Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.178
      1  1.178  uebayasi /*	$NetBSD: uvm_page.c,v 1.178 2011/10/06 12:26:03 uebayasi Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.62       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.62       chs  *
     49   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.62       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_page.c: page ops.
     66    1.1       mrg  */
     67   1.71     lukem 
     68   1.71     lukem #include <sys/cdefs.h>
     69  1.178  uebayasi __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.178 2011/10/06 12:26:03 uebayasi Exp $");
     70    1.6       mrg 
     71  1.151   thorpej #include "opt_ddb.h"
     72   1.44       chs #include "opt_uvmhist.h"
     73  1.113      yamt #include "opt_readahead.h"
     74   1.44       chs 
     75    1.1       mrg #include <sys/param.h>
     76    1.1       mrg #include <sys/systm.h>
     77    1.1       mrg #include <sys/malloc.h>
     78   1.35   thorpej #include <sys/sched.h>
     79   1.44       chs #include <sys/kernel.h>
     80   1.51       chs #include <sys/vnode.h>
     81   1.68       chs #include <sys/proc.h>
     82  1.126        ad #include <sys/atomic.h>
     83  1.133        ad #include <sys/cpu.h>
     84    1.1       mrg 
     85    1.1       mrg #include <uvm/uvm.h>
     86  1.151   thorpej #include <uvm/uvm_ddb.h>
     87  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     88    1.1       mrg 
     89    1.1       mrg /*
     90    1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     91    1.1       mrg  */
     92    1.1       mrg 
     93    1.1       mrg /*
     94    1.1       mrg  * physical memory config is stored in vm_physmem.
     95    1.1       mrg  */
     96    1.1       mrg 
     97  1.167  uebayasi struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98  1.167  uebayasi int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99  1.167  uebayasi #define	vm_nphysmem	vm_nphysseg
    100    1.1       mrg 
    101    1.1       mrg /*
    102   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    103   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    104  1.155        ad  * We therefore provide a way to enable it from machdep code here.
    105   1.44       chs  */
    106  1.119   thorpej bool vm_page_zero_enable = false;
    107   1.34   thorpej 
    108   1.34   thorpej /*
    109  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    110  1.140        ad  */
    111  1.140        ad int vm_page_reserve_kernel = 5;
    112  1.140        ad 
    113  1.140        ad /*
    114  1.148      matt  * physical memory size;
    115  1.148      matt  */
    116  1.149      matt int physmem;
    117  1.148      matt 
    118  1.148      matt /*
    119    1.1       mrg  * local variables
    120    1.1       mrg  */
    121    1.1       mrg 
    122    1.1       mrg /*
    123   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    124   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    125   1.88   thorpej  * and pmap_startup here also uses them internally.
    126   1.88   thorpej  */
    127   1.88   thorpej 
    128   1.88   thorpej static vaddr_t      virtual_space_start;
    129   1.88   thorpej static vaddr_t      virtual_space_end;
    130   1.88   thorpej 
    131   1.88   thorpej /*
    132   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    133   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    134   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    135   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    136   1.60   thorpej  * uvm_pageboot_alloc().
    137   1.60   thorpej  */
    138   1.60   thorpej 
    139  1.119   thorpej static bool have_recolored_pages /* = false */;
    140   1.83   thorpej 
    141   1.83   thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    142   1.60   thorpej 
    143   1.91      yamt #ifdef DEBUG
    144   1.91      yamt vaddr_t uvm_zerocheckkva;
    145   1.91      yamt #endif /* DEBUG */
    146   1.91      yamt 
    147   1.60   thorpej /*
    148  1.134        ad  * local prototypes
    149  1.124        ad  */
    150  1.124        ad 
    151  1.153  uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    152  1.153  uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    153  1.124        ad 
    154  1.124        ad /*
    155  1.134        ad  * per-object tree of pages
    156    1.1       mrg  */
    157    1.1       mrg 
    158  1.134        ad static signed int
    159  1.156     rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    160  1.134        ad {
    161  1.156     rmind 	const struct vm_page *pg1 = n1;
    162  1.156     rmind 	const struct vm_page *pg2 = n2;
    163  1.134        ad 	const voff_t a = pg1->offset;
    164  1.134        ad 	const voff_t b = pg2->offset;
    165  1.134        ad 
    166  1.134        ad 	if (a < b)
    167  1.156     rmind 		return -1;
    168  1.156     rmind 	if (a > b)
    169  1.134        ad 		return 1;
    170  1.134        ad 	return 0;
    171  1.134        ad }
    172  1.134        ad 
    173  1.134        ad static signed int
    174  1.156     rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
    175  1.134        ad {
    176  1.156     rmind 	const struct vm_page *pg = n;
    177  1.134        ad 	const voff_t a = pg->offset;
    178  1.134        ad 	const voff_t b = *(const voff_t *)key;
    179  1.134        ad 
    180  1.134        ad 	if (a < b)
    181  1.156     rmind 		return -1;
    182  1.156     rmind 	if (a > b)
    183  1.134        ad 		return 1;
    184  1.134        ad 	return 0;
    185  1.134        ad }
    186  1.134        ad 
    187  1.156     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    188  1.137      matt 	.rbto_compare_nodes = uvm_page_compare_nodes,
    189  1.137      matt 	.rbto_compare_key = uvm_page_compare_key,
    190  1.156     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    191  1.156     rmind 	.rbto_context = NULL
    192  1.134        ad };
    193    1.1       mrg 
    194    1.1       mrg /*
    195    1.1       mrg  * inline functions
    196    1.1       mrg  */
    197    1.1       mrg 
    198    1.1       mrg /*
    199  1.134        ad  * uvm_pageinsert: insert a page in the object.
    200    1.1       mrg  *
    201    1.1       mrg  * => caller must lock object
    202    1.1       mrg  * => caller must lock page queues
    203    1.1       mrg  * => call should have already set pg's object and offset pointers
    204    1.1       mrg  *    and bumped the version counter
    205    1.1       mrg  */
    206    1.1       mrg 
    207  1.136      yamt static inline void
    208  1.136      yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    209  1.136      yamt     struct vm_page *where)
    210    1.1       mrg {
    211    1.1       mrg 
    212  1.136      yamt 	KASSERT(uobj == pg->uobject);
    213  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    214   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    215   1.96      yamt 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    216   1.96      yamt 	KASSERT(where == NULL || (where->uobject == uobj));
    217  1.123        ad 
    218   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    219   1.94      yamt 		if (uobj->uo_npages == 0) {
    220   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    221   1.94      yamt 
    222   1.94      yamt 			vholdl(vp);
    223   1.94      yamt 		}
    224   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    225  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    226   1.94      yamt 		} else {
    227  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    228   1.94      yamt 		}
    229   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    230  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    231   1.78       chs 	}
    232   1.78       chs 
    233   1.96      yamt 	if (where)
    234  1.133        ad 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    235   1.96      yamt 	else
    236  1.133        ad 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    237    1.7       mrg 	pg->flags |= PG_TABLED;
    238   1.67       chs 	uobj->uo_npages++;
    239    1.1       mrg }
    240    1.1       mrg 
    241  1.136      yamt 
    242  1.136      yamt static inline void
    243  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    244  1.136      yamt {
    245  1.156     rmind 	struct vm_page *ret;
    246  1.136      yamt 
    247  1.136      yamt 	KASSERT(uobj == pg->uobject);
    248  1.156     rmind 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    249  1.156     rmind 	KASSERT(ret == pg);
    250  1.136      yamt }
    251  1.136      yamt 
    252  1.136      yamt static inline void
    253  1.153  uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    254   1.96      yamt {
    255   1.96      yamt 
    256  1.153  uebayasi 	KDASSERT(uobj != NULL);
    257  1.136      yamt 	uvm_pageinsert_tree(uobj, pg);
    258  1.136      yamt 	uvm_pageinsert_list(uobj, pg, NULL);
    259   1.96      yamt }
    260   1.96      yamt 
    261    1.1       mrg /*
    262  1.134        ad  * uvm_page_remove: remove page from object.
    263    1.1       mrg  *
    264    1.1       mrg  * => caller must lock object
    265    1.1       mrg  * => caller must lock page queues
    266    1.1       mrg  */
    267    1.1       mrg 
    268  1.109     perry static inline void
    269  1.136      yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    270    1.1       mrg {
    271    1.1       mrg 
    272  1.136      yamt 	KASSERT(uobj == pg->uobject);
    273  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    274   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    275  1.123        ad 
    276   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    277   1.94      yamt 		if (uobj->uo_npages == 1) {
    278   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    279   1.94      yamt 
    280   1.94      yamt 			holdrelel(vp);
    281   1.94      yamt 		}
    282   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    283  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    284   1.94      yamt 		} else {
    285  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    286   1.94      yamt 		}
    287   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    288  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    289   1.51       chs 	}
    290   1.44       chs 
    291    1.7       mrg 	/* object should be locked */
    292   1.67       chs 	uobj->uo_npages--;
    293  1.133        ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    294    1.7       mrg 	pg->flags &= ~PG_TABLED;
    295    1.7       mrg 	pg->uobject = NULL;
    296    1.1       mrg }
    297    1.1       mrg 
    298  1.136      yamt static inline void
    299  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    300  1.136      yamt {
    301  1.136      yamt 
    302  1.136      yamt 	KASSERT(uobj == pg->uobject);
    303  1.156     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    304  1.136      yamt }
    305  1.136      yamt 
    306  1.136      yamt static inline void
    307  1.153  uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    308  1.136      yamt {
    309  1.136      yamt 
    310  1.153  uebayasi 	KDASSERT(uobj != NULL);
    311  1.136      yamt 	uvm_pageremove_tree(uobj, pg);
    312  1.136      yamt 	uvm_pageremove_list(uobj, pg);
    313  1.136      yamt }
    314  1.136      yamt 
    315   1.60   thorpej static void
    316   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    317   1.60   thorpej {
    318   1.60   thorpej 	int color, i;
    319   1.60   thorpej 
    320   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    321   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    322  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    323   1.60   thorpej 		}
    324   1.60   thorpej 	}
    325   1.60   thorpej }
    326   1.60   thorpej 
    327    1.1       mrg /*
    328    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    329   1.62       chs  *
    330    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    331    1.1       mrg  */
    332    1.1       mrg 
    333    1.7       mrg void
    334  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    335    1.1       mrg {
    336  1.155        ad 	static struct uvm_cpu boot_cpu;
    337  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    338  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    339  1.159  uebayasi 	struct vm_physseg *seg;
    340   1.63       chs 	struct vm_page *pagearray;
    341   1.81   thorpej 	int lcv;
    342   1.81   thorpej 	u_int i;
    343   1.14       eeh 	paddr_t paddr;
    344    1.7       mrg 
    345  1.133        ad 	KASSERT(ncpu <= 1);
    346  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    347  1.133        ad 
    348    1.7       mrg 	/*
    349   1.60   thorpej 	 * init the page queues and page queue locks, except the free
    350   1.60   thorpej 	 * list; we allocate that later (with the initial vm_page
    351   1.60   thorpej 	 * structures).
    352    1.7       mrg 	 */
    353   1.51       chs 
    354  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    355  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    356  1.146      haad 	uvm_reclaim_init();
    357  1.113      yamt 	uvmpdpol_init();
    358  1.127        ad 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    359  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    360    1.7       mrg 
    361    1.7       mrg 	/*
    362   1.51       chs 	 * allocate vm_page structures.
    363    1.7       mrg 	 */
    364    1.7       mrg 
    365    1.7       mrg 	/*
    366    1.7       mrg 	 * sanity check:
    367    1.7       mrg 	 * before calling this function the MD code is expected to register
    368    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    369    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    370    1.7       mrg 	 */
    371    1.7       mrg 
    372  1.158  uebayasi 	if (vm_nphysmem == 0)
    373   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    374   1.62       chs 
    375    1.7       mrg 	/*
    376   1.62       chs 	 * first calculate the number of free pages...
    377    1.7       mrg 	 *
    378    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    379    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    380    1.7       mrg 	 * want to return some memory to the pool after booting.
    381    1.7       mrg 	 */
    382   1.62       chs 
    383    1.7       mrg 	freepages = 0;
    384  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    385  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    386  1.158  uebayasi 		freepages += (seg->end - seg->start);
    387  1.158  uebayasi 	}
    388    1.7       mrg 
    389    1.7       mrg 	/*
    390   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    391   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    392   1.60   thorpej 	 */
    393   1.60   thorpej 	if (uvmexp.ncolors == 0)
    394   1.60   thorpej 		uvmexp.ncolors = 1;
    395   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    396  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    397   1.60   thorpej 
    398   1.60   thorpej 	/*
    399    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    400    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    401    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    402    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    403    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    404    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    405    1.7       mrg 	 * pages).
    406    1.7       mrg 	 */
    407   1.62       chs 
    408   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    409   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    410    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    411   1.60   thorpej 
    412   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    413  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    414   1.60   thorpej 	    sizeof(struct vm_page)));
    415  1.133        ad 	cpuarray = bucketarray + bucketcount;
    416  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    417   1.60   thorpej 
    418   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    419   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    420   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    421   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    422  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    423  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    424  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    425   1.60   thorpej 	}
    426   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    427   1.62       chs 
    428    1.7       mrg 	/*
    429   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    430    1.7       mrg 	 */
    431    1.7       mrg 
    432  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    433  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    434  1.158  uebayasi 		n = seg->end - seg->start;
    435   1.51       chs 
    436    1.7       mrg 		/* set up page array pointers */
    437  1.158  uebayasi 		seg->pgs = pagearray;
    438    1.7       mrg 		pagearray += n;
    439    1.7       mrg 		pagecount -= n;
    440  1.161  uebayasi 		seg->lastpg = seg->pgs + n;
    441    1.7       mrg 
    442   1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    443  1.158  uebayasi 		paddr = ctob(seg->start);
    444    1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    445  1.158  uebayasi 			seg->pgs[i].phys_addr = paddr;
    446   1.56   thorpej #ifdef __HAVE_VM_PAGE_MD
    447  1.158  uebayasi 			VM_MDPAGE_INIT(&seg->pgs[i]);
    448   1.56   thorpej #endif
    449  1.158  uebayasi 			if (atop(paddr) >= seg->avail_start &&
    450  1.173      matt 			    atop(paddr) < seg->avail_end) {
    451    1.7       mrg 				uvmexp.npages++;
    452    1.7       mrg 				/* add page to free pool */
    453  1.158  uebayasi 				uvm_pagefree(&seg->pgs[i]);
    454    1.7       mrg 			}
    455    1.7       mrg 		}
    456    1.7       mrg 	}
    457   1.44       chs 
    458    1.7       mrg 	/*
    459   1.88   thorpej 	 * pass up the values of virtual_space_start and
    460   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    461   1.88   thorpej 	 * layers of the VM.
    462   1.88   thorpej 	 */
    463   1.88   thorpej 
    464   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    465   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    466   1.91      yamt #ifdef DEBUG
    467   1.91      yamt 	/*
    468   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    469   1.91      yamt 	 */
    470   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    471   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    472   1.91      yamt #endif /* DEBUG */
    473   1.88   thorpej 
    474   1.88   thorpej 	/*
    475   1.51       chs 	 * init various thresholds.
    476    1.7       mrg 	 */
    477   1.51       chs 
    478    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    479  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    480    1.7       mrg 
    481    1.7       mrg 	/*
    482   1.51       chs 	 * determine if we should zero pages in the idle loop.
    483   1.34   thorpej 	 */
    484   1.51       chs 
    485  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    486   1.34   thorpej 
    487   1.34   thorpej 	/*
    488    1.7       mrg 	 * done!
    489    1.7       mrg 	 */
    490    1.1       mrg 
    491  1.119   thorpej 	uvm.page_init_done = true;
    492    1.1       mrg }
    493    1.1       mrg 
    494    1.1       mrg /*
    495    1.1       mrg  * uvm_setpagesize: set the page size
    496   1.62       chs  *
    497    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    498   1.62       chs  */
    499    1.1       mrg 
    500    1.7       mrg void
    501  1.105   thorpej uvm_setpagesize(void)
    502    1.1       mrg {
    503   1.85   thorpej 
    504   1.85   thorpej 	/*
    505   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    506   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    507   1.85   thorpej 	 */
    508   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    509   1.85   thorpej 		if (PAGE_SIZE == 0)
    510   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    511   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    512   1.85   thorpej 	}
    513    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    514    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    515  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    516  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    517    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    518    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    519    1.7       mrg 			break;
    520    1.1       mrg }
    521    1.1       mrg 
    522    1.1       mrg /*
    523    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    524    1.1       mrg  */
    525    1.1       mrg 
    526   1.14       eeh vaddr_t
    527  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    528    1.1       mrg {
    529  1.119   thorpej 	static bool initialized = false;
    530   1.14       eeh 	vaddr_t addr;
    531   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    532   1.52   thorpej 	vaddr_t vaddr;
    533   1.14       eeh 	paddr_t paddr;
    534   1.52   thorpej #endif
    535    1.1       mrg 
    536    1.7       mrg 	/*
    537   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    538    1.7       mrg 	 */
    539  1.119   thorpej 	if (initialized == false) {
    540   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    541    1.1       mrg 
    542    1.7       mrg 		/* round it the way we like it */
    543   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    544   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    545   1.19   thorpej 
    546  1.119   thorpej 		initialized = true;
    547    1.7       mrg 	}
    548   1.52   thorpej 
    549   1.52   thorpej 	/* round to page size */
    550   1.52   thorpej 	size = round_page(size);
    551   1.52   thorpej 
    552   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    553   1.52   thorpej 
    554   1.62       chs 	/*
    555   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    556   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    557   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    558   1.52   thorpej 	 */
    559   1.52   thorpej 
    560   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    561   1.88   thorpej 	    &virtual_space_end);
    562   1.52   thorpej 
    563   1.52   thorpej 	return(addr);
    564   1.52   thorpej 
    565   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    566    1.1       mrg 
    567    1.7       mrg 	/*
    568    1.7       mrg 	 * allocate virtual memory for this request
    569    1.7       mrg 	 */
    570   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    571   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    572   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    573   1.20   thorpej 
    574   1.88   thorpej 	addr = virtual_space_start;
    575   1.20   thorpej 
    576   1.20   thorpej #ifdef PMAP_GROWKERNEL
    577   1.20   thorpej 	/*
    578   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    579   1.20   thorpej 	 * then allocate more resources for it.
    580   1.20   thorpej 	 */
    581   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    582   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    583   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    584   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    585   1.19   thorpej 	}
    586   1.20   thorpej #endif
    587    1.1       mrg 
    588   1.88   thorpej 	virtual_space_start += size;
    589    1.1       mrg 
    590    1.9   thorpej 	/*
    591    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    592    1.7       mrg 	 */
    593    1.1       mrg 
    594    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    595    1.7       mrg 	    vaddr += PAGE_SIZE) {
    596    1.1       mrg 
    597    1.7       mrg 		if (!uvm_page_physget(&paddr))
    598    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    599    1.1       mrg 
    600   1.23   thorpej 		/*
    601   1.23   thorpej 		 * Note this memory is no longer managed, so using
    602   1.23   thorpej 		 * pmap_kenter is safe.
    603   1.23   thorpej 		 */
    604  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    605    1.7       mrg 	}
    606   1.66     chris 	pmap_update(pmap_kernel());
    607    1.7       mrg 	return(addr);
    608    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    609    1.1       mrg }
    610    1.1       mrg 
    611    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    612    1.1       mrg /*
    613    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    614    1.1       mrg  *
    615    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    616    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    617    1.1       mrg  *    will advance both values (making them equal, and removing some
    618    1.1       mrg  *    vm_page structures from the non-avail area).
    619    1.1       mrg  * => return false if out of memory.
    620    1.1       mrg  */
    621    1.1       mrg 
    622   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    623  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    624   1.28  drochner 
    625  1.118   thorpej static bool
    626  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    627    1.1       mrg {
    628  1.159  uebayasi 	struct vm_physseg *seg;
    629    1.7       mrg 	int lcv, x;
    630    1.1       mrg 
    631    1.7       mrg 	/* pass 1: try allocating from a matching end */
    632    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    633  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    634    1.1       mrg #else
    635  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    636    1.1       mrg #endif
    637    1.7       mrg 	{
    638  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    639    1.1       mrg 
    640  1.119   thorpej 		if (uvm.page_init_done == true)
    641   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    642    1.1       mrg 
    643  1.159  uebayasi 		if (seg->free_list != freelist)
    644   1.28  drochner 			continue;
    645   1.28  drochner 
    646    1.7       mrg 		/* try from front */
    647  1.159  uebayasi 		if (seg->avail_start == seg->start &&
    648  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    649  1.159  uebayasi 			*paddrp = ctob(seg->avail_start);
    650  1.159  uebayasi 			seg->avail_start++;
    651  1.159  uebayasi 			seg->start++;
    652    1.7       mrg 			/* nothing left?   nuke it */
    653  1.159  uebayasi 			if (seg->avail_start == seg->end) {
    654  1.158  uebayasi 				if (vm_nphysmem == 1)
    655   1.89       wiz 				    panic("uvm_page_physget: out of memory!");
    656  1.158  uebayasi 				vm_nphysmem--;
    657  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    658  1.167  uebayasi 					/* structure copy */
    659  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    660    1.7       mrg 			}
    661  1.119   thorpej 			return (true);
    662    1.7       mrg 		}
    663    1.7       mrg 
    664    1.7       mrg 		/* try from rear */
    665  1.159  uebayasi 		if (seg->avail_end == seg->end &&
    666  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    667  1.159  uebayasi 			*paddrp = ctob(seg->avail_end - 1);
    668  1.159  uebayasi 			seg->avail_end--;
    669  1.159  uebayasi 			seg->end--;
    670    1.7       mrg 			/* nothing left?   nuke it */
    671  1.159  uebayasi 			if (seg->avail_end == seg->start) {
    672  1.158  uebayasi 				if (vm_nphysmem == 1)
    673   1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    674  1.158  uebayasi 				vm_nphysmem--;
    675  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    676  1.167  uebayasi 					/* structure copy */
    677  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    678    1.7       mrg 			}
    679  1.119   thorpej 			return (true);
    680    1.7       mrg 		}
    681    1.7       mrg 	}
    682    1.1       mrg 
    683    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    684    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    685  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    686    1.1       mrg #else
    687  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    688    1.1       mrg #endif
    689    1.7       mrg 	{
    690  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    691    1.1       mrg 
    692    1.7       mrg 		/* any room in this bank? */
    693  1.159  uebayasi 		if (seg->avail_start >= seg->avail_end)
    694    1.7       mrg 			continue;  /* nope */
    695    1.7       mrg 
    696  1.159  uebayasi 		*paddrp = ctob(seg->avail_start);
    697  1.159  uebayasi 		seg->avail_start++;
    698    1.7       mrg 		/* truncate! */
    699  1.159  uebayasi 		seg->start = seg->avail_start;
    700    1.7       mrg 
    701    1.7       mrg 		/* nothing left?   nuke it */
    702  1.159  uebayasi 		if (seg->avail_start == seg->end) {
    703  1.158  uebayasi 			if (vm_nphysmem == 1)
    704   1.42       mrg 				panic("uvm_page_physget: out of memory!");
    705  1.158  uebayasi 			vm_nphysmem--;
    706  1.158  uebayasi 			for (x = lcv ; x < vm_nphysmem ; x++)
    707  1.167  uebayasi 				/* structure copy */
    708  1.158  uebayasi 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    709    1.7       mrg 		}
    710  1.119   thorpej 		return (true);
    711    1.7       mrg 	}
    712    1.1       mrg 
    713  1.119   thorpej 	return (false);        /* whoops! */
    714   1.28  drochner }
    715   1.28  drochner 
    716  1.118   thorpej bool
    717  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    718   1.28  drochner {
    719   1.28  drochner 	int i;
    720   1.28  drochner 
    721   1.28  drochner 	/* try in the order of freelist preference */
    722   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    723  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    724  1.119   thorpej 			return (true);
    725  1.119   thorpej 	return (false);
    726    1.1       mrg }
    727    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    728    1.1       mrg 
    729    1.1       mrg /*
    730    1.1       mrg  * uvm_page_physload: load physical memory into VM system
    731    1.1       mrg  *
    732    1.1       mrg  * => all args are PFs
    733    1.1       mrg  * => all pages in start/end get vm_page structures
    734    1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    735    1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    736    1.1       mrg  */
    737    1.1       mrg 
    738    1.7       mrg void
    739  1.105   thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    740  1.105   thorpej     paddr_t avail_end, int free_list)
    741    1.1       mrg {
    742  1.167  uebayasi 	int preload, lcv;
    743  1.167  uebayasi 	psize_t npages;
    744  1.167  uebayasi 	struct vm_page *pgs;
    745  1.167  uebayasi 	struct vm_physseg *ps;
    746    1.7       mrg 
    747  1.167  uebayasi 	if (uvmexp.pagesize == 0)
    748  1.167  uebayasi 		panic("uvm_page_physload: page size not set!");
    749   1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    750   1.79    provos 		panic("uvm_page_physload: bad free list %d", free_list);
    751  1.167  uebayasi 	if (start >= end)
    752  1.167  uebayasi 		panic("uvm_page_physload: start >= end");
    753   1.67       chs 
    754  1.167  uebayasi 	/*
    755  1.167  uebayasi 	 * do we have room?
    756  1.167  uebayasi 	 */
    757  1.167  uebayasi 
    758  1.167  uebayasi 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    759  1.167  uebayasi 		printf("uvm_page_physload: unable to load physical memory "
    760  1.167  uebayasi 		    "segment\n");
    761  1.167  uebayasi 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    762  1.167  uebayasi 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    763  1.167  uebayasi 		printf("\tincrease VM_PHYSSEG_MAX\n");
    764  1.167  uebayasi 		return;
    765  1.167  uebayasi 	}
    766    1.7       mrg 
    767    1.7       mrg 	/*
    768  1.160  uebayasi 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    769    1.7       mrg 	 * called yet, so malloc is not available).
    770    1.7       mrg 	 */
    771   1.67       chs 
    772  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    773  1.159  uebayasi 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    774    1.7       mrg 			break;
    775    1.7       mrg 	}
    776  1.167  uebayasi 	preload = (lcv == vm_nphysmem);
    777  1.164  uebayasi 
    778  1.167  uebayasi 	/*
    779  1.167  uebayasi 	 * if VM is already running, attempt to malloc() vm_page structures
    780  1.167  uebayasi 	 */
    781  1.164  uebayasi 
    782  1.167  uebayasi 	if (!preload) {
    783  1.167  uebayasi 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    784  1.167  uebayasi 	} else {
    785  1.167  uebayasi 		pgs = NULL;
    786  1.167  uebayasi 		npages = 0;
    787  1.164  uebayasi 	}
    788  1.164  uebayasi 
    789  1.167  uebayasi 	/*
    790  1.167  uebayasi 	 * now insert us in the proper place in vm_physmem[]
    791  1.167  uebayasi 	 */
    792    1.1       mrg 
    793    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    794    1.7       mrg 	/* random: put it at the end (easy!) */
    795  1.167  uebayasi 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    796    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    797    1.7       mrg 	{
    798    1.7       mrg 		int x;
    799    1.7       mrg 		/* sort by address for binary search */
    800  1.167  uebayasi 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    801  1.167  uebayasi 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    802    1.7       mrg 				break;
    803  1.167  uebayasi 		ps = VM_PHYSMEM_PTR(lcv);
    804    1.7       mrg 		/* move back other entries, if necessary ... */
    805  1.167  uebayasi 		for (x = vm_nphysmem ; x > lcv ; x--)
    806  1.167  uebayasi 			/* structure copy */
    807  1.167  uebayasi 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    808    1.7       mrg 	}
    809    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    810    1.7       mrg 	{
    811    1.7       mrg 		int x;
    812    1.7       mrg 		/* sort by largest segment first */
    813  1.167  uebayasi 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    814  1.167  uebayasi 			if ((end - start) >
    815  1.167  uebayasi 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    816    1.7       mrg 				break;
    817  1.167  uebayasi 		ps = VM_PHYSMEM_PTR(lcv);
    818    1.7       mrg 		/* move back other entries, if necessary ... */
    819  1.167  uebayasi 		for (x = vm_nphysmem ; x > lcv ; x--)
    820  1.167  uebayasi 			/* structure copy */
    821  1.167  uebayasi 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    822    1.7       mrg 	}
    823    1.1       mrg #else
    824   1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    825    1.1       mrg #endif
    826    1.1       mrg 
    827  1.167  uebayasi 	ps->start = start;
    828  1.167  uebayasi 	ps->end = end;
    829  1.167  uebayasi 	ps->avail_start = avail_start;
    830  1.167  uebayasi 	ps->avail_end = avail_end;
    831  1.167  uebayasi 	if (preload) {
    832  1.167  uebayasi 		ps->pgs = NULL;
    833  1.167  uebayasi 	} else {
    834  1.167  uebayasi 		ps->pgs = pgs;
    835  1.167  uebayasi 		ps->lastpg = pgs + npages;
    836  1.167  uebayasi 	}
    837  1.167  uebayasi 	ps->free_list = free_list;
    838  1.167  uebayasi 	vm_nphysmem++;
    839    1.7       mrg 
    840  1.167  uebayasi 	if (!preload) {
    841  1.167  uebayasi 		uvmpdpol_reinit();
    842  1.113      yamt 	}
    843    1.1       mrg }
    844    1.1       mrg 
    845    1.1       mrg /*
    846  1.167  uebayasi  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    847  1.162  uebayasi  */
    848  1.162  uebayasi 
    849  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    850  1.167  uebayasi static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
    851  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    852  1.167  uebayasi static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
    853  1.162  uebayasi #else
    854  1.167  uebayasi static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
    855  1.162  uebayasi #endif
    856  1.162  uebayasi 
    857  1.167  uebayasi /*
    858  1.167  uebayasi  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    859  1.167  uebayasi  */
    860  1.162  uebayasi int
    861  1.162  uebayasi vm_physseg_find(paddr_t pframe, int *offp)
    862  1.162  uebayasi {
    863  1.162  uebayasi 
    864  1.167  uebayasi #if VM_PHYSSEG_MAX == 1
    865  1.167  uebayasi 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    866  1.167  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    867  1.167  uebayasi 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    868  1.167  uebayasi #else
    869  1.167  uebayasi 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    870  1.167  uebayasi #endif
    871  1.162  uebayasi }
    872  1.162  uebayasi 
    873  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    874  1.162  uebayasi static inline int
    875  1.167  uebayasi vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    876  1.162  uebayasi {
    877  1.162  uebayasi 
    878  1.162  uebayasi 	/* 'contig' case */
    879  1.167  uebayasi 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    880  1.167  uebayasi 		if (offp)
    881  1.167  uebayasi 			*offp = pframe - segs[0].start;
    882  1.162  uebayasi 		return(0);
    883  1.162  uebayasi 	}
    884  1.162  uebayasi 	return(-1);
    885  1.162  uebayasi }
    886  1.162  uebayasi 
    887  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    888  1.162  uebayasi 
    889  1.162  uebayasi static inline int
    890  1.167  uebayasi vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    891  1.162  uebayasi {
    892  1.162  uebayasi 	/* binary search for it */
    893  1.162  uebayasi 	u_int	start, len, try;
    894  1.162  uebayasi 
    895  1.162  uebayasi 	/*
    896  1.162  uebayasi 	 * if try is too large (thus target is less than try) we reduce
    897  1.162  uebayasi 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    898  1.162  uebayasi 	 *
    899  1.162  uebayasi 	 * if the try is too small (thus target is greater than try) then
    900  1.162  uebayasi 	 * we set the new start to be (try + 1).   this means we need to
    901  1.162  uebayasi 	 * reduce the length to (round(len/2) - 1).
    902  1.162  uebayasi 	 *
    903  1.162  uebayasi 	 * note "adjust" below which takes advantage of the fact that
    904  1.162  uebayasi 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    905  1.162  uebayasi 	 * for any value of len we may have
    906  1.162  uebayasi 	 */
    907  1.162  uebayasi 
    908  1.162  uebayasi 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    909  1.162  uebayasi 		try = start + (len / 2);	/* try in the middle */
    910  1.162  uebayasi 
    911  1.162  uebayasi 		/* start past our try? */
    912  1.167  uebayasi 		if (pframe >= segs[try].start) {
    913  1.162  uebayasi 			/* was try correct? */
    914  1.167  uebayasi 			if (pframe < segs[try].end) {
    915  1.167  uebayasi 				if (offp)
    916  1.167  uebayasi 					*offp = pframe - segs[try].start;
    917  1.162  uebayasi 				return(try);            /* got it */
    918  1.162  uebayasi 			}
    919  1.162  uebayasi 			start = try + 1;	/* next time, start here */
    920  1.162  uebayasi 			len--;			/* "adjust" */
    921  1.162  uebayasi 		} else {
    922  1.162  uebayasi 			/*
    923  1.162  uebayasi 			 * pframe before try, just reduce length of
    924  1.162  uebayasi 			 * region, done in "for" loop
    925  1.162  uebayasi 			 */
    926  1.162  uebayasi 		}
    927  1.162  uebayasi 	}
    928  1.162  uebayasi 	return(-1);
    929  1.162  uebayasi }
    930  1.162  uebayasi 
    931  1.162  uebayasi #else
    932  1.162  uebayasi 
    933  1.162  uebayasi static inline int
    934  1.167  uebayasi vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    935  1.162  uebayasi {
    936  1.162  uebayasi 	/* linear search for it */
    937  1.162  uebayasi 	int	lcv;
    938  1.162  uebayasi 
    939  1.162  uebayasi 	for (lcv = 0; lcv < nsegs; lcv++) {
    940  1.167  uebayasi 		if (pframe >= segs[lcv].start &&
    941  1.167  uebayasi 		    pframe < segs[lcv].end) {
    942  1.167  uebayasi 			if (offp)
    943  1.167  uebayasi 				*offp = pframe - segs[lcv].start;
    944  1.162  uebayasi 			return(lcv);		   /* got it */
    945  1.162  uebayasi 		}
    946  1.162  uebayasi 	}
    947  1.162  uebayasi 	return(-1);
    948  1.162  uebayasi }
    949  1.162  uebayasi #endif
    950  1.162  uebayasi 
    951  1.162  uebayasi /*
    952  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    953  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    954  1.163  uebayasi  */
    955  1.163  uebayasi struct vm_page *
    956  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    957  1.163  uebayasi {
    958  1.163  uebayasi 	paddr_t pf = atop(pa);
    959  1.163  uebayasi 	int	off;
    960  1.163  uebayasi 	int	psi;
    961  1.163  uebayasi 
    962  1.163  uebayasi 	psi = vm_physseg_find(pf, &off);
    963  1.163  uebayasi 	if (psi != -1)
    964  1.163  uebayasi 		return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
    965  1.163  uebayasi 	return(NULL);
    966  1.163  uebayasi }
    967  1.163  uebayasi 
    968  1.163  uebayasi paddr_t
    969  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    970  1.163  uebayasi {
    971  1.163  uebayasi 
    972  1.163  uebayasi 	return pg->phys_addr;
    973  1.163  uebayasi }
    974  1.163  uebayasi 
    975  1.163  uebayasi /*
    976   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    977   1.60   thorpej  * larger than the old one.
    978   1.60   thorpej  */
    979   1.60   thorpej 
    980   1.60   thorpej void
    981   1.60   thorpej uvm_page_recolor(int newncolors)
    982   1.60   thorpej {
    983  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    984  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    985   1.63       chs 	struct vm_page *pg;
    986   1.60   thorpej 	vsize_t bucketcount;
    987  1.123        ad 	int lcv, color, i, ocolors;
    988  1.133        ad 	struct uvm_cpu *ucpu;
    989   1.60   thorpej 
    990  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    991  1.178  uebayasi 
    992   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    993   1.60   thorpej 		return;
    994   1.77  wrstuden 
    995  1.119   thorpej 	if (uvm.page_init_done == false) {
    996   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    997   1.77  wrstuden 		return;
    998   1.77  wrstuden 	}
    999   1.60   thorpej 
   1000   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
   1001  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
   1002   1.60   thorpej 	    M_VMPAGE, M_NOWAIT);
   1003  1.133        ad 	cpuarray = bucketarray + bucketcount;
   1004   1.60   thorpej 	if (bucketarray == NULL) {
   1005   1.60   thorpej 		printf("WARNING: unable to allocate %ld page color buckets\n",
   1006   1.60   thorpej 		    (long) bucketcount);
   1007   1.60   thorpej 		return;
   1008   1.60   thorpej 	}
   1009   1.60   thorpej 
   1010  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1011   1.60   thorpej 
   1012   1.60   thorpej 	/* Make sure we should still do this. */
   1013   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
   1014  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
   1015   1.60   thorpej 		free(bucketarray, M_VMPAGE);
   1016   1.60   thorpej 		return;
   1017   1.60   thorpej 	}
   1018   1.60   thorpej 
   1019   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
   1020   1.60   thorpej 	ocolors = uvmexp.ncolors;
   1021   1.60   thorpej 
   1022   1.60   thorpej 	uvmexp.ncolors = newncolors;
   1023   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
   1024   1.60   thorpej 
   1025  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1026   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1027  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
   1028  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
   1029  1.133        ad 		uvm_page_init_buckets(&gpgfl);
   1030   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
   1031   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
   1032   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
   1033  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
   1034   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
   1035   1.60   thorpej 				    != NULL) {
   1036  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
   1037  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
   1038  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
   1039  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1040  1.133        ad 					    i], pg, pageq.list);
   1041  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1042   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1043  1.133        ad 					    i], pg, listq.list);
   1044   1.60   thorpej 				}
   1045   1.60   thorpej 			}
   1046   1.60   thorpej 		}
   1047  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1048  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1049   1.60   thorpej 	}
   1050   1.60   thorpej 
   1051  1.177       mrg 	if (!have_recolored_pages)
   1052  1.177       mrg 		oldbucketarray = NULL;
   1053  1.177       mrg 
   1054  1.177       mrg 	have_recolored_pages = true;
   1055  1.177       mrg 	mutex_spin_exit(&uvm_fpageqlock);
   1056  1.176      matt 
   1057  1.177       mrg 	if (oldbucketarray)
   1058   1.60   thorpej 		free(oldbucketarray, M_VMPAGE);
   1059   1.60   thorpej 
   1060  1.177       mrg 	/*
   1061  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
   1062  1.177       mrg 	 * uvm_fpageqlock.
   1063  1.177       mrg 	 */
   1064  1.177       mrg 	uvm_pager_realloc_emerg();
   1065   1.60   thorpej }
   1066    1.1       mrg 
   1067    1.1       mrg /*
   1068  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
   1069  1.133        ad  */
   1070  1.133        ad 
   1071  1.133        ad void
   1072  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
   1073  1.133        ad {
   1074  1.133        ad 	struct pgflbucket *bucketarray;
   1075  1.133        ad 	struct pgfreelist pgfl;
   1076  1.133        ad 	struct uvm_cpu *ucpu;
   1077  1.133        ad 	vsize_t bucketcount;
   1078  1.133        ad 	int lcv;
   1079  1.133        ad 
   1080  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
   1081  1.133        ad 		/* Already done in uvm_page_init(). */
   1082  1.133        ad 		return;
   1083  1.133        ad 	}
   1084  1.133        ad 
   1085  1.140        ad 	/* Add more reserve pages for this CPU. */
   1086  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
   1087  1.140        ad 
   1088  1.140        ad 	/* Configure this CPU's free lists. */
   1089  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1090  1.133        ad 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1091  1.133        ad 	    M_VMPAGE, M_WAITOK);
   1092  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
   1093  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
   1094  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
   1095  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1096  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1097  1.133        ad 		uvm_page_init_buckets(&pgfl);
   1098  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1099  1.133        ad 	}
   1100  1.133        ad }
   1101  1.133        ad 
   1102  1.133        ad /*
   1103   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1104   1.54   thorpej  */
   1105   1.54   thorpej 
   1106  1.114   thorpej static struct vm_page *
   1107  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1108   1.69    simonb     int *trycolorp)
   1109   1.54   thorpej {
   1110  1.133        ad 	struct pgflist *freeq;
   1111   1.54   thorpej 	struct vm_page *pg;
   1112   1.58     enami 	int color, trycolor = *trycolorp;
   1113  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
   1114   1.54   thorpej 
   1115  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1116  1.130        ad 
   1117   1.58     enami 	color = trycolor;
   1118  1.133        ad 	pgfl = &ucpu->page_free[flist];
   1119  1.133        ad 	gpgfl = &uvm.page_free[flist];
   1120   1.58     enami 	do {
   1121  1.133        ad 		/* cpu, try1 */
   1122  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1123  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1124  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1125  1.133        ad 		    	uvmexp.cpuhit++;
   1126  1.133        ad 			goto gotit;
   1127  1.133        ad 		}
   1128  1.133        ad 		/* global, try1 */
   1129  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1130  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1131  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1132  1.133        ad 		    	uvmexp.cpumiss++;
   1133   1.54   thorpej 			goto gotit;
   1134  1.133        ad 		}
   1135  1.133        ad 		/* cpu, try2 */
   1136  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1137  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1138  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1139  1.133        ad 		    	uvmexp.cpuhit++;
   1140   1.54   thorpej 			goto gotit;
   1141  1.133        ad 		}
   1142  1.133        ad 		/* global, try2 */
   1143  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1144  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1145  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1146  1.133        ad 		    	uvmexp.cpumiss++;
   1147  1.133        ad 			goto gotit;
   1148  1.133        ad 		}
   1149   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
   1150   1.58     enami 	} while (color != trycolor);
   1151   1.54   thorpej 
   1152   1.54   thorpej 	return (NULL);
   1153   1.54   thorpej 
   1154   1.54   thorpej  gotit:
   1155  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1156  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1157   1.54   thorpej 	uvmexp.free--;
   1158   1.54   thorpej 
   1159   1.54   thorpej 	/* update zero'd page count */
   1160   1.54   thorpej 	if (pg->flags & PG_ZERO)
   1161   1.54   thorpej 		uvmexp.zeropages--;
   1162   1.54   thorpej 
   1163   1.54   thorpej 	if (color == trycolor)
   1164   1.54   thorpej 		uvmexp.colorhit++;
   1165   1.54   thorpej 	else {
   1166   1.54   thorpej 		uvmexp.colormiss++;
   1167   1.54   thorpej 		*trycolorp = color;
   1168   1.54   thorpej 	}
   1169   1.54   thorpej 
   1170   1.54   thorpej 	return (pg);
   1171   1.54   thorpej }
   1172   1.54   thorpej 
   1173   1.54   thorpej /*
   1174   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1175    1.1       mrg  *
   1176    1.1       mrg  * => return null if no pages free
   1177    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
   1178  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1179    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
   1180    1.1       mrg  * => only one of obj or anon can be non-null
   1181    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
   1182   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1183   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
   1184   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
   1185   1.34   thorpej  *	unknown contents page.  This is because we live with the
   1186   1.34   thorpej  *	consequences of a bad free list decision for the entire
   1187   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
   1188   1.34   thorpej  *	is slower to access.
   1189    1.1       mrg  */
   1190    1.1       mrg 
   1191    1.7       mrg struct vm_page *
   1192  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1193  1.105   thorpej     int flags, int strat, int free_list)
   1194    1.1       mrg {
   1195  1.123        ad 	int lcv, try1, try2, zeroit = 0, color;
   1196  1.133        ad 	struct uvm_cpu *ucpu;
   1197    1.7       mrg 	struct vm_page *pg;
   1198  1.141        ad 	lwp_t *l;
   1199    1.1       mrg 
   1200   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
   1201  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1202   1.44       chs 	KASSERT(off == trunc_page(off));
   1203  1.174     rmind 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
   1204  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1205  1.175     rmind 	    mutex_owned(anon->an_lock));
   1206   1.48   thorpej 
   1207  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1208    1.1       mrg 
   1209    1.7       mrg 	/*
   1210   1.54   thorpej 	 * This implements a global round-robin page coloring
   1211   1.54   thorpej 	 * algorithm.
   1212   1.54   thorpej 	 */
   1213   1.67       chs 
   1214  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1215  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
   1216  1.169      matt 		color = atop(off) & uvmexp.colormask;
   1217  1.169      matt 	} else {
   1218  1.169      matt 		color = ucpu->page_free_nextcolor;
   1219  1.169      matt 	}
   1220   1.54   thorpej 
   1221   1.54   thorpej 	/*
   1222    1.7       mrg 	 * check to see if we need to generate some free pages waking
   1223    1.7       mrg 	 * the pagedaemon.
   1224    1.7       mrg 	 */
   1225    1.7       mrg 
   1226  1.113      yamt 	uvm_kick_pdaemon();
   1227    1.7       mrg 
   1228    1.7       mrg 	/*
   1229    1.7       mrg 	 * fail if any of these conditions is true:
   1230    1.7       mrg 	 * [1]  there really are no free pages, or
   1231    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1232  1.141        ad 	 *        reserved pages have not been requested.
   1233    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1234    1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1235  1.141        ad 	 * we make kernel reserve pages available if called by a
   1236  1.141        ad 	 * kernel thread or a realtime thread.
   1237    1.7       mrg 	 */
   1238  1.141        ad 	l = curlwp;
   1239  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1240  1.141        ad 		flags |= UVM_PGA_USERESERVE;
   1241  1.141        ad 	}
   1242  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1243  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1244    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1245  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
   1246   1.12   thorpej 		goto fail;
   1247   1.12   thorpej 
   1248   1.34   thorpej #if PGFL_NQUEUES != 2
   1249   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
   1250   1.34   thorpej #endif
   1251   1.34   thorpej 
   1252   1.34   thorpej 	/*
   1253   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1254   1.34   thorpej 	 * we try the UNKNOWN queue first.
   1255   1.34   thorpej 	 */
   1256   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1257   1.34   thorpej 		try1 = PGFL_ZEROS;
   1258   1.34   thorpej 		try2 = PGFL_UNKNOWN;
   1259   1.34   thorpej 	} else {
   1260   1.34   thorpej 		try1 = PGFL_UNKNOWN;
   1261   1.34   thorpej 		try2 = PGFL_ZEROS;
   1262   1.34   thorpej 	}
   1263   1.34   thorpej 
   1264   1.12   thorpej  again:
   1265   1.12   thorpej 	switch (strat) {
   1266   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1267  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
   1268   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1269  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1270   1.54   thorpej 			    try1, try2, &color);
   1271   1.54   thorpej 			if (pg != NULL)
   1272   1.12   thorpej 				goto gotit;
   1273   1.12   thorpej 		}
   1274   1.12   thorpej 
   1275   1.12   thorpej 		/* No pages free! */
   1276   1.12   thorpej 		goto fail;
   1277   1.12   thorpej 
   1278   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1279   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1280   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1281   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1282  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1283   1.54   thorpej 		    try1, try2, &color);
   1284   1.54   thorpej 		if (pg != NULL)
   1285   1.12   thorpej 			goto gotit;
   1286   1.12   thorpej 
   1287   1.12   thorpej 		/* Fall back, if possible. */
   1288   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1289   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1290   1.12   thorpej 			goto again;
   1291   1.12   thorpej 		}
   1292   1.12   thorpej 
   1293   1.12   thorpej 		/* No pages free! */
   1294   1.12   thorpej 		goto fail;
   1295   1.12   thorpej 
   1296   1.12   thorpej 	default:
   1297   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1298   1.12   thorpej 		/* NOTREACHED */
   1299    1.7       mrg 	}
   1300    1.7       mrg 
   1301   1.12   thorpej  gotit:
   1302   1.54   thorpej 	/*
   1303   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1304   1.54   thorpej 	 * the next color accordingly.
   1305   1.54   thorpej 	 */
   1306   1.67       chs 
   1307  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1308   1.34   thorpej 
   1309   1.34   thorpej 	/*
   1310   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1311   1.34   thorpej 	 * zero the page
   1312   1.34   thorpej 	 */
   1313   1.67       chs 
   1314   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1315   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1316   1.34   thorpej 			uvmexp.pga_zerohit++;
   1317   1.34   thorpej 			zeroit = 0;
   1318   1.34   thorpej 		} else {
   1319   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1320   1.34   thorpej 			zeroit = 1;
   1321   1.34   thorpej 		}
   1322  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1323  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1324  1.133        ad 		}
   1325   1.34   thorpej 	}
   1326  1.143  drochner 	KASSERT(pg->pqflags == PQ_FREE);
   1327    1.7       mrg 
   1328    1.7       mrg 	pg->offset = off;
   1329    1.7       mrg 	pg->uobject = obj;
   1330    1.7       mrg 	pg->uanon = anon;
   1331    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1332    1.7       mrg 	if (anon) {
   1333  1.103      yamt 		anon->an_page = pg;
   1334    1.7       mrg 		pg->pqflags = PQ_ANON;
   1335  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1336    1.7       mrg 	} else {
   1337   1.67       chs 		if (obj) {
   1338  1.153  uebayasi 			uvm_pageinsert(obj, pg);
   1339   1.67       chs 		}
   1340    1.7       mrg 		pg->pqflags = 0;
   1341    1.7       mrg 	}
   1342  1.143  drochner 	mutex_spin_exit(&uvm_fpageqlock);
   1343  1.143  drochner 
   1344    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1345    1.7       mrg 	pg->owner_tag = NULL;
   1346    1.1       mrg #endif
   1347    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1348   1.33   thorpej 
   1349   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1350   1.33   thorpej 		/*
   1351   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1352   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1353   1.33   thorpej 		 */
   1354   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1355   1.34   thorpej 		if (zeroit)
   1356   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1357   1.33   thorpej 	}
   1358    1.1       mrg 
   1359    1.7       mrg 	return(pg);
   1360   1.12   thorpej 
   1361   1.12   thorpej  fail:
   1362  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1363   1.12   thorpej 	return (NULL);
   1364    1.1       mrg }
   1365    1.1       mrg 
   1366    1.1       mrg /*
   1367   1.96      yamt  * uvm_pagereplace: replace a page with another
   1368   1.96      yamt  *
   1369   1.96      yamt  * => object must be locked
   1370   1.96      yamt  */
   1371   1.96      yamt 
   1372   1.96      yamt void
   1373  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1374   1.96      yamt {
   1375  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1376   1.97  junyoung 
   1377   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1378  1.136      yamt 	KASSERT(uobj != NULL);
   1379   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1380   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1381  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
   1382   1.96      yamt 
   1383  1.136      yamt 	newpg->uobject = uobj;
   1384   1.96      yamt 	newpg->offset = oldpg->offset;
   1385   1.96      yamt 
   1386  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1387  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1388  1.136      yamt 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1389  1.136      yamt 	uvm_pageremove_list(uobj, oldpg);
   1390   1.96      yamt }
   1391   1.96      yamt 
   1392   1.96      yamt /*
   1393    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1394    1.1       mrg  *
   1395    1.1       mrg  * => both objects must be locked
   1396    1.1       mrg  */
   1397    1.1       mrg 
   1398    1.7       mrg void
   1399  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1400    1.1       mrg {
   1401    1.7       mrg 	/*
   1402    1.7       mrg 	 * remove it from the old object
   1403    1.7       mrg 	 */
   1404    1.7       mrg 
   1405    1.7       mrg 	if (pg->uobject) {
   1406  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1407    1.7       mrg 	}
   1408    1.7       mrg 
   1409    1.7       mrg 	/*
   1410    1.7       mrg 	 * put it in the new object
   1411    1.7       mrg 	 */
   1412    1.7       mrg 
   1413    1.7       mrg 	if (newobj) {
   1414    1.7       mrg 		pg->uobject = newobj;
   1415    1.7       mrg 		pg->offset = newoff;
   1416  1.153  uebayasi 		uvm_pageinsert(newobj, pg);
   1417    1.7       mrg 	}
   1418    1.1       mrg }
   1419    1.1       mrg 
   1420   1.91      yamt #ifdef DEBUG
   1421   1.91      yamt /*
   1422   1.91      yamt  * check if page is zero-filled
   1423   1.91      yamt  *
   1424   1.91      yamt  *  - called with free page queue lock held.
   1425   1.91      yamt  */
   1426   1.91      yamt void
   1427   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1428   1.91      yamt {
   1429   1.91      yamt 	int *p, *ep;
   1430   1.91      yamt 
   1431   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1432  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1433   1.91      yamt 
   1434   1.91      yamt 	/*
   1435   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1436   1.91      yamt 	 * uvm page allocator.
   1437   1.91      yamt 	 *
   1438   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1439   1.91      yamt 	 */
   1440  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1441   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1442   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1443   1.92      yamt 	pmap_update(pmap_kernel());
   1444   1.91      yamt 	while (p < ep) {
   1445   1.91      yamt 		if (*p != 0)
   1446   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1447   1.91      yamt 		p++;
   1448   1.91      yamt 	}
   1449   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1450  1.131      yamt 	/*
   1451  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1452  1.131      yamt 	 * uses this VA.
   1453  1.131      yamt 	 */
   1454   1.91      yamt }
   1455   1.91      yamt #endif /* DEBUG */
   1456   1.91      yamt 
   1457    1.1       mrg /*
   1458    1.1       mrg  * uvm_pagefree: free page
   1459    1.1       mrg  *
   1460  1.133        ad  * => erase page's identity (i.e. remove from object)
   1461    1.1       mrg  * => put page on free list
   1462    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1463    1.1       mrg  * => caller must lock page queues
   1464    1.1       mrg  * => assumes all valid mappings of pg are gone
   1465    1.1       mrg  */
   1466    1.1       mrg 
   1467   1.44       chs void
   1468  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1469    1.1       mrg {
   1470  1.133        ad 	struct pgflist *pgfl;
   1471  1.133        ad 	struct uvm_cpu *ucpu;
   1472  1.133        ad 	int index, color, queue;
   1473  1.118   thorpej 	bool iszero;
   1474   1.67       chs 
   1475   1.44       chs #ifdef DEBUG
   1476   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1477   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1478   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1479   1.44       chs 	}
   1480   1.91      yamt #endif /* DEBUG */
   1481   1.44       chs 
   1482  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1483  1.143  drochner 	KASSERT(!(pg->pqflags & PQ_FREE));
   1484  1.128      yamt 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1485  1.174     rmind 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1486  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1487  1.174     rmind 		mutex_owned(pg->uanon->an_lock));
   1488  1.123        ad 
   1489    1.7       mrg 	/*
   1490   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1491    1.7       mrg 	 */
   1492    1.7       mrg 
   1493   1.67       chs 	if (pg->loan_count) {
   1494   1.70       chs 		KASSERT(pg->wire_count == 0);
   1495    1.7       mrg 
   1496    1.7       mrg 		/*
   1497   1.67       chs 		 * if the page is owned by an anon then we just want to
   1498   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1499   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1500   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1501   1.70       chs 		 * of possible anon owners.
   1502   1.70       chs 		 *
   1503   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1504   1.70       chs 		 * unbusy the page, and we're done.
   1505    1.7       mrg 		 */
   1506    1.7       mrg 
   1507   1.73       chs 		if (pg->uobject != NULL) {
   1508  1.153  uebayasi 			uvm_pageremove(pg->uobject, pg);
   1509   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1510   1.73       chs 		} else if (pg->uanon != NULL) {
   1511   1.73       chs 			if ((pg->pqflags & PQ_ANON) == 0) {
   1512   1.73       chs 				pg->loan_count--;
   1513   1.73       chs 			} else {
   1514   1.73       chs 				pg->pqflags &= ~PQ_ANON;
   1515  1.126        ad 				atomic_dec_uint(&uvmexp.anonpages);
   1516   1.73       chs 			}
   1517  1.103      yamt 			pg->uanon->an_page = NULL;
   1518   1.73       chs 			pg->uanon = NULL;
   1519   1.67       chs 		}
   1520   1.70       chs 		if (pg->flags & PG_WANTED) {
   1521   1.70       chs 			wakeup(pg);
   1522   1.70       chs 		}
   1523   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1524   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1525   1.70       chs 		pg->owner_tag = NULL;
   1526   1.70       chs #endif
   1527   1.73       chs 		if (pg->loan_count) {
   1528  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1529  1.115      yamt 			if (pg->uanon == NULL) {
   1530  1.115      yamt 				uvm_pagedequeue(pg);
   1531  1.115      yamt 			}
   1532   1.73       chs 			return;
   1533   1.73       chs 		}
   1534   1.67       chs 	}
   1535   1.62       chs 
   1536   1.67       chs 	/*
   1537   1.67       chs 	 * remove page from its object or anon.
   1538   1.67       chs 	 */
   1539   1.44       chs 
   1540   1.73       chs 	if (pg->uobject != NULL) {
   1541  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1542   1.73       chs 	} else if (pg->uanon != NULL) {
   1543  1.103      yamt 		pg->uanon->an_page = NULL;
   1544  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1545    1.7       mrg 	}
   1546    1.1       mrg 
   1547    1.7       mrg 	/*
   1548   1.70       chs 	 * now remove the page from the queues.
   1549    1.7       mrg 	 */
   1550    1.7       mrg 
   1551   1.67       chs 	uvm_pagedequeue(pg);
   1552    1.7       mrg 
   1553    1.7       mrg 	/*
   1554    1.7       mrg 	 * if the page was wired, unwire it now.
   1555    1.7       mrg 	 */
   1556   1.44       chs 
   1557   1.34   thorpej 	if (pg->wire_count) {
   1558    1.7       mrg 		pg->wire_count = 0;
   1559    1.7       mrg 		uvmexp.wired--;
   1560   1.44       chs 	}
   1561    1.7       mrg 
   1562    1.7       mrg 	/*
   1563   1.44       chs 	 * and put on free queue
   1564    1.7       mrg 	 */
   1565    1.7       mrg 
   1566   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1567  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1568  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1569  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1570   1.34   thorpej 
   1571    1.3       chs #ifdef DEBUG
   1572    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1573    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1574    1.3       chs #endif
   1575   1.90      yamt 
   1576  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1577  1.143  drochner 	pg->pqflags = PQ_FREE;
   1578   1.91      yamt 
   1579   1.91      yamt #ifdef DEBUG
   1580   1.91      yamt 	if (iszero)
   1581   1.91      yamt 		uvm_pagezerocheck(pg);
   1582   1.91      yamt #endif /* DEBUG */
   1583   1.91      yamt 
   1584  1.133        ad 
   1585  1.133        ad 	/* global list */
   1586  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1587  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1588    1.7       mrg 	uvmexp.free++;
   1589  1.133        ad 	if (iszero) {
   1590   1.90      yamt 		uvmexp.zeropages++;
   1591  1.133        ad 	}
   1592   1.34   thorpej 
   1593  1.133        ad 	/* per-cpu list */
   1594  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1595  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1596  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1597  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1598  1.133        ad 	ucpu->pages[queue]++;
   1599  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1600  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1601  1.133        ad 	}
   1602   1.34   thorpej 
   1603  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1604   1.44       chs }
   1605   1.44       chs 
   1606   1.44       chs /*
   1607   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1608   1.44       chs  *
   1609   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1610   1.44       chs  * => if pages are object-owned, object must be locked.
   1611   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1612   1.76     enami  * => caller must lock page queues if pages may be released.
   1613   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1614   1.44       chs  */
   1615   1.44       chs 
   1616   1.44       chs void
   1617  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1618   1.44       chs {
   1619   1.44       chs 	struct vm_page *pg;
   1620   1.44       chs 	int i;
   1621   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1622   1.44       chs 
   1623   1.44       chs 	for (i = 0; i < npgs; i++) {
   1624   1.44       chs 		pg = pgs[i];
   1625   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1626   1.44       chs 			continue;
   1627   1.44       chs 		}
   1628   1.98      yamt 
   1629  1.127        ad 		KASSERT(pg->uobject == NULL ||
   1630  1.174     rmind 		    mutex_owned(pg->uobject->vmobjlock));
   1631  1.127        ad 		KASSERT(pg->uobject != NULL ||
   1632  1.174     rmind 		    (pg->uanon != NULL && mutex_owned(pg->uanon->an_lock)));
   1633   1.98      yamt 
   1634   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1635   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1636   1.44       chs 		if (pg->flags & PG_WANTED) {
   1637   1.44       chs 			wakeup(pg);
   1638   1.44       chs 		}
   1639   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1640   1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1641   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1642   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1643   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1644   1.67       chs 			uvm_pagefree(pg);
   1645   1.44       chs 		} else {
   1646   1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1647  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1648   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1649   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1650   1.44       chs 		}
   1651   1.44       chs 	}
   1652    1.1       mrg }
   1653    1.1       mrg 
   1654    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1655    1.1       mrg /*
   1656    1.1       mrg  * uvm_page_own: set or release page ownership
   1657    1.1       mrg  *
   1658    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1659    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1660    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1661    1.1       mrg  * => page's object [if any] must be locked
   1662    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1663    1.1       mrg  */
   1664    1.7       mrg void
   1665  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1666    1.1       mrg {
   1667  1.112      yamt 	struct uvm_object *uobj;
   1668  1.112      yamt 	struct vm_anon *anon;
   1669  1.112      yamt 
   1670   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1671   1.67       chs 
   1672  1.112      yamt 	uobj = pg->uobject;
   1673  1.112      yamt 	anon = pg->uanon;
   1674  1.112      yamt 	if (uobj != NULL) {
   1675  1.174     rmind 		KASSERT(mutex_owned(uobj->vmobjlock));
   1676  1.112      yamt 	} else if (anon != NULL) {
   1677  1.174     rmind 		KASSERT(mutex_owned(anon->an_lock));
   1678  1.112      yamt 	}
   1679  1.112      yamt 
   1680  1.112      yamt 	KASSERT((pg->flags & PG_WANTED) == 0);
   1681  1.112      yamt 
   1682    1.7       mrg 	/* gain ownership? */
   1683    1.7       mrg 	if (tag) {
   1684  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1685    1.7       mrg 		if (pg->owner_tag) {
   1686    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1687    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1688   1.74     enami 			    pg->owner, pg->owner_tag);
   1689    1.7       mrg 			panic("uvm_page_own");
   1690    1.7       mrg 		}
   1691    1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1692  1.120  perseant 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1693    1.7       mrg 		pg->owner_tag = tag;
   1694    1.7       mrg 		return;
   1695    1.7       mrg 	}
   1696    1.7       mrg 
   1697    1.7       mrg 	/* drop ownership */
   1698  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1699    1.7       mrg 	if (pg->owner_tag == NULL) {
   1700    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1701    1.7       mrg 		    "page (%p)\n", pg);
   1702    1.7       mrg 		panic("uvm_page_own");
   1703    1.7       mrg 	}
   1704  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1705  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1706  1.115      yamt 		    pg->wire_count > 0);
   1707  1.115      yamt 	} else {
   1708  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1709  1.115      yamt 	}
   1710    1.7       mrg 	pg->owner_tag = NULL;
   1711    1.1       mrg }
   1712    1.1       mrg #endif
   1713   1.34   thorpej 
   1714   1.34   thorpej /*
   1715   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1716   1.34   thorpej  *
   1717   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1718   1.54   thorpej  *	on the CPU cache.
   1719  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1720  1.132        ad  *      to run, or MD code detects a reason to break early.
   1721   1.34   thorpej  */
   1722   1.34   thorpej void
   1723  1.105   thorpej uvm_pageidlezero(void)
   1724   1.34   thorpej {
   1725   1.34   thorpej 	struct vm_page *pg;
   1726  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1727  1.133        ad 	struct uvm_cpu *ucpu;
   1728  1.133        ad 	int free_list, firstbucket, nextbucket;
   1729  1.172     rmind 	bool lcont = false;
   1730  1.133        ad 
   1731  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1732  1.133        ad 	if (!ucpu->page_idle_zero ||
   1733  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1734  1.133        ad 	    	ucpu->page_idle_zero = false;
   1735  1.132        ad 		return;
   1736  1.132        ad 	}
   1737  1.172     rmind 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1738  1.172     rmind 		/* Contention: let other CPUs to use the lock. */
   1739  1.172     rmind 		return;
   1740  1.172     rmind 	}
   1741  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1742  1.133        ad 	nextbucket = firstbucket;
   1743   1.58     enami 	do {
   1744   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1745  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1746  1.139        ad 				goto quit;
   1747  1.139        ad 			}
   1748  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1749  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1750  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1751   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1752  1.172     rmind 				if (lcont || sched_curcpu_runnable_p()) {
   1753  1.101      yamt 					goto quit;
   1754  1.132        ad 				}
   1755  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1756  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1757  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1758   1.54   thorpej 				uvmexp.free--;
   1759  1.143  drochner 				KASSERT(pg->pqflags == PQ_FREE);
   1760  1.143  drochner 				pg->pqflags = 0;
   1761  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1762   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1763   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1764   1.67       chs 
   1765   1.54   thorpej 					/*
   1766   1.54   thorpej 					 * The machine-dependent code detected
   1767   1.54   thorpej 					 * some reason for us to abort zeroing
   1768   1.54   thorpej 					 * pages, probably because there is a
   1769   1.54   thorpej 					 * process now ready to run.
   1770   1.54   thorpej 					 */
   1771   1.67       chs 
   1772  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1773  1.144  drochner 					pg->pqflags = PQ_FREE;
   1774  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1775  1.133        ad 					    nextbucket].pgfl_queues[
   1776  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1777  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1778   1.54   thorpej 					    nextbucket].pgfl_queues[
   1779  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1780  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1781   1.54   thorpej 					uvmexp.free++;
   1782   1.54   thorpej 					uvmexp.zeroaborts++;
   1783  1.101      yamt 					goto quit;
   1784   1.54   thorpej 				}
   1785   1.54   thorpej #else
   1786   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1787   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1788   1.54   thorpej 				pg->flags |= PG_ZERO;
   1789   1.54   thorpej 
   1790  1.172     rmind 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1791  1.172     rmind 					lcont = true;
   1792  1.172     rmind 					mutex_spin_enter(&uvm_fpageqlock);
   1793  1.172     rmind 				} else {
   1794  1.172     rmind 					lcont = false;
   1795  1.172     rmind 				}
   1796  1.143  drochner 				pg->pqflags = PQ_FREE;
   1797  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1798  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1799  1.133        ad 				    pg, pageq.list);
   1800  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1801   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1802  1.133        ad 				    pg, listq.list);
   1803  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1804   1.54   thorpej 				uvmexp.free++;
   1805   1.54   thorpej 				uvmexp.zeropages++;
   1806   1.54   thorpej 			}
   1807   1.41   thorpej 		}
   1808  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1809  1.133        ad 			break;
   1810  1.133        ad 		}
   1811   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1812   1.58     enami 	} while (nextbucket != firstbucket);
   1813  1.133        ad 	ucpu->page_idle_zero = false;
   1814  1.133        ad  quit:
   1815  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1816   1.34   thorpej }
   1817  1.110      yamt 
   1818  1.110      yamt /*
   1819  1.110      yamt  * uvm_pagelookup: look up a page
   1820  1.110      yamt  *
   1821  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1822  1.110      yamt  *	out from under it
   1823  1.110      yamt  */
   1824  1.110      yamt 
   1825  1.110      yamt struct vm_page *
   1826  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1827  1.110      yamt {
   1828  1.110      yamt 	struct vm_page *pg;
   1829  1.110      yamt 
   1830  1.174     rmind 	KASSERT(mutex_owned(obj->vmobjlock));
   1831  1.123        ad 
   1832  1.156     rmind 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1833  1.134        ad 
   1834  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1835  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1836  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1837  1.156     rmind 	return pg;
   1838  1.110      yamt }
   1839  1.110      yamt 
   1840  1.110      yamt /*
   1841  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1842  1.110      yamt  *
   1843  1.110      yamt  * => caller must lock page queues
   1844  1.110      yamt  */
   1845  1.110      yamt 
   1846  1.110      yamt void
   1847  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1848  1.110      yamt {
   1849  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1850  1.113      yamt #if defined(READAHEAD_STATS)
   1851  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1852  1.113      yamt 		uvm_ra_hit.ev_count++;
   1853  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1854  1.113      yamt 	}
   1855  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1856  1.110      yamt 	if (pg->wire_count == 0) {
   1857  1.110      yamt 		uvm_pagedequeue(pg);
   1858  1.110      yamt 		uvmexp.wired++;
   1859  1.110      yamt 	}
   1860  1.110      yamt 	pg->wire_count++;
   1861  1.110      yamt }
   1862  1.110      yamt 
   1863  1.110      yamt /*
   1864  1.110      yamt  * uvm_pageunwire: unwire the page.
   1865  1.110      yamt  *
   1866  1.110      yamt  * => activate if wire count goes to zero.
   1867  1.110      yamt  * => caller must lock page queues
   1868  1.110      yamt  */
   1869  1.110      yamt 
   1870  1.110      yamt void
   1871  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1872  1.110      yamt {
   1873  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1874  1.110      yamt 	pg->wire_count--;
   1875  1.110      yamt 	if (pg->wire_count == 0) {
   1876  1.111      yamt 		uvm_pageactivate(pg);
   1877  1.110      yamt 		uvmexp.wired--;
   1878  1.110      yamt 	}
   1879  1.110      yamt }
   1880  1.110      yamt 
   1881  1.110      yamt /*
   1882  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1883  1.110      yamt  *
   1884  1.110      yamt  * => caller must lock page queues
   1885  1.110      yamt  * => caller must check to make sure page is not wired
   1886  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1887  1.110      yamt  * => caller must clear the reference on the page before calling
   1888  1.110      yamt  */
   1889  1.110      yamt 
   1890  1.110      yamt void
   1891  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1892  1.110      yamt {
   1893  1.113      yamt 
   1894  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1895  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1896  1.113      yamt 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1897  1.113      yamt 	uvmpdpol_pagedeactivate(pg);
   1898  1.110      yamt }
   1899  1.110      yamt 
   1900  1.110      yamt /*
   1901  1.110      yamt  * uvm_pageactivate: activate page
   1902  1.110      yamt  *
   1903  1.110      yamt  * => caller must lock page queues
   1904  1.110      yamt  */
   1905  1.110      yamt 
   1906  1.110      yamt void
   1907  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1908  1.110      yamt {
   1909  1.113      yamt 
   1910  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1911  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1912  1.113      yamt #if defined(READAHEAD_STATS)
   1913  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1914  1.113      yamt 		uvm_ra_hit.ev_count++;
   1915  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1916  1.113      yamt 	}
   1917  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1918  1.113      yamt 	if (pg->wire_count != 0) {
   1919  1.113      yamt 		return;
   1920  1.110      yamt 	}
   1921  1.113      yamt 	uvmpdpol_pageactivate(pg);
   1922  1.110      yamt }
   1923  1.110      yamt 
   1924  1.110      yamt /*
   1925  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1926  1.110      yamt  */
   1927  1.110      yamt 
   1928  1.110      yamt void
   1929  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1930  1.110      yamt {
   1931  1.113      yamt 
   1932  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1933  1.127        ad 		KASSERT(mutex_owned(&uvm_pageqlock));
   1934  1.110      yamt 	}
   1935  1.123        ad 
   1936  1.113      yamt 	uvmpdpol_pagedequeue(pg);
   1937  1.113      yamt }
   1938  1.113      yamt 
   1939  1.113      yamt /*
   1940  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1941  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1942  1.113      yamt  */
   1943  1.113      yamt 
   1944  1.113      yamt void
   1945  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1946  1.113      yamt {
   1947  1.113      yamt 
   1948  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1949  1.113      yamt 	if (pg->wire_count != 0) {
   1950  1.113      yamt 		return;
   1951  1.113      yamt 	}
   1952  1.113      yamt 	uvmpdpol_pageenqueue(pg);
   1953  1.110      yamt }
   1954  1.110      yamt 
   1955  1.110      yamt /*
   1956  1.110      yamt  * uvm_pagezero: zero fill a page
   1957  1.110      yamt  *
   1958  1.110      yamt  * => if page is part of an object then the object should be locked
   1959  1.110      yamt  *	to protect pg->flags.
   1960  1.110      yamt  */
   1961  1.110      yamt 
   1962  1.110      yamt void
   1963  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1964  1.110      yamt {
   1965  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1966  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1967  1.110      yamt }
   1968  1.110      yamt 
   1969  1.110      yamt /*
   1970  1.110      yamt  * uvm_pagecopy: copy a page
   1971  1.110      yamt  *
   1972  1.110      yamt  * => if page is part of an object then the object should be locked
   1973  1.110      yamt  *	to protect pg->flags.
   1974  1.110      yamt  */
   1975  1.110      yamt 
   1976  1.110      yamt void
   1977  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1978  1.110      yamt {
   1979  1.110      yamt 
   1980  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1981  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1982  1.110      yamt }
   1983  1.110      yamt 
   1984  1.110      yamt /*
   1985  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1986  1.150   thorpej  */
   1987  1.150   thorpej 
   1988  1.150   thorpej bool
   1989  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   1990  1.150   thorpej {
   1991  1.150   thorpej 
   1992  1.150   thorpej 	return (vm_physseg_find(atop(pa), NULL) != -1);
   1993  1.150   thorpej }
   1994  1.150   thorpej 
   1995  1.150   thorpej /*
   1996  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   1997  1.110      yamt  */
   1998  1.110      yamt 
   1999  1.110      yamt int
   2000  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   2001  1.110      yamt {
   2002  1.110      yamt 	int lcv;
   2003  1.110      yamt 
   2004  1.110      yamt 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2005  1.110      yamt 	KASSERT(lcv != -1);
   2006  1.159  uebayasi 	return (VM_PHYSMEM_PTR(lcv)->free_list);
   2007  1.110      yamt }
   2008  1.151   thorpej 
   2009  1.174     rmind /*
   2010  1.174     rmind  * uvm_page_locked_p: return true if object associated with page is
   2011  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   2012  1.174     rmind  */
   2013  1.174     rmind 
   2014  1.174     rmind bool
   2015  1.174     rmind uvm_page_locked_p(struct vm_page *pg)
   2016  1.174     rmind {
   2017  1.174     rmind 
   2018  1.174     rmind 	if (pg->uobject != NULL) {
   2019  1.174     rmind 		return mutex_owned(pg->uobject->vmobjlock);
   2020  1.174     rmind 	}
   2021  1.174     rmind 	if (pg->uanon != NULL) {
   2022  1.174     rmind 		return mutex_owned(pg->uanon->an_lock);
   2023  1.174     rmind 	}
   2024  1.174     rmind 	return true;
   2025  1.174     rmind }
   2026  1.174     rmind 
   2027  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   2028  1.151   thorpej 
   2029  1.151   thorpej /*
   2030  1.151   thorpej  * uvm_page_printit: actually print the page
   2031  1.151   thorpej  */
   2032  1.151   thorpej 
   2033  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   2034  1.151   thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2035  1.151   thorpej 
   2036  1.151   thorpej void
   2037  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   2038  1.151   thorpej     void (*pr)(const char *, ...))
   2039  1.151   thorpej {
   2040  1.151   thorpej 	struct vm_page *tpg;
   2041  1.151   thorpej 	struct uvm_object *uobj;
   2042  1.151   thorpej 	struct pgflist *pgl;
   2043  1.151   thorpej 	char pgbuf[128];
   2044  1.151   thorpej 	char pqbuf[128];
   2045  1.151   thorpej 
   2046  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   2047  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2048  1.151   thorpej 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   2049  1.151   thorpej 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   2050  1.151   thorpej 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2051  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2052  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2053  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   2054  1.151   thorpej 	if (pg->flags & PG_BUSY)
   2055  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   2056  1.151   thorpej 		    pg->owner, pg->owner_tag);
   2057  1.151   thorpej 	else
   2058  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   2059  1.151   thorpej #else
   2060  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   2061  1.151   thorpej #endif
   2062  1.151   thorpej 
   2063  1.151   thorpej 	if (!full)
   2064  1.151   thorpej 		return;
   2065  1.151   thorpej 
   2066  1.151   thorpej 	/* cross-verify object/anon */
   2067  1.151   thorpej 	if ((pg->pqflags & PQ_FREE) == 0) {
   2068  1.151   thorpej 		if (pg->pqflags & PQ_ANON) {
   2069  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2070  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2071  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2072  1.151   thorpej 			else
   2073  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   2074  1.151   thorpej 		} else {
   2075  1.151   thorpej 			uobj = pg->uobject;
   2076  1.151   thorpej 			if (uobj) {
   2077  1.151   thorpej 				(*pr)("  checking object list\n");
   2078  1.151   thorpej 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   2079  1.151   thorpej 					if (tpg == pg) {
   2080  1.151   thorpej 						break;
   2081  1.151   thorpej 					}
   2082  1.151   thorpej 				}
   2083  1.151   thorpej 				if (tpg)
   2084  1.151   thorpej 					(*pr)("  page found on object list\n");
   2085  1.151   thorpej 				else
   2086  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2087  1.151   thorpej 			}
   2088  1.151   thorpej 		}
   2089  1.151   thorpej 	}
   2090  1.151   thorpej 
   2091  1.151   thorpej 	/* cross-verify page queue */
   2092  1.151   thorpej 	if (pg->pqflags & PQ_FREE) {
   2093  1.151   thorpej 		int fl = uvm_page_lookup_freelist(pg);
   2094  1.151   thorpej 		int color = VM_PGCOLOR_BUCKET(pg);
   2095  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   2096  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   2097  1.151   thorpej 	} else {
   2098  1.151   thorpej 		pgl = NULL;
   2099  1.151   thorpej 	}
   2100  1.151   thorpej 
   2101  1.151   thorpej 	if (pgl) {
   2102  1.151   thorpej 		(*pr)("  checking pageq list\n");
   2103  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2104  1.151   thorpej 			if (tpg == pg) {
   2105  1.151   thorpej 				break;
   2106  1.151   thorpej 			}
   2107  1.151   thorpej 		}
   2108  1.151   thorpej 		if (tpg)
   2109  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   2110  1.151   thorpej 		else
   2111  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2112  1.151   thorpej 	}
   2113  1.151   thorpej }
   2114  1.151   thorpej 
   2115  1.151   thorpej /*
   2116  1.151   thorpej  * uvm_pages_printthem - print a summary of all managed pages
   2117  1.151   thorpej  */
   2118  1.151   thorpej 
   2119  1.151   thorpej void
   2120  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   2121  1.151   thorpej {
   2122  1.151   thorpej 	unsigned i;
   2123  1.151   thorpej 	struct vm_page *pg;
   2124  1.151   thorpej 
   2125  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   2126  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2127  1.151   thorpej 	    " OWNER"
   2128  1.151   thorpej #endif
   2129  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2130  1.158  uebayasi 	for (i = 0; i < vm_nphysmem; i++) {
   2131  1.161  uebayasi 		for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
   2132  1.151   thorpej 			(*pr)("%18p %04x %04x %18p %18p",
   2133  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2134  1.151   thorpej 			    pg->uanon);
   2135  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2136  1.151   thorpej 			if (pg->flags & PG_BUSY)
   2137  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2138  1.151   thorpej #endif
   2139  1.151   thorpej 			(*pr)("\n");
   2140  1.151   thorpej 		}
   2141  1.151   thorpej 	}
   2142  1.151   thorpej }
   2143  1.151   thorpej 
   2144  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   2145