uvm_page.c revision 1.169 1 1.169 matt /* $NetBSD: uvm_page.c,v 1.169 2011/01/04 08:26:33 matt Exp $ */
2 1.155 ad
3 1.155 ad /*
4 1.155 ad * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 1.155 ad * All rights reserved.
6 1.155 ad *
7 1.155 ad * Redistribution and use in source and binary forms, with or without
8 1.155 ad * modification, are permitted provided that the following conditions
9 1.155 ad * are met:
10 1.155 ad * 1. Redistributions of source code must retain the above copyright
11 1.155 ad * notice, this list of conditions and the following disclaimer.
12 1.155 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.155 ad * notice, this list of conditions and the following disclaimer in the
14 1.155 ad * documentation and/or other materials provided with the distribution.
15 1.155 ad *
16 1.155 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.155 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.155 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.155 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.155 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.155 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.155 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.155 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.155 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.155 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.155 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.155 ad */
28 1.1 mrg
29 1.62 chs /*
30 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
32 1.1 mrg *
33 1.1 mrg * All rights reserved.
34 1.1 mrg *
35 1.1 mrg * This code is derived from software contributed to Berkeley by
36 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
37 1.1 mrg *
38 1.1 mrg * Redistribution and use in source and binary forms, with or without
39 1.1 mrg * modification, are permitted provided that the following conditions
40 1.1 mrg * are met:
41 1.1 mrg * 1. Redistributions of source code must retain the above copyright
42 1.1 mrg * notice, this list of conditions and the following disclaimer.
43 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
44 1.1 mrg * notice, this list of conditions and the following disclaimer in the
45 1.1 mrg * documentation and/or other materials provided with the distribution.
46 1.1 mrg * 3. All advertising materials mentioning features or use of this software
47 1.1 mrg * must display the following acknowledgement:
48 1.1 mrg * This product includes software developed by Charles D. Cranor,
49 1.62 chs * Washington University, the University of California, Berkeley and
50 1.1 mrg * its contributors.
51 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
52 1.1 mrg * may be used to endorse or promote products derived from this software
53 1.1 mrg * without specific prior written permission.
54 1.1 mrg *
55 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 mrg * SUCH DAMAGE.
66 1.1 mrg *
67 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 1.1 mrg *
70 1.1 mrg *
71 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 1.1 mrg * All rights reserved.
73 1.62 chs *
74 1.1 mrg * Permission to use, copy, modify and distribute this software and
75 1.1 mrg * its documentation is hereby granted, provided that both the copyright
76 1.1 mrg * notice and this permission notice appear in all copies of the
77 1.1 mrg * software, derivative works or modified versions, and any portions
78 1.1 mrg * thereof, and that both notices appear in supporting documentation.
79 1.62 chs *
80 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 1.62 chs *
84 1.1 mrg * Carnegie Mellon requests users of this software to return to
85 1.1 mrg *
86 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 1.1 mrg * School of Computer Science
88 1.1 mrg * Carnegie Mellon University
89 1.1 mrg * Pittsburgh PA 15213-3890
90 1.1 mrg *
91 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
92 1.1 mrg * rights to redistribute these changes.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * uvm_page.c: page ops.
97 1.1 mrg */
98 1.71 lukem
99 1.71 lukem #include <sys/cdefs.h>
100 1.169 matt __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.169 2011/01/04 08:26:33 matt Exp $");
101 1.6 mrg
102 1.151 thorpej #include "opt_ddb.h"
103 1.44 chs #include "opt_uvmhist.h"
104 1.113 yamt #include "opt_readahead.h"
105 1.44 chs
106 1.1 mrg #include <sys/param.h>
107 1.1 mrg #include <sys/systm.h>
108 1.1 mrg #include <sys/malloc.h>
109 1.35 thorpej #include <sys/sched.h>
110 1.44 chs #include <sys/kernel.h>
111 1.51 chs #include <sys/vnode.h>
112 1.68 chs #include <sys/proc.h>
113 1.126 ad #include <sys/atomic.h>
114 1.133 ad #include <sys/cpu.h>
115 1.1 mrg
116 1.1 mrg #include <uvm/uvm.h>
117 1.151 thorpej #include <uvm/uvm_ddb.h>
118 1.113 yamt #include <uvm/uvm_pdpolicy.h>
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
122 1.1 mrg */
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * physical memory config is stored in vm_physmem.
126 1.1 mrg */
127 1.1 mrg
128 1.167 uebayasi struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 1.167 uebayasi int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130 1.167 uebayasi #define vm_nphysmem vm_nphysseg
131 1.1 mrg
132 1.1 mrg /*
133 1.36 thorpej * Some supported CPUs in a given architecture don't support all
134 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
135 1.155 ad * We therefore provide a way to enable it from machdep code here.
136 1.44 chs */
137 1.119 thorpej bool vm_page_zero_enable = false;
138 1.34 thorpej
139 1.34 thorpej /*
140 1.140 ad * number of pages per-CPU to reserve for the kernel.
141 1.140 ad */
142 1.140 ad int vm_page_reserve_kernel = 5;
143 1.140 ad
144 1.140 ad /*
145 1.148 matt * physical memory size;
146 1.148 matt */
147 1.149 matt int physmem;
148 1.148 matt
149 1.148 matt /*
150 1.1 mrg * local variables
151 1.1 mrg */
152 1.1 mrg
153 1.1 mrg /*
154 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
155 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
156 1.88 thorpej * and pmap_startup here also uses them internally.
157 1.88 thorpej */
158 1.88 thorpej
159 1.88 thorpej static vaddr_t virtual_space_start;
160 1.88 thorpej static vaddr_t virtual_space_end;
161 1.88 thorpej
162 1.88 thorpej /*
163 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
164 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
165 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
166 1.60 thorpej * free the initial set of buckets, since they are allocated using
167 1.60 thorpej * uvm_pageboot_alloc().
168 1.60 thorpej */
169 1.60 thorpej
170 1.119 thorpej static bool have_recolored_pages /* = false */;
171 1.83 thorpej
172 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
173 1.60 thorpej
174 1.91 yamt #ifdef DEBUG
175 1.91 yamt vaddr_t uvm_zerocheckkva;
176 1.91 yamt #endif /* DEBUG */
177 1.91 yamt
178 1.60 thorpej /*
179 1.134 ad * local prototypes
180 1.124 ad */
181 1.124 ad
182 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
183 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
184 1.124 ad
185 1.124 ad /*
186 1.134 ad * per-object tree of pages
187 1.1 mrg */
188 1.1 mrg
189 1.134 ad static signed int
190 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
191 1.134 ad {
192 1.156 rmind const struct vm_page *pg1 = n1;
193 1.156 rmind const struct vm_page *pg2 = n2;
194 1.134 ad const voff_t a = pg1->offset;
195 1.134 ad const voff_t b = pg2->offset;
196 1.134 ad
197 1.134 ad if (a < b)
198 1.156 rmind return -1;
199 1.156 rmind if (a > b)
200 1.134 ad return 1;
201 1.134 ad return 0;
202 1.134 ad }
203 1.134 ad
204 1.134 ad static signed int
205 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
206 1.134 ad {
207 1.156 rmind const struct vm_page *pg = n;
208 1.134 ad const voff_t a = pg->offset;
209 1.134 ad const voff_t b = *(const voff_t *)key;
210 1.134 ad
211 1.134 ad if (a < b)
212 1.156 rmind return -1;
213 1.156 rmind if (a > b)
214 1.134 ad return 1;
215 1.134 ad return 0;
216 1.134 ad }
217 1.134 ad
218 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
219 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
220 1.137 matt .rbto_compare_key = uvm_page_compare_key,
221 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
222 1.156 rmind .rbto_context = NULL
223 1.134 ad };
224 1.1 mrg
225 1.1 mrg /*
226 1.1 mrg * inline functions
227 1.1 mrg */
228 1.1 mrg
229 1.1 mrg /*
230 1.134 ad * uvm_pageinsert: insert a page in the object.
231 1.1 mrg *
232 1.1 mrg * => caller must lock object
233 1.1 mrg * => caller must lock page queues
234 1.1 mrg * => call should have already set pg's object and offset pointers
235 1.1 mrg * and bumped the version counter
236 1.1 mrg */
237 1.1 mrg
238 1.136 yamt static inline void
239 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
240 1.136 yamt struct vm_page *where)
241 1.1 mrg {
242 1.1 mrg
243 1.136 yamt KASSERT(uobj == pg->uobject);
244 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
245 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
246 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
247 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
248 1.123 ad
249 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
250 1.94 yamt if (uobj->uo_npages == 0) {
251 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
252 1.94 yamt
253 1.94 yamt vholdl(vp);
254 1.94 yamt }
255 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
256 1.126 ad atomic_inc_uint(&uvmexp.execpages);
257 1.94 yamt } else {
258 1.126 ad atomic_inc_uint(&uvmexp.filepages);
259 1.94 yamt }
260 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
261 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
262 1.78 chs }
263 1.78 chs
264 1.96 yamt if (where)
265 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
266 1.96 yamt else
267 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
268 1.7 mrg pg->flags |= PG_TABLED;
269 1.67 chs uobj->uo_npages++;
270 1.1 mrg }
271 1.1 mrg
272 1.136 yamt
273 1.136 yamt static inline void
274 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
275 1.136 yamt {
276 1.156 rmind struct vm_page *ret;
277 1.136 yamt
278 1.136 yamt KASSERT(uobj == pg->uobject);
279 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
280 1.156 rmind KASSERT(ret == pg);
281 1.136 yamt }
282 1.136 yamt
283 1.136 yamt static inline void
284 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
285 1.96 yamt {
286 1.96 yamt
287 1.153 uebayasi KDASSERT(uobj != NULL);
288 1.136 yamt uvm_pageinsert_tree(uobj, pg);
289 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
290 1.96 yamt }
291 1.96 yamt
292 1.1 mrg /*
293 1.134 ad * uvm_page_remove: remove page from object.
294 1.1 mrg *
295 1.1 mrg * => caller must lock object
296 1.1 mrg * => caller must lock page queues
297 1.1 mrg */
298 1.1 mrg
299 1.109 perry static inline void
300 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
301 1.1 mrg {
302 1.1 mrg
303 1.136 yamt KASSERT(uobj == pg->uobject);
304 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
305 1.44 chs KASSERT(pg->flags & PG_TABLED);
306 1.123 ad
307 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
308 1.94 yamt if (uobj->uo_npages == 1) {
309 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
310 1.94 yamt
311 1.94 yamt holdrelel(vp);
312 1.94 yamt }
313 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
314 1.126 ad atomic_dec_uint(&uvmexp.execpages);
315 1.94 yamt } else {
316 1.126 ad atomic_dec_uint(&uvmexp.filepages);
317 1.94 yamt }
318 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
319 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
320 1.51 chs }
321 1.44 chs
322 1.7 mrg /* object should be locked */
323 1.67 chs uobj->uo_npages--;
324 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
325 1.7 mrg pg->flags &= ~PG_TABLED;
326 1.7 mrg pg->uobject = NULL;
327 1.1 mrg }
328 1.1 mrg
329 1.136 yamt static inline void
330 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
331 1.136 yamt {
332 1.136 yamt
333 1.136 yamt KASSERT(uobj == pg->uobject);
334 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
335 1.136 yamt }
336 1.136 yamt
337 1.136 yamt static inline void
338 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
339 1.136 yamt {
340 1.136 yamt
341 1.153 uebayasi KDASSERT(uobj != NULL);
342 1.136 yamt uvm_pageremove_tree(uobj, pg);
343 1.136 yamt uvm_pageremove_list(uobj, pg);
344 1.136 yamt }
345 1.136 yamt
346 1.60 thorpej static void
347 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
348 1.60 thorpej {
349 1.60 thorpej int color, i;
350 1.60 thorpej
351 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
352 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
353 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
354 1.60 thorpej }
355 1.60 thorpej }
356 1.60 thorpej }
357 1.60 thorpej
358 1.1 mrg /*
359 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
360 1.62 chs *
361 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
362 1.1 mrg */
363 1.1 mrg
364 1.7 mrg void
365 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
366 1.1 mrg {
367 1.155 ad static struct uvm_cpu boot_cpu;
368 1.154 jym psize_t freepages, pagecount, bucketcount, n;
369 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
370 1.159 uebayasi struct vm_physseg *seg;
371 1.63 chs struct vm_page *pagearray;
372 1.81 thorpej int lcv;
373 1.81 thorpej u_int i;
374 1.14 eeh paddr_t paddr;
375 1.7 mrg
376 1.133 ad KASSERT(ncpu <= 1);
377 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
378 1.133 ad
379 1.7 mrg /*
380 1.60 thorpej * init the page queues and page queue locks, except the free
381 1.60 thorpej * list; we allocate that later (with the initial vm_page
382 1.60 thorpej * structures).
383 1.7 mrg */
384 1.51 chs
385 1.155 ad uvm.cpus[0] = &boot_cpu;
386 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
387 1.146 haad uvm_reclaim_init();
388 1.113 yamt uvmpdpol_init();
389 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
390 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
391 1.7 mrg
392 1.7 mrg /*
393 1.51 chs * allocate vm_page structures.
394 1.7 mrg */
395 1.7 mrg
396 1.7 mrg /*
397 1.7 mrg * sanity check:
398 1.7 mrg * before calling this function the MD code is expected to register
399 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
400 1.7 mrg * now is to allocate vm_page structures for this memory.
401 1.7 mrg */
402 1.7 mrg
403 1.158 uebayasi if (vm_nphysmem == 0)
404 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
405 1.62 chs
406 1.7 mrg /*
407 1.62 chs * first calculate the number of free pages...
408 1.7 mrg *
409 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
410 1.7 mrg * this allows us to allocate extra vm_page structures in case we
411 1.7 mrg * want to return some memory to the pool after booting.
412 1.7 mrg */
413 1.62 chs
414 1.7 mrg freepages = 0;
415 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
416 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
417 1.158 uebayasi freepages += (seg->end - seg->start);
418 1.158 uebayasi }
419 1.7 mrg
420 1.7 mrg /*
421 1.60 thorpej * Let MD code initialize the number of colors, or default
422 1.60 thorpej * to 1 color if MD code doesn't care.
423 1.60 thorpej */
424 1.60 thorpej if (uvmexp.ncolors == 0)
425 1.60 thorpej uvmexp.ncolors = 1;
426 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
427 1.60 thorpej
428 1.60 thorpej /*
429 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
430 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
431 1.7 mrg * thus, the total number of pages we can use is the total size of
432 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
433 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
434 1.7 mrg * truncation errors (since we can only allocate in terms of whole
435 1.7 mrg * pages).
436 1.7 mrg */
437 1.62 chs
438 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
439 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
440 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
441 1.60 thorpej
442 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
443 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
444 1.60 thorpej sizeof(struct vm_page)));
445 1.133 ad cpuarray = bucketarray + bucketcount;
446 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
447 1.60 thorpej
448 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
449 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
450 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
451 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
452 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
453 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
454 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
455 1.60 thorpej }
456 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
457 1.62 chs
458 1.7 mrg /*
459 1.51 chs * init the vm_page structures and put them in the correct place.
460 1.7 mrg */
461 1.7 mrg
462 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
463 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
464 1.158 uebayasi n = seg->end - seg->start;
465 1.51 chs
466 1.7 mrg /* set up page array pointers */
467 1.158 uebayasi seg->pgs = pagearray;
468 1.7 mrg pagearray += n;
469 1.7 mrg pagecount -= n;
470 1.161 uebayasi seg->lastpg = seg->pgs + n;
471 1.7 mrg
472 1.13 perry /* init and free vm_pages (we've already zeroed them) */
473 1.158 uebayasi paddr = ctob(seg->start);
474 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
475 1.158 uebayasi seg->pgs[i].phys_addr = paddr;
476 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
477 1.158 uebayasi VM_MDPAGE_INIT(&seg->pgs[i]);
478 1.56 thorpej #endif
479 1.158 uebayasi if (atop(paddr) >= seg->avail_start &&
480 1.158 uebayasi atop(paddr) <= seg->avail_end) {
481 1.7 mrg uvmexp.npages++;
482 1.7 mrg /* add page to free pool */
483 1.158 uebayasi uvm_pagefree(&seg->pgs[i]);
484 1.7 mrg }
485 1.7 mrg }
486 1.7 mrg }
487 1.44 chs
488 1.7 mrg /*
489 1.88 thorpej * pass up the values of virtual_space_start and
490 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
491 1.88 thorpej * layers of the VM.
492 1.88 thorpej */
493 1.88 thorpej
494 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
495 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
496 1.91 yamt #ifdef DEBUG
497 1.91 yamt /*
498 1.91 yamt * steal kva for uvm_pagezerocheck().
499 1.91 yamt */
500 1.91 yamt uvm_zerocheckkva = *kvm_startp;
501 1.91 yamt *kvm_startp += PAGE_SIZE;
502 1.91 yamt #endif /* DEBUG */
503 1.88 thorpej
504 1.88 thorpej /*
505 1.51 chs * init various thresholds.
506 1.7 mrg */
507 1.51 chs
508 1.7 mrg uvmexp.reserve_pagedaemon = 1;
509 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
510 1.7 mrg
511 1.7 mrg /*
512 1.51 chs * determine if we should zero pages in the idle loop.
513 1.34 thorpej */
514 1.51 chs
515 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
516 1.34 thorpej
517 1.34 thorpej /*
518 1.7 mrg * done!
519 1.7 mrg */
520 1.1 mrg
521 1.119 thorpej uvm.page_init_done = true;
522 1.1 mrg }
523 1.1 mrg
524 1.1 mrg /*
525 1.1 mrg * uvm_setpagesize: set the page size
526 1.62 chs *
527 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
528 1.62 chs */
529 1.1 mrg
530 1.7 mrg void
531 1.105 thorpej uvm_setpagesize(void)
532 1.1 mrg {
533 1.85 thorpej
534 1.85 thorpej /*
535 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
536 1.85 thorpej * to be a constant (indicated by being a non-zero value).
537 1.85 thorpej */
538 1.85 thorpej if (uvmexp.pagesize == 0) {
539 1.85 thorpej if (PAGE_SIZE == 0)
540 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
541 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
542 1.85 thorpej }
543 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
544 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
545 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
546 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
547 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
548 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
549 1.7 mrg break;
550 1.1 mrg }
551 1.1 mrg
552 1.1 mrg /*
553 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
554 1.1 mrg */
555 1.1 mrg
556 1.14 eeh vaddr_t
557 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
558 1.1 mrg {
559 1.119 thorpej static bool initialized = false;
560 1.14 eeh vaddr_t addr;
561 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
562 1.52 thorpej vaddr_t vaddr;
563 1.14 eeh paddr_t paddr;
564 1.52 thorpej #endif
565 1.1 mrg
566 1.7 mrg /*
567 1.19 thorpej * on first call to this function, initialize ourselves.
568 1.7 mrg */
569 1.119 thorpej if (initialized == false) {
570 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
571 1.1 mrg
572 1.7 mrg /* round it the way we like it */
573 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
574 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
575 1.19 thorpej
576 1.119 thorpej initialized = true;
577 1.7 mrg }
578 1.52 thorpej
579 1.52 thorpej /* round to page size */
580 1.52 thorpej size = round_page(size);
581 1.52 thorpej
582 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
583 1.52 thorpej
584 1.62 chs /*
585 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
586 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
587 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
588 1.52 thorpej */
589 1.52 thorpej
590 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
591 1.88 thorpej &virtual_space_end);
592 1.52 thorpej
593 1.52 thorpej return(addr);
594 1.52 thorpej
595 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
596 1.1 mrg
597 1.7 mrg /*
598 1.7 mrg * allocate virtual memory for this request
599 1.7 mrg */
600 1.88 thorpej if (virtual_space_start == virtual_space_end ||
601 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
602 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
603 1.20 thorpej
604 1.88 thorpej addr = virtual_space_start;
605 1.20 thorpej
606 1.20 thorpej #ifdef PMAP_GROWKERNEL
607 1.20 thorpej /*
608 1.20 thorpej * If the kernel pmap can't map the requested space,
609 1.20 thorpej * then allocate more resources for it.
610 1.20 thorpej */
611 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
612 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
613 1.20 thorpej if (uvm_maxkaddr < (addr + size))
614 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
615 1.19 thorpej }
616 1.20 thorpej #endif
617 1.1 mrg
618 1.88 thorpej virtual_space_start += size;
619 1.1 mrg
620 1.9 thorpej /*
621 1.7 mrg * allocate and mapin physical pages to back new virtual pages
622 1.7 mrg */
623 1.1 mrg
624 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
625 1.7 mrg vaddr += PAGE_SIZE) {
626 1.1 mrg
627 1.7 mrg if (!uvm_page_physget(&paddr))
628 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
629 1.1 mrg
630 1.23 thorpej /*
631 1.23 thorpej * Note this memory is no longer managed, so using
632 1.23 thorpej * pmap_kenter is safe.
633 1.23 thorpej */
634 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
635 1.7 mrg }
636 1.66 chris pmap_update(pmap_kernel());
637 1.7 mrg return(addr);
638 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
639 1.1 mrg }
640 1.1 mrg
641 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
642 1.1 mrg /*
643 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
644 1.1 mrg *
645 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
646 1.1 mrg * values match the start/end values. if we can't do that, then we
647 1.1 mrg * will advance both values (making them equal, and removing some
648 1.1 mrg * vm_page structures from the non-avail area).
649 1.1 mrg * => return false if out of memory.
650 1.1 mrg */
651 1.1 mrg
652 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
653 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
654 1.28 drochner
655 1.118 thorpej static bool
656 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
657 1.1 mrg {
658 1.159 uebayasi struct vm_physseg *seg;
659 1.7 mrg int lcv, x;
660 1.1 mrg
661 1.7 mrg /* pass 1: try allocating from a matching end */
662 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
663 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
664 1.1 mrg #else
665 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
666 1.1 mrg #endif
667 1.7 mrg {
668 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
669 1.1 mrg
670 1.119 thorpej if (uvm.page_init_done == true)
671 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
672 1.1 mrg
673 1.159 uebayasi if (seg->free_list != freelist)
674 1.28 drochner continue;
675 1.28 drochner
676 1.7 mrg /* try from front */
677 1.159 uebayasi if (seg->avail_start == seg->start &&
678 1.159 uebayasi seg->avail_start < seg->avail_end) {
679 1.159 uebayasi *paddrp = ctob(seg->avail_start);
680 1.159 uebayasi seg->avail_start++;
681 1.159 uebayasi seg->start++;
682 1.7 mrg /* nothing left? nuke it */
683 1.159 uebayasi if (seg->avail_start == seg->end) {
684 1.158 uebayasi if (vm_nphysmem == 1)
685 1.89 wiz panic("uvm_page_physget: out of memory!");
686 1.158 uebayasi vm_nphysmem--;
687 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
688 1.167 uebayasi /* structure copy */
689 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
690 1.7 mrg }
691 1.119 thorpej return (true);
692 1.7 mrg }
693 1.7 mrg
694 1.7 mrg /* try from rear */
695 1.159 uebayasi if (seg->avail_end == seg->end &&
696 1.159 uebayasi seg->avail_start < seg->avail_end) {
697 1.159 uebayasi *paddrp = ctob(seg->avail_end - 1);
698 1.159 uebayasi seg->avail_end--;
699 1.159 uebayasi seg->end--;
700 1.7 mrg /* nothing left? nuke it */
701 1.159 uebayasi if (seg->avail_end == seg->start) {
702 1.158 uebayasi if (vm_nphysmem == 1)
703 1.42 mrg panic("uvm_page_physget: out of memory!");
704 1.158 uebayasi vm_nphysmem--;
705 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
706 1.167 uebayasi /* structure copy */
707 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
708 1.7 mrg }
709 1.119 thorpej return (true);
710 1.7 mrg }
711 1.7 mrg }
712 1.1 mrg
713 1.7 mrg /* pass2: forget about matching ends, just allocate something */
714 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
715 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
716 1.1 mrg #else
717 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
718 1.1 mrg #endif
719 1.7 mrg {
720 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
721 1.1 mrg
722 1.7 mrg /* any room in this bank? */
723 1.159 uebayasi if (seg->avail_start >= seg->avail_end)
724 1.7 mrg continue; /* nope */
725 1.7 mrg
726 1.159 uebayasi *paddrp = ctob(seg->avail_start);
727 1.159 uebayasi seg->avail_start++;
728 1.7 mrg /* truncate! */
729 1.159 uebayasi seg->start = seg->avail_start;
730 1.7 mrg
731 1.7 mrg /* nothing left? nuke it */
732 1.159 uebayasi if (seg->avail_start == seg->end) {
733 1.158 uebayasi if (vm_nphysmem == 1)
734 1.42 mrg panic("uvm_page_physget: out of memory!");
735 1.158 uebayasi vm_nphysmem--;
736 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
737 1.167 uebayasi /* structure copy */
738 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
739 1.7 mrg }
740 1.119 thorpej return (true);
741 1.7 mrg }
742 1.1 mrg
743 1.119 thorpej return (false); /* whoops! */
744 1.28 drochner }
745 1.28 drochner
746 1.118 thorpej bool
747 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
748 1.28 drochner {
749 1.28 drochner int i;
750 1.28 drochner
751 1.28 drochner /* try in the order of freelist preference */
752 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
753 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
754 1.119 thorpej return (true);
755 1.119 thorpej return (false);
756 1.1 mrg }
757 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
758 1.1 mrg
759 1.1 mrg /*
760 1.1 mrg * uvm_page_physload: load physical memory into VM system
761 1.1 mrg *
762 1.1 mrg * => all args are PFs
763 1.1 mrg * => all pages in start/end get vm_page structures
764 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
765 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
766 1.1 mrg */
767 1.1 mrg
768 1.7 mrg void
769 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
770 1.105 thorpej paddr_t avail_end, int free_list)
771 1.1 mrg {
772 1.167 uebayasi int preload, lcv;
773 1.167 uebayasi psize_t npages;
774 1.167 uebayasi struct vm_page *pgs;
775 1.167 uebayasi struct vm_physseg *ps;
776 1.7 mrg
777 1.167 uebayasi if (uvmexp.pagesize == 0)
778 1.167 uebayasi panic("uvm_page_physload: page size not set!");
779 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
780 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
781 1.167 uebayasi if (start >= end)
782 1.167 uebayasi panic("uvm_page_physload: start >= end");
783 1.67 chs
784 1.167 uebayasi /*
785 1.167 uebayasi * do we have room?
786 1.167 uebayasi */
787 1.167 uebayasi
788 1.167 uebayasi if (vm_nphysmem == VM_PHYSSEG_MAX) {
789 1.167 uebayasi printf("uvm_page_physload: unable to load physical memory "
790 1.167 uebayasi "segment\n");
791 1.167 uebayasi printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
792 1.167 uebayasi VM_PHYSSEG_MAX, (long long)start, (long long)end);
793 1.167 uebayasi printf("\tincrease VM_PHYSSEG_MAX\n");
794 1.167 uebayasi return;
795 1.167 uebayasi }
796 1.7 mrg
797 1.7 mrg /*
798 1.160 uebayasi * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
799 1.7 mrg * called yet, so malloc is not available).
800 1.7 mrg */
801 1.67 chs
802 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
803 1.159 uebayasi if (VM_PHYSMEM_PTR(lcv)->pgs)
804 1.7 mrg break;
805 1.7 mrg }
806 1.167 uebayasi preload = (lcv == vm_nphysmem);
807 1.164 uebayasi
808 1.167 uebayasi /*
809 1.167 uebayasi * if VM is already running, attempt to malloc() vm_page structures
810 1.167 uebayasi */
811 1.164 uebayasi
812 1.167 uebayasi if (!preload) {
813 1.167 uebayasi panic("uvm_page_physload: tried to add RAM after vm_mem_init");
814 1.167 uebayasi } else {
815 1.167 uebayasi pgs = NULL;
816 1.167 uebayasi npages = 0;
817 1.164 uebayasi }
818 1.164 uebayasi
819 1.167 uebayasi /*
820 1.167 uebayasi * now insert us in the proper place in vm_physmem[]
821 1.167 uebayasi */
822 1.1 mrg
823 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
824 1.7 mrg /* random: put it at the end (easy!) */
825 1.167 uebayasi ps = VM_PHYSMEM_PTR(vm_nphysmem);
826 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
827 1.7 mrg {
828 1.7 mrg int x;
829 1.7 mrg /* sort by address for binary search */
830 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
831 1.167 uebayasi if (start < VM_PHYSMEM_PTR(lcv)->start)
832 1.7 mrg break;
833 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
834 1.7 mrg /* move back other entries, if necessary ... */
835 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
836 1.167 uebayasi /* structure copy */
837 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
838 1.7 mrg }
839 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
840 1.7 mrg {
841 1.7 mrg int x;
842 1.7 mrg /* sort by largest segment first */
843 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
844 1.167 uebayasi if ((end - start) >
845 1.167 uebayasi (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
846 1.7 mrg break;
847 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
848 1.7 mrg /* move back other entries, if necessary ... */
849 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
850 1.167 uebayasi /* structure copy */
851 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
852 1.7 mrg }
853 1.1 mrg #else
854 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
855 1.1 mrg #endif
856 1.1 mrg
857 1.167 uebayasi ps->start = start;
858 1.167 uebayasi ps->end = end;
859 1.167 uebayasi ps->avail_start = avail_start;
860 1.167 uebayasi ps->avail_end = avail_end;
861 1.167 uebayasi if (preload) {
862 1.167 uebayasi ps->pgs = NULL;
863 1.167 uebayasi } else {
864 1.167 uebayasi ps->pgs = pgs;
865 1.167 uebayasi ps->lastpg = pgs + npages;
866 1.167 uebayasi }
867 1.167 uebayasi ps->free_list = free_list;
868 1.167 uebayasi vm_nphysmem++;
869 1.7 mrg
870 1.167 uebayasi if (!preload) {
871 1.167 uebayasi uvmpdpol_reinit();
872 1.113 yamt }
873 1.1 mrg }
874 1.1 mrg
875 1.1 mrg /*
876 1.167 uebayasi * when VM_PHYSSEG_MAX is 1, we can simplify these functions
877 1.162 uebayasi */
878 1.162 uebayasi
879 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
880 1.167 uebayasi static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
881 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
882 1.167 uebayasi static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
883 1.162 uebayasi #else
884 1.167 uebayasi static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
885 1.162 uebayasi #endif
886 1.162 uebayasi
887 1.167 uebayasi /*
888 1.167 uebayasi * vm_physseg_find: find vm_physseg structure that belongs to a PA
889 1.167 uebayasi */
890 1.162 uebayasi int
891 1.162 uebayasi vm_physseg_find(paddr_t pframe, int *offp)
892 1.162 uebayasi {
893 1.162 uebayasi
894 1.167 uebayasi #if VM_PHYSSEG_MAX == 1
895 1.167 uebayasi return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
896 1.167 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
897 1.167 uebayasi return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
898 1.167 uebayasi #else
899 1.167 uebayasi return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
900 1.167 uebayasi #endif
901 1.162 uebayasi }
902 1.162 uebayasi
903 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
904 1.162 uebayasi static inline int
905 1.167 uebayasi vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
906 1.162 uebayasi {
907 1.162 uebayasi
908 1.162 uebayasi /* 'contig' case */
909 1.167 uebayasi if (pframe >= segs[0].start && pframe < segs[0].end) {
910 1.167 uebayasi if (offp)
911 1.167 uebayasi *offp = pframe - segs[0].start;
912 1.162 uebayasi return(0);
913 1.162 uebayasi }
914 1.162 uebayasi return(-1);
915 1.162 uebayasi }
916 1.162 uebayasi
917 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
918 1.162 uebayasi
919 1.162 uebayasi static inline int
920 1.167 uebayasi vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
921 1.162 uebayasi {
922 1.162 uebayasi /* binary search for it */
923 1.162 uebayasi u_int start, len, try;
924 1.162 uebayasi
925 1.162 uebayasi /*
926 1.162 uebayasi * if try is too large (thus target is less than try) we reduce
927 1.162 uebayasi * the length to trunc(len/2) [i.e. everything smaller than "try"]
928 1.162 uebayasi *
929 1.162 uebayasi * if the try is too small (thus target is greater than try) then
930 1.162 uebayasi * we set the new start to be (try + 1). this means we need to
931 1.162 uebayasi * reduce the length to (round(len/2) - 1).
932 1.162 uebayasi *
933 1.162 uebayasi * note "adjust" below which takes advantage of the fact that
934 1.162 uebayasi * (round(len/2) - 1) == trunc((len - 1) / 2)
935 1.162 uebayasi * for any value of len we may have
936 1.162 uebayasi */
937 1.162 uebayasi
938 1.162 uebayasi for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
939 1.162 uebayasi try = start + (len / 2); /* try in the middle */
940 1.162 uebayasi
941 1.162 uebayasi /* start past our try? */
942 1.167 uebayasi if (pframe >= segs[try].start) {
943 1.162 uebayasi /* was try correct? */
944 1.167 uebayasi if (pframe < segs[try].end) {
945 1.167 uebayasi if (offp)
946 1.167 uebayasi *offp = pframe - segs[try].start;
947 1.162 uebayasi return(try); /* got it */
948 1.162 uebayasi }
949 1.162 uebayasi start = try + 1; /* next time, start here */
950 1.162 uebayasi len--; /* "adjust" */
951 1.162 uebayasi } else {
952 1.162 uebayasi /*
953 1.162 uebayasi * pframe before try, just reduce length of
954 1.162 uebayasi * region, done in "for" loop
955 1.162 uebayasi */
956 1.162 uebayasi }
957 1.162 uebayasi }
958 1.162 uebayasi return(-1);
959 1.162 uebayasi }
960 1.162 uebayasi
961 1.162 uebayasi #else
962 1.162 uebayasi
963 1.162 uebayasi static inline int
964 1.167 uebayasi vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
965 1.162 uebayasi {
966 1.162 uebayasi /* linear search for it */
967 1.162 uebayasi int lcv;
968 1.162 uebayasi
969 1.162 uebayasi for (lcv = 0; lcv < nsegs; lcv++) {
970 1.167 uebayasi if (pframe >= segs[lcv].start &&
971 1.167 uebayasi pframe < segs[lcv].end) {
972 1.167 uebayasi if (offp)
973 1.167 uebayasi *offp = pframe - segs[lcv].start;
974 1.162 uebayasi return(lcv); /* got it */
975 1.162 uebayasi }
976 1.162 uebayasi }
977 1.162 uebayasi return(-1);
978 1.162 uebayasi }
979 1.162 uebayasi #endif
980 1.162 uebayasi
981 1.162 uebayasi /*
982 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
983 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
984 1.163 uebayasi */
985 1.163 uebayasi struct vm_page *
986 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
987 1.163 uebayasi {
988 1.163 uebayasi paddr_t pf = atop(pa);
989 1.163 uebayasi int off;
990 1.163 uebayasi int psi;
991 1.163 uebayasi
992 1.163 uebayasi psi = vm_physseg_find(pf, &off);
993 1.163 uebayasi if (psi != -1)
994 1.163 uebayasi return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
995 1.163 uebayasi return(NULL);
996 1.163 uebayasi }
997 1.163 uebayasi
998 1.163 uebayasi paddr_t
999 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
1000 1.163 uebayasi {
1001 1.163 uebayasi
1002 1.163 uebayasi return pg->phys_addr;
1003 1.163 uebayasi }
1004 1.163 uebayasi
1005 1.163 uebayasi /*
1006 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
1007 1.60 thorpej * larger than the old one.
1008 1.60 thorpej */
1009 1.60 thorpej
1010 1.60 thorpej void
1011 1.60 thorpej uvm_page_recolor(int newncolors)
1012 1.60 thorpej {
1013 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
1014 1.133 ad struct pgfreelist gpgfl, pgfl;
1015 1.63 chs struct vm_page *pg;
1016 1.60 thorpej vsize_t bucketcount;
1017 1.123 ad int lcv, color, i, ocolors;
1018 1.133 ad struct uvm_cpu *ucpu;
1019 1.60 thorpej
1020 1.60 thorpej if (newncolors <= uvmexp.ncolors)
1021 1.60 thorpej return;
1022 1.77 wrstuden
1023 1.119 thorpej if (uvm.page_init_done == false) {
1024 1.77 wrstuden uvmexp.ncolors = newncolors;
1025 1.77 wrstuden return;
1026 1.77 wrstuden }
1027 1.60 thorpej
1028 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
1029 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
1030 1.60 thorpej M_VMPAGE, M_NOWAIT);
1031 1.133 ad cpuarray = bucketarray + bucketcount;
1032 1.60 thorpej if (bucketarray == NULL) {
1033 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
1034 1.60 thorpej (long) bucketcount);
1035 1.60 thorpej return;
1036 1.60 thorpej }
1037 1.60 thorpej
1038 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1039 1.60 thorpej
1040 1.60 thorpej /* Make sure we should still do this. */
1041 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
1042 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1043 1.60 thorpej free(bucketarray, M_VMPAGE);
1044 1.60 thorpej return;
1045 1.60 thorpej }
1046 1.60 thorpej
1047 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
1048 1.60 thorpej ocolors = uvmexp.ncolors;
1049 1.60 thorpej
1050 1.60 thorpej uvmexp.ncolors = newncolors;
1051 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
1052 1.60 thorpej
1053 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1054 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1055 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1056 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1057 1.133 ad uvm_page_init_buckets(&gpgfl);
1058 1.60 thorpej uvm_page_init_buckets(&pgfl);
1059 1.60 thorpej for (color = 0; color < ocolors; color++) {
1060 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
1061 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
1062 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
1063 1.60 thorpej != NULL) {
1064 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
1065 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
1066 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1067 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1068 1.133 ad i], pg, pageq.list);
1069 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1070 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1071 1.133 ad i], pg, listq.list);
1072 1.60 thorpej }
1073 1.60 thorpej }
1074 1.60 thorpej }
1075 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1076 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1077 1.60 thorpej }
1078 1.60 thorpej
1079 1.60 thorpej if (have_recolored_pages) {
1080 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1081 1.60 thorpej free(oldbucketarray, M_VMPAGE);
1082 1.60 thorpej return;
1083 1.60 thorpej }
1084 1.60 thorpej
1085 1.119 thorpej have_recolored_pages = true;
1086 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1087 1.60 thorpej }
1088 1.1 mrg
1089 1.1 mrg /*
1090 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
1091 1.133 ad */
1092 1.133 ad
1093 1.133 ad void
1094 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
1095 1.133 ad {
1096 1.133 ad struct pgflbucket *bucketarray;
1097 1.133 ad struct pgfreelist pgfl;
1098 1.133 ad struct uvm_cpu *ucpu;
1099 1.133 ad vsize_t bucketcount;
1100 1.133 ad int lcv;
1101 1.133 ad
1102 1.133 ad if (CPU_IS_PRIMARY(ci)) {
1103 1.133 ad /* Already done in uvm_page_init(). */
1104 1.133 ad return;
1105 1.133 ad }
1106 1.133 ad
1107 1.140 ad /* Add more reserve pages for this CPU. */
1108 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
1109 1.140 ad
1110 1.140 ad /* Configure this CPU's free lists. */
1111 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1112 1.133 ad bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1113 1.133 ad M_VMPAGE, M_WAITOK);
1114 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1115 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
1116 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1117 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1118 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1119 1.133 ad uvm_page_init_buckets(&pgfl);
1120 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1121 1.133 ad }
1122 1.133 ad }
1123 1.133 ad
1124 1.133 ad /*
1125 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1126 1.54 thorpej */
1127 1.54 thorpej
1128 1.114 thorpej static struct vm_page *
1129 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1130 1.69 simonb int *trycolorp)
1131 1.54 thorpej {
1132 1.133 ad struct pgflist *freeq;
1133 1.54 thorpej struct vm_page *pg;
1134 1.58 enami int color, trycolor = *trycolorp;
1135 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1136 1.54 thorpej
1137 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1138 1.130 ad
1139 1.58 enami color = trycolor;
1140 1.133 ad pgfl = &ucpu->page_free[flist];
1141 1.133 ad gpgfl = &uvm.page_free[flist];
1142 1.58 enami do {
1143 1.133 ad /* cpu, try1 */
1144 1.133 ad if ((pg = LIST_FIRST((freeq =
1145 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1146 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1147 1.133 ad uvmexp.cpuhit++;
1148 1.133 ad goto gotit;
1149 1.133 ad }
1150 1.133 ad /* global, try1 */
1151 1.133 ad if ((pg = LIST_FIRST((freeq =
1152 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1153 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1154 1.133 ad uvmexp.cpumiss++;
1155 1.54 thorpej goto gotit;
1156 1.133 ad }
1157 1.133 ad /* cpu, try2 */
1158 1.133 ad if ((pg = LIST_FIRST((freeq =
1159 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1160 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1161 1.133 ad uvmexp.cpuhit++;
1162 1.54 thorpej goto gotit;
1163 1.133 ad }
1164 1.133 ad /* global, try2 */
1165 1.133 ad if ((pg = LIST_FIRST((freeq =
1166 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1167 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1168 1.133 ad uvmexp.cpumiss++;
1169 1.133 ad goto gotit;
1170 1.133 ad }
1171 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1172 1.58 enami } while (color != trycolor);
1173 1.54 thorpej
1174 1.54 thorpej return (NULL);
1175 1.54 thorpej
1176 1.54 thorpej gotit:
1177 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1178 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1179 1.54 thorpej uvmexp.free--;
1180 1.54 thorpej
1181 1.54 thorpej /* update zero'd page count */
1182 1.54 thorpej if (pg->flags & PG_ZERO)
1183 1.54 thorpej uvmexp.zeropages--;
1184 1.54 thorpej
1185 1.54 thorpej if (color == trycolor)
1186 1.54 thorpej uvmexp.colorhit++;
1187 1.54 thorpej else {
1188 1.54 thorpej uvmexp.colormiss++;
1189 1.54 thorpej *trycolorp = color;
1190 1.54 thorpej }
1191 1.54 thorpej
1192 1.54 thorpej return (pg);
1193 1.54 thorpej }
1194 1.54 thorpej
1195 1.54 thorpej /*
1196 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1197 1.1 mrg *
1198 1.1 mrg * => return null if no pages free
1199 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1200 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1201 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1202 1.1 mrg * => only one of obj or anon can be non-null
1203 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1204 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1205 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1206 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1207 1.34 thorpej * unknown contents page. This is because we live with the
1208 1.34 thorpej * consequences of a bad free list decision for the entire
1209 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1210 1.34 thorpej * is slower to access.
1211 1.1 mrg */
1212 1.1 mrg
1213 1.7 mrg struct vm_page *
1214 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1215 1.105 thorpej int flags, int strat, int free_list)
1216 1.1 mrg {
1217 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1218 1.133 ad struct uvm_cpu *ucpu;
1219 1.7 mrg struct vm_page *pg;
1220 1.141 ad lwp_t *l;
1221 1.1 mrg
1222 1.44 chs KASSERT(obj == NULL || anon == NULL);
1223 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1224 1.44 chs KASSERT(off == trunc_page(off));
1225 1.127 ad KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1226 1.127 ad KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1227 1.48 thorpej
1228 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1229 1.1 mrg
1230 1.7 mrg /*
1231 1.54 thorpej * This implements a global round-robin page coloring
1232 1.54 thorpej * algorithm.
1233 1.54 thorpej */
1234 1.67 chs
1235 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1236 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
1237 1.169 matt color = atop(off) & uvmexp.colormask;
1238 1.169 matt } else {
1239 1.169 matt color = ucpu->page_free_nextcolor;
1240 1.169 matt }
1241 1.54 thorpej
1242 1.54 thorpej /*
1243 1.7 mrg * check to see if we need to generate some free pages waking
1244 1.7 mrg * the pagedaemon.
1245 1.7 mrg */
1246 1.7 mrg
1247 1.113 yamt uvm_kick_pdaemon();
1248 1.7 mrg
1249 1.7 mrg /*
1250 1.7 mrg * fail if any of these conditions is true:
1251 1.7 mrg * [1] there really are no free pages, or
1252 1.7 mrg * [2] only kernel "reserved" pages remain and
1253 1.141 ad * reserved pages have not been requested.
1254 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1255 1.7 mrg * the requestor isn't the pagedaemon.
1256 1.141 ad * we make kernel reserve pages available if called by a
1257 1.141 ad * kernel thread or a realtime thread.
1258 1.7 mrg */
1259 1.141 ad l = curlwp;
1260 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1261 1.141 ad flags |= UVM_PGA_USERESERVE;
1262 1.141 ad }
1263 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1264 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1265 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1266 1.141 ad curlwp != uvm.pagedaemon_lwp))
1267 1.12 thorpej goto fail;
1268 1.12 thorpej
1269 1.34 thorpej #if PGFL_NQUEUES != 2
1270 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1271 1.34 thorpej #endif
1272 1.34 thorpej
1273 1.34 thorpej /*
1274 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1275 1.34 thorpej * we try the UNKNOWN queue first.
1276 1.34 thorpej */
1277 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1278 1.34 thorpej try1 = PGFL_ZEROS;
1279 1.34 thorpej try2 = PGFL_UNKNOWN;
1280 1.34 thorpej } else {
1281 1.34 thorpej try1 = PGFL_UNKNOWN;
1282 1.34 thorpej try2 = PGFL_ZEROS;
1283 1.34 thorpej }
1284 1.34 thorpej
1285 1.12 thorpej again:
1286 1.12 thorpej switch (strat) {
1287 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1288 1.145 abs /* Check freelists: descending priority (ascending id) order */
1289 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1290 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1291 1.54 thorpej try1, try2, &color);
1292 1.54 thorpej if (pg != NULL)
1293 1.12 thorpej goto gotit;
1294 1.12 thorpej }
1295 1.12 thorpej
1296 1.12 thorpej /* No pages free! */
1297 1.12 thorpej goto fail;
1298 1.12 thorpej
1299 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1300 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1301 1.12 thorpej /* Attempt to allocate from the specified free list. */
1302 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1303 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1304 1.54 thorpej try1, try2, &color);
1305 1.54 thorpej if (pg != NULL)
1306 1.12 thorpej goto gotit;
1307 1.12 thorpej
1308 1.12 thorpej /* Fall back, if possible. */
1309 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1310 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1311 1.12 thorpej goto again;
1312 1.12 thorpej }
1313 1.12 thorpej
1314 1.12 thorpej /* No pages free! */
1315 1.12 thorpej goto fail;
1316 1.12 thorpej
1317 1.12 thorpej default:
1318 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1319 1.12 thorpej /* NOTREACHED */
1320 1.7 mrg }
1321 1.7 mrg
1322 1.12 thorpej gotit:
1323 1.54 thorpej /*
1324 1.54 thorpej * We now know which color we actually allocated from; set
1325 1.54 thorpej * the next color accordingly.
1326 1.54 thorpej */
1327 1.67 chs
1328 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1329 1.34 thorpej
1330 1.34 thorpej /*
1331 1.34 thorpej * update allocation statistics and remember if we have to
1332 1.34 thorpej * zero the page
1333 1.34 thorpej */
1334 1.67 chs
1335 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1336 1.34 thorpej if (pg->flags & PG_ZERO) {
1337 1.34 thorpej uvmexp.pga_zerohit++;
1338 1.34 thorpej zeroit = 0;
1339 1.34 thorpej } else {
1340 1.34 thorpej uvmexp.pga_zeromiss++;
1341 1.34 thorpej zeroit = 1;
1342 1.34 thorpej }
1343 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1344 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1345 1.133 ad }
1346 1.34 thorpej }
1347 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1348 1.7 mrg
1349 1.7 mrg pg->offset = off;
1350 1.7 mrg pg->uobject = obj;
1351 1.7 mrg pg->uanon = anon;
1352 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1353 1.7 mrg if (anon) {
1354 1.103 yamt anon->an_page = pg;
1355 1.7 mrg pg->pqflags = PQ_ANON;
1356 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1357 1.7 mrg } else {
1358 1.67 chs if (obj) {
1359 1.153 uebayasi uvm_pageinsert(obj, pg);
1360 1.67 chs }
1361 1.7 mrg pg->pqflags = 0;
1362 1.7 mrg }
1363 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1364 1.143 drochner
1365 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1366 1.7 mrg pg->owner_tag = NULL;
1367 1.1 mrg #endif
1368 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1369 1.33 thorpej
1370 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1371 1.33 thorpej /*
1372 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1373 1.34 thorpej * zero'd, then we have to zero it ourselves.
1374 1.33 thorpej */
1375 1.33 thorpej pg->flags &= ~PG_CLEAN;
1376 1.34 thorpej if (zeroit)
1377 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1378 1.33 thorpej }
1379 1.1 mrg
1380 1.7 mrg return(pg);
1381 1.12 thorpej
1382 1.12 thorpej fail:
1383 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1384 1.12 thorpej return (NULL);
1385 1.1 mrg }
1386 1.1 mrg
1387 1.1 mrg /*
1388 1.96 yamt * uvm_pagereplace: replace a page with another
1389 1.96 yamt *
1390 1.96 yamt * => object must be locked
1391 1.96 yamt */
1392 1.96 yamt
1393 1.96 yamt void
1394 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1395 1.96 yamt {
1396 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1397 1.97 junyoung
1398 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1399 1.136 yamt KASSERT(uobj != NULL);
1400 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1401 1.96 yamt KASSERT(newpg->uobject == NULL);
1402 1.136 yamt KASSERT(mutex_owned(&uobj->vmobjlock));
1403 1.96 yamt
1404 1.136 yamt newpg->uobject = uobj;
1405 1.96 yamt newpg->offset = oldpg->offset;
1406 1.96 yamt
1407 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1408 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1409 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1410 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1411 1.96 yamt }
1412 1.96 yamt
1413 1.96 yamt /*
1414 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1415 1.1 mrg *
1416 1.1 mrg * => both objects must be locked
1417 1.1 mrg */
1418 1.1 mrg
1419 1.7 mrg void
1420 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1421 1.1 mrg {
1422 1.7 mrg /*
1423 1.7 mrg * remove it from the old object
1424 1.7 mrg */
1425 1.7 mrg
1426 1.7 mrg if (pg->uobject) {
1427 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1428 1.7 mrg }
1429 1.7 mrg
1430 1.7 mrg /*
1431 1.7 mrg * put it in the new object
1432 1.7 mrg */
1433 1.7 mrg
1434 1.7 mrg if (newobj) {
1435 1.7 mrg pg->uobject = newobj;
1436 1.7 mrg pg->offset = newoff;
1437 1.153 uebayasi uvm_pageinsert(newobj, pg);
1438 1.7 mrg }
1439 1.1 mrg }
1440 1.1 mrg
1441 1.91 yamt #ifdef DEBUG
1442 1.91 yamt /*
1443 1.91 yamt * check if page is zero-filled
1444 1.91 yamt *
1445 1.91 yamt * - called with free page queue lock held.
1446 1.91 yamt */
1447 1.91 yamt void
1448 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1449 1.91 yamt {
1450 1.91 yamt int *p, *ep;
1451 1.91 yamt
1452 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1453 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1454 1.91 yamt
1455 1.91 yamt /*
1456 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1457 1.91 yamt * uvm page allocator.
1458 1.91 yamt *
1459 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1460 1.91 yamt */
1461 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1462 1.91 yamt p = (int *)uvm_zerocheckkva;
1463 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1464 1.92 yamt pmap_update(pmap_kernel());
1465 1.91 yamt while (p < ep) {
1466 1.91 yamt if (*p != 0)
1467 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1468 1.91 yamt p++;
1469 1.91 yamt }
1470 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1471 1.131 yamt /*
1472 1.131 yamt * pmap_update() is not necessary here because no one except us
1473 1.131 yamt * uses this VA.
1474 1.131 yamt */
1475 1.91 yamt }
1476 1.91 yamt #endif /* DEBUG */
1477 1.91 yamt
1478 1.1 mrg /*
1479 1.1 mrg * uvm_pagefree: free page
1480 1.1 mrg *
1481 1.133 ad * => erase page's identity (i.e. remove from object)
1482 1.1 mrg * => put page on free list
1483 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1484 1.1 mrg * => caller must lock page queues
1485 1.1 mrg * => assumes all valid mappings of pg are gone
1486 1.1 mrg */
1487 1.1 mrg
1488 1.44 chs void
1489 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1490 1.1 mrg {
1491 1.133 ad struct pgflist *pgfl;
1492 1.133 ad struct uvm_cpu *ucpu;
1493 1.133 ad int index, color, queue;
1494 1.118 thorpej bool iszero;
1495 1.67 chs
1496 1.44 chs #ifdef DEBUG
1497 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1498 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1499 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1500 1.44 chs }
1501 1.91 yamt #endif /* DEBUG */
1502 1.44 chs
1503 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1504 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1505 1.128 yamt KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1506 1.128 yamt KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1507 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1508 1.127 ad mutex_owned(&pg->uanon->an_lock));
1509 1.123 ad
1510 1.7 mrg /*
1511 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1512 1.7 mrg */
1513 1.7 mrg
1514 1.67 chs if (pg->loan_count) {
1515 1.70 chs KASSERT(pg->wire_count == 0);
1516 1.7 mrg
1517 1.7 mrg /*
1518 1.67 chs * if the page is owned by an anon then we just want to
1519 1.70 chs * drop anon ownership. the kernel will free the page when
1520 1.70 chs * it is done with it. if the page is owned by an object,
1521 1.70 chs * remove it from the object and mark it dirty for the benefit
1522 1.70 chs * of possible anon owners.
1523 1.70 chs *
1524 1.70 chs * regardless of previous ownership, wakeup any waiters,
1525 1.70 chs * unbusy the page, and we're done.
1526 1.7 mrg */
1527 1.7 mrg
1528 1.73 chs if (pg->uobject != NULL) {
1529 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1530 1.67 chs pg->flags &= ~PG_CLEAN;
1531 1.73 chs } else if (pg->uanon != NULL) {
1532 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1533 1.73 chs pg->loan_count--;
1534 1.73 chs } else {
1535 1.73 chs pg->pqflags &= ~PQ_ANON;
1536 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1537 1.73 chs }
1538 1.103 yamt pg->uanon->an_page = NULL;
1539 1.73 chs pg->uanon = NULL;
1540 1.67 chs }
1541 1.70 chs if (pg->flags & PG_WANTED) {
1542 1.70 chs wakeup(pg);
1543 1.70 chs }
1544 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1545 1.70 chs #ifdef UVM_PAGE_TRKOWN
1546 1.70 chs pg->owner_tag = NULL;
1547 1.70 chs #endif
1548 1.73 chs if (pg->loan_count) {
1549 1.115 yamt KASSERT(pg->uobject == NULL);
1550 1.115 yamt if (pg->uanon == NULL) {
1551 1.115 yamt uvm_pagedequeue(pg);
1552 1.115 yamt }
1553 1.73 chs return;
1554 1.73 chs }
1555 1.67 chs }
1556 1.62 chs
1557 1.67 chs /*
1558 1.67 chs * remove page from its object or anon.
1559 1.67 chs */
1560 1.44 chs
1561 1.73 chs if (pg->uobject != NULL) {
1562 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1563 1.73 chs } else if (pg->uanon != NULL) {
1564 1.103 yamt pg->uanon->an_page = NULL;
1565 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1566 1.7 mrg }
1567 1.1 mrg
1568 1.7 mrg /*
1569 1.70 chs * now remove the page from the queues.
1570 1.7 mrg */
1571 1.7 mrg
1572 1.67 chs uvm_pagedequeue(pg);
1573 1.7 mrg
1574 1.7 mrg /*
1575 1.7 mrg * if the page was wired, unwire it now.
1576 1.7 mrg */
1577 1.44 chs
1578 1.34 thorpej if (pg->wire_count) {
1579 1.7 mrg pg->wire_count = 0;
1580 1.7 mrg uvmexp.wired--;
1581 1.44 chs }
1582 1.7 mrg
1583 1.7 mrg /*
1584 1.44 chs * and put on free queue
1585 1.7 mrg */
1586 1.7 mrg
1587 1.90 yamt iszero = (pg->flags & PG_ZERO);
1588 1.133 ad index = uvm_page_lookup_freelist(pg);
1589 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1590 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1591 1.34 thorpej
1592 1.3 chs #ifdef DEBUG
1593 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1594 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1595 1.3 chs #endif
1596 1.90 yamt
1597 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1598 1.143 drochner pg->pqflags = PQ_FREE;
1599 1.91 yamt
1600 1.91 yamt #ifdef DEBUG
1601 1.91 yamt if (iszero)
1602 1.91 yamt uvm_pagezerocheck(pg);
1603 1.91 yamt #endif /* DEBUG */
1604 1.91 yamt
1605 1.133 ad
1606 1.133 ad /* global list */
1607 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1608 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1609 1.7 mrg uvmexp.free++;
1610 1.133 ad if (iszero) {
1611 1.90 yamt uvmexp.zeropages++;
1612 1.133 ad }
1613 1.34 thorpej
1614 1.133 ad /* per-cpu list */
1615 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1616 1.133 ad pg->offset = (uintptr_t)ucpu;
1617 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1618 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1619 1.133 ad ucpu->pages[queue]++;
1620 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1621 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1622 1.133 ad }
1623 1.34 thorpej
1624 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1625 1.44 chs }
1626 1.44 chs
1627 1.44 chs /*
1628 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1629 1.44 chs *
1630 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1631 1.44 chs * => if pages are object-owned, object must be locked.
1632 1.67 chs * => if pages are anon-owned, anons must be locked.
1633 1.76 enami * => caller must lock page queues if pages may be released.
1634 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1635 1.44 chs */
1636 1.44 chs
1637 1.44 chs void
1638 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1639 1.44 chs {
1640 1.44 chs struct vm_page *pg;
1641 1.44 chs int i;
1642 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1643 1.44 chs
1644 1.44 chs for (i = 0; i < npgs; i++) {
1645 1.44 chs pg = pgs[i];
1646 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1647 1.44 chs continue;
1648 1.44 chs }
1649 1.98 yamt
1650 1.127 ad KASSERT(pg->uobject == NULL ||
1651 1.127 ad mutex_owned(&pg->uobject->vmobjlock));
1652 1.127 ad KASSERT(pg->uobject != NULL ||
1653 1.128 yamt (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1654 1.98 yamt
1655 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1656 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1657 1.44 chs if (pg->flags & PG_WANTED) {
1658 1.44 chs wakeup(pg);
1659 1.44 chs }
1660 1.44 chs if (pg->flags & PG_RELEASED) {
1661 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1662 1.98 yamt KASSERT(pg->uobject != NULL ||
1663 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1664 1.67 chs pg->flags &= ~PG_RELEASED;
1665 1.67 chs uvm_pagefree(pg);
1666 1.44 chs } else {
1667 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1668 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1669 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1670 1.44 chs UVM_PAGE_OWN(pg, NULL);
1671 1.44 chs }
1672 1.44 chs }
1673 1.1 mrg }
1674 1.1 mrg
1675 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1676 1.1 mrg /*
1677 1.1 mrg * uvm_page_own: set or release page ownership
1678 1.1 mrg *
1679 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1680 1.1 mrg * and where they do it. it can be used to track down problems
1681 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1682 1.1 mrg * => page's object [if any] must be locked
1683 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1684 1.1 mrg */
1685 1.7 mrg void
1686 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1687 1.1 mrg {
1688 1.112 yamt struct uvm_object *uobj;
1689 1.112 yamt struct vm_anon *anon;
1690 1.112 yamt
1691 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1692 1.67 chs
1693 1.112 yamt uobj = pg->uobject;
1694 1.112 yamt anon = pg->uanon;
1695 1.112 yamt if (uobj != NULL) {
1696 1.127 ad KASSERT(mutex_owned(&uobj->vmobjlock));
1697 1.112 yamt } else if (anon != NULL) {
1698 1.127 ad KASSERT(mutex_owned(&anon->an_lock));
1699 1.112 yamt }
1700 1.112 yamt
1701 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1702 1.112 yamt
1703 1.7 mrg /* gain ownership? */
1704 1.7 mrg if (tag) {
1705 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1706 1.7 mrg if (pg->owner_tag) {
1707 1.7 mrg printf("uvm_page_own: page %p already owned "
1708 1.7 mrg "by proc %d [%s]\n", pg,
1709 1.74 enami pg->owner, pg->owner_tag);
1710 1.7 mrg panic("uvm_page_own");
1711 1.7 mrg }
1712 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1713 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1714 1.7 mrg pg->owner_tag = tag;
1715 1.7 mrg return;
1716 1.7 mrg }
1717 1.7 mrg
1718 1.7 mrg /* drop ownership */
1719 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1720 1.7 mrg if (pg->owner_tag == NULL) {
1721 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1722 1.7 mrg "page (%p)\n", pg);
1723 1.7 mrg panic("uvm_page_own");
1724 1.7 mrg }
1725 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1726 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1727 1.115 yamt pg->wire_count > 0);
1728 1.115 yamt } else {
1729 1.115 yamt KASSERT(pg->wire_count == 0);
1730 1.115 yamt }
1731 1.7 mrg pg->owner_tag = NULL;
1732 1.1 mrg }
1733 1.1 mrg #endif
1734 1.34 thorpej
1735 1.34 thorpej /*
1736 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1737 1.34 thorpej *
1738 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1739 1.54 thorpej * on the CPU cache.
1740 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1741 1.132 ad * to run, or MD code detects a reason to break early.
1742 1.34 thorpej */
1743 1.34 thorpej void
1744 1.105 thorpej uvm_pageidlezero(void)
1745 1.34 thorpej {
1746 1.34 thorpej struct vm_page *pg;
1747 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1748 1.133 ad struct uvm_cpu *ucpu;
1749 1.133 ad int free_list, firstbucket, nextbucket;
1750 1.133 ad
1751 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1752 1.133 ad if (!ucpu->page_idle_zero ||
1753 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1754 1.133 ad ucpu->page_idle_zero = false;
1755 1.132 ad return;
1756 1.132 ad }
1757 1.133 ad mutex_enter(&uvm_fpageqlock);
1758 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1759 1.133 ad nextbucket = firstbucket;
1760 1.58 enami do {
1761 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1762 1.139 ad if (sched_curcpu_runnable_p()) {
1763 1.139 ad goto quit;
1764 1.139 ad }
1765 1.133 ad pgfl = &ucpu->page_free[free_list];
1766 1.133 ad gpgfl = &uvm.page_free[free_list];
1767 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1768 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1769 1.132 ad if (sched_curcpu_runnable_p()) {
1770 1.101 yamt goto quit;
1771 1.132 ad }
1772 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1773 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1774 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1775 1.54 thorpej uvmexp.free--;
1776 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1777 1.143 drochner pg->pqflags = 0;
1778 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1779 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1780 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1781 1.67 chs
1782 1.54 thorpej /*
1783 1.54 thorpej * The machine-dependent code detected
1784 1.54 thorpej * some reason for us to abort zeroing
1785 1.54 thorpej * pages, probably because there is a
1786 1.54 thorpej * process now ready to run.
1787 1.54 thorpej */
1788 1.67 chs
1789 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1790 1.144 drochner pg->pqflags = PQ_FREE;
1791 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1792 1.133 ad nextbucket].pgfl_queues[
1793 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1794 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1795 1.54 thorpej nextbucket].pgfl_queues[
1796 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1797 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1798 1.54 thorpej uvmexp.free++;
1799 1.54 thorpej uvmexp.zeroaborts++;
1800 1.101 yamt goto quit;
1801 1.54 thorpej }
1802 1.54 thorpej #else
1803 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1804 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1805 1.54 thorpej pg->flags |= PG_ZERO;
1806 1.54 thorpej
1807 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1808 1.143 drochner pg->pqflags = PQ_FREE;
1809 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1810 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1811 1.133 ad pg, pageq.list);
1812 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1813 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1814 1.133 ad pg, listq.list);
1815 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1816 1.54 thorpej uvmexp.free++;
1817 1.54 thorpej uvmexp.zeropages++;
1818 1.54 thorpej }
1819 1.41 thorpej }
1820 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1821 1.133 ad break;
1822 1.133 ad }
1823 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1824 1.58 enami } while (nextbucket != firstbucket);
1825 1.133 ad ucpu->page_idle_zero = false;
1826 1.133 ad quit:
1827 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1828 1.34 thorpej }
1829 1.110 yamt
1830 1.110 yamt /*
1831 1.110 yamt * uvm_pagelookup: look up a page
1832 1.110 yamt *
1833 1.110 yamt * => caller should lock object to keep someone from pulling the page
1834 1.110 yamt * out from under it
1835 1.110 yamt */
1836 1.110 yamt
1837 1.110 yamt struct vm_page *
1838 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1839 1.110 yamt {
1840 1.110 yamt struct vm_page *pg;
1841 1.110 yamt
1842 1.127 ad KASSERT(mutex_owned(&obj->vmobjlock));
1843 1.123 ad
1844 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1845 1.134 ad
1846 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1847 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1848 1.110 yamt (pg->flags & PG_BUSY) != 0);
1849 1.156 rmind return pg;
1850 1.110 yamt }
1851 1.110 yamt
1852 1.110 yamt /*
1853 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1854 1.110 yamt *
1855 1.110 yamt * => caller must lock page queues
1856 1.110 yamt */
1857 1.110 yamt
1858 1.110 yamt void
1859 1.110 yamt uvm_pagewire(struct vm_page *pg)
1860 1.110 yamt {
1861 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1862 1.113 yamt #if defined(READAHEAD_STATS)
1863 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1864 1.113 yamt uvm_ra_hit.ev_count++;
1865 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1866 1.113 yamt }
1867 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1868 1.110 yamt if (pg->wire_count == 0) {
1869 1.110 yamt uvm_pagedequeue(pg);
1870 1.110 yamt uvmexp.wired++;
1871 1.110 yamt }
1872 1.110 yamt pg->wire_count++;
1873 1.110 yamt }
1874 1.110 yamt
1875 1.110 yamt /*
1876 1.110 yamt * uvm_pageunwire: unwire the page.
1877 1.110 yamt *
1878 1.110 yamt * => activate if wire count goes to zero.
1879 1.110 yamt * => caller must lock page queues
1880 1.110 yamt */
1881 1.110 yamt
1882 1.110 yamt void
1883 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1884 1.110 yamt {
1885 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1886 1.110 yamt pg->wire_count--;
1887 1.110 yamt if (pg->wire_count == 0) {
1888 1.111 yamt uvm_pageactivate(pg);
1889 1.110 yamt uvmexp.wired--;
1890 1.110 yamt }
1891 1.110 yamt }
1892 1.110 yamt
1893 1.110 yamt /*
1894 1.110 yamt * uvm_pagedeactivate: deactivate page
1895 1.110 yamt *
1896 1.110 yamt * => caller must lock page queues
1897 1.110 yamt * => caller must check to make sure page is not wired
1898 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1899 1.110 yamt * => caller must clear the reference on the page before calling
1900 1.110 yamt */
1901 1.110 yamt
1902 1.110 yamt void
1903 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1904 1.110 yamt {
1905 1.113 yamt
1906 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1907 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1908 1.113 yamt uvmpdpol_pagedeactivate(pg);
1909 1.110 yamt }
1910 1.110 yamt
1911 1.110 yamt /*
1912 1.110 yamt * uvm_pageactivate: activate page
1913 1.110 yamt *
1914 1.110 yamt * => caller must lock page queues
1915 1.110 yamt */
1916 1.110 yamt
1917 1.110 yamt void
1918 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1919 1.110 yamt {
1920 1.113 yamt
1921 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1922 1.113 yamt #if defined(READAHEAD_STATS)
1923 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1924 1.113 yamt uvm_ra_hit.ev_count++;
1925 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1926 1.113 yamt }
1927 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1928 1.113 yamt if (pg->wire_count != 0) {
1929 1.113 yamt return;
1930 1.110 yamt }
1931 1.113 yamt uvmpdpol_pageactivate(pg);
1932 1.110 yamt }
1933 1.110 yamt
1934 1.110 yamt /*
1935 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1936 1.110 yamt */
1937 1.110 yamt
1938 1.110 yamt void
1939 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1940 1.110 yamt {
1941 1.113 yamt
1942 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1943 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1944 1.110 yamt }
1945 1.123 ad
1946 1.113 yamt uvmpdpol_pagedequeue(pg);
1947 1.113 yamt }
1948 1.113 yamt
1949 1.113 yamt /*
1950 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1951 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1952 1.113 yamt */
1953 1.113 yamt
1954 1.113 yamt void
1955 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1956 1.113 yamt {
1957 1.113 yamt
1958 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1959 1.113 yamt if (pg->wire_count != 0) {
1960 1.113 yamt return;
1961 1.113 yamt }
1962 1.113 yamt uvmpdpol_pageenqueue(pg);
1963 1.110 yamt }
1964 1.110 yamt
1965 1.110 yamt /*
1966 1.110 yamt * uvm_pagezero: zero fill a page
1967 1.110 yamt *
1968 1.110 yamt * => if page is part of an object then the object should be locked
1969 1.110 yamt * to protect pg->flags.
1970 1.110 yamt */
1971 1.110 yamt
1972 1.110 yamt void
1973 1.110 yamt uvm_pagezero(struct vm_page *pg)
1974 1.110 yamt {
1975 1.110 yamt pg->flags &= ~PG_CLEAN;
1976 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1977 1.110 yamt }
1978 1.110 yamt
1979 1.110 yamt /*
1980 1.110 yamt * uvm_pagecopy: copy a page
1981 1.110 yamt *
1982 1.110 yamt * => if page is part of an object then the object should be locked
1983 1.110 yamt * to protect pg->flags.
1984 1.110 yamt */
1985 1.110 yamt
1986 1.110 yamt void
1987 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1988 1.110 yamt {
1989 1.110 yamt
1990 1.110 yamt dst->flags &= ~PG_CLEAN;
1991 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1992 1.110 yamt }
1993 1.110 yamt
1994 1.110 yamt /*
1995 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1996 1.150 thorpej */
1997 1.150 thorpej
1998 1.150 thorpej bool
1999 1.150 thorpej uvm_pageismanaged(paddr_t pa)
2000 1.150 thorpej {
2001 1.150 thorpej
2002 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
2003 1.150 thorpej }
2004 1.150 thorpej
2005 1.150 thorpej /*
2006 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
2007 1.110 yamt */
2008 1.110 yamt
2009 1.110 yamt int
2010 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
2011 1.110 yamt {
2012 1.110 yamt int lcv;
2013 1.110 yamt
2014 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2015 1.110 yamt KASSERT(lcv != -1);
2016 1.159 uebayasi return (VM_PHYSMEM_PTR(lcv)->free_list);
2017 1.110 yamt }
2018 1.151 thorpej
2019 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
2020 1.151 thorpej
2021 1.151 thorpej /*
2022 1.151 thorpej * uvm_page_printit: actually print the page
2023 1.151 thorpej */
2024 1.151 thorpej
2025 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
2026 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2027 1.151 thorpej
2028 1.151 thorpej void
2029 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
2030 1.151 thorpej void (*pr)(const char *, ...))
2031 1.151 thorpej {
2032 1.151 thorpej struct vm_page *tpg;
2033 1.151 thorpej struct uvm_object *uobj;
2034 1.151 thorpej struct pgflist *pgl;
2035 1.151 thorpej char pgbuf[128];
2036 1.151 thorpej char pqbuf[128];
2037 1.151 thorpej
2038 1.151 thorpej (*pr)("PAGE %p:\n", pg);
2039 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2040 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2041 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2042 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2043 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2044 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2045 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
2046 1.151 thorpej if (pg->flags & PG_BUSY)
2047 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
2048 1.151 thorpej pg->owner, pg->owner_tag);
2049 1.151 thorpej else
2050 1.151 thorpej (*pr)(" page not busy, no owner\n");
2051 1.151 thorpej #else
2052 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
2053 1.151 thorpej #endif
2054 1.151 thorpej
2055 1.151 thorpej if (!full)
2056 1.151 thorpej return;
2057 1.151 thorpej
2058 1.151 thorpej /* cross-verify object/anon */
2059 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
2060 1.151 thorpej if (pg->pqflags & PQ_ANON) {
2061 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
2062 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2063 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
2064 1.151 thorpej else
2065 1.151 thorpej (*pr)(" anon backpointer is OK\n");
2066 1.151 thorpej } else {
2067 1.151 thorpej uobj = pg->uobject;
2068 1.151 thorpej if (uobj) {
2069 1.151 thorpej (*pr)(" checking object list\n");
2070 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2071 1.151 thorpej if (tpg == pg) {
2072 1.151 thorpej break;
2073 1.151 thorpej }
2074 1.151 thorpej }
2075 1.151 thorpej if (tpg)
2076 1.151 thorpej (*pr)(" page found on object list\n");
2077 1.151 thorpej else
2078 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2079 1.151 thorpej }
2080 1.151 thorpej }
2081 1.151 thorpej }
2082 1.151 thorpej
2083 1.151 thorpej /* cross-verify page queue */
2084 1.151 thorpej if (pg->pqflags & PQ_FREE) {
2085 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
2086 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
2087 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2088 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2089 1.151 thorpej } else {
2090 1.151 thorpej pgl = NULL;
2091 1.151 thorpej }
2092 1.151 thorpej
2093 1.151 thorpej if (pgl) {
2094 1.151 thorpej (*pr)(" checking pageq list\n");
2095 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
2096 1.151 thorpej if (tpg == pg) {
2097 1.151 thorpej break;
2098 1.151 thorpej }
2099 1.151 thorpej }
2100 1.151 thorpej if (tpg)
2101 1.151 thorpej (*pr)(" page found on pageq list\n");
2102 1.151 thorpej else
2103 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2104 1.151 thorpej }
2105 1.151 thorpej }
2106 1.151 thorpej
2107 1.151 thorpej /*
2108 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
2109 1.151 thorpej */
2110 1.151 thorpej
2111 1.151 thorpej void
2112 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2113 1.151 thorpej {
2114 1.151 thorpej unsigned i;
2115 1.151 thorpej struct vm_page *pg;
2116 1.151 thorpej
2117 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2118 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2119 1.151 thorpej " OWNER"
2120 1.151 thorpej #endif
2121 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2122 1.158 uebayasi for (i = 0; i < vm_nphysmem; i++) {
2123 1.161 uebayasi for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2124 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
2125 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2126 1.151 thorpej pg->uanon);
2127 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2128 1.151 thorpej if (pg->flags & PG_BUSY)
2129 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2130 1.151 thorpej #endif
2131 1.151 thorpej (*pr)("\n");
2132 1.151 thorpej }
2133 1.151 thorpej }
2134 1.151 thorpej }
2135 1.151 thorpej
2136 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2137