   thorpej 
   2217  1.151   thorpej void
   2218  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   2219  1.151   thorpej {
   2220  1.151   thorpej 	unsigned i;
   2221  1.151   thorpej 	struct vm_page *pg;
   2222  1.151   thorpej 
   2223  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   2224  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2225  1.151   thorpej 	    " OWNER"
   2226  1.151   thorpej #endif
   2227  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2228  1.158  uebayasi 	for (i = 0; i < vm_nphysmem; i++) {
   2229  1.161  uebayasi 		for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
   2230  1.151   thorpej 			(*pr)("%18p %04x %04x %18p %18p",
   2231  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2232  1.151   thorpej 			    pg->uanon);
   2233  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2234  1.151   thorpej 			if (pg->flags & PG_BUSY)
   2235  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2236  1.151   thorpej #endif
   2237  1.151   thorpej 			(*pr)("\n");
   2238  1.151   thorpej 		}
   2239  1.151   thorpej 	}
   2240  1.151   thorpej }
   2241  1.151   thorpej 
   2242  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   2243