uvm_page.c revision 1.183 1 1.183 martin /* $NetBSD: uvm_page.c,v 1.183 2013/10/25 20:26:22 martin Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.62 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.62 chs *
49 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.62 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_page.c: page ops.
66 1.1 mrg */
67 1.71 lukem
68 1.71 lukem #include <sys/cdefs.h>
69 1.183 martin __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.183 2013/10/25 20:26:22 martin Exp $");
70 1.6 mrg
71 1.151 thorpej #include "opt_ddb.h"
72 1.44 chs #include "opt_uvmhist.h"
73 1.113 yamt #include "opt_readahead.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.35 thorpej #include <sys/sched.h>
78 1.44 chs #include <sys/kernel.h>
79 1.51 chs #include <sys/vnode.h>
80 1.68 chs #include <sys/proc.h>
81 1.126 ad #include <sys/atomic.h>
82 1.133 ad #include <sys/cpu.h>
83 1.1 mrg
84 1.1 mrg #include <uvm/uvm.h>
85 1.151 thorpej #include <uvm/uvm_ddb.h>
86 1.113 yamt #include <uvm/uvm_pdpolicy.h>
87 1.1 mrg
88 1.1 mrg /*
89 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
90 1.1 mrg */
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * physical memory config is stored in vm_physmem.
94 1.1 mrg */
95 1.1 mrg
96 1.167 uebayasi struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
97 1.167 uebayasi int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
98 1.167 uebayasi #define vm_nphysmem vm_nphysseg
99 1.1 mrg
100 1.1 mrg /*
101 1.36 thorpej * Some supported CPUs in a given architecture don't support all
102 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
103 1.155 ad * We therefore provide a way to enable it from machdep code here.
104 1.44 chs */
105 1.119 thorpej bool vm_page_zero_enable = false;
106 1.34 thorpej
107 1.34 thorpej /*
108 1.140 ad * number of pages per-CPU to reserve for the kernel.
109 1.140 ad */
110 1.140 ad int vm_page_reserve_kernel = 5;
111 1.140 ad
112 1.140 ad /*
113 1.148 matt * physical memory size;
114 1.148 matt */
115 1.149 matt int physmem;
116 1.148 matt
117 1.148 matt /*
118 1.1 mrg * local variables
119 1.1 mrg */
120 1.1 mrg
121 1.1 mrg /*
122 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
123 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
124 1.88 thorpej * and pmap_startup here also uses them internally.
125 1.88 thorpej */
126 1.88 thorpej
127 1.88 thorpej static vaddr_t virtual_space_start;
128 1.88 thorpej static vaddr_t virtual_space_end;
129 1.88 thorpej
130 1.88 thorpej /*
131 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
132 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
133 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
134 1.60 thorpej * free the initial set of buckets, since they are allocated using
135 1.60 thorpej * uvm_pageboot_alloc().
136 1.60 thorpej */
137 1.60 thorpej
138 1.179 para static size_t recolored_pages_memsize /* = 0 */;
139 1.60 thorpej
140 1.91 yamt #ifdef DEBUG
141 1.91 yamt vaddr_t uvm_zerocheckkva;
142 1.91 yamt #endif /* DEBUG */
143 1.91 yamt
144 1.60 thorpej /*
145 1.134 ad * local prototypes
146 1.124 ad */
147 1.124 ad
148 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
149 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
150 1.124 ad
151 1.124 ad /*
152 1.134 ad * per-object tree of pages
153 1.1 mrg */
154 1.1 mrg
155 1.134 ad static signed int
156 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
157 1.134 ad {
158 1.156 rmind const struct vm_page *pg1 = n1;
159 1.156 rmind const struct vm_page *pg2 = n2;
160 1.134 ad const voff_t a = pg1->offset;
161 1.134 ad const voff_t b = pg2->offset;
162 1.134 ad
163 1.134 ad if (a < b)
164 1.156 rmind return -1;
165 1.156 rmind if (a > b)
166 1.134 ad return 1;
167 1.134 ad return 0;
168 1.134 ad }
169 1.134 ad
170 1.134 ad static signed int
171 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
172 1.134 ad {
173 1.156 rmind const struct vm_page *pg = n;
174 1.134 ad const voff_t a = pg->offset;
175 1.134 ad const voff_t b = *(const voff_t *)key;
176 1.134 ad
177 1.134 ad if (a < b)
178 1.156 rmind return -1;
179 1.156 rmind if (a > b)
180 1.134 ad return 1;
181 1.134 ad return 0;
182 1.134 ad }
183 1.134 ad
184 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
185 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
186 1.137 matt .rbto_compare_key = uvm_page_compare_key,
187 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
188 1.156 rmind .rbto_context = NULL
189 1.134 ad };
190 1.1 mrg
191 1.1 mrg /*
192 1.1 mrg * inline functions
193 1.1 mrg */
194 1.1 mrg
195 1.1 mrg /*
196 1.134 ad * uvm_pageinsert: insert a page in the object.
197 1.1 mrg *
198 1.1 mrg * => caller must lock object
199 1.1 mrg * => caller must lock page queues
200 1.1 mrg * => call should have already set pg's object and offset pointers
201 1.1 mrg * and bumped the version counter
202 1.1 mrg */
203 1.1 mrg
204 1.136 yamt static inline void
205 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
206 1.136 yamt struct vm_page *where)
207 1.1 mrg {
208 1.1 mrg
209 1.136 yamt KASSERT(uobj == pg->uobject);
210 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
211 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
212 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
213 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
214 1.123 ad
215 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
216 1.94 yamt if (uobj->uo_npages == 0) {
217 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
218 1.94 yamt
219 1.94 yamt vholdl(vp);
220 1.94 yamt }
221 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
222 1.126 ad atomic_inc_uint(&uvmexp.execpages);
223 1.94 yamt } else {
224 1.126 ad atomic_inc_uint(&uvmexp.filepages);
225 1.94 yamt }
226 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
227 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
228 1.78 chs }
229 1.78 chs
230 1.96 yamt if (where)
231 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
232 1.96 yamt else
233 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
234 1.7 mrg pg->flags |= PG_TABLED;
235 1.67 chs uobj->uo_npages++;
236 1.1 mrg }
237 1.1 mrg
238 1.136 yamt
239 1.136 yamt static inline void
240 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
241 1.136 yamt {
242 1.183 martin struct vm_page *ret __diagused;
243 1.136 yamt
244 1.136 yamt KASSERT(uobj == pg->uobject);
245 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
246 1.156 rmind KASSERT(ret == pg);
247 1.136 yamt }
248 1.136 yamt
249 1.136 yamt static inline void
250 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
251 1.96 yamt {
252 1.96 yamt
253 1.153 uebayasi KDASSERT(uobj != NULL);
254 1.136 yamt uvm_pageinsert_tree(uobj, pg);
255 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
256 1.96 yamt }
257 1.96 yamt
258 1.1 mrg /*
259 1.134 ad * uvm_page_remove: remove page from object.
260 1.1 mrg *
261 1.1 mrg * => caller must lock object
262 1.1 mrg * => caller must lock page queues
263 1.1 mrg */
264 1.1 mrg
265 1.109 perry static inline void
266 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
267 1.1 mrg {
268 1.1 mrg
269 1.136 yamt KASSERT(uobj == pg->uobject);
270 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
271 1.44 chs KASSERT(pg->flags & PG_TABLED);
272 1.123 ad
273 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
274 1.94 yamt if (uobj->uo_npages == 1) {
275 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
276 1.94 yamt
277 1.94 yamt holdrelel(vp);
278 1.94 yamt }
279 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
280 1.126 ad atomic_dec_uint(&uvmexp.execpages);
281 1.94 yamt } else {
282 1.126 ad atomic_dec_uint(&uvmexp.filepages);
283 1.94 yamt }
284 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
285 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
286 1.51 chs }
287 1.44 chs
288 1.7 mrg /* object should be locked */
289 1.67 chs uobj->uo_npages--;
290 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
291 1.7 mrg pg->flags &= ~PG_TABLED;
292 1.7 mrg pg->uobject = NULL;
293 1.1 mrg }
294 1.1 mrg
295 1.136 yamt static inline void
296 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
297 1.136 yamt {
298 1.136 yamt
299 1.136 yamt KASSERT(uobj == pg->uobject);
300 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
301 1.136 yamt }
302 1.136 yamt
303 1.136 yamt static inline void
304 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
305 1.136 yamt {
306 1.136 yamt
307 1.153 uebayasi KDASSERT(uobj != NULL);
308 1.136 yamt uvm_pageremove_tree(uobj, pg);
309 1.136 yamt uvm_pageremove_list(uobj, pg);
310 1.136 yamt }
311 1.136 yamt
312 1.60 thorpej static void
313 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
314 1.60 thorpej {
315 1.60 thorpej int color, i;
316 1.60 thorpej
317 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
318 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
319 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
320 1.60 thorpej }
321 1.60 thorpej }
322 1.60 thorpej }
323 1.60 thorpej
324 1.1 mrg /*
325 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
326 1.62 chs *
327 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
328 1.1 mrg */
329 1.1 mrg
330 1.7 mrg void
331 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
332 1.1 mrg {
333 1.155 ad static struct uvm_cpu boot_cpu;
334 1.154 jym psize_t freepages, pagecount, bucketcount, n;
335 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
336 1.159 uebayasi struct vm_physseg *seg;
337 1.63 chs struct vm_page *pagearray;
338 1.81 thorpej int lcv;
339 1.81 thorpej u_int i;
340 1.14 eeh paddr_t paddr;
341 1.7 mrg
342 1.133 ad KASSERT(ncpu <= 1);
343 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
344 1.133 ad
345 1.7 mrg /*
346 1.60 thorpej * init the page queues and page queue locks, except the free
347 1.60 thorpej * list; we allocate that later (with the initial vm_page
348 1.60 thorpej * structures).
349 1.7 mrg */
350 1.51 chs
351 1.155 ad uvm.cpus[0] = &boot_cpu;
352 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
353 1.113 yamt uvmpdpol_init();
354 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
355 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
356 1.7 mrg
357 1.7 mrg /*
358 1.51 chs * allocate vm_page structures.
359 1.7 mrg */
360 1.7 mrg
361 1.7 mrg /*
362 1.7 mrg * sanity check:
363 1.7 mrg * before calling this function the MD code is expected to register
364 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
365 1.7 mrg * now is to allocate vm_page structures for this memory.
366 1.7 mrg */
367 1.7 mrg
368 1.158 uebayasi if (vm_nphysmem == 0)
369 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
370 1.62 chs
371 1.7 mrg /*
372 1.62 chs * first calculate the number of free pages...
373 1.7 mrg *
374 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
375 1.7 mrg * this allows us to allocate extra vm_page structures in case we
376 1.7 mrg * want to return some memory to the pool after booting.
377 1.7 mrg */
378 1.62 chs
379 1.7 mrg freepages = 0;
380 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
381 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
382 1.158 uebayasi freepages += (seg->end - seg->start);
383 1.158 uebayasi }
384 1.7 mrg
385 1.7 mrg /*
386 1.60 thorpej * Let MD code initialize the number of colors, or default
387 1.60 thorpej * to 1 color if MD code doesn't care.
388 1.60 thorpej */
389 1.60 thorpej if (uvmexp.ncolors == 0)
390 1.60 thorpej uvmexp.ncolors = 1;
391 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
392 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
393 1.60 thorpej
394 1.60 thorpej /*
395 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
396 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
397 1.7 mrg * thus, the total number of pages we can use is the total size of
398 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
399 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
400 1.7 mrg * truncation errors (since we can only allocate in terms of whole
401 1.7 mrg * pages).
402 1.7 mrg */
403 1.62 chs
404 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
405 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
406 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
407 1.60 thorpej
408 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
409 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
410 1.60 thorpej sizeof(struct vm_page)));
411 1.133 ad cpuarray = bucketarray + bucketcount;
412 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
413 1.60 thorpej
414 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
415 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
416 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
417 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
418 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
419 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
420 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
421 1.60 thorpej }
422 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
423 1.62 chs
424 1.7 mrg /*
425 1.51 chs * init the vm_page structures and put them in the correct place.
426 1.7 mrg */
427 1.7 mrg
428 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
429 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
430 1.158 uebayasi n = seg->end - seg->start;
431 1.51 chs
432 1.7 mrg /* set up page array pointers */
433 1.158 uebayasi seg->pgs = pagearray;
434 1.7 mrg pagearray += n;
435 1.7 mrg pagecount -= n;
436 1.161 uebayasi seg->lastpg = seg->pgs + n;
437 1.7 mrg
438 1.13 perry /* init and free vm_pages (we've already zeroed them) */
439 1.158 uebayasi paddr = ctob(seg->start);
440 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
441 1.158 uebayasi seg->pgs[i].phys_addr = paddr;
442 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
443 1.158 uebayasi VM_MDPAGE_INIT(&seg->pgs[i]);
444 1.56 thorpej #endif
445 1.158 uebayasi if (atop(paddr) >= seg->avail_start &&
446 1.173 matt atop(paddr) < seg->avail_end) {
447 1.7 mrg uvmexp.npages++;
448 1.7 mrg /* add page to free pool */
449 1.158 uebayasi uvm_pagefree(&seg->pgs[i]);
450 1.7 mrg }
451 1.7 mrg }
452 1.7 mrg }
453 1.44 chs
454 1.7 mrg /*
455 1.88 thorpej * pass up the values of virtual_space_start and
456 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
457 1.88 thorpej * layers of the VM.
458 1.88 thorpej */
459 1.88 thorpej
460 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
461 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
462 1.91 yamt #ifdef DEBUG
463 1.91 yamt /*
464 1.91 yamt * steal kva for uvm_pagezerocheck().
465 1.91 yamt */
466 1.91 yamt uvm_zerocheckkva = *kvm_startp;
467 1.91 yamt *kvm_startp += PAGE_SIZE;
468 1.91 yamt #endif /* DEBUG */
469 1.88 thorpej
470 1.88 thorpej /*
471 1.51 chs * init various thresholds.
472 1.7 mrg */
473 1.51 chs
474 1.7 mrg uvmexp.reserve_pagedaemon = 1;
475 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
476 1.7 mrg
477 1.7 mrg /*
478 1.51 chs * determine if we should zero pages in the idle loop.
479 1.34 thorpej */
480 1.51 chs
481 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
482 1.34 thorpej
483 1.34 thorpej /*
484 1.7 mrg * done!
485 1.7 mrg */
486 1.1 mrg
487 1.119 thorpej uvm.page_init_done = true;
488 1.1 mrg }
489 1.1 mrg
490 1.1 mrg /*
491 1.1 mrg * uvm_setpagesize: set the page size
492 1.62 chs *
493 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
494 1.62 chs */
495 1.1 mrg
496 1.7 mrg void
497 1.105 thorpej uvm_setpagesize(void)
498 1.1 mrg {
499 1.85 thorpej
500 1.85 thorpej /*
501 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
502 1.85 thorpej * to be a constant (indicated by being a non-zero value).
503 1.85 thorpej */
504 1.85 thorpej if (uvmexp.pagesize == 0) {
505 1.85 thorpej if (PAGE_SIZE == 0)
506 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
507 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
508 1.85 thorpej }
509 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
510 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
511 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
512 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
513 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
514 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
515 1.7 mrg break;
516 1.1 mrg }
517 1.1 mrg
518 1.1 mrg /*
519 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
520 1.1 mrg */
521 1.1 mrg
522 1.14 eeh vaddr_t
523 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
524 1.1 mrg {
525 1.119 thorpej static bool initialized = false;
526 1.14 eeh vaddr_t addr;
527 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
528 1.52 thorpej vaddr_t vaddr;
529 1.14 eeh paddr_t paddr;
530 1.52 thorpej #endif
531 1.1 mrg
532 1.7 mrg /*
533 1.19 thorpej * on first call to this function, initialize ourselves.
534 1.7 mrg */
535 1.119 thorpej if (initialized == false) {
536 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
537 1.1 mrg
538 1.7 mrg /* round it the way we like it */
539 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
540 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
541 1.19 thorpej
542 1.119 thorpej initialized = true;
543 1.7 mrg }
544 1.52 thorpej
545 1.52 thorpej /* round to page size */
546 1.52 thorpej size = round_page(size);
547 1.52 thorpej
548 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
549 1.52 thorpej
550 1.62 chs /*
551 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
552 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
553 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
554 1.52 thorpej */
555 1.52 thorpej
556 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
557 1.88 thorpej &virtual_space_end);
558 1.52 thorpej
559 1.52 thorpej return(addr);
560 1.52 thorpej
561 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
562 1.1 mrg
563 1.7 mrg /*
564 1.7 mrg * allocate virtual memory for this request
565 1.7 mrg */
566 1.88 thorpej if (virtual_space_start == virtual_space_end ||
567 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
568 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
569 1.20 thorpej
570 1.88 thorpej addr = virtual_space_start;
571 1.20 thorpej
572 1.20 thorpej #ifdef PMAP_GROWKERNEL
573 1.20 thorpej /*
574 1.20 thorpej * If the kernel pmap can't map the requested space,
575 1.20 thorpej * then allocate more resources for it.
576 1.20 thorpej */
577 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
578 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
579 1.20 thorpej if (uvm_maxkaddr < (addr + size))
580 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
581 1.19 thorpej }
582 1.20 thorpej #endif
583 1.1 mrg
584 1.88 thorpej virtual_space_start += size;
585 1.1 mrg
586 1.9 thorpej /*
587 1.7 mrg * allocate and mapin physical pages to back new virtual pages
588 1.7 mrg */
589 1.1 mrg
590 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
591 1.7 mrg vaddr += PAGE_SIZE) {
592 1.1 mrg
593 1.7 mrg if (!uvm_page_physget(&paddr))
594 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
595 1.1 mrg
596 1.23 thorpej /*
597 1.23 thorpej * Note this memory is no longer managed, so using
598 1.23 thorpej * pmap_kenter is safe.
599 1.23 thorpej */
600 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
601 1.7 mrg }
602 1.66 chris pmap_update(pmap_kernel());
603 1.7 mrg return(addr);
604 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
605 1.1 mrg }
606 1.1 mrg
607 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
608 1.1 mrg /*
609 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
610 1.1 mrg *
611 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
612 1.1 mrg * values match the start/end values. if we can't do that, then we
613 1.1 mrg * will advance both values (making them equal, and removing some
614 1.1 mrg * vm_page structures from the non-avail area).
615 1.1 mrg * => return false if out of memory.
616 1.1 mrg */
617 1.1 mrg
618 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
619 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
620 1.28 drochner
621 1.118 thorpej static bool
622 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
623 1.1 mrg {
624 1.159 uebayasi struct vm_physseg *seg;
625 1.7 mrg int lcv, x;
626 1.1 mrg
627 1.7 mrg /* pass 1: try allocating from a matching end */
628 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
629 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
630 1.1 mrg #else
631 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
632 1.1 mrg #endif
633 1.7 mrg {
634 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
635 1.1 mrg
636 1.119 thorpej if (uvm.page_init_done == true)
637 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
638 1.1 mrg
639 1.159 uebayasi if (seg->free_list != freelist)
640 1.28 drochner continue;
641 1.28 drochner
642 1.7 mrg /* try from front */
643 1.159 uebayasi if (seg->avail_start == seg->start &&
644 1.159 uebayasi seg->avail_start < seg->avail_end) {
645 1.159 uebayasi *paddrp = ctob(seg->avail_start);
646 1.159 uebayasi seg->avail_start++;
647 1.159 uebayasi seg->start++;
648 1.7 mrg /* nothing left? nuke it */
649 1.159 uebayasi if (seg->avail_start == seg->end) {
650 1.158 uebayasi if (vm_nphysmem == 1)
651 1.89 wiz panic("uvm_page_physget: out of memory!");
652 1.158 uebayasi vm_nphysmem--;
653 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
654 1.167 uebayasi /* structure copy */
655 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
656 1.7 mrg }
657 1.119 thorpej return (true);
658 1.7 mrg }
659 1.7 mrg
660 1.7 mrg /* try from rear */
661 1.159 uebayasi if (seg->avail_end == seg->end &&
662 1.159 uebayasi seg->avail_start < seg->avail_end) {
663 1.159 uebayasi *paddrp = ctob(seg->avail_end - 1);
664 1.159 uebayasi seg->avail_end--;
665 1.159 uebayasi seg->end--;
666 1.7 mrg /* nothing left? nuke it */
667 1.159 uebayasi if (seg->avail_end == seg->start) {
668 1.158 uebayasi if (vm_nphysmem == 1)
669 1.42 mrg panic("uvm_page_physget: out of memory!");
670 1.158 uebayasi vm_nphysmem--;
671 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
672 1.167 uebayasi /* structure copy */
673 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
674 1.7 mrg }
675 1.119 thorpej return (true);
676 1.7 mrg }
677 1.7 mrg }
678 1.1 mrg
679 1.7 mrg /* pass2: forget about matching ends, just allocate something */
680 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
681 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
682 1.1 mrg #else
683 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
684 1.1 mrg #endif
685 1.7 mrg {
686 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
687 1.1 mrg
688 1.7 mrg /* any room in this bank? */
689 1.159 uebayasi if (seg->avail_start >= seg->avail_end)
690 1.7 mrg continue; /* nope */
691 1.7 mrg
692 1.159 uebayasi *paddrp = ctob(seg->avail_start);
693 1.159 uebayasi seg->avail_start++;
694 1.7 mrg /* truncate! */
695 1.159 uebayasi seg->start = seg->avail_start;
696 1.7 mrg
697 1.7 mrg /* nothing left? nuke it */
698 1.159 uebayasi if (seg->avail_start == seg->end) {
699 1.158 uebayasi if (vm_nphysmem == 1)
700 1.42 mrg panic("uvm_page_physget: out of memory!");
701 1.158 uebayasi vm_nphysmem--;
702 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
703 1.167 uebayasi /* structure copy */
704 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
705 1.7 mrg }
706 1.119 thorpej return (true);
707 1.7 mrg }
708 1.1 mrg
709 1.119 thorpej return (false); /* whoops! */
710 1.28 drochner }
711 1.28 drochner
712 1.118 thorpej bool
713 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
714 1.28 drochner {
715 1.28 drochner int i;
716 1.28 drochner
717 1.28 drochner /* try in the order of freelist preference */
718 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
719 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
720 1.119 thorpej return (true);
721 1.119 thorpej return (false);
722 1.1 mrg }
723 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
724 1.1 mrg
725 1.1 mrg /*
726 1.1 mrg * uvm_page_physload: load physical memory into VM system
727 1.1 mrg *
728 1.1 mrg * => all args are PFs
729 1.1 mrg * => all pages in start/end get vm_page structures
730 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
731 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
732 1.1 mrg */
733 1.1 mrg
734 1.7 mrg void
735 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
736 1.105 thorpej paddr_t avail_end, int free_list)
737 1.1 mrg {
738 1.167 uebayasi int preload, lcv;
739 1.167 uebayasi psize_t npages;
740 1.167 uebayasi struct vm_page *pgs;
741 1.167 uebayasi struct vm_physseg *ps;
742 1.7 mrg
743 1.167 uebayasi if (uvmexp.pagesize == 0)
744 1.167 uebayasi panic("uvm_page_physload: page size not set!");
745 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
746 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
747 1.167 uebayasi if (start >= end)
748 1.167 uebayasi panic("uvm_page_physload: start >= end");
749 1.67 chs
750 1.167 uebayasi /*
751 1.167 uebayasi * do we have room?
752 1.167 uebayasi */
753 1.167 uebayasi
754 1.167 uebayasi if (vm_nphysmem == VM_PHYSSEG_MAX) {
755 1.167 uebayasi printf("uvm_page_physload: unable to load physical memory "
756 1.167 uebayasi "segment\n");
757 1.167 uebayasi printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
758 1.167 uebayasi VM_PHYSSEG_MAX, (long long)start, (long long)end);
759 1.167 uebayasi printf("\tincrease VM_PHYSSEG_MAX\n");
760 1.167 uebayasi return;
761 1.167 uebayasi }
762 1.7 mrg
763 1.7 mrg /*
764 1.160 uebayasi * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
765 1.179 para * called yet, so kmem is not available).
766 1.7 mrg */
767 1.67 chs
768 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
769 1.159 uebayasi if (VM_PHYSMEM_PTR(lcv)->pgs)
770 1.7 mrg break;
771 1.7 mrg }
772 1.167 uebayasi preload = (lcv == vm_nphysmem);
773 1.164 uebayasi
774 1.167 uebayasi /*
775 1.179 para * if VM is already running, attempt to kmem_alloc vm_page structures
776 1.167 uebayasi */
777 1.164 uebayasi
778 1.167 uebayasi if (!preload) {
779 1.167 uebayasi panic("uvm_page_physload: tried to add RAM after vm_mem_init");
780 1.167 uebayasi } else {
781 1.167 uebayasi pgs = NULL;
782 1.167 uebayasi npages = 0;
783 1.164 uebayasi }
784 1.164 uebayasi
785 1.167 uebayasi /*
786 1.167 uebayasi * now insert us in the proper place in vm_physmem[]
787 1.167 uebayasi */
788 1.1 mrg
789 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
790 1.7 mrg /* random: put it at the end (easy!) */
791 1.167 uebayasi ps = VM_PHYSMEM_PTR(vm_nphysmem);
792 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
793 1.7 mrg {
794 1.7 mrg int x;
795 1.7 mrg /* sort by address for binary search */
796 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
797 1.167 uebayasi if (start < VM_PHYSMEM_PTR(lcv)->start)
798 1.7 mrg break;
799 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
800 1.7 mrg /* move back other entries, if necessary ... */
801 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
802 1.167 uebayasi /* structure copy */
803 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
804 1.7 mrg }
805 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
806 1.7 mrg {
807 1.7 mrg int x;
808 1.7 mrg /* sort by largest segment first */
809 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
810 1.167 uebayasi if ((end - start) >
811 1.167 uebayasi (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
812 1.7 mrg break;
813 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
814 1.7 mrg /* move back other entries, if necessary ... */
815 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
816 1.167 uebayasi /* structure copy */
817 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
818 1.7 mrg }
819 1.1 mrg #else
820 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
821 1.1 mrg #endif
822 1.1 mrg
823 1.167 uebayasi ps->start = start;
824 1.167 uebayasi ps->end = end;
825 1.167 uebayasi ps->avail_start = avail_start;
826 1.167 uebayasi ps->avail_end = avail_end;
827 1.167 uebayasi if (preload) {
828 1.167 uebayasi ps->pgs = NULL;
829 1.167 uebayasi } else {
830 1.167 uebayasi ps->pgs = pgs;
831 1.167 uebayasi ps->lastpg = pgs + npages;
832 1.167 uebayasi }
833 1.167 uebayasi ps->free_list = free_list;
834 1.167 uebayasi vm_nphysmem++;
835 1.7 mrg
836 1.167 uebayasi if (!preload) {
837 1.167 uebayasi uvmpdpol_reinit();
838 1.113 yamt }
839 1.1 mrg }
840 1.1 mrg
841 1.1 mrg /*
842 1.167 uebayasi * when VM_PHYSSEG_MAX is 1, we can simplify these functions
843 1.162 uebayasi */
844 1.162 uebayasi
845 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
846 1.167 uebayasi static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
847 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
848 1.167 uebayasi static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
849 1.162 uebayasi #else
850 1.167 uebayasi static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
851 1.162 uebayasi #endif
852 1.162 uebayasi
853 1.167 uebayasi /*
854 1.167 uebayasi * vm_physseg_find: find vm_physseg structure that belongs to a PA
855 1.167 uebayasi */
856 1.162 uebayasi int
857 1.162 uebayasi vm_physseg_find(paddr_t pframe, int *offp)
858 1.162 uebayasi {
859 1.162 uebayasi
860 1.167 uebayasi #if VM_PHYSSEG_MAX == 1
861 1.167 uebayasi return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
862 1.167 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
863 1.167 uebayasi return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
864 1.167 uebayasi #else
865 1.167 uebayasi return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
866 1.167 uebayasi #endif
867 1.162 uebayasi }
868 1.162 uebayasi
869 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
870 1.162 uebayasi static inline int
871 1.167 uebayasi vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
872 1.162 uebayasi {
873 1.162 uebayasi
874 1.162 uebayasi /* 'contig' case */
875 1.167 uebayasi if (pframe >= segs[0].start && pframe < segs[0].end) {
876 1.167 uebayasi if (offp)
877 1.167 uebayasi *offp = pframe - segs[0].start;
878 1.162 uebayasi return(0);
879 1.162 uebayasi }
880 1.162 uebayasi return(-1);
881 1.162 uebayasi }
882 1.162 uebayasi
883 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
884 1.162 uebayasi
885 1.162 uebayasi static inline int
886 1.167 uebayasi vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
887 1.162 uebayasi {
888 1.162 uebayasi /* binary search for it */
889 1.162 uebayasi u_int start, len, try;
890 1.162 uebayasi
891 1.162 uebayasi /*
892 1.162 uebayasi * if try is too large (thus target is less than try) we reduce
893 1.162 uebayasi * the length to trunc(len/2) [i.e. everything smaller than "try"]
894 1.162 uebayasi *
895 1.162 uebayasi * if the try is too small (thus target is greater than try) then
896 1.162 uebayasi * we set the new start to be (try + 1). this means we need to
897 1.162 uebayasi * reduce the length to (round(len/2) - 1).
898 1.162 uebayasi *
899 1.162 uebayasi * note "adjust" below which takes advantage of the fact that
900 1.162 uebayasi * (round(len/2) - 1) == trunc((len - 1) / 2)
901 1.162 uebayasi * for any value of len we may have
902 1.162 uebayasi */
903 1.162 uebayasi
904 1.162 uebayasi for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
905 1.162 uebayasi try = start + (len / 2); /* try in the middle */
906 1.162 uebayasi
907 1.162 uebayasi /* start past our try? */
908 1.167 uebayasi if (pframe >= segs[try].start) {
909 1.162 uebayasi /* was try correct? */
910 1.167 uebayasi if (pframe < segs[try].end) {
911 1.167 uebayasi if (offp)
912 1.167 uebayasi *offp = pframe - segs[try].start;
913 1.162 uebayasi return(try); /* got it */
914 1.162 uebayasi }
915 1.162 uebayasi start = try + 1; /* next time, start here */
916 1.162 uebayasi len--; /* "adjust" */
917 1.162 uebayasi } else {
918 1.162 uebayasi /*
919 1.162 uebayasi * pframe before try, just reduce length of
920 1.162 uebayasi * region, done in "for" loop
921 1.162 uebayasi */
922 1.162 uebayasi }
923 1.162 uebayasi }
924 1.162 uebayasi return(-1);
925 1.162 uebayasi }
926 1.162 uebayasi
927 1.162 uebayasi #else
928 1.162 uebayasi
929 1.162 uebayasi static inline int
930 1.167 uebayasi vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
931 1.162 uebayasi {
932 1.162 uebayasi /* linear search for it */
933 1.162 uebayasi int lcv;
934 1.162 uebayasi
935 1.162 uebayasi for (lcv = 0; lcv < nsegs; lcv++) {
936 1.167 uebayasi if (pframe >= segs[lcv].start &&
937 1.167 uebayasi pframe < segs[lcv].end) {
938 1.167 uebayasi if (offp)
939 1.167 uebayasi *offp = pframe - segs[lcv].start;
940 1.162 uebayasi return(lcv); /* got it */
941 1.162 uebayasi }
942 1.162 uebayasi }
943 1.162 uebayasi return(-1);
944 1.162 uebayasi }
945 1.162 uebayasi #endif
946 1.162 uebayasi
947 1.162 uebayasi /*
948 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
949 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
950 1.163 uebayasi */
951 1.163 uebayasi struct vm_page *
952 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
953 1.163 uebayasi {
954 1.163 uebayasi paddr_t pf = atop(pa);
955 1.163 uebayasi int off;
956 1.163 uebayasi int psi;
957 1.163 uebayasi
958 1.163 uebayasi psi = vm_physseg_find(pf, &off);
959 1.163 uebayasi if (psi != -1)
960 1.163 uebayasi return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
961 1.163 uebayasi return(NULL);
962 1.163 uebayasi }
963 1.163 uebayasi
964 1.163 uebayasi paddr_t
965 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
966 1.163 uebayasi {
967 1.163 uebayasi
968 1.163 uebayasi return pg->phys_addr;
969 1.163 uebayasi }
970 1.163 uebayasi
971 1.163 uebayasi /*
972 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
973 1.60 thorpej * larger than the old one.
974 1.60 thorpej */
975 1.60 thorpej
976 1.60 thorpej void
977 1.60 thorpej uvm_page_recolor(int newncolors)
978 1.60 thorpej {
979 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
980 1.133 ad struct pgfreelist gpgfl, pgfl;
981 1.63 chs struct vm_page *pg;
982 1.60 thorpej vsize_t bucketcount;
983 1.179 para size_t bucketmemsize, oldbucketmemsize;
984 1.123 ad int lcv, color, i, ocolors;
985 1.133 ad struct uvm_cpu *ucpu;
986 1.60 thorpej
987 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
988 1.178 uebayasi
989 1.60 thorpej if (newncolors <= uvmexp.ncolors)
990 1.60 thorpej return;
991 1.77 wrstuden
992 1.119 thorpej if (uvm.page_init_done == false) {
993 1.77 wrstuden uvmexp.ncolors = newncolors;
994 1.77 wrstuden return;
995 1.77 wrstuden }
996 1.60 thorpej
997 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
998 1.179 para bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
999 1.179 para bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
1000 1.133 ad cpuarray = bucketarray + bucketcount;
1001 1.60 thorpej if (bucketarray == NULL) {
1002 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
1003 1.60 thorpej (long) bucketcount);
1004 1.60 thorpej return;
1005 1.60 thorpej }
1006 1.60 thorpej
1007 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1008 1.60 thorpej
1009 1.60 thorpej /* Make sure we should still do this. */
1010 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
1011 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1012 1.179 para kmem_free(bucketarray, bucketmemsize);
1013 1.60 thorpej return;
1014 1.60 thorpej }
1015 1.60 thorpej
1016 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
1017 1.60 thorpej ocolors = uvmexp.ncolors;
1018 1.60 thorpej
1019 1.60 thorpej uvmexp.ncolors = newncolors;
1020 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
1021 1.60 thorpej
1022 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1023 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1024 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1025 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1026 1.133 ad uvm_page_init_buckets(&gpgfl);
1027 1.60 thorpej uvm_page_init_buckets(&pgfl);
1028 1.60 thorpej for (color = 0; color < ocolors; color++) {
1029 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
1030 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
1031 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
1032 1.60 thorpej != NULL) {
1033 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
1034 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
1035 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1036 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1037 1.133 ad i], pg, pageq.list);
1038 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1039 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1040 1.133 ad i], pg, listq.list);
1041 1.60 thorpej }
1042 1.60 thorpej }
1043 1.60 thorpej }
1044 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1045 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1046 1.60 thorpej }
1047 1.60 thorpej
1048 1.179 para oldbucketmemsize = recolored_pages_memsize;
1049 1.177 mrg
1050 1.179 para recolored_pages_memsize = bucketmemsize;
1051 1.177 mrg mutex_spin_exit(&uvm_fpageqlock);
1052 1.176 matt
1053 1.179 para if (oldbucketmemsize) {
1054 1.179 para kmem_free(oldbucketarray, recolored_pages_memsize);
1055 1.179 para }
1056 1.60 thorpej
1057 1.177 mrg /*
1058 1.177 mrg * this calls uvm_km_alloc() which may want to hold
1059 1.177 mrg * uvm_fpageqlock.
1060 1.177 mrg */
1061 1.177 mrg uvm_pager_realloc_emerg();
1062 1.60 thorpej }
1063 1.1 mrg
1064 1.1 mrg /*
1065 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
1066 1.133 ad */
1067 1.133 ad
1068 1.133 ad void
1069 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
1070 1.133 ad {
1071 1.133 ad struct pgflbucket *bucketarray;
1072 1.133 ad struct pgfreelist pgfl;
1073 1.133 ad struct uvm_cpu *ucpu;
1074 1.133 ad vsize_t bucketcount;
1075 1.133 ad int lcv;
1076 1.133 ad
1077 1.133 ad if (CPU_IS_PRIMARY(ci)) {
1078 1.133 ad /* Already done in uvm_page_init(). */
1079 1.181 tls goto attachrnd;
1080 1.133 ad }
1081 1.133 ad
1082 1.140 ad /* Add more reserve pages for this CPU. */
1083 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
1084 1.140 ad
1085 1.140 ad /* Configure this CPU's free lists. */
1086 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1087 1.179 para bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
1088 1.179 para KM_SLEEP);
1089 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1090 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
1091 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1092 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1093 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1094 1.133 ad uvm_page_init_buckets(&pgfl);
1095 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1096 1.133 ad }
1097 1.181 tls
1098 1.181 tls attachrnd:
1099 1.181 tls /*
1100 1.181 tls * Attach RNG source for this CPU's VM events
1101 1.181 tls */
1102 1.181 tls rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
1103 1.181 tls ci->ci_data.cpu_name, RND_TYPE_VM, 0);
1104 1.181 tls
1105 1.133 ad }
1106 1.133 ad
1107 1.133 ad /*
1108 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1109 1.54 thorpej */
1110 1.54 thorpej
1111 1.114 thorpej static struct vm_page *
1112 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1113 1.69 simonb int *trycolorp)
1114 1.54 thorpej {
1115 1.133 ad struct pgflist *freeq;
1116 1.54 thorpej struct vm_page *pg;
1117 1.58 enami int color, trycolor = *trycolorp;
1118 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1119 1.54 thorpej
1120 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1121 1.130 ad
1122 1.58 enami color = trycolor;
1123 1.133 ad pgfl = &ucpu->page_free[flist];
1124 1.133 ad gpgfl = &uvm.page_free[flist];
1125 1.58 enami do {
1126 1.133 ad /* cpu, try1 */
1127 1.133 ad if ((pg = LIST_FIRST((freeq =
1128 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1129 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1130 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1131 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1132 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1133 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1134 1.133 ad uvmexp.cpuhit++;
1135 1.133 ad goto gotit;
1136 1.133 ad }
1137 1.133 ad /* global, try1 */
1138 1.133 ad if ((pg = LIST_FIRST((freeq =
1139 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1140 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1141 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1142 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1143 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1144 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1145 1.133 ad uvmexp.cpumiss++;
1146 1.54 thorpej goto gotit;
1147 1.133 ad }
1148 1.133 ad /* cpu, try2 */
1149 1.133 ad if ((pg = LIST_FIRST((freeq =
1150 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1151 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1152 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1153 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1154 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1155 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1156 1.133 ad uvmexp.cpuhit++;
1157 1.54 thorpej goto gotit;
1158 1.133 ad }
1159 1.133 ad /* global, try2 */
1160 1.133 ad if ((pg = LIST_FIRST((freeq =
1161 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1162 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1163 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1164 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1165 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1166 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1167 1.133 ad uvmexp.cpumiss++;
1168 1.133 ad goto gotit;
1169 1.133 ad }
1170 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1171 1.58 enami } while (color != trycolor);
1172 1.54 thorpej
1173 1.54 thorpej return (NULL);
1174 1.54 thorpej
1175 1.54 thorpej gotit:
1176 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1177 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1178 1.54 thorpej uvmexp.free--;
1179 1.54 thorpej
1180 1.54 thorpej /* update zero'd page count */
1181 1.54 thorpej if (pg->flags & PG_ZERO)
1182 1.54 thorpej uvmexp.zeropages--;
1183 1.54 thorpej
1184 1.54 thorpej if (color == trycolor)
1185 1.54 thorpej uvmexp.colorhit++;
1186 1.54 thorpej else {
1187 1.54 thorpej uvmexp.colormiss++;
1188 1.54 thorpej *trycolorp = color;
1189 1.54 thorpej }
1190 1.54 thorpej
1191 1.54 thorpej return (pg);
1192 1.54 thorpej }
1193 1.54 thorpej
1194 1.54 thorpej /*
1195 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1196 1.1 mrg *
1197 1.1 mrg * => return null if no pages free
1198 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1199 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1200 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1201 1.1 mrg * => only one of obj or anon can be non-null
1202 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1203 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1204 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1205 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1206 1.34 thorpej * unknown contents page. This is because we live with the
1207 1.34 thorpej * consequences of a bad free list decision for the entire
1208 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1209 1.34 thorpej * is slower to access.
1210 1.1 mrg */
1211 1.1 mrg
1212 1.7 mrg struct vm_page *
1213 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1214 1.105 thorpej int flags, int strat, int free_list)
1215 1.1 mrg {
1216 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1217 1.133 ad struct uvm_cpu *ucpu;
1218 1.7 mrg struct vm_page *pg;
1219 1.141 ad lwp_t *l;
1220 1.1 mrg
1221 1.44 chs KASSERT(obj == NULL || anon == NULL);
1222 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1223 1.44 chs KASSERT(off == trunc_page(off));
1224 1.174 rmind KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
1225 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
1226 1.175 rmind mutex_owned(anon->an_lock));
1227 1.48 thorpej
1228 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1229 1.1 mrg
1230 1.7 mrg /*
1231 1.54 thorpej * This implements a global round-robin page coloring
1232 1.54 thorpej * algorithm.
1233 1.54 thorpej */
1234 1.67 chs
1235 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1236 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
1237 1.169 matt color = atop(off) & uvmexp.colormask;
1238 1.169 matt } else {
1239 1.169 matt color = ucpu->page_free_nextcolor;
1240 1.169 matt }
1241 1.54 thorpej
1242 1.54 thorpej /*
1243 1.7 mrg * check to see if we need to generate some free pages waking
1244 1.7 mrg * the pagedaemon.
1245 1.7 mrg */
1246 1.7 mrg
1247 1.113 yamt uvm_kick_pdaemon();
1248 1.7 mrg
1249 1.7 mrg /*
1250 1.7 mrg * fail if any of these conditions is true:
1251 1.7 mrg * [1] there really are no free pages, or
1252 1.7 mrg * [2] only kernel "reserved" pages remain and
1253 1.141 ad * reserved pages have not been requested.
1254 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1255 1.7 mrg * the requestor isn't the pagedaemon.
1256 1.141 ad * we make kernel reserve pages available if called by a
1257 1.141 ad * kernel thread or a realtime thread.
1258 1.7 mrg */
1259 1.141 ad l = curlwp;
1260 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1261 1.141 ad flags |= UVM_PGA_USERESERVE;
1262 1.141 ad }
1263 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1264 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1265 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1266 1.141 ad curlwp != uvm.pagedaemon_lwp))
1267 1.12 thorpej goto fail;
1268 1.12 thorpej
1269 1.34 thorpej #if PGFL_NQUEUES != 2
1270 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1271 1.34 thorpej #endif
1272 1.34 thorpej
1273 1.34 thorpej /*
1274 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1275 1.34 thorpej * we try the UNKNOWN queue first.
1276 1.34 thorpej */
1277 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1278 1.34 thorpej try1 = PGFL_ZEROS;
1279 1.34 thorpej try2 = PGFL_UNKNOWN;
1280 1.34 thorpej } else {
1281 1.34 thorpej try1 = PGFL_UNKNOWN;
1282 1.34 thorpej try2 = PGFL_ZEROS;
1283 1.34 thorpej }
1284 1.34 thorpej
1285 1.12 thorpej again:
1286 1.12 thorpej switch (strat) {
1287 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1288 1.145 abs /* Check freelists: descending priority (ascending id) order */
1289 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1290 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1291 1.54 thorpej try1, try2, &color);
1292 1.54 thorpej if (pg != NULL)
1293 1.12 thorpej goto gotit;
1294 1.12 thorpej }
1295 1.12 thorpej
1296 1.12 thorpej /* No pages free! */
1297 1.12 thorpej goto fail;
1298 1.12 thorpej
1299 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1300 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1301 1.12 thorpej /* Attempt to allocate from the specified free list. */
1302 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1303 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1304 1.54 thorpej try1, try2, &color);
1305 1.54 thorpej if (pg != NULL)
1306 1.12 thorpej goto gotit;
1307 1.12 thorpej
1308 1.12 thorpej /* Fall back, if possible. */
1309 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1310 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1311 1.12 thorpej goto again;
1312 1.12 thorpej }
1313 1.12 thorpej
1314 1.12 thorpej /* No pages free! */
1315 1.12 thorpej goto fail;
1316 1.12 thorpej
1317 1.12 thorpej default:
1318 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1319 1.12 thorpej /* NOTREACHED */
1320 1.7 mrg }
1321 1.7 mrg
1322 1.12 thorpej gotit:
1323 1.54 thorpej /*
1324 1.54 thorpej * We now know which color we actually allocated from; set
1325 1.54 thorpej * the next color accordingly.
1326 1.54 thorpej */
1327 1.67 chs
1328 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1329 1.34 thorpej
1330 1.34 thorpej /*
1331 1.34 thorpej * update allocation statistics and remember if we have to
1332 1.34 thorpej * zero the page
1333 1.34 thorpej */
1334 1.67 chs
1335 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1336 1.34 thorpej if (pg->flags & PG_ZERO) {
1337 1.34 thorpej uvmexp.pga_zerohit++;
1338 1.34 thorpej zeroit = 0;
1339 1.34 thorpej } else {
1340 1.34 thorpej uvmexp.pga_zeromiss++;
1341 1.34 thorpej zeroit = 1;
1342 1.34 thorpej }
1343 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1344 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1345 1.133 ad }
1346 1.34 thorpej }
1347 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1348 1.7 mrg
1349 1.7 mrg pg->offset = off;
1350 1.7 mrg pg->uobject = obj;
1351 1.7 mrg pg->uanon = anon;
1352 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1353 1.7 mrg if (anon) {
1354 1.103 yamt anon->an_page = pg;
1355 1.7 mrg pg->pqflags = PQ_ANON;
1356 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1357 1.7 mrg } else {
1358 1.67 chs if (obj) {
1359 1.153 uebayasi uvm_pageinsert(obj, pg);
1360 1.67 chs }
1361 1.7 mrg pg->pqflags = 0;
1362 1.7 mrg }
1363 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1364 1.143 drochner
1365 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1366 1.7 mrg pg->owner_tag = NULL;
1367 1.1 mrg #endif
1368 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1369 1.33 thorpej
1370 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1371 1.33 thorpej /*
1372 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1373 1.34 thorpej * zero'd, then we have to zero it ourselves.
1374 1.33 thorpej */
1375 1.33 thorpej pg->flags &= ~PG_CLEAN;
1376 1.34 thorpej if (zeroit)
1377 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1378 1.33 thorpej }
1379 1.1 mrg
1380 1.7 mrg return(pg);
1381 1.12 thorpej
1382 1.12 thorpej fail:
1383 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1384 1.12 thorpej return (NULL);
1385 1.1 mrg }
1386 1.1 mrg
1387 1.1 mrg /*
1388 1.96 yamt * uvm_pagereplace: replace a page with another
1389 1.96 yamt *
1390 1.96 yamt * => object must be locked
1391 1.96 yamt */
1392 1.96 yamt
1393 1.96 yamt void
1394 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1395 1.96 yamt {
1396 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1397 1.97 junyoung
1398 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1399 1.136 yamt KASSERT(uobj != NULL);
1400 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1401 1.96 yamt KASSERT(newpg->uobject == NULL);
1402 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
1403 1.96 yamt
1404 1.136 yamt newpg->uobject = uobj;
1405 1.96 yamt newpg->offset = oldpg->offset;
1406 1.96 yamt
1407 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1408 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1409 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1410 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1411 1.96 yamt }
1412 1.96 yamt
1413 1.96 yamt /*
1414 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1415 1.1 mrg *
1416 1.1 mrg * => both objects must be locked
1417 1.1 mrg */
1418 1.1 mrg
1419 1.7 mrg void
1420 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1421 1.1 mrg {
1422 1.7 mrg /*
1423 1.7 mrg * remove it from the old object
1424 1.7 mrg */
1425 1.7 mrg
1426 1.7 mrg if (pg->uobject) {
1427 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1428 1.7 mrg }
1429 1.7 mrg
1430 1.7 mrg /*
1431 1.7 mrg * put it in the new object
1432 1.7 mrg */
1433 1.7 mrg
1434 1.7 mrg if (newobj) {
1435 1.7 mrg pg->uobject = newobj;
1436 1.7 mrg pg->offset = newoff;
1437 1.153 uebayasi uvm_pageinsert(newobj, pg);
1438 1.7 mrg }
1439 1.1 mrg }
1440 1.1 mrg
1441 1.91 yamt #ifdef DEBUG
1442 1.91 yamt /*
1443 1.91 yamt * check if page is zero-filled
1444 1.91 yamt *
1445 1.91 yamt * - called with free page queue lock held.
1446 1.91 yamt */
1447 1.91 yamt void
1448 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1449 1.91 yamt {
1450 1.91 yamt int *p, *ep;
1451 1.91 yamt
1452 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1453 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1454 1.91 yamt
1455 1.91 yamt /*
1456 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1457 1.91 yamt * uvm page allocator.
1458 1.91 yamt *
1459 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1460 1.91 yamt */
1461 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1462 1.91 yamt p = (int *)uvm_zerocheckkva;
1463 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1464 1.92 yamt pmap_update(pmap_kernel());
1465 1.91 yamt while (p < ep) {
1466 1.91 yamt if (*p != 0)
1467 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1468 1.91 yamt p++;
1469 1.91 yamt }
1470 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1471 1.131 yamt /*
1472 1.131 yamt * pmap_update() is not necessary here because no one except us
1473 1.131 yamt * uses this VA.
1474 1.131 yamt */
1475 1.91 yamt }
1476 1.91 yamt #endif /* DEBUG */
1477 1.91 yamt
1478 1.1 mrg /*
1479 1.1 mrg * uvm_pagefree: free page
1480 1.1 mrg *
1481 1.133 ad * => erase page's identity (i.e. remove from object)
1482 1.1 mrg * => put page on free list
1483 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1484 1.1 mrg * => caller must lock page queues
1485 1.1 mrg * => assumes all valid mappings of pg are gone
1486 1.1 mrg */
1487 1.1 mrg
1488 1.44 chs void
1489 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1490 1.1 mrg {
1491 1.133 ad struct pgflist *pgfl;
1492 1.133 ad struct uvm_cpu *ucpu;
1493 1.133 ad int index, color, queue;
1494 1.118 thorpej bool iszero;
1495 1.67 chs
1496 1.44 chs #ifdef DEBUG
1497 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1498 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1499 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1500 1.44 chs }
1501 1.91 yamt #endif /* DEBUG */
1502 1.44 chs
1503 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1504 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1505 1.182 matt //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1506 1.174 rmind KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1507 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1508 1.174 rmind mutex_owned(pg->uanon->an_lock));
1509 1.123 ad
1510 1.7 mrg /*
1511 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1512 1.7 mrg */
1513 1.7 mrg
1514 1.67 chs if (pg->loan_count) {
1515 1.70 chs KASSERT(pg->wire_count == 0);
1516 1.7 mrg
1517 1.7 mrg /*
1518 1.67 chs * if the page is owned by an anon then we just want to
1519 1.70 chs * drop anon ownership. the kernel will free the page when
1520 1.70 chs * it is done with it. if the page is owned by an object,
1521 1.70 chs * remove it from the object and mark it dirty for the benefit
1522 1.70 chs * of possible anon owners.
1523 1.70 chs *
1524 1.70 chs * regardless of previous ownership, wakeup any waiters,
1525 1.70 chs * unbusy the page, and we're done.
1526 1.7 mrg */
1527 1.7 mrg
1528 1.73 chs if (pg->uobject != NULL) {
1529 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1530 1.67 chs pg->flags &= ~PG_CLEAN;
1531 1.73 chs } else if (pg->uanon != NULL) {
1532 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1533 1.73 chs pg->loan_count--;
1534 1.73 chs } else {
1535 1.73 chs pg->pqflags &= ~PQ_ANON;
1536 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1537 1.73 chs }
1538 1.103 yamt pg->uanon->an_page = NULL;
1539 1.73 chs pg->uanon = NULL;
1540 1.67 chs }
1541 1.70 chs if (pg->flags & PG_WANTED) {
1542 1.70 chs wakeup(pg);
1543 1.70 chs }
1544 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1545 1.70 chs #ifdef UVM_PAGE_TRKOWN
1546 1.70 chs pg->owner_tag = NULL;
1547 1.70 chs #endif
1548 1.73 chs if (pg->loan_count) {
1549 1.115 yamt KASSERT(pg->uobject == NULL);
1550 1.115 yamt if (pg->uanon == NULL) {
1551 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1552 1.115 yamt uvm_pagedequeue(pg);
1553 1.115 yamt }
1554 1.73 chs return;
1555 1.73 chs }
1556 1.67 chs }
1557 1.62 chs
1558 1.67 chs /*
1559 1.67 chs * remove page from its object or anon.
1560 1.67 chs */
1561 1.44 chs
1562 1.73 chs if (pg->uobject != NULL) {
1563 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1564 1.73 chs } else if (pg->uanon != NULL) {
1565 1.103 yamt pg->uanon->an_page = NULL;
1566 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1567 1.7 mrg }
1568 1.1 mrg
1569 1.7 mrg /*
1570 1.70 chs * now remove the page from the queues.
1571 1.7 mrg */
1572 1.182 matt if (uvmpdpol_pageisqueued_p(pg)) {
1573 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1574 1.182 matt uvm_pagedequeue(pg);
1575 1.182 matt }
1576 1.7 mrg
1577 1.7 mrg /*
1578 1.7 mrg * if the page was wired, unwire it now.
1579 1.7 mrg */
1580 1.44 chs
1581 1.34 thorpej if (pg->wire_count) {
1582 1.7 mrg pg->wire_count = 0;
1583 1.7 mrg uvmexp.wired--;
1584 1.44 chs }
1585 1.7 mrg
1586 1.7 mrg /*
1587 1.44 chs * and put on free queue
1588 1.7 mrg */
1589 1.7 mrg
1590 1.90 yamt iszero = (pg->flags & PG_ZERO);
1591 1.133 ad index = uvm_page_lookup_freelist(pg);
1592 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1593 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1594 1.34 thorpej
1595 1.3 chs #ifdef DEBUG
1596 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1597 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1598 1.3 chs #endif
1599 1.90 yamt
1600 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1601 1.143 drochner pg->pqflags = PQ_FREE;
1602 1.91 yamt
1603 1.91 yamt #ifdef DEBUG
1604 1.91 yamt if (iszero)
1605 1.91 yamt uvm_pagezerocheck(pg);
1606 1.91 yamt #endif /* DEBUG */
1607 1.91 yamt
1608 1.133 ad
1609 1.133 ad /* global list */
1610 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1611 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1612 1.7 mrg uvmexp.free++;
1613 1.133 ad if (iszero) {
1614 1.90 yamt uvmexp.zeropages++;
1615 1.133 ad }
1616 1.34 thorpej
1617 1.133 ad /* per-cpu list */
1618 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1619 1.133 ad pg->offset = (uintptr_t)ucpu;
1620 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1621 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1622 1.133 ad ucpu->pages[queue]++;
1623 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1624 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1625 1.133 ad }
1626 1.34 thorpej
1627 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1628 1.44 chs }
1629 1.44 chs
1630 1.44 chs /*
1631 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1632 1.44 chs *
1633 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1634 1.44 chs * => if pages are object-owned, object must be locked.
1635 1.67 chs * => if pages are anon-owned, anons must be locked.
1636 1.76 enami * => caller must lock page queues if pages may be released.
1637 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1638 1.44 chs */
1639 1.44 chs
1640 1.44 chs void
1641 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1642 1.44 chs {
1643 1.44 chs struct vm_page *pg;
1644 1.44 chs int i;
1645 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1646 1.44 chs
1647 1.44 chs for (i = 0; i < npgs; i++) {
1648 1.44 chs pg = pgs[i];
1649 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1650 1.44 chs continue;
1651 1.44 chs }
1652 1.98 yamt
1653 1.180 matt KASSERT(uvm_page_locked_p(pg));
1654 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1655 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1656 1.44 chs if (pg->flags & PG_WANTED) {
1657 1.44 chs wakeup(pg);
1658 1.44 chs }
1659 1.44 chs if (pg->flags & PG_RELEASED) {
1660 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1661 1.98 yamt KASSERT(pg->uobject != NULL ||
1662 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1663 1.67 chs pg->flags &= ~PG_RELEASED;
1664 1.67 chs uvm_pagefree(pg);
1665 1.44 chs } else {
1666 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1667 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1668 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1669 1.44 chs UVM_PAGE_OWN(pg, NULL);
1670 1.44 chs }
1671 1.44 chs }
1672 1.1 mrg }
1673 1.1 mrg
1674 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1675 1.1 mrg /*
1676 1.1 mrg * uvm_page_own: set or release page ownership
1677 1.1 mrg *
1678 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1679 1.1 mrg * and where they do it. it can be used to track down problems
1680 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1681 1.1 mrg * => page's object [if any] must be locked
1682 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1683 1.1 mrg */
1684 1.7 mrg void
1685 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1686 1.1 mrg {
1687 1.112 yamt struct uvm_object *uobj;
1688 1.112 yamt struct vm_anon *anon;
1689 1.112 yamt
1690 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1691 1.67 chs
1692 1.112 yamt uobj = pg->uobject;
1693 1.112 yamt anon = pg->uanon;
1694 1.180 matt KASSERT(uvm_page_locked_p(pg));
1695 1.112 yamt KASSERT((pg->flags & PG_WANTED) == 0);
1696 1.112 yamt
1697 1.7 mrg /* gain ownership? */
1698 1.7 mrg if (tag) {
1699 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1700 1.7 mrg if (pg->owner_tag) {
1701 1.7 mrg printf("uvm_page_own: page %p already owned "
1702 1.7 mrg "by proc %d [%s]\n", pg,
1703 1.74 enami pg->owner, pg->owner_tag);
1704 1.7 mrg panic("uvm_page_own");
1705 1.7 mrg }
1706 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1707 1.120 perseant pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1708 1.7 mrg pg->owner_tag = tag;
1709 1.7 mrg return;
1710 1.7 mrg }
1711 1.7 mrg
1712 1.7 mrg /* drop ownership */
1713 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1714 1.7 mrg if (pg->owner_tag == NULL) {
1715 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1716 1.7 mrg "page (%p)\n", pg);
1717 1.7 mrg panic("uvm_page_own");
1718 1.7 mrg }
1719 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1720 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1721 1.115 yamt pg->wire_count > 0);
1722 1.115 yamt } else {
1723 1.115 yamt KASSERT(pg->wire_count == 0);
1724 1.115 yamt }
1725 1.7 mrg pg->owner_tag = NULL;
1726 1.1 mrg }
1727 1.1 mrg #endif
1728 1.34 thorpej
1729 1.34 thorpej /*
1730 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1731 1.34 thorpej *
1732 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1733 1.54 thorpej * on the CPU cache.
1734 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1735 1.132 ad * to run, or MD code detects a reason to break early.
1736 1.34 thorpej */
1737 1.34 thorpej void
1738 1.105 thorpej uvm_pageidlezero(void)
1739 1.34 thorpej {
1740 1.34 thorpej struct vm_page *pg;
1741 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1742 1.133 ad struct uvm_cpu *ucpu;
1743 1.133 ad int free_list, firstbucket, nextbucket;
1744 1.172 rmind bool lcont = false;
1745 1.133 ad
1746 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1747 1.133 ad if (!ucpu->page_idle_zero ||
1748 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1749 1.133 ad ucpu->page_idle_zero = false;
1750 1.132 ad return;
1751 1.132 ad }
1752 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1753 1.172 rmind /* Contention: let other CPUs to use the lock. */
1754 1.172 rmind return;
1755 1.172 rmind }
1756 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1757 1.133 ad nextbucket = firstbucket;
1758 1.58 enami do {
1759 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1760 1.139 ad if (sched_curcpu_runnable_p()) {
1761 1.139 ad goto quit;
1762 1.139 ad }
1763 1.133 ad pgfl = &ucpu->page_free[free_list];
1764 1.133 ad gpgfl = &uvm.page_free[free_list];
1765 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1766 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1767 1.172 rmind if (lcont || sched_curcpu_runnable_p()) {
1768 1.101 yamt goto quit;
1769 1.132 ad }
1770 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1771 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1772 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1773 1.54 thorpej uvmexp.free--;
1774 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1775 1.143 drochner pg->pqflags = 0;
1776 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1777 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1778 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1779 1.67 chs
1780 1.54 thorpej /*
1781 1.54 thorpej * The machine-dependent code detected
1782 1.54 thorpej * some reason for us to abort zeroing
1783 1.54 thorpej * pages, probably because there is a
1784 1.54 thorpej * process now ready to run.
1785 1.54 thorpej */
1786 1.67 chs
1787 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1788 1.144 drochner pg->pqflags = PQ_FREE;
1789 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1790 1.133 ad nextbucket].pgfl_queues[
1791 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1792 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1793 1.54 thorpej nextbucket].pgfl_queues[
1794 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1795 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1796 1.54 thorpej uvmexp.free++;
1797 1.54 thorpej uvmexp.zeroaborts++;
1798 1.101 yamt goto quit;
1799 1.54 thorpej }
1800 1.54 thorpej #else
1801 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1802 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1803 1.54 thorpej pg->flags |= PG_ZERO;
1804 1.54 thorpej
1805 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1806 1.172 rmind lcont = true;
1807 1.172 rmind mutex_spin_enter(&uvm_fpageqlock);
1808 1.172 rmind } else {
1809 1.172 rmind lcont = false;
1810 1.172 rmind }
1811 1.143 drochner pg->pqflags = PQ_FREE;
1812 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1813 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1814 1.133 ad pg, pageq.list);
1815 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1816 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1817 1.133 ad pg, listq.list);
1818 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1819 1.54 thorpej uvmexp.free++;
1820 1.54 thorpej uvmexp.zeropages++;
1821 1.54 thorpej }
1822 1.41 thorpej }
1823 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1824 1.133 ad break;
1825 1.133 ad }
1826 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1827 1.58 enami } while (nextbucket != firstbucket);
1828 1.133 ad ucpu->page_idle_zero = false;
1829 1.133 ad quit:
1830 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1831 1.34 thorpej }
1832 1.110 yamt
1833 1.110 yamt /*
1834 1.110 yamt * uvm_pagelookup: look up a page
1835 1.110 yamt *
1836 1.110 yamt * => caller should lock object to keep someone from pulling the page
1837 1.110 yamt * out from under it
1838 1.110 yamt */
1839 1.110 yamt
1840 1.110 yamt struct vm_page *
1841 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1842 1.110 yamt {
1843 1.110 yamt struct vm_page *pg;
1844 1.110 yamt
1845 1.174 rmind KASSERT(mutex_owned(obj->vmobjlock));
1846 1.123 ad
1847 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1848 1.134 ad
1849 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1850 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1851 1.110 yamt (pg->flags & PG_BUSY) != 0);
1852 1.156 rmind return pg;
1853 1.110 yamt }
1854 1.110 yamt
1855 1.110 yamt /*
1856 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1857 1.110 yamt *
1858 1.110 yamt * => caller must lock page queues
1859 1.110 yamt */
1860 1.110 yamt
1861 1.110 yamt void
1862 1.110 yamt uvm_pagewire(struct vm_page *pg)
1863 1.110 yamt {
1864 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1865 1.113 yamt #if defined(READAHEAD_STATS)
1866 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1867 1.113 yamt uvm_ra_hit.ev_count++;
1868 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1869 1.113 yamt }
1870 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1871 1.110 yamt if (pg->wire_count == 0) {
1872 1.110 yamt uvm_pagedequeue(pg);
1873 1.110 yamt uvmexp.wired++;
1874 1.110 yamt }
1875 1.110 yamt pg->wire_count++;
1876 1.110 yamt }
1877 1.110 yamt
1878 1.110 yamt /*
1879 1.110 yamt * uvm_pageunwire: unwire the page.
1880 1.110 yamt *
1881 1.110 yamt * => activate if wire count goes to zero.
1882 1.110 yamt * => caller must lock page queues
1883 1.110 yamt */
1884 1.110 yamt
1885 1.110 yamt void
1886 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1887 1.110 yamt {
1888 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1889 1.110 yamt pg->wire_count--;
1890 1.110 yamt if (pg->wire_count == 0) {
1891 1.111 yamt uvm_pageactivate(pg);
1892 1.110 yamt uvmexp.wired--;
1893 1.110 yamt }
1894 1.110 yamt }
1895 1.110 yamt
1896 1.110 yamt /*
1897 1.110 yamt * uvm_pagedeactivate: deactivate page
1898 1.110 yamt *
1899 1.110 yamt * => caller must lock page queues
1900 1.110 yamt * => caller must check to make sure page is not wired
1901 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1902 1.110 yamt * => caller must clear the reference on the page before calling
1903 1.110 yamt */
1904 1.110 yamt
1905 1.110 yamt void
1906 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1907 1.110 yamt {
1908 1.113 yamt
1909 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1910 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1911 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1912 1.113 yamt uvmpdpol_pagedeactivate(pg);
1913 1.110 yamt }
1914 1.110 yamt
1915 1.110 yamt /*
1916 1.110 yamt * uvm_pageactivate: activate page
1917 1.110 yamt *
1918 1.110 yamt * => caller must lock page queues
1919 1.110 yamt */
1920 1.110 yamt
1921 1.110 yamt void
1922 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1923 1.110 yamt {
1924 1.113 yamt
1925 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1926 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1927 1.113 yamt #if defined(READAHEAD_STATS)
1928 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1929 1.113 yamt uvm_ra_hit.ev_count++;
1930 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1931 1.113 yamt }
1932 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1933 1.113 yamt if (pg->wire_count != 0) {
1934 1.113 yamt return;
1935 1.110 yamt }
1936 1.113 yamt uvmpdpol_pageactivate(pg);
1937 1.110 yamt }
1938 1.110 yamt
1939 1.110 yamt /*
1940 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1941 1.110 yamt */
1942 1.110 yamt
1943 1.110 yamt void
1944 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1945 1.110 yamt {
1946 1.113 yamt
1947 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1948 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1949 1.110 yamt }
1950 1.123 ad
1951 1.113 yamt uvmpdpol_pagedequeue(pg);
1952 1.113 yamt }
1953 1.113 yamt
1954 1.113 yamt /*
1955 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1956 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1957 1.113 yamt */
1958 1.113 yamt
1959 1.113 yamt void
1960 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1961 1.113 yamt {
1962 1.113 yamt
1963 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1964 1.113 yamt if (pg->wire_count != 0) {
1965 1.113 yamt return;
1966 1.113 yamt }
1967 1.113 yamt uvmpdpol_pageenqueue(pg);
1968 1.110 yamt }
1969 1.110 yamt
1970 1.110 yamt /*
1971 1.110 yamt * uvm_pagezero: zero fill a page
1972 1.110 yamt *
1973 1.110 yamt * => if page is part of an object then the object should be locked
1974 1.110 yamt * to protect pg->flags.
1975 1.110 yamt */
1976 1.110 yamt
1977 1.110 yamt void
1978 1.110 yamt uvm_pagezero(struct vm_page *pg)
1979 1.110 yamt {
1980 1.110 yamt pg->flags &= ~PG_CLEAN;
1981 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1982 1.110 yamt }
1983 1.110 yamt
1984 1.110 yamt /*
1985 1.110 yamt * uvm_pagecopy: copy a page
1986 1.110 yamt *
1987 1.110 yamt * => if page is part of an object then the object should be locked
1988 1.110 yamt * to protect pg->flags.
1989 1.110 yamt */
1990 1.110 yamt
1991 1.110 yamt void
1992 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1993 1.110 yamt {
1994 1.110 yamt
1995 1.110 yamt dst->flags &= ~PG_CLEAN;
1996 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1997 1.110 yamt }
1998 1.110 yamt
1999 1.110 yamt /*
2000 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2001 1.150 thorpej */
2002 1.150 thorpej
2003 1.150 thorpej bool
2004 1.150 thorpej uvm_pageismanaged(paddr_t pa)
2005 1.150 thorpej {
2006 1.150 thorpej
2007 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
2008 1.150 thorpej }
2009 1.150 thorpej
2010 1.150 thorpej /*
2011 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
2012 1.110 yamt */
2013 1.110 yamt
2014 1.110 yamt int
2015 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
2016 1.110 yamt {
2017 1.110 yamt int lcv;
2018 1.110 yamt
2019 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2020 1.110 yamt KASSERT(lcv != -1);
2021 1.159 uebayasi return (VM_PHYSMEM_PTR(lcv)->free_list);
2022 1.110 yamt }
2023 1.151 thorpej
2024 1.174 rmind /*
2025 1.174 rmind * uvm_page_locked_p: return true if object associated with page is
2026 1.174 rmind * locked. this is a weak check for runtime assertions only.
2027 1.174 rmind */
2028 1.174 rmind
2029 1.174 rmind bool
2030 1.174 rmind uvm_page_locked_p(struct vm_page *pg)
2031 1.174 rmind {
2032 1.174 rmind
2033 1.174 rmind if (pg->uobject != NULL) {
2034 1.174 rmind return mutex_owned(pg->uobject->vmobjlock);
2035 1.174 rmind }
2036 1.174 rmind if (pg->uanon != NULL) {
2037 1.174 rmind return mutex_owned(pg->uanon->an_lock);
2038 1.174 rmind }
2039 1.174 rmind return true;
2040 1.174 rmind }
2041 1.174 rmind
2042 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
2043 1.151 thorpej
2044 1.151 thorpej /*
2045 1.151 thorpej * uvm_page_printit: actually print the page
2046 1.151 thorpej */
2047 1.151 thorpej
2048 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
2049 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2050 1.151 thorpej
2051 1.151 thorpej void
2052 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
2053 1.151 thorpej void (*pr)(const char *, ...))
2054 1.151 thorpej {
2055 1.151 thorpej struct vm_page *tpg;
2056 1.151 thorpej struct uvm_object *uobj;
2057 1.151 thorpej struct pgflist *pgl;
2058 1.151 thorpej char pgbuf[128];
2059 1.151 thorpej char pqbuf[128];
2060 1.151 thorpej
2061 1.151 thorpej (*pr)("PAGE %p:\n", pg);
2062 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2063 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2064 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2065 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2066 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2067 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2068 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
2069 1.151 thorpej if (pg->flags & PG_BUSY)
2070 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
2071 1.151 thorpej pg->owner, pg->owner_tag);
2072 1.151 thorpej else
2073 1.151 thorpej (*pr)(" page not busy, no owner\n");
2074 1.151 thorpej #else
2075 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
2076 1.151 thorpej #endif
2077 1.151 thorpej
2078 1.151 thorpej if (!full)
2079 1.151 thorpej return;
2080 1.151 thorpej
2081 1.151 thorpej /* cross-verify object/anon */
2082 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
2083 1.151 thorpej if (pg->pqflags & PQ_ANON) {
2084 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
2085 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2086 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
2087 1.151 thorpej else
2088 1.151 thorpej (*pr)(" anon backpointer is OK\n");
2089 1.151 thorpej } else {
2090 1.151 thorpej uobj = pg->uobject;
2091 1.151 thorpej if (uobj) {
2092 1.151 thorpej (*pr)(" checking object list\n");
2093 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2094 1.151 thorpej if (tpg == pg) {
2095 1.151 thorpej break;
2096 1.151 thorpej }
2097 1.151 thorpej }
2098 1.151 thorpej if (tpg)
2099 1.151 thorpej (*pr)(" page found on object list\n");
2100 1.151 thorpej else
2101 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2102 1.151 thorpej }
2103 1.151 thorpej }
2104 1.151 thorpej }
2105 1.151 thorpej
2106 1.151 thorpej /* cross-verify page queue */
2107 1.151 thorpej if (pg->pqflags & PQ_FREE) {
2108 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
2109 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
2110 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2111 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2112 1.151 thorpej } else {
2113 1.151 thorpej pgl = NULL;
2114 1.151 thorpej }
2115 1.151 thorpej
2116 1.151 thorpej if (pgl) {
2117 1.151 thorpej (*pr)(" checking pageq list\n");
2118 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
2119 1.151 thorpej if (tpg == pg) {
2120 1.151 thorpej break;
2121 1.151 thorpej }
2122 1.151 thorpej }
2123 1.151 thorpej if (tpg)
2124 1.151 thorpej (*pr)(" page found on pageq list\n");
2125 1.151 thorpej else
2126 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2127 1.151 thorpej }
2128 1.151 thorpej }
2129 1.151 thorpej
2130 1.151 thorpej /*
2131 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
2132 1.151 thorpej */
2133 1.151 thorpej
2134 1.151 thorpej void
2135 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2136 1.151 thorpej {
2137 1.151 thorpej unsigned i;
2138 1.151 thorpej struct vm_page *pg;
2139 1.151 thorpej
2140 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2141 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2142 1.151 thorpej " OWNER"
2143 1.151 thorpej #endif
2144 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2145 1.158 uebayasi for (i = 0; i < vm_nphysmem; i++) {
2146 1.161 uebayasi for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2147 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
2148 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2149 1.151 thorpej pg->uanon);
2150 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2151 1.151 thorpej if (pg->flags & PG_BUSY)
2152 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2153 1.151 thorpej #endif
2154 1.151 thorpej (*pr)("\n");
2155 1.151 thorpej }
2156 1.151 thorpej }
2157 1.151 thorpej }
2158 1.151 thorpej
2159 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2160