uvm_page.c revision 1.164 1 1.157 uebayasi /* $NetBSD: uvm_page.c,v 1.164 2010/11/14 15:06:34 uebayasi Exp $ */
2 1.155 ad
3 1.155 ad /*
4 1.155 ad * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 1.155 ad * All rights reserved.
6 1.155 ad *
7 1.155 ad * Redistribution and use in source and binary forms, with or without
8 1.155 ad * modification, are permitted provided that the following conditions
9 1.155 ad * are met:
10 1.155 ad * 1. Redistributions of source code must retain the above copyright
11 1.155 ad * notice, this list of conditions and the following disclaimer.
12 1.155 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.155 ad * notice, this list of conditions and the following disclaimer in the
14 1.155 ad * documentation and/or other materials provided with the distribution.
15 1.155 ad *
16 1.155 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.155 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.155 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.155 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.155 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.155 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.155 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.155 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.155 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.155 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.155 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.155 ad */
28 1.1 mrg
29 1.62 chs /*
30 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
32 1.1 mrg *
33 1.1 mrg * All rights reserved.
34 1.1 mrg *
35 1.1 mrg * This code is derived from software contributed to Berkeley by
36 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
37 1.1 mrg *
38 1.1 mrg * Redistribution and use in source and binary forms, with or without
39 1.1 mrg * modification, are permitted provided that the following conditions
40 1.1 mrg * are met:
41 1.1 mrg * 1. Redistributions of source code must retain the above copyright
42 1.1 mrg * notice, this list of conditions and the following disclaimer.
43 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 mrg * notice, this list of conditions and the following disclaimer in the
45 1.1 mrg * documentation and/or other materials provided with the distribution.
46 1.1 mrg * 3. All advertising materials mentioning features or use of this software
47 1.1 mrg * must display the following acknowledgement:
48 1.1 mrg * This product includes software developed by Charles D. Cranor,
49 1.62 chs * Washington University, the University of California, Berkeley and
50 1.1 mrg * its contributors.
51 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
52 1.1 mrg * may be used to endorse or promote products derived from this software
53 1.1 mrg * without specific prior written permission.
54 1.1 mrg *
55 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 mrg * SUCH DAMAGE.
66 1.1 mrg *
67 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 1.1 mrg *
70 1.1 mrg *
71 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 1.1 mrg * All rights reserved.
73 1.62 chs *
74 1.1 mrg * Permission to use, copy, modify and distribute this software and
75 1.1 mrg * its documentation is hereby granted, provided that both the copyright
76 1.1 mrg * notice and this permission notice appear in all copies of the
77 1.1 mrg * software, derivative works or modified versions, and any portions
78 1.1 mrg * thereof, and that both notices appear in supporting documentation.
79 1.62 chs *
80 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 1.62 chs *
84 1.1 mrg * Carnegie Mellon requests users of this software to return to
85 1.1 mrg *
86 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 1.1 mrg * School of Computer Science
88 1.1 mrg * Carnegie Mellon University
89 1.1 mrg * Pittsburgh PA 15213-3890
90 1.1 mrg *
91 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
92 1.1 mrg * rights to redistribute these changes.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * uvm_page.c: page ops.
97 1.1 mrg */
98 1.71 lukem
99 1.71 lukem #include <sys/cdefs.h>
100 1.157 uebayasi __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.164 2010/11/14 15:06:34 uebayasi Exp $");
101 1.6 mrg
102 1.151 thorpej #include "opt_ddb.h"
103 1.44 chs #include "opt_uvmhist.h"
104 1.113 yamt #include "opt_readahead.h"
105 1.44 chs
106 1.1 mrg #include <sys/param.h>
107 1.1 mrg #include <sys/systm.h>
108 1.1 mrg #include <sys/malloc.h>
109 1.35 thorpej #include <sys/sched.h>
110 1.44 chs #include <sys/kernel.h>
111 1.51 chs #include <sys/vnode.h>
112 1.68 chs #include <sys/proc.h>
113 1.126 ad #include <sys/atomic.h>
114 1.133 ad #include <sys/cpu.h>
115 1.1 mrg
116 1.1 mrg #include <uvm/uvm.h>
117 1.151 thorpej #include <uvm/uvm_ddb.h>
118 1.113 yamt #include <uvm/uvm_pdpolicy.h>
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
122 1.1 mrg */
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * physical memory config is stored in vm_physmem.
126 1.1 mrg */
127 1.1 mrg
128 1.164 uebayasi SIMPLEQ_HEAD(vm_physseg_freelist, vm_physseg);
129 1.164 uebayasi
130 1.164 uebayasi struct vm_physseg *vm_physmem_ptrs[VM_PHYSSEG_MAX];
131 1.164 uebayasi int vm_nphysmem = 0;
132 1.164 uebayasi static struct vm_physseg vm_physmem_store[VM_PHYSSEG_MAX];
133 1.164 uebayasi static struct vm_physseg_freelist vm_physmem_freelist =
134 1.164 uebayasi SIMPLEQ_HEAD_INITIALIZER(vm_physmem_freelist);
135 1.1 mrg
136 1.1 mrg /*
137 1.36 thorpej * Some supported CPUs in a given architecture don't support all
138 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
139 1.155 ad * We therefore provide a way to enable it from machdep code here.
140 1.44 chs */
141 1.119 thorpej bool vm_page_zero_enable = false;
142 1.34 thorpej
143 1.34 thorpej /*
144 1.140 ad * number of pages per-CPU to reserve for the kernel.
145 1.140 ad */
146 1.140 ad int vm_page_reserve_kernel = 5;
147 1.140 ad
148 1.140 ad /*
149 1.148 matt * physical memory size;
150 1.148 matt */
151 1.149 matt int physmem;
152 1.148 matt
153 1.148 matt /*
154 1.1 mrg * local variables
155 1.1 mrg */
156 1.1 mrg
157 1.1 mrg /*
158 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
159 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
160 1.88 thorpej * and pmap_startup here also uses them internally.
161 1.88 thorpej */
162 1.88 thorpej
163 1.88 thorpej static vaddr_t virtual_space_start;
164 1.88 thorpej static vaddr_t virtual_space_end;
165 1.88 thorpej
166 1.88 thorpej /*
167 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
168 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
169 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
170 1.60 thorpej * free the initial set of buckets, since they are allocated using
171 1.60 thorpej * uvm_pageboot_alloc().
172 1.60 thorpej */
173 1.60 thorpej
174 1.119 thorpej static bool have_recolored_pages /* = false */;
175 1.83 thorpej
176 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
177 1.60 thorpej
178 1.91 yamt #ifdef DEBUG
179 1.91 yamt vaddr_t uvm_zerocheckkva;
180 1.91 yamt #endif /* DEBUG */
181 1.91 yamt
182 1.60 thorpej /*
183 1.134 ad * local prototypes
184 1.124 ad */
185 1.124 ad
186 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
187 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
188 1.164 uebayasi static struct vm_physseg *uvm_physseg_alloc(
189 1.164 uebayasi struct vm_physseg_freelist * const, struct vm_physseg **, int,
190 1.164 uebayasi const paddr_t, const paddr_t);
191 1.164 uebayasi static void uvm_physseg_free(struct vm_physseg_freelist *,
192 1.164 uebayasi struct vm_physseg **, struct vm_physseg *);
193 1.164 uebayasi static void uvm_physseg_init(void);
194 1.164 uebayasi static void uvm_physseg_insert(struct vm_physseg *,
195 1.164 uebayasi struct vm_physseg **, int);
196 1.164 uebayasi static void uvm_physseg_remove(struct vm_physseg **, struct vm_physseg *);
197 1.124 ad
198 1.124 ad /*
199 1.134 ad * per-object tree of pages
200 1.1 mrg */
201 1.1 mrg
202 1.134 ad static signed int
203 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
204 1.134 ad {
205 1.156 rmind const struct vm_page *pg1 = n1;
206 1.156 rmind const struct vm_page *pg2 = n2;
207 1.134 ad const voff_t a = pg1->offset;
208 1.134 ad const voff_t b = pg2->offset;
209 1.134 ad
210 1.134 ad if (a < b)
211 1.156 rmind return -1;
212 1.156 rmind if (a > b)
213 1.134 ad return 1;
214 1.134 ad return 0;
215 1.134 ad }
216 1.134 ad
217 1.134 ad static signed int
218 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
219 1.134 ad {
220 1.156 rmind const struct vm_page *pg = n;
221 1.134 ad const voff_t a = pg->offset;
222 1.134 ad const voff_t b = *(const voff_t *)key;
223 1.134 ad
224 1.134 ad if (a < b)
225 1.156 rmind return -1;
226 1.156 rmind if (a > b)
227 1.134 ad return 1;
228 1.134 ad return 0;
229 1.134 ad }
230 1.134 ad
231 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
232 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
233 1.137 matt .rbto_compare_key = uvm_page_compare_key,
234 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
235 1.156 rmind .rbto_context = NULL
236 1.134 ad };
237 1.1 mrg
238 1.1 mrg /*
239 1.1 mrg * inline functions
240 1.1 mrg */
241 1.1 mrg
242 1.1 mrg /*
243 1.134 ad * uvm_pageinsert: insert a page in the object.
244 1.1 mrg *
245 1.1 mrg * => caller must lock object
246 1.1 mrg * => caller must lock page queues
247 1.1 mrg * => call should have already set pg's object and offset pointers
248 1.1 mrg * and bumped the version counter
249 1.1 mrg */
250 1.1 mrg
251 1.136 yamt static inline void
252 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
253 1.136 yamt struct vm_page *where)
254 1.1 mrg {
255 1.1 mrg
256 1.136 yamt KASSERT(uobj == pg->uobject);
257 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
258 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
259 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
260 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
261 1.123 ad
262 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
263 1.94 yamt if (uobj->uo_npages == 0) {
264 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
265 1.94 yamt
266 1.94 yamt vholdl(vp);
267 1.94 yamt }
268 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
269 1.126 ad atomic_inc_uint(&uvmexp.execpages);
270 1.94 yamt } else {
271 1.126 ad atomic_inc_uint(&uvmexp.filepages);
272 1.94 yamt }
273 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
274 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
275 1.78 chs }
276 1.78 chs
277 1.96 yamt if (where)
278 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
279 1.96 yamt else
280 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
281 1.7 mrg pg->flags |= PG_TABLED;
282 1.67 chs uobj->uo_npages++;
283 1.1 mrg }
284 1.1 mrg
285 1.136 yamt
286 1.136 yamt static inline void
287 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
288 1.136 yamt {
289 1.156 rmind struct vm_page *ret;
290 1.136 yamt
291 1.136 yamt KASSERT(uobj == pg->uobject);
292 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
293 1.156 rmind KASSERT(ret == pg);
294 1.136 yamt }
295 1.136 yamt
296 1.136 yamt static inline void
297 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
298 1.96 yamt {
299 1.96 yamt
300 1.153 uebayasi KDASSERT(uobj != NULL);
301 1.136 yamt uvm_pageinsert_tree(uobj, pg);
302 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
303 1.96 yamt }
304 1.96 yamt
305 1.1 mrg /*
306 1.134 ad * uvm_page_remove: remove page from object.
307 1.1 mrg *
308 1.1 mrg * => caller must lock object
309 1.1 mrg * => caller must lock page queues
310 1.1 mrg */
311 1.1 mrg
312 1.109 perry static inline void
313 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
314 1.1 mrg {
315 1.1 mrg
316 1.136 yamt KASSERT(uobj == pg->uobject);
317 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
318 1.44 chs KASSERT(pg->flags & PG_TABLED);
319 1.123 ad
320 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
321 1.94 yamt if (uobj->uo_npages == 1) {
322 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
323 1.94 yamt
324 1.94 yamt holdrelel(vp);
325 1.94 yamt }
326 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
327 1.126 ad atomic_dec_uint(&uvmexp.execpages);
328 1.94 yamt } else {
329 1.126 ad atomic_dec_uint(&uvmexp.filepages);
330 1.94 yamt }
331 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
332 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
333 1.51 chs }
334 1.44 chs
335 1.7 mrg /* object should be locked */
336 1.67 chs uobj->uo_npages--;
337 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
338 1.7 mrg pg->flags &= ~PG_TABLED;
339 1.7 mrg pg->uobject = NULL;
340 1.1 mrg }
341 1.1 mrg
342 1.136 yamt static inline void
343 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
344 1.136 yamt {
345 1.136 yamt
346 1.136 yamt KASSERT(uobj == pg->uobject);
347 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
348 1.136 yamt }
349 1.136 yamt
350 1.136 yamt static inline void
351 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
352 1.136 yamt {
353 1.136 yamt
354 1.153 uebayasi KDASSERT(uobj != NULL);
355 1.136 yamt uvm_pageremove_tree(uobj, pg);
356 1.136 yamt uvm_pageremove_list(uobj, pg);
357 1.136 yamt }
358 1.136 yamt
359 1.60 thorpej static void
360 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
361 1.60 thorpej {
362 1.60 thorpej int color, i;
363 1.60 thorpej
364 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
365 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
366 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
367 1.60 thorpej }
368 1.60 thorpej }
369 1.60 thorpej }
370 1.60 thorpej
371 1.1 mrg /*
372 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
373 1.62 chs *
374 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
375 1.1 mrg */
376 1.1 mrg
377 1.7 mrg void
378 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
379 1.1 mrg {
380 1.155 ad static struct uvm_cpu boot_cpu;
381 1.154 jym psize_t freepages, pagecount, bucketcount, n;
382 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
383 1.159 uebayasi struct vm_physseg *seg;
384 1.63 chs struct vm_page *pagearray;
385 1.81 thorpej int lcv;
386 1.81 thorpej u_int i;
387 1.14 eeh paddr_t paddr;
388 1.7 mrg
389 1.133 ad KASSERT(ncpu <= 1);
390 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
391 1.133 ad
392 1.7 mrg /*
393 1.60 thorpej * init the page queues and page queue locks, except the free
394 1.60 thorpej * list; we allocate that later (with the initial vm_page
395 1.60 thorpej * structures).
396 1.7 mrg */
397 1.51 chs
398 1.155 ad uvm.cpus[0] = &boot_cpu;
399 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
400 1.146 haad uvm_reclaim_init();
401 1.113 yamt uvmpdpol_init();
402 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
403 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
404 1.7 mrg
405 1.7 mrg /*
406 1.51 chs * allocate vm_page structures.
407 1.7 mrg */
408 1.7 mrg
409 1.7 mrg /*
410 1.7 mrg * sanity check:
411 1.7 mrg * before calling this function the MD code is expected to register
412 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
413 1.7 mrg * now is to allocate vm_page structures for this memory.
414 1.7 mrg */
415 1.7 mrg
416 1.158 uebayasi if (vm_nphysmem == 0)
417 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
418 1.62 chs
419 1.7 mrg /*
420 1.62 chs * first calculate the number of free pages...
421 1.7 mrg *
422 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
423 1.7 mrg * this allows us to allocate extra vm_page structures in case we
424 1.7 mrg * want to return some memory to the pool after booting.
425 1.7 mrg */
426 1.62 chs
427 1.7 mrg freepages = 0;
428 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
429 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
430 1.158 uebayasi freepages += (seg->end - seg->start);
431 1.158 uebayasi }
432 1.7 mrg
433 1.7 mrg /*
434 1.60 thorpej * Let MD code initialize the number of colors, or default
435 1.60 thorpej * to 1 color if MD code doesn't care.
436 1.60 thorpej */
437 1.60 thorpej if (uvmexp.ncolors == 0)
438 1.60 thorpej uvmexp.ncolors = 1;
439 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
440 1.60 thorpej
441 1.60 thorpej /*
442 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
443 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
444 1.7 mrg * thus, the total number of pages we can use is the total size of
445 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
446 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
447 1.7 mrg * truncation errors (since we can only allocate in terms of whole
448 1.7 mrg * pages).
449 1.7 mrg */
450 1.62 chs
451 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
452 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
453 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
454 1.60 thorpej
455 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
456 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
457 1.60 thorpej sizeof(struct vm_page)));
458 1.133 ad cpuarray = bucketarray + bucketcount;
459 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
460 1.60 thorpej
461 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
462 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
463 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
464 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
465 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
466 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
467 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
468 1.60 thorpej }
469 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
470 1.62 chs
471 1.7 mrg /*
472 1.51 chs * init the vm_page structures and put them in the correct place.
473 1.7 mrg */
474 1.7 mrg
475 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
476 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
477 1.158 uebayasi n = seg->end - seg->start;
478 1.51 chs
479 1.7 mrg /* set up page array pointers */
480 1.158 uebayasi seg->pgs = pagearray;
481 1.7 mrg pagearray += n;
482 1.7 mrg pagecount -= n;
483 1.161 uebayasi seg->lastpg = seg->pgs + n;
484 1.7 mrg
485 1.13 perry /* init and free vm_pages (we've already zeroed them) */
486 1.158 uebayasi paddr = ctob(seg->start);
487 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
488 1.158 uebayasi seg->pgs[i].phys_addr = paddr;
489 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
490 1.158 uebayasi VM_MDPAGE_INIT(&seg->pgs[i]);
491 1.56 thorpej #endif
492 1.158 uebayasi if (atop(paddr) >= seg->avail_start &&
493 1.158 uebayasi atop(paddr) <= seg->avail_end) {
494 1.7 mrg uvmexp.npages++;
495 1.7 mrg /* add page to free pool */
496 1.158 uebayasi uvm_pagefree(&seg->pgs[i]);
497 1.7 mrg }
498 1.7 mrg }
499 1.7 mrg }
500 1.44 chs
501 1.7 mrg /*
502 1.88 thorpej * pass up the values of virtual_space_start and
503 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
504 1.88 thorpej * layers of the VM.
505 1.88 thorpej */
506 1.88 thorpej
507 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
508 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
509 1.91 yamt #ifdef DEBUG
510 1.91 yamt /*
511 1.91 yamt * steal kva for uvm_pagezerocheck().
512 1.91 yamt */
513 1.91 yamt uvm_zerocheckkva = *kvm_startp;
514 1.91 yamt *kvm_startp += PAGE_SIZE;
515 1.91 yamt #endif /* DEBUG */
516 1.88 thorpej
517 1.88 thorpej /*
518 1.51 chs * init various thresholds.
519 1.7 mrg */
520 1.51 chs
521 1.7 mrg uvmexp.reserve_pagedaemon = 1;
522 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
523 1.7 mrg
524 1.7 mrg /*
525 1.51 chs * determine if we should zero pages in the idle loop.
526 1.34 thorpej */
527 1.51 chs
528 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
529 1.34 thorpej
530 1.34 thorpej /*
531 1.7 mrg * done!
532 1.7 mrg */
533 1.1 mrg
534 1.119 thorpej uvm.page_init_done = true;
535 1.1 mrg }
536 1.1 mrg
537 1.1 mrg /*
538 1.1 mrg * uvm_setpagesize: set the page size
539 1.62 chs *
540 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
541 1.62 chs */
542 1.1 mrg
543 1.7 mrg void
544 1.105 thorpej uvm_setpagesize(void)
545 1.1 mrg {
546 1.85 thorpej
547 1.85 thorpej /*
548 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
549 1.85 thorpej * to be a constant (indicated by being a non-zero value).
550 1.85 thorpej */
551 1.85 thorpej if (uvmexp.pagesize == 0) {
552 1.85 thorpej if (PAGE_SIZE == 0)
553 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
554 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
555 1.85 thorpej }
556 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
557 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
558 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
559 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
560 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
561 1.7 mrg break;
562 1.1 mrg }
563 1.1 mrg
564 1.1 mrg /*
565 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
566 1.1 mrg */
567 1.1 mrg
568 1.14 eeh vaddr_t
569 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
570 1.1 mrg {
571 1.119 thorpej static bool initialized = false;
572 1.14 eeh vaddr_t addr;
573 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
574 1.52 thorpej vaddr_t vaddr;
575 1.14 eeh paddr_t paddr;
576 1.52 thorpej #endif
577 1.1 mrg
578 1.7 mrg /*
579 1.19 thorpej * on first call to this function, initialize ourselves.
580 1.7 mrg */
581 1.119 thorpej if (initialized == false) {
582 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
583 1.1 mrg
584 1.7 mrg /* round it the way we like it */
585 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
586 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
587 1.19 thorpej
588 1.119 thorpej initialized = true;
589 1.7 mrg }
590 1.52 thorpej
591 1.52 thorpej /* round to page size */
592 1.52 thorpej size = round_page(size);
593 1.52 thorpej
594 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
595 1.52 thorpej
596 1.62 chs /*
597 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
598 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
599 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
600 1.52 thorpej */
601 1.52 thorpej
602 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
603 1.88 thorpej &virtual_space_end);
604 1.52 thorpej
605 1.52 thorpej return(addr);
606 1.52 thorpej
607 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
608 1.1 mrg
609 1.7 mrg /*
610 1.7 mrg * allocate virtual memory for this request
611 1.7 mrg */
612 1.88 thorpej if (virtual_space_start == virtual_space_end ||
613 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
614 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
615 1.20 thorpej
616 1.88 thorpej addr = virtual_space_start;
617 1.20 thorpej
618 1.20 thorpej #ifdef PMAP_GROWKERNEL
619 1.20 thorpej /*
620 1.20 thorpej * If the kernel pmap can't map the requested space,
621 1.20 thorpej * then allocate more resources for it.
622 1.20 thorpej */
623 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
624 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
625 1.20 thorpej if (uvm_maxkaddr < (addr + size))
626 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
627 1.19 thorpej }
628 1.20 thorpej #endif
629 1.1 mrg
630 1.88 thorpej virtual_space_start += size;
631 1.1 mrg
632 1.9 thorpej /*
633 1.7 mrg * allocate and mapin physical pages to back new virtual pages
634 1.7 mrg */
635 1.1 mrg
636 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
637 1.7 mrg vaddr += PAGE_SIZE) {
638 1.1 mrg
639 1.7 mrg if (!uvm_page_physget(&paddr))
640 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
641 1.1 mrg
642 1.23 thorpej /*
643 1.23 thorpej * Note this memory is no longer managed, so using
644 1.23 thorpej * pmap_kenter is safe.
645 1.23 thorpej */
646 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
647 1.7 mrg }
648 1.66 chris pmap_update(pmap_kernel());
649 1.7 mrg return(addr);
650 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
651 1.1 mrg }
652 1.1 mrg
653 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
654 1.1 mrg /*
655 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
656 1.1 mrg *
657 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
658 1.1 mrg * values match the start/end values. if we can't do that, then we
659 1.1 mrg * will advance both values (making them equal, and removing some
660 1.1 mrg * vm_page structures from the non-avail area).
661 1.1 mrg * => return false if out of memory.
662 1.1 mrg */
663 1.1 mrg
664 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
665 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
666 1.28 drochner
667 1.118 thorpej static bool
668 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
669 1.1 mrg {
670 1.159 uebayasi struct vm_physseg *seg;
671 1.7 mrg int lcv, x;
672 1.1 mrg
673 1.7 mrg /* pass 1: try allocating from a matching end */
674 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
675 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
676 1.1 mrg #else
677 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
678 1.1 mrg #endif
679 1.7 mrg {
680 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
681 1.1 mrg
682 1.119 thorpej if (uvm.page_init_done == true)
683 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
684 1.1 mrg
685 1.159 uebayasi if (seg->free_list != freelist)
686 1.28 drochner continue;
687 1.28 drochner
688 1.7 mrg /* try from front */
689 1.159 uebayasi if (seg->avail_start == seg->start &&
690 1.159 uebayasi seg->avail_start < seg->avail_end) {
691 1.159 uebayasi *paddrp = ctob(seg->avail_start);
692 1.159 uebayasi seg->avail_start++;
693 1.159 uebayasi seg->start++;
694 1.7 mrg /* nothing left? nuke it */
695 1.159 uebayasi if (seg->avail_start == seg->end) {
696 1.158 uebayasi if (vm_nphysmem == 1)
697 1.89 wiz panic("uvm_page_physget: out of memory!");
698 1.158 uebayasi vm_nphysmem--;
699 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
700 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
701 1.7 mrg }
702 1.119 thorpej return (true);
703 1.7 mrg }
704 1.7 mrg
705 1.7 mrg /* try from rear */
706 1.159 uebayasi if (seg->avail_end == seg->end &&
707 1.159 uebayasi seg->avail_start < seg->avail_end) {
708 1.159 uebayasi *paddrp = ctob(seg->avail_end - 1);
709 1.159 uebayasi seg->avail_end--;
710 1.159 uebayasi seg->end--;
711 1.7 mrg /* nothing left? nuke it */
712 1.159 uebayasi if (seg->avail_end == seg->start) {
713 1.158 uebayasi if (vm_nphysmem == 1)
714 1.42 mrg panic("uvm_page_physget: out of memory!");
715 1.158 uebayasi vm_nphysmem--;
716 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
717 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
718 1.7 mrg }
719 1.119 thorpej return (true);
720 1.7 mrg }
721 1.7 mrg }
722 1.1 mrg
723 1.7 mrg /* pass2: forget about matching ends, just allocate something */
724 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
725 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
726 1.1 mrg #else
727 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
728 1.1 mrg #endif
729 1.7 mrg {
730 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
731 1.1 mrg
732 1.7 mrg /* any room in this bank? */
733 1.159 uebayasi if (seg->avail_start >= seg->avail_end)
734 1.7 mrg continue; /* nope */
735 1.7 mrg
736 1.159 uebayasi *paddrp = ctob(seg->avail_start);
737 1.159 uebayasi seg->avail_start++;
738 1.7 mrg /* truncate! */
739 1.159 uebayasi seg->start = seg->avail_start;
740 1.7 mrg
741 1.7 mrg /* nothing left? nuke it */
742 1.159 uebayasi if (seg->avail_start == seg->end) {
743 1.158 uebayasi if (vm_nphysmem == 1)
744 1.42 mrg panic("uvm_page_physget: out of memory!");
745 1.158 uebayasi vm_nphysmem--;
746 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
747 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
748 1.7 mrg }
749 1.119 thorpej return (true);
750 1.7 mrg }
751 1.1 mrg
752 1.119 thorpej return (false); /* whoops! */
753 1.28 drochner }
754 1.28 drochner
755 1.118 thorpej bool
756 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
757 1.28 drochner {
758 1.28 drochner int i;
759 1.28 drochner
760 1.28 drochner /* try in the order of freelist preference */
761 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
762 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
763 1.119 thorpej return (true);
764 1.119 thorpej return (false);
765 1.1 mrg }
766 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
767 1.1 mrg
768 1.1 mrg /*
769 1.1 mrg * uvm_page_physload: load physical memory into VM system
770 1.1 mrg *
771 1.1 mrg * => all args are PFs
772 1.1 mrg * => all pages in start/end get vm_page structures
773 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
774 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
775 1.1 mrg */
776 1.1 mrg
777 1.7 mrg void
778 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
779 1.105 thorpej paddr_t avail_end, int free_list)
780 1.1 mrg {
781 1.164 uebayasi struct vm_physseg *seg;
782 1.164 uebayasi int lcv;
783 1.7 mrg
784 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
785 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
786 1.67 chs
787 1.164 uebayasi seg = uvm_physseg_alloc(&vm_physmem_freelist, vm_physmem_ptrs,
788 1.164 uebayasi vm_nphysmem, start, end);
789 1.164 uebayasi KASSERT(seg != NULL);
790 1.7 mrg
791 1.164 uebayasi seg->avail_start = avail_start;
792 1.164 uebayasi seg->avail_end = avail_end;
793 1.7 mrg /*
794 1.160 uebayasi * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
795 1.7 mrg * called yet, so malloc is not available).
796 1.7 mrg */
797 1.67 chs
798 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
799 1.159 uebayasi if (VM_PHYSMEM_PTR(lcv)->pgs)
800 1.7 mrg break;
801 1.7 mrg }
802 1.164 uebayasi if (lcv == vm_nphysmem) {
803 1.164 uebayasi seg->pgs = NULL;
804 1.164 uebayasi seg->lastpg = NULL;
805 1.164 uebayasi seg->free_list = free_list;
806 1.164 uebayasi } else {
807 1.164 uebayasi panic("uvm_page_physload: "
808 1.164 uebayasi "tried to add RAM after uvm_page_init");
809 1.164 uebayasi }
810 1.164 uebayasi vm_nphysmem++;
811 1.164 uebayasi }
812 1.164 uebayasi
813 1.164 uebayasi #if 0
814 1.164 uebayasi void
815 1.164 uebayasi uvm_page_physunload(void *cookie)
816 1.164 uebayasi {
817 1.164 uebayasi struct vm_physseg *seg = cookie;
818 1.164 uebayasi
819 1.164 uebayasi panic("memory unload is not supported yet");
820 1.164 uebayasi
821 1.164 uebayasi uvm_physseg_free(&vm_physmem_freelist, vm_physmem_ptrs, seg);
822 1.164 uebayasi vm_nphysmem--;
823 1.164 uebayasi }
824 1.164 uebayasi #endif
825 1.164 uebayasi
826 1.164 uebayasi int uvm_physseg_inited;
827 1.164 uebayasi
828 1.164 uebayasi static struct vm_physseg *
829 1.164 uebayasi uvm_physseg_alloc(struct vm_physseg_freelist *freelist,
830 1.164 uebayasi struct vm_physseg **segs, int nsegs,
831 1.164 uebayasi const paddr_t start, const paddr_t end)
832 1.164 uebayasi {
833 1.164 uebayasi struct vm_physseg *ps;
834 1.164 uebayasi
835 1.164 uebayasi if (uvmexp.pagesize == 0)
836 1.164 uebayasi panic("uvm_page_physload: page size not set!");
837 1.164 uebayasi if (start >= end)
838 1.164 uebayasi panic("uvm_page_physload: start >= end");
839 1.164 uebayasi if (nsegs == VM_PHYSSEG_MAX)
840 1.164 uebayasi panic("uvm_page_physload: unable to load physical memory "
841 1.164 uebayasi "segment\n"
842 1.164 uebayasi "\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n"
843 1.164 uebayasi "\tincrease VM_PHYSSEG_MAX\n",
844 1.164 uebayasi VM_PHYSSEG_MAX, (long long)start, (long long)end);
845 1.164 uebayasi
846 1.164 uebayasi if (uvm_physseg_inited == 0) {
847 1.164 uebayasi uvm_physseg_inited = 1;
848 1.164 uebayasi uvm_physseg_init();
849 1.164 uebayasi }
850 1.164 uebayasi
851 1.164 uebayasi ps = SIMPLEQ_FIRST(freelist);
852 1.164 uebayasi KASSERT(ps != NULL);
853 1.164 uebayasi SIMPLEQ_REMOVE_HEAD(freelist, list);
854 1.164 uebayasi
855 1.164 uebayasi ps->start = start;
856 1.164 uebayasi ps->end = end;
857 1.164 uebayasi uvm_physseg_insert(ps, segs, nsegs);
858 1.164 uebayasi return ps;
859 1.164 uebayasi }
860 1.7 mrg
861 1.164 uebayasi void
862 1.164 uebayasi uvm_physseg_free(struct vm_physseg_freelist *freelist,
863 1.164 uebayasi struct vm_physseg **segs, struct vm_physseg *seg)
864 1.164 uebayasi {
865 1.164 uebayasi
866 1.164 uebayasi uvm_physseg_remove(segs, seg);
867 1.164 uebayasi SIMPLEQ_INSERT_TAIL(freelist, seg, list);
868 1.164 uebayasi }
869 1.164 uebayasi
870 1.164 uebayasi static void
871 1.164 uebayasi uvm_physseg_init(void)
872 1.164 uebayasi {
873 1.164 uebayasi int lcv;
874 1.67 chs
875 1.164 uebayasi for (lcv = 0; lcv < VM_PHYSSEG_MAX; lcv++) {
876 1.164 uebayasi SIMPLEQ_INSERT_TAIL(&vm_physmem_freelist,
877 1.164 uebayasi &vm_physmem_store[lcv], list);
878 1.7 mrg }
879 1.164 uebayasi }
880 1.1 mrg
881 1.164 uebayasi static void
882 1.164 uebayasi uvm_physseg_insert(struct vm_physseg *ps,
883 1.164 uebayasi struct vm_physseg **segs, int nsegs)
884 1.164 uebayasi {
885 1.1 mrg
886 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
887 1.7 mrg /* random: put it at the end (easy!) */
888 1.164 uebayasi segs[nsegs] = ps;
889 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
890 1.7 mrg {
891 1.164 uebayasi int lcv;
892 1.7 mrg int x;
893 1.7 mrg /* sort by address for binary search */
894 1.164 uebayasi for (lcv = 0 ; lcv < nsegs ; lcv++)
895 1.164 uebayasi if (ps->start < segs[lcv]->start)
896 1.7 mrg break;
897 1.7 mrg /* move back other entries, if necessary ... */
898 1.164 uebayasi for (x = nsegs ; x > lcv ; x--)
899 1.164 uebayasi segs[x] = segs[x - 1];
900 1.164 uebayasi segs[lcv] = ps;
901 1.7 mrg }
902 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
903 1.7 mrg {
904 1.164 uebayasi int lcv;
905 1.7 mrg int x;
906 1.7 mrg /* sort by largest segment first */
907 1.164 uebayasi for (lcv = 0 ; lcv < nsegs ; lcv++)
908 1.164 uebayasi if ((ps->end - ps->start) >
909 1.164 uebayasi (segs[lcv]->end - segs[lcv]->start))
910 1.7 mrg break;
911 1.7 mrg /* move back other entries, if necessary ... */
912 1.164 uebayasi for (x = nsegs ; x > lcv ; x--)
913 1.164 uebayasi segs[x] = segs[x - 1];
914 1.164 uebayasi segs[lcv] = ps;
915 1.7 mrg }
916 1.1 mrg #else
917 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
918 1.1 mrg #endif
919 1.164 uebayasi }
920 1.1 mrg
921 1.164 uebayasi static void
922 1.164 uebayasi uvm_physseg_remove(struct vm_physseg **segs, struct vm_physseg *seg)
923 1.164 uebayasi {
924 1.164 uebayasi struct vm_physseg **segp;
925 1.7 mrg
926 1.164 uebayasi for (segp = segs; segp < segs + VM_PHYSSEG_MAX; segp++)
927 1.164 uebayasi if (*segp == seg)
928 1.164 uebayasi break;
929 1.164 uebayasi if (segp == segs + VM_PHYSSEG_MAX)
930 1.164 uebayasi panic("unknown segment: %p", seg);
931 1.164 uebayasi while (segp + 1 < segs + VM_PHYSSEG_MAX) {
932 1.164 uebayasi *segp = *(segp + 1);
933 1.164 uebayasi segp++;
934 1.113 yamt }
935 1.164 uebayasi *segp = NULL;
936 1.1 mrg }
937 1.1 mrg
938 1.1 mrg /*
939 1.164 uebayasi * vm_physseg_find: find vm_physseg structure that belongs to a PA
940 1.162 uebayasi */
941 1.162 uebayasi
942 1.164 uebayasi #define VM_PHYSSEG_OP_PF 1
943 1.164 uebayasi #define VM_PHYSSEG_OP_PG 2
944 1.164 uebayasi
945 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
946 1.164 uebayasi #define VM_PHYSSEG_FIND vm_physseg_find_contig
947 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
948 1.164 uebayasi #define VM_PHYSSEG_FIND vm_physseg_find_bsearch
949 1.162 uebayasi #else
950 1.164 uebayasi #define VM_PHYSSEG_FIND vm_physseg_find_linear
951 1.162 uebayasi #endif
952 1.162 uebayasi
953 1.164 uebayasi static inline int VM_PHYSSEG_FIND(struct vm_physseg **, int, int,
954 1.164 uebayasi paddr_t, const struct vm_page *, int *);
955 1.164 uebayasi static inline bool vm_physseg_within_p(struct vm_physseg *, int, paddr_t,
956 1.164 uebayasi const struct vm_page *, int *);
957 1.164 uebayasi static inline bool vm_physseg_ge_p(struct vm_physseg *, int, paddr_t,
958 1.164 uebayasi const struct vm_page *, int *);
959 1.164 uebayasi static inline bool vm_physseg_lt_p(struct vm_physseg *, int, paddr_t,
960 1.164 uebayasi const struct vm_page *, int *);
961 1.164 uebayasi
962 1.162 uebayasi int
963 1.162 uebayasi vm_physseg_find(paddr_t pframe, int *offp)
964 1.162 uebayasi {
965 1.162 uebayasi
966 1.164 uebayasi return VM_PHYSSEG_FIND(vm_physmem_ptrs, vm_nphysmem, VM_PHYSSEG_OP_PF,
967 1.164 uebayasi pframe, NULL, offp);
968 1.162 uebayasi }
969 1.162 uebayasi
970 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
971 1.162 uebayasi static inline int
972 1.164 uebayasi vm_physseg_find_contig(struct vm_physseg **segs, int nsegs, int op,
973 1.164 uebayasi paddr_t pframe, const struct vm_page *pg, int *offp)
974 1.162 uebayasi {
975 1.162 uebayasi
976 1.162 uebayasi /* 'contig' case */
977 1.164 uebayasi if (nsegs == 0)
978 1.164 uebayasi return(-1);
979 1.164 uebayasi if (vm_physseg_within_p(segs[0], op, pframe, pg, offp)) {
980 1.162 uebayasi return(0);
981 1.162 uebayasi }
982 1.162 uebayasi return(-1);
983 1.162 uebayasi }
984 1.162 uebayasi
985 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
986 1.162 uebayasi
987 1.162 uebayasi static inline int
988 1.164 uebayasi vm_physseg_find_bsearch(struct vm_physseg **segs, int nsegs, int op,
989 1.164 uebayasi paddr_t pframe, const struct vm_page *pg, int *offp)
990 1.162 uebayasi {
991 1.162 uebayasi /* binary search for it */
992 1.162 uebayasi u_int start, len, try;
993 1.162 uebayasi
994 1.162 uebayasi /*
995 1.162 uebayasi * if try is too large (thus target is less than try) we reduce
996 1.162 uebayasi * the length to trunc(len/2) [i.e. everything smaller than "try"]
997 1.162 uebayasi *
998 1.162 uebayasi * if the try is too small (thus target is greater than try) then
999 1.162 uebayasi * we set the new start to be (try + 1). this means we need to
1000 1.162 uebayasi * reduce the length to (round(len/2) - 1).
1001 1.162 uebayasi *
1002 1.162 uebayasi * note "adjust" below which takes advantage of the fact that
1003 1.162 uebayasi * (round(len/2) - 1) == trunc((len - 1) / 2)
1004 1.162 uebayasi * for any value of len we may have
1005 1.162 uebayasi */
1006 1.162 uebayasi
1007 1.162 uebayasi for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
1008 1.162 uebayasi try = start + (len / 2); /* try in the middle */
1009 1.162 uebayasi
1010 1.162 uebayasi /* start past our try? */
1011 1.164 uebayasi if (vm_physseg_ge_p(segs[try], op, pframe, pg, offp)) {
1012 1.162 uebayasi /* was try correct? */
1013 1.164 uebayasi if (vm_physseg_lt_p(segs[try], op, pframe, pg, offp)) {
1014 1.162 uebayasi return(try); /* got it */
1015 1.162 uebayasi }
1016 1.162 uebayasi start = try + 1; /* next time, start here */
1017 1.162 uebayasi len--; /* "adjust" */
1018 1.162 uebayasi } else {
1019 1.162 uebayasi /*
1020 1.162 uebayasi * pframe before try, just reduce length of
1021 1.162 uebayasi * region, done in "for" loop
1022 1.162 uebayasi */
1023 1.162 uebayasi }
1024 1.162 uebayasi }
1025 1.162 uebayasi return(-1);
1026 1.162 uebayasi }
1027 1.162 uebayasi
1028 1.162 uebayasi #else
1029 1.162 uebayasi
1030 1.162 uebayasi static inline int
1031 1.164 uebayasi vm_physseg_find_linear(struct vm_physseg **segs, int nsegs, int op,
1032 1.164 uebayasi paddr_t pframe, const struct vm_page *pg, int *offp)
1033 1.162 uebayasi {
1034 1.162 uebayasi /* linear search for it */
1035 1.162 uebayasi int lcv;
1036 1.162 uebayasi
1037 1.162 uebayasi for (lcv = 0; lcv < nsegs; lcv++) {
1038 1.164 uebayasi if (vm_physseg_within_p(segs[lcv], op, pframe, pg, offp)) {
1039 1.162 uebayasi return(lcv); /* got it */
1040 1.162 uebayasi }
1041 1.162 uebayasi }
1042 1.162 uebayasi return(-1);
1043 1.162 uebayasi }
1044 1.162 uebayasi #endif
1045 1.162 uebayasi
1046 1.164 uebayasi static inline bool
1047 1.164 uebayasi vm_physseg_within_p(struct vm_physseg *seg, int op, paddr_t pframe,
1048 1.164 uebayasi const struct vm_page *pg, int *offp)
1049 1.164 uebayasi {
1050 1.164 uebayasi
1051 1.164 uebayasi return vm_physseg_ge_p(seg, op, pframe, pg, offp) &&
1052 1.164 uebayasi vm_physseg_lt_p(seg, op, pframe, pg, offp);
1053 1.164 uebayasi }
1054 1.164 uebayasi
1055 1.164 uebayasi static inline bool
1056 1.164 uebayasi vm_physseg_ge_p(struct vm_physseg *seg, int op, paddr_t pframe,
1057 1.164 uebayasi const struct vm_page *pg, int *offp)
1058 1.164 uebayasi {
1059 1.164 uebayasi
1060 1.164 uebayasi switch (op) {
1061 1.164 uebayasi case VM_PHYSSEG_OP_PF:
1062 1.164 uebayasi if (offp)
1063 1.164 uebayasi *offp = pframe - seg->start;
1064 1.164 uebayasi return pframe >= seg->start;
1065 1.164 uebayasi case VM_PHYSSEG_OP_PG:
1066 1.164 uebayasi if (offp)
1067 1.164 uebayasi *offp = pg - seg->pgs;
1068 1.164 uebayasi return pg >= seg->pgs;
1069 1.164 uebayasi default:
1070 1.164 uebayasi return false;
1071 1.164 uebayasi }
1072 1.164 uebayasi }
1073 1.164 uebayasi
1074 1.164 uebayasi static inline bool
1075 1.164 uebayasi vm_physseg_lt_p(struct vm_physseg *seg, int op, paddr_t pframe,
1076 1.164 uebayasi const struct vm_page *pg, int *offp)
1077 1.164 uebayasi {
1078 1.164 uebayasi
1079 1.164 uebayasi switch (op) {
1080 1.164 uebayasi case VM_PHYSSEG_OP_PF:
1081 1.164 uebayasi return pframe < seg->end;
1082 1.164 uebayasi case VM_PHYSSEG_OP_PG:
1083 1.164 uebayasi return pg < seg->lastpg;
1084 1.164 uebayasi default:
1085 1.164 uebayasi return false;
1086 1.164 uebayasi }
1087 1.164 uebayasi }
1088 1.164 uebayasi
1089 1.162 uebayasi /*
1090 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
1091 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
1092 1.163 uebayasi */
1093 1.163 uebayasi struct vm_page *
1094 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
1095 1.163 uebayasi {
1096 1.163 uebayasi paddr_t pf = atop(pa);
1097 1.163 uebayasi int off;
1098 1.163 uebayasi int psi;
1099 1.163 uebayasi
1100 1.163 uebayasi psi = vm_physseg_find(pf, &off);
1101 1.163 uebayasi if (psi != -1)
1102 1.163 uebayasi return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
1103 1.163 uebayasi return(NULL);
1104 1.163 uebayasi }
1105 1.163 uebayasi
1106 1.163 uebayasi paddr_t
1107 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
1108 1.163 uebayasi {
1109 1.163 uebayasi
1110 1.163 uebayasi return pg->phys_addr;
1111 1.163 uebayasi }
1112 1.163 uebayasi
1113 1.163 uebayasi /*
1114 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
1115 1.60 thorpej * larger than the old one.
1116 1.60 thorpej */
1117 1.60 thorpej
1118 1.60 thorpej void
1119 1.60 thorpej uvm_page_recolor(int newncolors)
1120 1.60 thorpej {
1121 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
1122 1.133 ad struct pgfreelist gpgfl, pgfl;
1123 1.63 chs struct vm_page *pg;
1124 1.60 thorpej vsize_t bucketcount;
1125 1.123 ad int lcv, color, i, ocolors;
1126 1.133 ad struct uvm_cpu *ucpu;
1127 1.60 thorpej
1128 1.60 thorpej if (newncolors <= uvmexp.ncolors)
1129 1.60 thorpej return;
1130 1.77 wrstuden
1131 1.119 thorpej if (uvm.page_init_done == false) {
1132 1.77 wrstuden uvmexp.ncolors = newncolors;
1133 1.77 wrstuden return;
1134 1.77 wrstuden }
1135 1.60 thorpej
1136 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
1137 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
1138 1.60 thorpej M_VMPAGE, M_NOWAIT);
1139 1.133 ad cpuarray = bucketarray + bucketcount;
1140 1.60 thorpej if (bucketarray == NULL) {
1141 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
1142 1.60 thorpej (long) bucketcount);
1143 1.60 thorpej return;
1144 1.60 thorpej }
1145 1.60 thorpej
1146 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1147 1.60 thorpej
1148 1.60 thorpej /* Make sure we should still do this. */
1149 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
1150 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1151 1.60 thorpej free(bucketarray, M_VMPAGE);
1152 1.60 thorpej return;
1153 1.60 thorpej }
1154 1.60 thorpej
1155 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
1156 1.60 thorpej ocolors = uvmexp.ncolors;
1157 1.60 thorpej
1158 1.60 thorpej uvmexp.ncolors = newncolors;
1159 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
1160 1.60 thorpej
1161 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1162 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1163 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1164 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1165 1.133 ad uvm_page_init_buckets(&gpgfl);
1166 1.60 thorpej uvm_page_init_buckets(&pgfl);
1167 1.60 thorpej for (color = 0; color < ocolors; color++) {
1168 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
1169 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
1170 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
1171 1.60 thorpej != NULL) {
1172 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
1173 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
1174 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1175 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1176 1.133 ad i], pg, pageq.list);
1177 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1178 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1179 1.133 ad i], pg, listq.list);
1180 1.60 thorpej }
1181 1.60 thorpej }
1182 1.60 thorpej }
1183 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1184 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1185 1.60 thorpej }
1186 1.60 thorpej
1187 1.60 thorpej if (have_recolored_pages) {
1188 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1189 1.60 thorpej free(oldbucketarray, M_VMPAGE);
1190 1.60 thorpej return;
1191 1.60 thorpej }
1192 1.60 thorpej
1193 1.119 thorpej have_recolored_pages = true;
1194 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1195 1.60 thorpej }
1196 1.1 mrg
1197 1.1 mrg /*
1198 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
1199 1.133 ad */
1200 1.133 ad
1201 1.133 ad void
1202 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
1203 1.133 ad {
1204 1.133 ad struct pgflbucket *bucketarray;
1205 1.133 ad struct pgfreelist pgfl;
1206 1.133 ad struct uvm_cpu *ucpu;
1207 1.133 ad vsize_t bucketcount;
1208 1.133 ad int lcv;
1209 1.133 ad
1210 1.133 ad if (CPU_IS_PRIMARY(ci)) {
1211 1.133 ad /* Already done in uvm_page_init(). */
1212 1.133 ad return;
1213 1.133 ad }
1214 1.133 ad
1215 1.140 ad /* Add more reserve pages for this CPU. */
1216 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
1217 1.140 ad
1218 1.140 ad /* Configure this CPU's free lists. */
1219 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1220 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1221 1.133 ad M_VMPAGE, M_WAITOK);
1222 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1223 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
1224 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1225 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1226 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1227 1.133 ad uvm_page_init_buckets(&pgfl);
1228 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1229 1.133 ad }
1230 1.133 ad }
1231 1.133 ad
1232 1.133 ad /*
1233 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1234 1.54 thorpej */
1235 1.54 thorpej
1236 1.114 thorpej static struct vm_page *
1237 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1238 1.69 simonb int *trycolorp)
1239 1.54 thorpej {
1240 1.133 ad struct pgflist *freeq;
1241 1.54 thorpej struct vm_page *pg;
1242 1.58 enami int color, trycolor = *trycolorp;
1243 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1244 1.54 thorpej
1245 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1246 1.130 ad
1247 1.58 enami color = trycolor;
1248 1.133 ad pgfl = &ucpu->page_free[flist];
1249 1.133 ad gpgfl = &uvm.page_free[flist];
1250 1.58 enami do {
1251 1.133 ad /* cpu, try1 */
1252 1.133 ad if ((pg = LIST_FIRST((freeq =
1253 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1254 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1255 1.133 ad uvmexp.cpuhit++;
1256 1.133 ad goto gotit;
1257 1.133 ad }
1258 1.133 ad /* global, try1 */
1259 1.133 ad if ((pg = LIST_FIRST((freeq =
1260 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1261 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1262 1.133 ad uvmexp.cpumiss++;
1263 1.54 thorpej goto gotit;
1264 1.133 ad }
1265 1.133 ad /* cpu, try2 */
1266 1.133 ad if ((pg = LIST_FIRST((freeq =
1267 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1268 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1269 1.133 ad uvmexp.cpuhit++;
1270 1.54 thorpej goto gotit;
1271 1.133 ad }
1272 1.133 ad /* global, try2 */
1273 1.133 ad if ((pg = LIST_FIRST((freeq =
1274 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1275 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1276 1.133 ad uvmexp.cpumiss++;
1277 1.133 ad goto gotit;
1278 1.133 ad }
1279 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1280 1.58 enami } while (color != trycolor);
1281 1.54 thorpej
1282 1.54 thorpej return (NULL);
1283 1.54 thorpej
1284 1.54 thorpej gotit:
1285 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1286 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1287 1.54 thorpej uvmexp.free--;
1288 1.54 thorpej
1289 1.54 thorpej /* update zero'd page count */
1290 1.54 thorpej if (pg->flags & PG_ZERO)
1291 1.54 thorpej uvmexp.zeropages--;
1292 1.54 thorpej
1293 1.54 thorpej if (color == trycolor)
1294 1.54 thorpej uvmexp.colorhit++;
1295 1.54 thorpej else {
1296 1.54 thorpej uvmexp.colormiss++;
1297 1.54 thorpej *trycolorp = color;
1298 1.54 thorpej }
1299 1.54 thorpej
1300 1.54 thorpej return (pg);
1301 1.54 thorpej }
1302 1.54 thorpej
1303 1.54 thorpej /*
1304 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1305 1.1 mrg *
1306 1.1 mrg * => return null if no pages free
1307 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1308 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1309 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1310 1.1 mrg * => only one of obj or anon can be non-null
1311 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1312 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1313 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1314 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1315 1.34 thorpej * unknown contents page. This is because we live with the
1316 1.34 thorpej * consequences of a bad free list decision for the entire
1317 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1318 1.34 thorpej * is slower to access.
1319 1.1 mrg */
1320 1.1 mrg
1321 1.7 mrg struct vm_page *
1322 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1323 1.105 thorpej int flags, int strat, int free_list)
1324 1.1 mrg {
1325 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1326 1.133 ad struct uvm_cpu *ucpu;
1327 1.7 mrg struct vm_page *pg;
1328 1.141 ad lwp_t *l;
1329 1.1 mrg
1330 1.44 chs KASSERT(obj == NULL || anon == NULL);
1331 1.113 yamt KASSERT(anon == NULL || off == 0);
1332 1.44 chs KASSERT(off == trunc_page(off));
1333 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1334 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1335 1.48 thorpej
1336 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1337 1.1 mrg
1338 1.7 mrg /*
1339 1.54 thorpej * This implements a global round-robin page coloring
1340 1.54 thorpej * algorithm.
1341 1.54 thorpej *
1342 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1343 1.54 thorpej */
1344 1.67 chs
1345 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1346 1.133 ad color = ucpu->page_free_nextcolor;
1347 1.54 thorpej
1348 1.54 thorpej /*
1349 1.7 mrg * check to see if we need to generate some free pages waking
1350 1.7 mrg * the pagedaemon.
1351 1.7 mrg */
1352 1.7 mrg
1353 1.113 yamt uvm_kick_pdaemon();
1354 1.7 mrg
1355 1.7 mrg /*
1356 1.7 mrg * fail if any of these conditions is true:
1357 1.7 mrg * [1] there really are no free pages, or
1358 1.7 mrg * [2] only kernel "reserved" pages remain and
1359 1.141 ad * reserved pages have not been requested.
1360 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1361 1.7 mrg * the requestor isn't the pagedaemon.
1362 1.141 ad * we make kernel reserve pages available if called by a
1363 1.141 ad * kernel thread or a realtime thread.
1364 1.7 mrg */
1365 1.141 ad l = curlwp;
1366 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1367 1.141 ad flags |= UVM_PGA_USERESERVE;
1368 1.141 ad }
1369 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1370 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1371 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1372 1.141 ad curlwp != uvm.pagedaemon_lwp))
1373 1.12 thorpej goto fail;
1374 1.12 thorpej
1375 1.34 thorpej #if PGFL_NQUEUES != 2
1376 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1377 1.34 thorpej #endif
1378 1.34 thorpej
1379 1.34 thorpej /*
1380 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1381 1.34 thorpej * we try the UNKNOWN queue first.
1382 1.34 thorpej */
1383 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1384 1.34 thorpej try1 = PGFL_ZEROS;
1385 1.34 thorpej try2 = PGFL_UNKNOWN;
1386 1.34 thorpej } else {
1387 1.34 thorpej try1 = PGFL_UNKNOWN;
1388 1.34 thorpej try2 = PGFL_ZEROS;
1389 1.34 thorpej }
1390 1.34 thorpej
1391 1.12 thorpej again:
1392 1.12 thorpej switch (strat) {
1393 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1394 1.145 abs /* Check freelists: descending priority (ascending id) order */
1395 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1396 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1397 1.54 thorpej try1, try2, &color);
1398 1.54 thorpej if (pg != NULL)
1399 1.12 thorpej goto gotit;
1400 1.12 thorpej }
1401 1.12 thorpej
1402 1.12 thorpej /* No pages free! */
1403 1.12 thorpej goto fail;
1404 1.12 thorpej
1405 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1406 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1407 1.12 thorpej /* Attempt to allocate from the specified free list. */
1408 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1409 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1410 1.54 thorpej try1, try2, &color);
1411 1.54 thorpej if (pg != NULL)
1412 1.12 thorpej goto gotit;
1413 1.12 thorpej
1414 1.12 thorpej /* Fall back, if possible. */
1415 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1416 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1417 1.12 thorpej goto again;
1418 1.12 thorpej }
1419 1.12 thorpej
1420 1.12 thorpej /* No pages free! */
1421 1.12 thorpej goto fail;
1422 1.12 thorpej
1423 1.12 thorpej default:
1424 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1425 1.12 thorpej /* NOTREACHED */
1426 1.7 mrg }
1427 1.7 mrg
1428 1.12 thorpej gotit:
1429 1.54 thorpej /*
1430 1.54 thorpej * We now know which color we actually allocated from; set
1431 1.54 thorpej * the next color accordingly.
1432 1.54 thorpej */
1433 1.67 chs
1434 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1435 1.34 thorpej
1436 1.34 thorpej /*
1437 1.34 thorpej * update allocation statistics and remember if we have to
1438 1.34 thorpej * zero the page
1439 1.34 thorpej */
1440 1.67 chs
1441 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1442 1.34 thorpej if (pg->flags & PG_ZERO) {
1443 1.34 thorpej uvmexp.pga_zerohit++;
1444 1.34 thorpej zeroit = 0;
1445 1.34 thorpej } else {
1446 1.34 thorpej uvmexp.pga_zeromiss++;
1447 1.34 thorpej zeroit = 1;
1448 1.34 thorpej }
1449 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1450 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1451 1.133 ad }
1452 1.34 thorpej }
1453 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1454 1.7 mrg
1455 1.7 mrg pg->offset = off;
1456 1.7 mrg pg->uobject = obj;
1457 1.7 mrg pg->uanon = anon;
1458 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1459 1.7 mrg if (anon) {
1460 1.103 yamt anon->an_page = pg;
1461 1.7 mrg pg->pqflags = PQ_ANON;
1462 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1463 1.7 mrg } else {
1464 1.67 chs if (obj) {
1465 1.153 uebayasi uvm_pageinsert(obj, pg);
1466 1.67 chs }
1467 1.7 mrg pg->pqflags = 0;
1468 1.7 mrg }
1469 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1470 1.143 drochner
1471 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1472 1.7 mrg pg->owner_tag = NULL;
1473 1.1 mrg #endif
1474 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1475 1.33 thorpej
1476 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1477 1.33 thorpej /*
1478 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1479 1.34 thorpej * zero'd, then we have to zero it ourselves.
1480 1.33 thorpej */
1481 1.33 thorpej pg->flags &= ~PG_CLEAN;
1482 1.34 thorpej if (zeroit)
1483 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1484 1.33 thorpej }
1485 1.1 mrg
1486 1.7 mrg return(pg);
1487 1.12 thorpej
1488 1.12 thorpej fail:
1489 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1490 1.12 thorpej return (NULL);
1491 1.1 mrg }
1492 1.1 mrg
1493 1.1 mrg /*
1494 1.96 yamt * uvm_pagereplace: replace a page with another
1495 1.96 yamt *
1496 1.96 yamt * => object must be locked
1497 1.96 yamt */
1498 1.96 yamt
1499 1.96 yamt void
1500 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1501 1.96 yamt {
1502 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1503 1.97 junyoung
1504 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1505 1.136 yamt KASSERT(uobj != NULL);
1506 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1507 1.96 yamt KASSERT(newpg->uobject == NULL);
1508 1.136 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
1509 1.96 yamt
1510 1.136 yamt newpg->uobject = uobj;
1511 1.96 yamt newpg->offset = oldpg->offset;
1512 1.96 yamt
1513 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1514 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1515 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1516 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1517 1.96 yamt }
1518 1.96 yamt
1519 1.96 yamt /*
1520 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1521 1.1 mrg *
1522 1.1 mrg * => both objects must be locked
1523 1.1 mrg */
1524 1.1 mrg
1525 1.7 mrg void
1526 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1527 1.1 mrg {
1528 1.7 mrg /*
1529 1.7 mrg * remove it from the old object
1530 1.7 mrg */
1531 1.7 mrg
1532 1.7 mrg if (pg->uobject) {
1533 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1534 1.7 mrg }
1535 1.7 mrg
1536 1.7 mrg /*
1537 1.7 mrg * put it in the new object
1538 1.7 mrg */
1539 1.7 mrg
1540 1.7 mrg if (newobj) {
1541 1.7 mrg pg->uobject = newobj;
1542 1.7 mrg pg->offset = newoff;
1543 1.153 uebayasi uvm_pageinsert(newobj, pg);
1544 1.7 mrg }
1545 1.1 mrg }
1546 1.1 mrg
1547 1.91 yamt #ifdef DEBUG
1548 1.91 yamt /*
1549 1.91 yamt * check if page is zero-filled
1550 1.91 yamt *
1551 1.91 yamt * - called with free page queue lock held.
1552 1.91 yamt */
1553 1.91 yamt void
1554 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1555 1.91 yamt {
1556 1.91 yamt int *p, *ep;
1557 1.91 yamt
1558 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1559 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1560 1.91 yamt
1561 1.91 yamt /*
1562 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1563 1.91 yamt * uvm page allocator.
1564 1.91 yamt *
1565 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1566 1.91 yamt */
1567 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1568 1.91 yamt p = (int *)uvm_zerocheckkva;
1569 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1570 1.92 yamt pmap_update(pmap_kernel());
1571 1.91 yamt while (p < ep) {
1572 1.91 yamt if (*p != 0)
1573 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1574 1.91 yamt p++;
1575 1.91 yamt }
1576 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1577 1.131 yamt /*
1578 1.131 yamt * pmap_update() is not necessary here because no one except us
1579 1.131 yamt * uses this VA.
1580 1.131 yamt */
1581 1.91 yamt }
1582 1.91 yamt #endif /* DEBUG */
1583 1.91 yamt
1584 1.1 mrg /*
1585 1.1 mrg * uvm_pagefree: free page
1586 1.1 mrg *
1587 1.133 ad * => erase page's identity (i.e. remove from object)
1588 1.1 mrg * => put page on free list
1589 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1590 1.1 mrg * => caller must lock page queues
1591 1.1 mrg * => assumes all valid mappings of pg are gone
1592 1.1 mrg */
1593 1.1 mrg
1594 1.44 chs void
1595 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1596 1.1 mrg {
1597 1.133 ad struct pgflist *pgfl;
1598 1.133 ad struct uvm_cpu *ucpu;
1599 1.133 ad int index, color, queue;
1600 1.118 thorpej bool iszero;
1601 1.67 chs
1602 1.44 chs #ifdef DEBUG
1603 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1604 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1605 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1606 1.44 chs }
1607 1.91 yamt #endif /* DEBUG */
1608 1.44 chs
1609 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1610 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1611 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1612 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1613 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1614 1.127 ad mutex_owned(&pg->uanon->an_lock));
1615 1.123 ad
1616 1.7 mrg /*
1617 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1618 1.7 mrg */
1619 1.7 mrg
1620 1.67 chs if (pg->loan_count) {
1621 1.70 chs KASSERT(pg->wire_count == 0);
1622 1.7 mrg
1623 1.7 mrg /*
1624 1.67 chs * if the page is owned by an anon then we just want to
1625 1.70 chs * drop anon ownership. the kernel will free the page when
1626 1.70 chs * it is done with it. if the page is owned by an object,
1627 1.70 chs * remove it from the object and mark it dirty for the benefit
1628 1.70 chs * of possible anon owners.
1629 1.70 chs *
1630 1.70 chs * regardless of previous ownership, wakeup any waiters,
1631 1.70 chs * unbusy the page, and we're done.
1632 1.7 mrg */
1633 1.7 mrg
1634 1.73 chs if (pg->uobject != NULL) {
1635 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1636 1.67 chs pg->flags &= ~PG_CLEAN;
1637 1.73 chs } else if (pg->uanon != NULL) {
1638 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1639 1.73 chs pg->loan_count--;
1640 1.73 chs } else {
1641 1.73 chs pg->pqflags &= ~PQ_ANON;
1642 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1643 1.73 chs }
1644 1.103 yamt pg->uanon->an_page = NULL;
1645 1.73 chs pg->uanon = NULL;
1646 1.67 chs }
1647 1.70 chs if (pg->flags & PG_WANTED) {
1648 1.70 chs wakeup(pg);
1649 1.70 chs }
1650 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1651 1.70 chs #ifdef UVM_PAGE_TRKOWN
1652 1.70 chs pg->owner_tag = NULL;
1653 1.70 chs #endif
1654 1.73 chs if (pg->loan_count) {
1655 1.115 yamt KASSERT(pg->uobject == NULL);
1656 1.115 yamt if (pg->uanon == NULL) {
1657 1.115 yamt uvm_pagedequeue(pg);
1658 1.115 yamt }
1659 1.73 chs return;
1660 1.73 chs }
1661 1.67 chs }
1662 1.62 chs
1663 1.67 chs /*
1664 1.67 chs * remove page from its object or anon.
1665 1.67 chs */
1666 1.44 chs
1667 1.73 chs if (pg->uobject != NULL) {
1668 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1669 1.73 chs } else if (pg->uanon != NULL) {
1670 1.103 yamt pg->uanon->an_page = NULL;
1671 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1672 1.7 mrg }
1673 1.1 mrg
1674 1.7 mrg /*
1675 1.70 chs * now remove the page from the queues.
1676 1.7 mrg */
1677 1.7 mrg
1678 1.67 chs uvm_pagedequeue(pg);
1679 1.7 mrg
1680 1.7 mrg /*
1681 1.7 mrg * if the page was wired, unwire it now.
1682 1.7 mrg */
1683 1.44 chs
1684 1.34 thorpej if (pg->wire_count) {
1685 1.7 mrg pg->wire_count = 0;
1686 1.7 mrg uvmexp.wired--;
1687 1.44 chs }
1688 1.7 mrg
1689 1.7 mrg /*
1690 1.44 chs * and put on free queue
1691 1.7 mrg */
1692 1.7 mrg
1693 1.90 yamt iszero = (pg->flags & PG_ZERO);
1694 1.133 ad index = uvm_page_lookup_freelist(pg);
1695 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1696 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1697 1.34 thorpej
1698 1.3 chs #ifdef DEBUG
1699 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1700 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1701 1.3 chs #endif
1702 1.90 yamt
1703 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1704 1.143 drochner pg->pqflags = PQ_FREE;
1705 1.91 yamt
1706 1.91 yamt #ifdef DEBUG
1707 1.91 yamt if (iszero)
1708 1.91 yamt uvm_pagezerocheck(pg);
1709 1.91 yamt #endif /* DEBUG */
1710 1.91 yamt
1711 1.133 ad
1712 1.133 ad /* global list */
1713 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1714 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1715 1.7 mrg uvmexp.free++;
1716 1.133 ad if (iszero) {
1717 1.90 yamt uvmexp.zeropages++;
1718 1.133 ad }
1719 1.34 thorpej
1720 1.133 ad /* per-cpu list */
1721 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1722 1.133 ad pg->offset = (uintptr_t)ucpu;
1723 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1724 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1725 1.133 ad ucpu->pages[queue]++;
1726 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1727 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1728 1.133 ad }
1729 1.34 thorpej
1730 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1731 1.44 chs }
1732 1.44 chs
1733 1.44 chs /*
1734 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1735 1.44 chs *
1736 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1737 1.44 chs * => if pages are object-owned, object must be locked.
1738 1.67 chs * => if pages are anon-owned, anons must be locked.
1739 1.76 enami * => caller must lock page queues if pages may be released.
1740 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1741 1.44 chs */
1742 1.44 chs
1743 1.44 chs void
1744 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1745 1.44 chs {
1746 1.44 chs struct vm_page *pg;
1747 1.44 chs int i;
1748 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1749 1.44 chs
1750 1.44 chs for (i = 0; i < npgs; i++) {
1751 1.44 chs pg = pgs[i];
1752 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1753 1.44 chs continue;
1754 1.44 chs }
1755 1.98 yamt
1756 1.127 ad KASSERT(pg->uobject == NULL ||
1757 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1758 1.127 ad KASSERT(pg->uobject != NULL ||
1759 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1760 1.98 yamt
1761 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1762 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1763 1.44 chs if (pg->flags & PG_WANTED) {
1764 1.44 chs wakeup(pg);
1765 1.44 chs }
1766 1.44 chs if (pg->flags & PG_RELEASED) {
1767 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1768 1.98 yamt KASSERT(pg->uobject != NULL ||
1769 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1770 1.67 chs pg->flags &= ~PG_RELEASED;
1771 1.67 chs uvm_pagefree(pg);
1772 1.44 chs } else {
1773 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1774 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1775 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1776 1.44 chs UVM_PAGE_OWN(pg, NULL);
1777 1.44 chs }
1778 1.44 chs }
1779 1.1 mrg }
1780 1.1 mrg
1781 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1782 1.1 mrg /*
1783 1.1 mrg * uvm_page_own: set or release page ownership
1784 1.1 mrg *
1785 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1786 1.1 mrg * and where they do it. it can be used to track down problems
1787 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1788 1.1 mrg * => page's object [if any] must be locked
1789 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1790 1.1 mrg */
1791 1.7 mrg void
1792 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1793 1.1 mrg {
1794 1.112 yamt struct uvm_object *uobj;
1795 1.112 yamt struct vm_anon *anon;
1796 1.112 yamt
1797 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1798 1.67 chs
1799 1.112 yamt uobj = pg->uobject;
1800 1.112 yamt anon = pg->uanon;
1801 1.112 yamt if (uobj != NULL) {
1802 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1803 1.112 yamt } else if (anon != NULL) {
1804 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1805 1.112 yamt }
1806 1.112 yamt
1807 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1808 1.112 yamt
1809 1.7 mrg /* gain ownership? */
1810 1.7 mrg if (tag) {
1811 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1812 1.7 mrg if (pg->owner_tag) {
1813 1.7 mrg printf("uvm_page_own: page %p already owned "
1814 1.7 mrg "by proc %d [%s]\n", pg,
1815 1.74 enami pg->owner, pg->owner_tag);
1816 1.7 mrg panic("uvm_page_own");
1817 1.7 mrg }
1818 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1819 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1820 1.7 mrg pg->owner_tag = tag;
1821 1.7 mrg return;
1822 1.7 mrg }
1823 1.7 mrg
1824 1.7 mrg /* drop ownership */
1825 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1826 1.7 mrg if (pg->owner_tag == NULL) {
1827 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1828 1.7 mrg "page (%p)\n", pg);
1829 1.7 mrg panic("uvm_page_own");
1830 1.7 mrg }
1831 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1832 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1833 1.115 yamt pg->wire_count > 0);
1834 1.115 yamt } else {
1835 1.115 yamt KASSERT(pg->wire_count == 0);
1836 1.115 yamt }
1837 1.7 mrg pg->owner_tag = NULL;
1838 1.1 mrg }
1839 1.1 mrg #endif
1840 1.34 thorpej
1841 1.34 thorpej /*
1842 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1843 1.34 thorpej *
1844 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1845 1.54 thorpej * on the CPU cache.
1846 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1847 1.132 ad * to run, or MD code detects a reason to break early.
1848 1.34 thorpej */
1849 1.34 thorpej void
1850 1.105 thorpej uvm_pageidlezero(void)
1851 1.34 thorpej {
1852 1.34 thorpej struct vm_page *pg;
1853 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1854 1.133 ad struct uvm_cpu *ucpu;
1855 1.133 ad int free_list, firstbucket, nextbucket;
1856 1.133 ad
1857 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1858 1.133 ad if (!ucpu->page_idle_zero ||
1859 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1860 1.133 ad ucpu->page_idle_zero = false;
1861 1.132 ad return;
1862 1.132 ad }
1863 1.133 ad mutex_enter(&uvm_fpageqlock);
1864 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1865 1.133 ad nextbucket = firstbucket;
1866 1.58 enami do {
1867 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1868 1.139 ad if (sched_curcpu_runnable_p()) {
1869 1.139 ad goto quit;
1870 1.139 ad }
1871 1.133 ad pgfl = &ucpu->page_free[free_list];
1872 1.133 ad gpgfl = &uvm.page_free[free_list];
1873 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1874 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1875 1.132 ad if (sched_curcpu_runnable_p()) {
1876 1.101 yamt goto quit;
1877 1.132 ad }
1878 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1879 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1880 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1881 1.54 thorpej uvmexp.free--;
1882 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1883 1.143 drochner pg->pqflags = 0;
1884 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1885 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1886 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1887 1.67 chs
1888 1.54 thorpej /*
1889 1.54 thorpej * The machine-dependent code detected
1890 1.54 thorpej * some reason for us to abort zeroing
1891 1.54 thorpej * pages, probably because there is a
1892 1.54 thorpej * process now ready to run.
1893 1.54 thorpej */
1894 1.67 chs
1895 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1896 1.144 drochner pg->pqflags = PQ_FREE;
1897 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1898 1.133 ad nextbucket].pgfl_queues[
1899 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1900 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1901 1.54 thorpej nextbucket].pgfl_queues[
1902 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1903 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1904 1.54 thorpej uvmexp.free++;
1905 1.54 thorpej uvmexp.zeroaborts++;
1906 1.101 yamt goto quit;
1907 1.54 thorpej }
1908 1.54 thorpej #else
1909 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1910 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1911 1.54 thorpej pg->flags |= PG_ZERO;
1912 1.54 thorpej
1913 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1914 1.143 drochner pg->pqflags = PQ_FREE;
1915 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1916 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1917 1.133 ad pg, pageq.list);
1918 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1919 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1920 1.133 ad pg, listq.list);
1921 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1922 1.54 thorpej uvmexp.free++;
1923 1.54 thorpej uvmexp.zeropages++;
1924 1.54 thorpej }
1925 1.41 thorpej }
1926 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1927 1.133 ad break;
1928 1.133 ad }
1929 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1930 1.58 enami } while (nextbucket != firstbucket);
1931 1.133 ad ucpu->page_idle_zero = false;
1932 1.133 ad quit:
1933 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1934 1.34 thorpej }
1935 1.110 yamt
1936 1.110 yamt /*
1937 1.110 yamt * uvm_pagelookup: look up a page
1938 1.110 yamt *
1939 1.110 yamt * => caller should lock object to keep someone from pulling the page
1940 1.110 yamt * out from under it
1941 1.110 yamt */
1942 1.110 yamt
1943 1.110 yamt struct vm_page *
1944 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1945 1.110 yamt {
1946 1.110 yamt struct vm_page *pg;
1947 1.110 yamt
1948 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1949 1.123 ad
1950 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1951 1.134 ad
1952 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1953 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1954 1.110 yamt (pg->flags & PG_BUSY) != 0);
1955 1.156 rmind return pg;
1956 1.110 yamt }
1957 1.110 yamt
1958 1.110 yamt /*
1959 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1960 1.110 yamt *
1961 1.110 yamt * => caller must lock page queues
1962 1.110 yamt */
1963 1.110 yamt
1964 1.110 yamt void
1965 1.110 yamt uvm_pagewire(struct vm_page *pg)
1966 1.110 yamt {
1967 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1968 1.113 yamt #if defined(READAHEAD_STATS)
1969 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1970 1.113 yamt uvm_ra_hit.ev_count++;
1971 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1972 1.113 yamt }
1973 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1974 1.110 yamt if (pg->wire_count == 0) {
1975 1.110 yamt uvm_pagedequeue(pg);
1976 1.110 yamt uvmexp.wired++;
1977 1.110 yamt }
1978 1.110 yamt pg->wire_count++;
1979 1.110 yamt }
1980 1.110 yamt
1981 1.110 yamt /*
1982 1.110 yamt * uvm_pageunwire: unwire the page.
1983 1.110 yamt *
1984 1.110 yamt * => activate if wire count goes to zero.
1985 1.110 yamt * => caller must lock page queues
1986 1.110 yamt */
1987 1.110 yamt
1988 1.110 yamt void
1989 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1990 1.110 yamt {
1991 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1992 1.110 yamt pg->wire_count--;
1993 1.110 yamt if (pg->wire_count == 0) {
1994 1.111 yamt uvm_pageactivate(pg);
1995 1.110 yamt uvmexp.wired--;
1996 1.110 yamt }
1997 1.110 yamt }
1998 1.110 yamt
1999 1.110 yamt /*
2000 1.110 yamt * uvm_pagedeactivate: deactivate page
2001 1.110 yamt *
2002 1.110 yamt * => caller must lock page queues
2003 1.110 yamt * => caller must check to make sure page is not wired
2004 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
2005 1.110 yamt * => caller must clear the reference on the page before calling
2006 1.110 yamt */
2007 1.110 yamt
2008 1.110 yamt void
2009 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
2010 1.110 yamt {
2011 1.113 yamt
2012 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
2013 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
2014 1.113 yamt uvmpdpol_pagedeactivate(pg);
2015 1.110 yamt }
2016 1.110 yamt
2017 1.110 yamt /*
2018 1.110 yamt * uvm_pageactivate: activate page
2019 1.110 yamt *
2020 1.110 yamt * => caller must lock page queues
2021 1.110 yamt */
2022 1.110 yamt
2023 1.110 yamt void
2024 1.110 yamt uvm_pageactivate(struct vm_page *pg)
2025 1.110 yamt {
2026 1.113 yamt
2027 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
2028 1.113 yamt #if defined(READAHEAD_STATS)
2029 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
2030 1.113 yamt uvm_ra_hit.ev_count++;
2031 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
2032 1.113 yamt }
2033 1.113 yamt #endif /* defined(READAHEAD_STATS) */
2034 1.113 yamt if (pg->wire_count != 0) {
2035 1.113 yamt return;
2036 1.110 yamt }
2037 1.113 yamt uvmpdpol_pageactivate(pg);
2038 1.110 yamt }
2039 1.110 yamt
2040 1.110 yamt /*
2041 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
2042 1.110 yamt */
2043 1.110 yamt
2044 1.110 yamt void
2045 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
2046 1.110 yamt {
2047 1.113 yamt
2048 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
2049 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
2050 1.110 yamt }
2051 1.123 ad
2052 1.113 yamt uvmpdpol_pagedequeue(pg);
2053 1.113 yamt }
2054 1.113 yamt
2055 1.113 yamt /*
2056 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
2057 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
2058 1.113 yamt */
2059 1.113 yamt
2060 1.113 yamt void
2061 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
2062 1.113 yamt {
2063 1.113 yamt
2064 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
2065 1.113 yamt if (pg->wire_count != 0) {
2066 1.113 yamt return;
2067 1.113 yamt }
2068 1.113 yamt uvmpdpol_pageenqueue(pg);
2069 1.110 yamt }
2070 1.110 yamt
2071 1.110 yamt /*
2072 1.110 yamt * uvm_pagezero: zero fill a page
2073 1.110 yamt *
2074 1.110 yamt * => if page is part of an object then the object should be locked
2075 1.110 yamt * to protect pg->flags.
2076 1.110 yamt */
2077 1.110 yamt
2078 1.110 yamt void
2079 1.110 yamt uvm_pagezero(struct vm_page *pg)
2080 1.110 yamt {
2081 1.110 yamt pg->flags &= ~PG_CLEAN;
2082 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2083 1.110 yamt }
2084 1.110 yamt
2085 1.110 yamt /*
2086 1.110 yamt * uvm_pagecopy: copy a page
2087 1.110 yamt *
2088 1.110 yamt * => if page is part of an object then the object should be locked
2089 1.110 yamt * to protect pg->flags.
2090 1.110 yamt */
2091 1.110 yamt
2092 1.110 yamt void
2093 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2094 1.110 yamt {
2095 1.110 yamt
2096 1.110 yamt dst->flags &= ~PG_CLEAN;
2097 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2098 1.110 yamt }
2099 1.110 yamt
2100 1.110 yamt /*
2101 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2102 1.150 thorpej */
2103 1.150 thorpej
2104 1.150 thorpej bool
2105 1.150 thorpej uvm_pageismanaged(paddr_t pa)
2106 1.150 thorpej {
2107 1.150 thorpej
2108 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
2109 1.150 thorpej }
2110 1.150 thorpej
2111 1.150 thorpej /*
2112 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
2113 1.110 yamt */
2114 1.110 yamt
2115 1.110 yamt int
2116 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
2117 1.110 yamt {
2118 1.110 yamt int lcv;
2119 1.110 yamt
2120 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2121 1.110 yamt KASSERT(lcv != -1);
2122 1.159 uebayasi return (VM_PHYSMEM_PTR(lcv)->free_list);
2123 1.110 yamt }
2124 1.151 thorpej
2125 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
2126 1.151 thorpej
2127 1.151 thorpej /*
2128 1.151 thorpej * uvm_page_printit: actually print the page
2129 1.151 thorpej */
2130 1.151 thorpej
2131 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
2132 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2133 1.151 thorpej
2134 1.151 thorpej void
2135 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
2136 1.151 thorpej void (*pr)(const char *, ...))
2137 1.151 thorpej {
2138 1.151 thorpej struct vm_page *tpg;
2139 1.151 thorpej struct uvm_object *uobj;
2140 1.151 thorpej struct pgflist *pgl;
2141 1.151 thorpej char pgbuf[128];
2142 1.151 thorpej char pqbuf[128];
2143 1.151 thorpej
2144 1.151 thorpej (*pr)("PAGE %p:\n", pg);
2145 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2146 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2147 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2148 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2149 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2150 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2151 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
2152 1.151 thorpej if (pg->flags & PG_BUSY)
2153 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
2154 1.151 thorpej pg->owner, pg->owner_tag);
2155 1.151 thorpej else
2156 1.151 thorpej (*pr)(" page not busy, no owner\n");
2157 1.151 thorpej #else
2158 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
2159 1.151 thorpej #endif
2160 1.151 thorpej
2161 1.151 thorpej if (!full)
2162 1.151 thorpej return;
2163 1.151 thorpej
2164 1.151 thorpej /* cross-verify object/anon */
2165 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
2166 1.151 thorpej if (pg->pqflags & PQ_ANON) {
2167 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
2168 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2169 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
2170 1.151 thorpej else
2171 1.151 thorpej (*pr)(" anon backpointer is OK\n");
2172 1.151 thorpej } else {
2173 1.151 thorpej uobj = pg->uobject;
2174 1.151 thorpej if (uobj) {
2175 1.151 thorpej (*pr)(" checking object list\n");
2176 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2177 1.151 thorpej if (tpg == pg) {
2178 1.151 thorpej break;
2179 1.151 thorpej }
2180 1.151 thorpej }
2181 1.151 thorpej if (tpg)
2182 1.151 thorpej (*pr)(" page found on object list\n");
2183 1.151 thorpej else
2184 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2185 1.151 thorpej }
2186 1.151 thorpej }
2187 1.151 thorpej }
2188 1.151 thorpej
2189 1.151 thorpej /* cross-verify page queue */
2190 1.151 thorpej if (pg->pqflags & PQ_FREE) {
2191 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
2192 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
2193 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2194 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2195 1.151 thorpej } else {
2196 1.151 thorpej pgl = NULL;
2197 1.151 thorpej }
2198 1.151 thorpej
2199 1.151 thorpej if (pgl) {
2200 1.151 thorpej (*pr)(" checking pageq list\n");
2201 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
2202 1.151 thorpej if (tpg == pg) {
2203 1.151 thorpej break;
2204 1.151 thorpej }
2205 1.151 thorpej }
2206 1.151 thorpej if (tpg)
2207 1.151 thorpej (*pr)(" page found on pageq list\n");
2208 1.151 thorpej else
2209 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2210 1.151 thorpej }
2211 1.151 thorpej }
2212 1.151 thorpej
2213 1.151 thorpej /*
2214 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
2215 1.151 thorpej */
2216 1.151 thorpej
2217 1.151 thorpej void
2218 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2219 1.151 thorpej {
2220 1.151 thorpej unsigned i;
2221 1.151 thorpej struct vm_page *pg;
2222 1.151 thorpej
2223 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2224 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2225 1.151 thorpej " OWNER"
2226 1.151 thorpej #endif
2227 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2228 1.158 uebayasi for (i = 0; i < vm_nphysmem; i++) {
2229 1.161 uebayasi for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2230 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
2231 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2232 1.151 thorpej pg->uanon);
2233 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2234 1.151 thorpej if (pg->flags & PG_BUSY)
2235 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2236 1.151 thorpej #endif
2237 1.151 thorpej (*pr)("\n");
2238 1.151 thorpej }
2239 1.151 thorpej }
2240 1.151 thorpej }
2241 1.151 thorpej
2242 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2243