Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.184
      1  1.184       chs /*	$NetBSD: uvm_page.c,v 1.184 2014/04/21 16:33:48 chs Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.62       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.62       chs  *
     49   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.62       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_page.c: page ops.
     66    1.1       mrg  */
     67   1.71     lukem 
     68   1.71     lukem #include <sys/cdefs.h>
     69  1.184       chs __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.184 2014/04/21 16:33:48 chs Exp $");
     70    1.6       mrg 
     71  1.151   thorpej #include "opt_ddb.h"
     72   1.44       chs #include "opt_uvmhist.h"
     73  1.113      yamt #include "opt_readahead.h"
     74   1.44       chs 
     75    1.1       mrg #include <sys/param.h>
     76    1.1       mrg #include <sys/systm.h>
     77   1.35   thorpej #include <sys/sched.h>
     78   1.44       chs #include <sys/kernel.h>
     79   1.51       chs #include <sys/vnode.h>
     80   1.68       chs #include <sys/proc.h>
     81  1.126        ad #include <sys/atomic.h>
     82  1.133        ad #include <sys/cpu.h>
     83    1.1       mrg 
     84    1.1       mrg #include <uvm/uvm.h>
     85  1.151   thorpej #include <uvm/uvm_ddb.h>
     86  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     87    1.1       mrg 
     88    1.1       mrg /*
     89    1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     90    1.1       mrg  */
     91    1.1       mrg 
     92    1.1       mrg /*
     93    1.1       mrg  * physical memory config is stored in vm_physmem.
     94    1.1       mrg  */
     95    1.1       mrg 
     96  1.167  uebayasi struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     97  1.167  uebayasi int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     98  1.167  uebayasi #define	vm_nphysmem	vm_nphysseg
     99    1.1       mrg 
    100    1.1       mrg /*
    101   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    102   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    103  1.155        ad  * We therefore provide a way to enable it from machdep code here.
    104   1.44       chs  */
    105  1.119   thorpej bool vm_page_zero_enable = false;
    106   1.34   thorpej 
    107   1.34   thorpej /*
    108  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    109  1.140        ad  */
    110  1.140        ad int vm_page_reserve_kernel = 5;
    111  1.140        ad 
    112  1.140        ad /*
    113  1.148      matt  * physical memory size;
    114  1.148      matt  */
    115  1.149      matt int physmem;
    116  1.148      matt 
    117  1.148      matt /*
    118    1.1       mrg  * local variables
    119    1.1       mrg  */
    120    1.1       mrg 
    121    1.1       mrg /*
    122   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    123   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    124   1.88   thorpej  * and pmap_startup here also uses them internally.
    125   1.88   thorpej  */
    126   1.88   thorpej 
    127   1.88   thorpej static vaddr_t      virtual_space_start;
    128   1.88   thorpej static vaddr_t      virtual_space_end;
    129   1.88   thorpej 
    130   1.88   thorpej /*
    131   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    132   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    133   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    134   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    135   1.60   thorpej  * uvm_pageboot_alloc().
    136   1.60   thorpej  */
    137   1.60   thorpej 
    138  1.179      para static size_t recolored_pages_memsize /* = 0 */;
    139   1.60   thorpej 
    140   1.91      yamt #ifdef DEBUG
    141   1.91      yamt vaddr_t uvm_zerocheckkva;
    142   1.91      yamt #endif /* DEBUG */
    143   1.91      yamt 
    144   1.60   thorpej /*
    145  1.134        ad  * local prototypes
    146  1.124        ad  */
    147  1.124        ad 
    148  1.153  uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    149  1.153  uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    150  1.124        ad 
    151  1.124        ad /*
    152  1.134        ad  * per-object tree of pages
    153    1.1       mrg  */
    154    1.1       mrg 
    155  1.134        ad static signed int
    156  1.156     rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    157  1.134        ad {
    158  1.156     rmind 	const struct vm_page *pg1 = n1;
    159  1.156     rmind 	const struct vm_page *pg2 = n2;
    160  1.134        ad 	const voff_t a = pg1->offset;
    161  1.134        ad 	const voff_t b = pg2->offset;
    162  1.134        ad 
    163  1.134        ad 	if (a < b)
    164  1.156     rmind 		return -1;
    165  1.156     rmind 	if (a > b)
    166  1.134        ad 		return 1;
    167  1.134        ad 	return 0;
    168  1.134        ad }
    169  1.134        ad 
    170  1.134        ad static signed int
    171  1.156     rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
    172  1.134        ad {
    173  1.156     rmind 	const struct vm_page *pg = n;
    174  1.134        ad 	const voff_t a = pg->offset;
    175  1.134        ad 	const voff_t b = *(const voff_t *)key;
    176  1.134        ad 
    177  1.134        ad 	if (a < b)
    178  1.156     rmind 		return -1;
    179  1.156     rmind 	if (a > b)
    180  1.134        ad 		return 1;
    181  1.134        ad 	return 0;
    182  1.134        ad }
    183  1.134        ad 
    184  1.156     rmind const rb_tree_ops_t uvm_page_tree_ops = {
    185  1.137      matt 	.rbto_compare_nodes = uvm_page_compare_nodes,
    186  1.137      matt 	.rbto_compare_key = uvm_page_compare_key,
    187  1.156     rmind 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    188  1.156     rmind 	.rbto_context = NULL
    189  1.134        ad };
    190    1.1       mrg 
    191    1.1       mrg /*
    192    1.1       mrg  * inline functions
    193    1.1       mrg  */
    194    1.1       mrg 
    195    1.1       mrg /*
    196  1.134        ad  * uvm_pageinsert: insert a page in the object.
    197    1.1       mrg  *
    198    1.1       mrg  * => caller must lock object
    199    1.1       mrg  * => caller must lock page queues
    200    1.1       mrg  * => call should have already set pg's object and offset pointers
    201    1.1       mrg  *    and bumped the version counter
    202    1.1       mrg  */
    203    1.1       mrg 
    204  1.136      yamt static inline void
    205  1.136      yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    206  1.136      yamt     struct vm_page *where)
    207    1.1       mrg {
    208    1.1       mrg 
    209  1.136      yamt 	KASSERT(uobj == pg->uobject);
    210  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    211   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    212   1.96      yamt 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    213   1.96      yamt 	KASSERT(where == NULL || (where->uobject == uobj));
    214  1.123        ad 
    215   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    216   1.94      yamt 		if (uobj->uo_npages == 0) {
    217   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    218   1.94      yamt 
    219   1.94      yamt 			vholdl(vp);
    220   1.94      yamt 		}
    221   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    222  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    223   1.94      yamt 		} else {
    224  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    225   1.94      yamt 		}
    226   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    227  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    228   1.78       chs 	}
    229   1.78       chs 
    230   1.96      yamt 	if (where)
    231  1.133        ad 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    232   1.96      yamt 	else
    233  1.133        ad 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    234    1.7       mrg 	pg->flags |= PG_TABLED;
    235   1.67       chs 	uobj->uo_npages++;
    236    1.1       mrg }
    237    1.1       mrg 
    238  1.136      yamt 
    239  1.136      yamt static inline void
    240  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    241  1.136      yamt {
    242  1.183    martin 	struct vm_page *ret __diagused;
    243  1.136      yamt 
    244  1.136      yamt 	KASSERT(uobj == pg->uobject);
    245  1.156     rmind 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    246  1.156     rmind 	KASSERT(ret == pg);
    247  1.136      yamt }
    248  1.136      yamt 
    249  1.136      yamt static inline void
    250  1.153  uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    251   1.96      yamt {
    252   1.96      yamt 
    253  1.153  uebayasi 	KDASSERT(uobj != NULL);
    254  1.136      yamt 	uvm_pageinsert_tree(uobj, pg);
    255  1.136      yamt 	uvm_pageinsert_list(uobj, pg, NULL);
    256   1.96      yamt }
    257   1.96      yamt 
    258    1.1       mrg /*
    259  1.134        ad  * uvm_page_remove: remove page from object.
    260    1.1       mrg  *
    261    1.1       mrg  * => caller must lock object
    262    1.1       mrg  * => caller must lock page queues
    263    1.1       mrg  */
    264    1.1       mrg 
    265  1.109     perry static inline void
    266  1.136      yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    267    1.1       mrg {
    268    1.1       mrg 
    269  1.136      yamt 	KASSERT(uobj == pg->uobject);
    270  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    271   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    272  1.123        ad 
    273   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    274   1.94      yamt 		if (uobj->uo_npages == 1) {
    275   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    276   1.94      yamt 
    277   1.94      yamt 			holdrelel(vp);
    278   1.94      yamt 		}
    279   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    280  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    281   1.94      yamt 		} else {
    282  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    283   1.94      yamt 		}
    284   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    285  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    286   1.51       chs 	}
    287   1.44       chs 
    288    1.7       mrg 	/* object should be locked */
    289   1.67       chs 	uobj->uo_npages--;
    290  1.133        ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    291    1.7       mrg 	pg->flags &= ~PG_TABLED;
    292    1.7       mrg 	pg->uobject = NULL;
    293    1.1       mrg }
    294    1.1       mrg 
    295  1.136      yamt static inline void
    296  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    297  1.136      yamt {
    298  1.136      yamt 
    299  1.136      yamt 	KASSERT(uobj == pg->uobject);
    300  1.156     rmind 	rb_tree_remove_node(&uobj->rb_tree, pg);
    301  1.136      yamt }
    302  1.136      yamt 
    303  1.136      yamt static inline void
    304  1.153  uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    305  1.136      yamt {
    306  1.136      yamt 
    307  1.153  uebayasi 	KDASSERT(uobj != NULL);
    308  1.136      yamt 	uvm_pageremove_tree(uobj, pg);
    309  1.136      yamt 	uvm_pageremove_list(uobj, pg);
    310  1.136      yamt }
    311  1.136      yamt 
    312   1.60   thorpej static void
    313   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    314   1.60   thorpej {
    315   1.60   thorpej 	int color, i;
    316   1.60   thorpej 
    317   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    318   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    319  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    320   1.60   thorpej 		}
    321   1.60   thorpej 	}
    322   1.60   thorpej }
    323   1.60   thorpej 
    324    1.1       mrg /*
    325    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    326   1.62       chs  *
    327    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    328    1.1       mrg  */
    329    1.1       mrg 
    330    1.7       mrg void
    331  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    332    1.1       mrg {
    333  1.155        ad 	static struct uvm_cpu boot_cpu;
    334  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    335  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    336  1.159  uebayasi 	struct vm_physseg *seg;
    337   1.63       chs 	struct vm_page *pagearray;
    338   1.81   thorpej 	int lcv;
    339   1.81   thorpej 	u_int i;
    340   1.14       eeh 	paddr_t paddr;
    341    1.7       mrg 
    342  1.133        ad 	KASSERT(ncpu <= 1);
    343  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    344  1.133        ad 
    345    1.7       mrg 	/*
    346   1.60   thorpej 	 * init the page queues and page queue locks, except the free
    347   1.60   thorpej 	 * list; we allocate that later (with the initial vm_page
    348   1.60   thorpej 	 * structures).
    349    1.7       mrg 	 */
    350   1.51       chs 
    351  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    352  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    353  1.113      yamt 	uvmpdpol_init();
    354  1.127        ad 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    355  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    356    1.7       mrg 
    357    1.7       mrg 	/*
    358   1.51       chs 	 * allocate vm_page structures.
    359    1.7       mrg 	 */
    360    1.7       mrg 
    361    1.7       mrg 	/*
    362    1.7       mrg 	 * sanity check:
    363    1.7       mrg 	 * before calling this function the MD code is expected to register
    364    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    365    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    366    1.7       mrg 	 */
    367    1.7       mrg 
    368  1.158  uebayasi 	if (vm_nphysmem == 0)
    369   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    370   1.62       chs 
    371    1.7       mrg 	/*
    372   1.62       chs 	 * first calculate the number of free pages...
    373    1.7       mrg 	 *
    374    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    375    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    376    1.7       mrg 	 * want to return some memory to the pool after booting.
    377    1.7       mrg 	 */
    378   1.62       chs 
    379    1.7       mrg 	freepages = 0;
    380  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    381  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    382  1.158  uebayasi 		freepages += (seg->end - seg->start);
    383  1.158  uebayasi 	}
    384    1.7       mrg 
    385    1.7       mrg 	/*
    386   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    387   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    388   1.60   thorpej 	 */
    389   1.60   thorpej 	if (uvmexp.ncolors == 0)
    390   1.60   thorpej 		uvmexp.ncolors = 1;
    391   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    392  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    393   1.60   thorpej 
    394   1.60   thorpej 	/*
    395    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    396    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    397    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    398    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    399    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    400    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    401    1.7       mrg 	 * pages).
    402    1.7       mrg 	 */
    403   1.62       chs 
    404   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    405   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    406    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    407   1.60   thorpej 
    408   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    409  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    410   1.60   thorpej 	    sizeof(struct vm_page)));
    411  1.133        ad 	cpuarray = bucketarray + bucketcount;
    412  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    413   1.60   thorpej 
    414   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    415   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    416   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    417   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    418  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    419  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    420  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    421   1.60   thorpej 	}
    422   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    423   1.62       chs 
    424    1.7       mrg 	/*
    425   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    426    1.7       mrg 	 */
    427    1.7       mrg 
    428  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    429  1.158  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    430  1.158  uebayasi 		n = seg->end - seg->start;
    431   1.51       chs 
    432    1.7       mrg 		/* set up page array pointers */
    433  1.158  uebayasi 		seg->pgs = pagearray;
    434    1.7       mrg 		pagearray += n;
    435    1.7       mrg 		pagecount -= n;
    436  1.161  uebayasi 		seg->lastpg = seg->pgs + n;
    437    1.7       mrg 
    438   1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    439  1.158  uebayasi 		paddr = ctob(seg->start);
    440    1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    441  1.158  uebayasi 			seg->pgs[i].phys_addr = paddr;
    442   1.56   thorpej #ifdef __HAVE_VM_PAGE_MD
    443  1.158  uebayasi 			VM_MDPAGE_INIT(&seg->pgs[i]);
    444   1.56   thorpej #endif
    445  1.158  uebayasi 			if (atop(paddr) >= seg->avail_start &&
    446  1.173      matt 			    atop(paddr) < seg->avail_end) {
    447    1.7       mrg 				uvmexp.npages++;
    448    1.7       mrg 				/* add page to free pool */
    449  1.158  uebayasi 				uvm_pagefree(&seg->pgs[i]);
    450    1.7       mrg 			}
    451    1.7       mrg 		}
    452    1.7       mrg 	}
    453   1.44       chs 
    454    1.7       mrg 	/*
    455   1.88   thorpej 	 * pass up the values of virtual_space_start and
    456   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    457   1.88   thorpej 	 * layers of the VM.
    458   1.88   thorpej 	 */
    459   1.88   thorpej 
    460   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    461   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    462   1.91      yamt #ifdef DEBUG
    463   1.91      yamt 	/*
    464   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    465   1.91      yamt 	 */
    466   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    467   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    468   1.91      yamt #endif /* DEBUG */
    469   1.88   thorpej 
    470   1.88   thorpej 	/*
    471   1.51       chs 	 * init various thresholds.
    472    1.7       mrg 	 */
    473   1.51       chs 
    474    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    475  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    476    1.7       mrg 
    477    1.7       mrg 	/*
    478   1.51       chs 	 * determine if we should zero pages in the idle loop.
    479   1.34   thorpej 	 */
    480   1.51       chs 
    481  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    482   1.34   thorpej 
    483   1.34   thorpej 	/*
    484    1.7       mrg 	 * done!
    485    1.7       mrg 	 */
    486    1.1       mrg 
    487  1.119   thorpej 	uvm.page_init_done = true;
    488    1.1       mrg }
    489    1.1       mrg 
    490    1.1       mrg /*
    491    1.1       mrg  * uvm_setpagesize: set the page size
    492   1.62       chs  *
    493    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    494   1.62       chs  */
    495    1.1       mrg 
    496    1.7       mrg void
    497  1.105   thorpej uvm_setpagesize(void)
    498    1.1       mrg {
    499   1.85   thorpej 
    500   1.85   thorpej 	/*
    501   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    502   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    503   1.85   thorpej 	 */
    504   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    505   1.85   thorpej 		if (PAGE_SIZE == 0)
    506   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    507   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    508   1.85   thorpej 	}
    509    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    510    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    511  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    512  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    513    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    514    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    515    1.7       mrg 			break;
    516    1.1       mrg }
    517    1.1       mrg 
    518    1.1       mrg /*
    519    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    520    1.1       mrg  */
    521    1.1       mrg 
    522   1.14       eeh vaddr_t
    523  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    524    1.1       mrg {
    525  1.119   thorpej 	static bool initialized = false;
    526   1.14       eeh 	vaddr_t addr;
    527   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    528   1.52   thorpej 	vaddr_t vaddr;
    529   1.14       eeh 	paddr_t paddr;
    530   1.52   thorpej #endif
    531    1.1       mrg 
    532    1.7       mrg 	/*
    533   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    534    1.7       mrg 	 */
    535  1.119   thorpej 	if (initialized == false) {
    536   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    537    1.1       mrg 
    538    1.7       mrg 		/* round it the way we like it */
    539   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    540   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    541   1.19   thorpej 
    542  1.119   thorpej 		initialized = true;
    543    1.7       mrg 	}
    544   1.52   thorpej 
    545   1.52   thorpej 	/* round to page size */
    546   1.52   thorpej 	size = round_page(size);
    547   1.52   thorpej 
    548   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    549   1.52   thorpej 
    550   1.62       chs 	/*
    551   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    552   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    553   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    554   1.52   thorpej 	 */
    555   1.52   thorpej 
    556   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    557   1.88   thorpej 	    &virtual_space_end);
    558   1.52   thorpej 
    559   1.52   thorpej 	return(addr);
    560   1.52   thorpej 
    561   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    562    1.1       mrg 
    563    1.7       mrg 	/*
    564    1.7       mrg 	 * allocate virtual memory for this request
    565    1.7       mrg 	 */
    566   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    567   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    568   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    569   1.20   thorpej 
    570   1.88   thorpej 	addr = virtual_space_start;
    571   1.20   thorpej 
    572   1.20   thorpej #ifdef PMAP_GROWKERNEL
    573   1.20   thorpej 	/*
    574   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    575   1.20   thorpej 	 * then allocate more resources for it.
    576   1.20   thorpej 	 */
    577   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    578   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    579   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    580   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    581   1.19   thorpej 	}
    582   1.20   thorpej #endif
    583    1.1       mrg 
    584   1.88   thorpej 	virtual_space_start += size;
    585    1.1       mrg 
    586    1.9   thorpej 	/*
    587    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    588    1.7       mrg 	 */
    589    1.1       mrg 
    590    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    591    1.7       mrg 	    vaddr += PAGE_SIZE) {
    592    1.1       mrg 
    593    1.7       mrg 		if (!uvm_page_physget(&paddr))
    594    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    595    1.1       mrg 
    596   1.23   thorpej 		/*
    597   1.23   thorpej 		 * Note this memory is no longer managed, so using
    598   1.23   thorpej 		 * pmap_kenter is safe.
    599   1.23   thorpej 		 */
    600  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    601    1.7       mrg 	}
    602   1.66     chris 	pmap_update(pmap_kernel());
    603    1.7       mrg 	return(addr);
    604    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    605    1.1       mrg }
    606    1.1       mrg 
    607    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    608    1.1       mrg /*
    609    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    610    1.1       mrg  *
    611    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    612    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    613    1.1       mrg  *    will advance both values (making them equal, and removing some
    614    1.1       mrg  *    vm_page structures from the non-avail area).
    615    1.1       mrg  * => return false if out of memory.
    616    1.1       mrg  */
    617    1.1       mrg 
    618   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    619  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    620   1.28  drochner 
    621  1.118   thorpej static bool
    622  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    623    1.1       mrg {
    624  1.159  uebayasi 	struct vm_physseg *seg;
    625    1.7       mrg 	int lcv, x;
    626    1.1       mrg 
    627    1.7       mrg 	/* pass 1: try allocating from a matching end */
    628    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    629  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    630    1.1       mrg #else
    631  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    632    1.1       mrg #endif
    633    1.7       mrg 	{
    634  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    635    1.1       mrg 
    636  1.119   thorpej 		if (uvm.page_init_done == true)
    637   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    638    1.1       mrg 
    639  1.159  uebayasi 		if (seg->free_list != freelist)
    640   1.28  drochner 			continue;
    641   1.28  drochner 
    642    1.7       mrg 		/* try from front */
    643  1.159  uebayasi 		if (seg->avail_start == seg->start &&
    644  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    645  1.159  uebayasi 			*paddrp = ctob(seg->avail_start);
    646  1.159  uebayasi 			seg->avail_start++;
    647  1.159  uebayasi 			seg->start++;
    648    1.7       mrg 			/* nothing left?   nuke it */
    649  1.159  uebayasi 			if (seg->avail_start == seg->end) {
    650  1.158  uebayasi 				if (vm_nphysmem == 1)
    651   1.89       wiz 				    panic("uvm_page_physget: out of memory!");
    652  1.158  uebayasi 				vm_nphysmem--;
    653  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    654  1.167  uebayasi 					/* structure copy */
    655  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    656    1.7       mrg 			}
    657  1.119   thorpej 			return (true);
    658    1.7       mrg 		}
    659    1.7       mrg 
    660    1.7       mrg 		/* try from rear */
    661  1.159  uebayasi 		if (seg->avail_end == seg->end &&
    662  1.159  uebayasi 		    seg->avail_start < seg->avail_end) {
    663  1.159  uebayasi 			*paddrp = ctob(seg->avail_end - 1);
    664  1.159  uebayasi 			seg->avail_end--;
    665  1.159  uebayasi 			seg->end--;
    666    1.7       mrg 			/* nothing left?   nuke it */
    667  1.159  uebayasi 			if (seg->avail_end == seg->start) {
    668  1.158  uebayasi 				if (vm_nphysmem == 1)
    669   1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    670  1.158  uebayasi 				vm_nphysmem--;
    671  1.158  uebayasi 				for (x = lcv ; x < vm_nphysmem ; x++)
    672  1.167  uebayasi 					/* structure copy */
    673  1.158  uebayasi 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    674    1.7       mrg 			}
    675  1.119   thorpej 			return (true);
    676    1.7       mrg 		}
    677    1.7       mrg 	}
    678    1.1       mrg 
    679    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    680    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    681  1.158  uebayasi 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    682    1.1       mrg #else
    683  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    684    1.1       mrg #endif
    685    1.7       mrg 	{
    686  1.159  uebayasi 		seg = VM_PHYSMEM_PTR(lcv);
    687    1.1       mrg 
    688    1.7       mrg 		/* any room in this bank? */
    689  1.159  uebayasi 		if (seg->avail_start >= seg->avail_end)
    690    1.7       mrg 			continue;  /* nope */
    691    1.7       mrg 
    692  1.159  uebayasi 		*paddrp = ctob(seg->avail_start);
    693  1.159  uebayasi 		seg->avail_start++;
    694    1.7       mrg 		/* truncate! */
    695  1.159  uebayasi 		seg->start = seg->avail_start;
    696    1.7       mrg 
    697    1.7       mrg 		/* nothing left?   nuke it */
    698  1.159  uebayasi 		if (seg->avail_start == seg->end) {
    699  1.158  uebayasi 			if (vm_nphysmem == 1)
    700   1.42       mrg 				panic("uvm_page_physget: out of memory!");
    701  1.158  uebayasi 			vm_nphysmem--;
    702  1.158  uebayasi 			for (x = lcv ; x < vm_nphysmem ; x++)
    703  1.167  uebayasi 				/* structure copy */
    704  1.158  uebayasi 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    705    1.7       mrg 		}
    706  1.119   thorpej 		return (true);
    707    1.7       mrg 	}
    708    1.1       mrg 
    709  1.119   thorpej 	return (false);        /* whoops! */
    710   1.28  drochner }
    711   1.28  drochner 
    712  1.118   thorpej bool
    713  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    714   1.28  drochner {
    715   1.28  drochner 	int i;
    716   1.28  drochner 
    717   1.28  drochner 	/* try in the order of freelist preference */
    718   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    719  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    720  1.119   thorpej 			return (true);
    721  1.119   thorpej 	return (false);
    722    1.1       mrg }
    723    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    724    1.1       mrg 
    725    1.1       mrg /*
    726    1.1       mrg  * uvm_page_physload: load physical memory into VM system
    727    1.1       mrg  *
    728    1.1       mrg  * => all args are PFs
    729    1.1       mrg  * => all pages in start/end get vm_page structures
    730    1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    731    1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    732    1.1       mrg  */
    733    1.1       mrg 
    734    1.7       mrg void
    735  1.105   thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    736  1.105   thorpej     paddr_t avail_end, int free_list)
    737    1.1       mrg {
    738  1.167  uebayasi 	int preload, lcv;
    739  1.167  uebayasi 	psize_t npages;
    740  1.167  uebayasi 	struct vm_page *pgs;
    741  1.167  uebayasi 	struct vm_physseg *ps;
    742    1.7       mrg 
    743  1.167  uebayasi 	if (uvmexp.pagesize == 0)
    744  1.167  uebayasi 		panic("uvm_page_physload: page size not set!");
    745   1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    746   1.79    provos 		panic("uvm_page_physload: bad free list %d", free_list);
    747  1.167  uebayasi 	if (start >= end)
    748  1.167  uebayasi 		panic("uvm_page_physload: start >= end");
    749   1.67       chs 
    750  1.167  uebayasi 	/*
    751  1.167  uebayasi 	 * do we have room?
    752  1.167  uebayasi 	 */
    753  1.167  uebayasi 
    754  1.167  uebayasi 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    755  1.167  uebayasi 		printf("uvm_page_physload: unable to load physical memory "
    756  1.167  uebayasi 		    "segment\n");
    757  1.167  uebayasi 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    758  1.167  uebayasi 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    759  1.167  uebayasi 		printf("\tincrease VM_PHYSSEG_MAX\n");
    760  1.167  uebayasi 		return;
    761  1.167  uebayasi 	}
    762    1.7       mrg 
    763    1.7       mrg 	/*
    764  1.160  uebayasi 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    765  1.179      para 	 * called yet, so kmem is not available).
    766    1.7       mrg 	 */
    767   1.67       chs 
    768  1.158  uebayasi 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    769  1.159  uebayasi 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    770    1.7       mrg 			break;
    771    1.7       mrg 	}
    772  1.167  uebayasi 	preload = (lcv == vm_nphysmem);
    773  1.164  uebayasi 
    774  1.167  uebayasi 	/*
    775  1.179      para 	 * if VM is already running, attempt to kmem_alloc vm_page structures
    776  1.167  uebayasi 	 */
    777  1.164  uebayasi 
    778  1.167  uebayasi 	if (!preload) {
    779  1.167  uebayasi 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    780  1.167  uebayasi 	} else {
    781  1.167  uebayasi 		pgs = NULL;
    782  1.167  uebayasi 		npages = 0;
    783  1.164  uebayasi 	}
    784  1.164  uebayasi 
    785  1.167  uebayasi 	/*
    786  1.167  uebayasi 	 * now insert us in the proper place in vm_physmem[]
    787  1.167  uebayasi 	 */
    788    1.1       mrg 
    789    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    790    1.7       mrg 	/* random: put it at the end (easy!) */
    791  1.167  uebayasi 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    792    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    793    1.7       mrg 	{
    794    1.7       mrg 		int x;
    795    1.7       mrg 		/* sort by address for binary search */
    796  1.167  uebayasi 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    797  1.167  uebayasi 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    798    1.7       mrg 				break;
    799  1.167  uebayasi 		ps = VM_PHYSMEM_PTR(lcv);
    800    1.7       mrg 		/* move back other entries, if necessary ... */
    801  1.167  uebayasi 		for (x = vm_nphysmem ; x > lcv ; x--)
    802  1.167  uebayasi 			/* structure copy */
    803  1.167  uebayasi 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    804    1.7       mrg 	}
    805    1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    806    1.7       mrg 	{
    807    1.7       mrg 		int x;
    808    1.7       mrg 		/* sort by largest segment first */
    809  1.167  uebayasi 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    810  1.167  uebayasi 			if ((end - start) >
    811  1.167  uebayasi 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    812    1.7       mrg 				break;
    813  1.167  uebayasi 		ps = VM_PHYSMEM_PTR(lcv);
    814    1.7       mrg 		/* move back other entries, if necessary ... */
    815  1.167  uebayasi 		for (x = vm_nphysmem ; x > lcv ; x--)
    816  1.167  uebayasi 			/* structure copy */
    817  1.167  uebayasi 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    818    1.7       mrg 	}
    819    1.1       mrg #else
    820   1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    821    1.1       mrg #endif
    822    1.1       mrg 
    823  1.167  uebayasi 	ps->start = start;
    824  1.167  uebayasi 	ps->end = end;
    825  1.167  uebayasi 	ps->avail_start = avail_start;
    826  1.167  uebayasi 	ps->avail_end = avail_end;
    827  1.167  uebayasi 	if (preload) {
    828  1.167  uebayasi 		ps->pgs = NULL;
    829  1.167  uebayasi 	} else {
    830  1.167  uebayasi 		ps->pgs = pgs;
    831  1.167  uebayasi 		ps->lastpg = pgs + npages;
    832  1.167  uebayasi 	}
    833  1.167  uebayasi 	ps->free_list = free_list;
    834  1.167  uebayasi 	vm_nphysmem++;
    835    1.7       mrg 
    836  1.167  uebayasi 	if (!preload) {
    837  1.167  uebayasi 		uvmpdpol_reinit();
    838  1.113      yamt 	}
    839    1.1       mrg }
    840    1.1       mrg 
    841    1.1       mrg /*
    842  1.167  uebayasi  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    843  1.162  uebayasi  */
    844  1.162  uebayasi 
    845  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    846  1.167  uebayasi static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
    847  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    848  1.167  uebayasi static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
    849  1.162  uebayasi #else
    850  1.167  uebayasi static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
    851  1.162  uebayasi #endif
    852  1.162  uebayasi 
    853  1.167  uebayasi /*
    854  1.167  uebayasi  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    855  1.167  uebayasi  */
    856  1.162  uebayasi int
    857  1.162  uebayasi vm_physseg_find(paddr_t pframe, int *offp)
    858  1.162  uebayasi {
    859  1.162  uebayasi 
    860  1.167  uebayasi #if VM_PHYSSEG_MAX == 1
    861  1.167  uebayasi 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    862  1.167  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    863  1.167  uebayasi 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    864  1.167  uebayasi #else
    865  1.167  uebayasi 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    866  1.167  uebayasi #endif
    867  1.162  uebayasi }
    868  1.162  uebayasi 
    869  1.162  uebayasi #if VM_PHYSSEG_MAX == 1
    870  1.162  uebayasi static inline int
    871  1.167  uebayasi vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    872  1.162  uebayasi {
    873  1.162  uebayasi 
    874  1.162  uebayasi 	/* 'contig' case */
    875  1.167  uebayasi 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    876  1.167  uebayasi 		if (offp)
    877  1.167  uebayasi 			*offp = pframe - segs[0].start;
    878  1.162  uebayasi 		return(0);
    879  1.162  uebayasi 	}
    880  1.162  uebayasi 	return(-1);
    881  1.162  uebayasi }
    882  1.162  uebayasi 
    883  1.162  uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    884  1.162  uebayasi 
    885  1.162  uebayasi static inline int
    886  1.167  uebayasi vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    887  1.162  uebayasi {
    888  1.162  uebayasi 	/* binary search for it */
    889  1.162  uebayasi 	u_int	start, len, try;
    890  1.162  uebayasi 
    891  1.162  uebayasi 	/*
    892  1.162  uebayasi 	 * if try is too large (thus target is less than try) we reduce
    893  1.162  uebayasi 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    894  1.162  uebayasi 	 *
    895  1.162  uebayasi 	 * if the try is too small (thus target is greater than try) then
    896  1.162  uebayasi 	 * we set the new start to be (try + 1).   this means we need to
    897  1.162  uebayasi 	 * reduce the length to (round(len/2) - 1).
    898  1.162  uebayasi 	 *
    899  1.162  uebayasi 	 * note "adjust" below which takes advantage of the fact that
    900  1.162  uebayasi 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    901  1.162  uebayasi 	 * for any value of len we may have
    902  1.162  uebayasi 	 */
    903  1.162  uebayasi 
    904  1.162  uebayasi 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    905  1.162  uebayasi 		try = start + (len / 2);	/* try in the middle */
    906  1.162  uebayasi 
    907  1.162  uebayasi 		/* start past our try? */
    908  1.167  uebayasi 		if (pframe >= segs[try].start) {
    909  1.162  uebayasi 			/* was try correct? */
    910  1.167  uebayasi 			if (pframe < segs[try].end) {
    911  1.167  uebayasi 				if (offp)
    912  1.167  uebayasi 					*offp = pframe - segs[try].start;
    913  1.162  uebayasi 				return(try);            /* got it */
    914  1.162  uebayasi 			}
    915  1.162  uebayasi 			start = try + 1;	/* next time, start here */
    916  1.162  uebayasi 			len--;			/* "adjust" */
    917  1.162  uebayasi 		} else {
    918  1.162  uebayasi 			/*
    919  1.162  uebayasi 			 * pframe before try, just reduce length of
    920  1.162  uebayasi 			 * region, done in "for" loop
    921  1.162  uebayasi 			 */
    922  1.162  uebayasi 		}
    923  1.162  uebayasi 	}
    924  1.162  uebayasi 	return(-1);
    925  1.162  uebayasi }
    926  1.162  uebayasi 
    927  1.162  uebayasi #else
    928  1.162  uebayasi 
    929  1.162  uebayasi static inline int
    930  1.167  uebayasi vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    931  1.162  uebayasi {
    932  1.162  uebayasi 	/* linear search for it */
    933  1.162  uebayasi 	int	lcv;
    934  1.162  uebayasi 
    935  1.162  uebayasi 	for (lcv = 0; lcv < nsegs; lcv++) {
    936  1.167  uebayasi 		if (pframe >= segs[lcv].start &&
    937  1.167  uebayasi 		    pframe < segs[lcv].end) {
    938  1.167  uebayasi 			if (offp)
    939  1.167  uebayasi 				*offp = pframe - segs[lcv].start;
    940  1.162  uebayasi 			return(lcv);		   /* got it */
    941  1.162  uebayasi 		}
    942  1.162  uebayasi 	}
    943  1.162  uebayasi 	return(-1);
    944  1.162  uebayasi }
    945  1.162  uebayasi #endif
    946  1.162  uebayasi 
    947  1.162  uebayasi /*
    948  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    949  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    950  1.163  uebayasi  */
    951  1.163  uebayasi struct vm_page *
    952  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    953  1.163  uebayasi {
    954  1.163  uebayasi 	paddr_t pf = atop(pa);
    955  1.163  uebayasi 	int	off;
    956  1.163  uebayasi 	int	psi;
    957  1.163  uebayasi 
    958  1.163  uebayasi 	psi = vm_physseg_find(pf, &off);
    959  1.163  uebayasi 	if (psi != -1)
    960  1.163  uebayasi 		return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
    961  1.163  uebayasi 	return(NULL);
    962  1.163  uebayasi }
    963  1.163  uebayasi 
    964  1.163  uebayasi paddr_t
    965  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    966  1.163  uebayasi {
    967  1.163  uebayasi 
    968  1.163  uebayasi 	return pg->phys_addr;
    969  1.163  uebayasi }
    970  1.163  uebayasi 
    971  1.163  uebayasi /*
    972   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    973   1.60   thorpej  * larger than the old one.
    974   1.60   thorpej  */
    975   1.60   thorpej 
    976   1.60   thorpej void
    977   1.60   thorpej uvm_page_recolor(int newncolors)
    978   1.60   thorpej {
    979  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    980  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    981   1.63       chs 	struct vm_page *pg;
    982   1.60   thorpej 	vsize_t bucketcount;
    983  1.179      para 	size_t bucketmemsize, oldbucketmemsize;
    984  1.123        ad 	int lcv, color, i, ocolors;
    985  1.133        ad 	struct uvm_cpu *ucpu;
    986   1.60   thorpej 
    987  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    988  1.178  uebayasi 
    989   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    990   1.60   thorpej 		return;
    991   1.77  wrstuden 
    992  1.119   thorpej 	if (uvm.page_init_done == false) {
    993   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    994   1.77  wrstuden 		return;
    995   1.77  wrstuden 	}
    996   1.60   thorpej 
    997   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    998  1.179      para 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    999  1.179      para 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
   1000  1.133        ad 	cpuarray = bucketarray + bucketcount;
   1001   1.60   thorpej 	if (bucketarray == NULL) {
   1002   1.60   thorpej 		printf("WARNING: unable to allocate %ld page color buckets\n",
   1003   1.60   thorpej 		    (long) bucketcount);
   1004   1.60   thorpej 		return;
   1005   1.60   thorpej 	}
   1006   1.60   thorpej 
   1007  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1008   1.60   thorpej 
   1009   1.60   thorpej 	/* Make sure we should still do this. */
   1010   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
   1011  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
   1012  1.179      para 		kmem_free(bucketarray, bucketmemsize);
   1013   1.60   thorpej 		return;
   1014   1.60   thorpej 	}
   1015   1.60   thorpej 
   1016   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
   1017   1.60   thorpej 	ocolors = uvmexp.ncolors;
   1018   1.60   thorpej 
   1019   1.60   thorpej 	uvmexp.ncolors = newncolors;
   1020   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
   1021   1.60   thorpej 
   1022  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1023   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1024  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
   1025  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
   1026  1.133        ad 		uvm_page_init_buckets(&gpgfl);
   1027   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
   1028   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
   1029   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
   1030  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
   1031   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
   1032   1.60   thorpej 				    != NULL) {
   1033  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
   1034  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
   1035  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
   1036  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1037  1.133        ad 					    i], pg, pageq.list);
   1038  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1039   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1040  1.133        ad 					    i], pg, listq.list);
   1041   1.60   thorpej 				}
   1042   1.60   thorpej 			}
   1043   1.60   thorpej 		}
   1044  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1045  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1046   1.60   thorpej 	}
   1047   1.60   thorpej 
   1048  1.179      para 	oldbucketmemsize = recolored_pages_memsize;
   1049  1.177       mrg 
   1050  1.179      para 	recolored_pages_memsize = bucketmemsize;
   1051  1.177       mrg 	mutex_spin_exit(&uvm_fpageqlock);
   1052  1.176      matt 
   1053  1.179      para 	if (oldbucketmemsize) {
   1054  1.179      para 		kmem_free(oldbucketarray, recolored_pages_memsize);
   1055  1.179      para 	}
   1056   1.60   thorpej 
   1057  1.177       mrg 	/*
   1058  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
   1059  1.177       mrg 	 * uvm_fpageqlock.
   1060  1.177       mrg 	 */
   1061  1.177       mrg 	uvm_pager_realloc_emerg();
   1062   1.60   thorpej }
   1063    1.1       mrg 
   1064    1.1       mrg /*
   1065  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
   1066  1.133        ad  */
   1067  1.133        ad 
   1068  1.133        ad void
   1069  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
   1070  1.133        ad {
   1071  1.133        ad 	struct pgflbucket *bucketarray;
   1072  1.133        ad 	struct pgfreelist pgfl;
   1073  1.133        ad 	struct uvm_cpu *ucpu;
   1074  1.133        ad 	vsize_t bucketcount;
   1075  1.133        ad 	int lcv;
   1076  1.133        ad 
   1077  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
   1078  1.133        ad 		/* Already done in uvm_page_init(). */
   1079  1.181       tls 		goto attachrnd;
   1080  1.133        ad 	}
   1081  1.133        ad 
   1082  1.140        ad 	/* Add more reserve pages for this CPU. */
   1083  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
   1084  1.140        ad 
   1085  1.140        ad 	/* Configure this CPU's free lists. */
   1086  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1087  1.179      para 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
   1088  1.179      para 	    KM_SLEEP);
   1089  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
   1090  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
   1091  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
   1092  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1093  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1094  1.133        ad 		uvm_page_init_buckets(&pgfl);
   1095  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1096  1.133        ad 	}
   1097  1.181       tls 
   1098  1.181       tls attachrnd:
   1099  1.181       tls 	/*
   1100  1.181       tls 	 * Attach RNG source for this CPU's VM events
   1101  1.181       tls 	 */
   1102  1.181       tls         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
   1103  1.181       tls 			  ci->ci_data.cpu_name, RND_TYPE_VM, 0);
   1104  1.181       tls 
   1105  1.133        ad }
   1106  1.133        ad 
   1107  1.133        ad /*
   1108   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1109   1.54   thorpej  */
   1110   1.54   thorpej 
   1111  1.114   thorpej static struct vm_page *
   1112  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1113   1.69    simonb     int *trycolorp)
   1114   1.54   thorpej {
   1115  1.133        ad 	struct pgflist *freeq;
   1116   1.54   thorpej 	struct vm_page *pg;
   1117   1.58     enami 	int color, trycolor = *trycolorp;
   1118  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
   1119   1.54   thorpej 
   1120  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1121  1.130        ad 
   1122   1.58     enami 	color = trycolor;
   1123  1.133        ad 	pgfl = &ucpu->page_free[flist];
   1124  1.133        ad 	gpgfl = &uvm.page_free[flist];
   1125   1.58     enami 	do {
   1126  1.133        ad 		/* cpu, try1 */
   1127  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1128  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1129  1.182      matt 			KASSERT(pg->pqflags & PQ_FREE);
   1130  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
   1131  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
   1132  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
   1133  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1134  1.133        ad 		    	uvmexp.cpuhit++;
   1135  1.133        ad 			goto gotit;
   1136  1.133        ad 		}
   1137  1.133        ad 		/* global, try1 */
   1138  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1139  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1140  1.182      matt 			KASSERT(pg->pqflags & PQ_FREE);
   1141  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
   1142  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
   1143  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
   1144  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1145  1.133        ad 		    	uvmexp.cpumiss++;
   1146   1.54   thorpej 			goto gotit;
   1147  1.133        ad 		}
   1148  1.133        ad 		/* cpu, try2 */
   1149  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1150  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1151  1.182      matt 			KASSERT(pg->pqflags & PQ_FREE);
   1152  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
   1153  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
   1154  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
   1155  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1156  1.133        ad 		    	uvmexp.cpuhit++;
   1157   1.54   thorpej 			goto gotit;
   1158  1.133        ad 		}
   1159  1.133        ad 		/* global, try2 */
   1160  1.133        ad 		if ((pg = LIST_FIRST((freeq =
   1161  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1162  1.182      matt 			KASSERT(pg->pqflags & PQ_FREE);
   1163  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
   1164  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
   1165  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
   1166  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1167  1.133        ad 		    	uvmexp.cpumiss++;
   1168  1.133        ad 			goto gotit;
   1169  1.133        ad 		}
   1170   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
   1171   1.58     enami 	} while (color != trycolor);
   1172   1.54   thorpej 
   1173   1.54   thorpej 	return (NULL);
   1174   1.54   thorpej 
   1175   1.54   thorpej  gotit:
   1176  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1177  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1178   1.54   thorpej 	uvmexp.free--;
   1179   1.54   thorpej 
   1180   1.54   thorpej 	/* update zero'd page count */
   1181   1.54   thorpej 	if (pg->flags & PG_ZERO)
   1182   1.54   thorpej 		uvmexp.zeropages--;
   1183   1.54   thorpej 
   1184   1.54   thorpej 	if (color == trycolor)
   1185   1.54   thorpej 		uvmexp.colorhit++;
   1186   1.54   thorpej 	else {
   1187   1.54   thorpej 		uvmexp.colormiss++;
   1188   1.54   thorpej 		*trycolorp = color;
   1189   1.54   thorpej 	}
   1190   1.54   thorpej 
   1191   1.54   thorpej 	return (pg);
   1192   1.54   thorpej }
   1193   1.54   thorpej 
   1194   1.54   thorpej /*
   1195   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1196    1.1       mrg  *
   1197    1.1       mrg  * => return null if no pages free
   1198    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
   1199  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1200    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
   1201    1.1       mrg  * => only one of obj or anon can be non-null
   1202    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
   1203   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1204   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
   1205   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
   1206   1.34   thorpej  *	unknown contents page.  This is because we live with the
   1207   1.34   thorpej  *	consequences of a bad free list decision for the entire
   1208   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
   1209   1.34   thorpej  *	is slower to access.
   1210    1.1       mrg  */
   1211    1.1       mrg 
   1212    1.7       mrg struct vm_page *
   1213  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1214  1.105   thorpej     int flags, int strat, int free_list)
   1215    1.1       mrg {
   1216  1.123        ad 	int lcv, try1, try2, zeroit = 0, color;
   1217  1.133        ad 	struct uvm_cpu *ucpu;
   1218    1.7       mrg 	struct vm_page *pg;
   1219  1.141        ad 	lwp_t *l;
   1220    1.1       mrg 
   1221   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
   1222  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1223   1.44       chs 	KASSERT(off == trunc_page(off));
   1224  1.174     rmind 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
   1225  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1226  1.175     rmind 	    mutex_owned(anon->an_lock));
   1227   1.48   thorpej 
   1228  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1229    1.1       mrg 
   1230    1.7       mrg 	/*
   1231   1.54   thorpej 	 * This implements a global round-robin page coloring
   1232   1.54   thorpej 	 * algorithm.
   1233   1.54   thorpej 	 */
   1234   1.67       chs 
   1235  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1236  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
   1237  1.169      matt 		color = atop(off) & uvmexp.colormask;
   1238  1.169      matt 	} else {
   1239  1.169      matt 		color = ucpu->page_free_nextcolor;
   1240  1.169      matt 	}
   1241   1.54   thorpej 
   1242   1.54   thorpej 	/*
   1243    1.7       mrg 	 * check to see if we need to generate some free pages waking
   1244    1.7       mrg 	 * the pagedaemon.
   1245    1.7       mrg 	 */
   1246    1.7       mrg 
   1247  1.113      yamt 	uvm_kick_pdaemon();
   1248    1.7       mrg 
   1249    1.7       mrg 	/*
   1250    1.7       mrg 	 * fail if any of these conditions is true:
   1251    1.7       mrg 	 * [1]  there really are no free pages, or
   1252    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1253  1.141        ad 	 *        reserved pages have not been requested.
   1254    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1255    1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1256  1.141        ad 	 * we make kernel reserve pages available if called by a
   1257  1.141        ad 	 * kernel thread or a realtime thread.
   1258    1.7       mrg 	 */
   1259  1.141        ad 	l = curlwp;
   1260  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1261  1.141        ad 		flags |= UVM_PGA_USERESERVE;
   1262  1.141        ad 	}
   1263  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1264  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1265    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1266  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
   1267   1.12   thorpej 		goto fail;
   1268   1.12   thorpej 
   1269   1.34   thorpej #if PGFL_NQUEUES != 2
   1270   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
   1271   1.34   thorpej #endif
   1272   1.34   thorpej 
   1273   1.34   thorpej 	/*
   1274   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1275   1.34   thorpej 	 * we try the UNKNOWN queue first.
   1276   1.34   thorpej 	 */
   1277   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1278   1.34   thorpej 		try1 = PGFL_ZEROS;
   1279   1.34   thorpej 		try2 = PGFL_UNKNOWN;
   1280   1.34   thorpej 	} else {
   1281   1.34   thorpej 		try1 = PGFL_UNKNOWN;
   1282   1.34   thorpej 		try2 = PGFL_ZEROS;
   1283   1.34   thorpej 	}
   1284   1.34   thorpej 
   1285   1.12   thorpej  again:
   1286   1.12   thorpej 	switch (strat) {
   1287   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1288  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
   1289   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1290  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1291   1.54   thorpej 			    try1, try2, &color);
   1292   1.54   thorpej 			if (pg != NULL)
   1293   1.12   thorpej 				goto gotit;
   1294   1.12   thorpej 		}
   1295   1.12   thorpej 
   1296   1.12   thorpej 		/* No pages free! */
   1297   1.12   thorpej 		goto fail;
   1298   1.12   thorpej 
   1299   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1300   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1301   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1302   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1303  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1304   1.54   thorpej 		    try1, try2, &color);
   1305   1.54   thorpej 		if (pg != NULL)
   1306   1.12   thorpej 			goto gotit;
   1307   1.12   thorpej 
   1308   1.12   thorpej 		/* Fall back, if possible. */
   1309   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1310   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1311   1.12   thorpej 			goto again;
   1312   1.12   thorpej 		}
   1313   1.12   thorpej 
   1314   1.12   thorpej 		/* No pages free! */
   1315   1.12   thorpej 		goto fail;
   1316   1.12   thorpej 
   1317   1.12   thorpej 	default:
   1318   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1319   1.12   thorpej 		/* NOTREACHED */
   1320    1.7       mrg 	}
   1321    1.7       mrg 
   1322   1.12   thorpej  gotit:
   1323   1.54   thorpej 	/*
   1324   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1325   1.54   thorpej 	 * the next color accordingly.
   1326   1.54   thorpej 	 */
   1327   1.67       chs 
   1328  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1329   1.34   thorpej 
   1330   1.34   thorpej 	/*
   1331   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1332   1.34   thorpej 	 * zero the page
   1333   1.34   thorpej 	 */
   1334   1.67       chs 
   1335   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1336   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1337   1.34   thorpej 			uvmexp.pga_zerohit++;
   1338   1.34   thorpej 			zeroit = 0;
   1339   1.34   thorpej 		} else {
   1340   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1341   1.34   thorpej 			zeroit = 1;
   1342   1.34   thorpej 		}
   1343  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1344  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1345  1.133        ad 		}
   1346   1.34   thorpej 	}
   1347  1.143  drochner 	KASSERT(pg->pqflags == PQ_FREE);
   1348    1.7       mrg 
   1349    1.7       mrg 	pg->offset = off;
   1350    1.7       mrg 	pg->uobject = obj;
   1351    1.7       mrg 	pg->uanon = anon;
   1352    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1353    1.7       mrg 	if (anon) {
   1354  1.103      yamt 		anon->an_page = pg;
   1355    1.7       mrg 		pg->pqflags = PQ_ANON;
   1356  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1357    1.7       mrg 	} else {
   1358   1.67       chs 		if (obj) {
   1359  1.153  uebayasi 			uvm_pageinsert(obj, pg);
   1360   1.67       chs 		}
   1361    1.7       mrg 		pg->pqflags = 0;
   1362    1.7       mrg 	}
   1363  1.143  drochner 	mutex_spin_exit(&uvm_fpageqlock);
   1364  1.143  drochner 
   1365    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1366    1.7       mrg 	pg->owner_tag = NULL;
   1367    1.1       mrg #endif
   1368    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1369   1.33   thorpej 
   1370   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1371   1.33   thorpej 		/*
   1372   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1373   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1374   1.33   thorpej 		 */
   1375   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1376   1.34   thorpej 		if (zeroit)
   1377   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1378   1.33   thorpej 	}
   1379    1.1       mrg 
   1380    1.7       mrg 	return(pg);
   1381   1.12   thorpej 
   1382   1.12   thorpej  fail:
   1383  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1384   1.12   thorpej 	return (NULL);
   1385    1.1       mrg }
   1386    1.1       mrg 
   1387    1.1       mrg /*
   1388   1.96      yamt  * uvm_pagereplace: replace a page with another
   1389   1.96      yamt  *
   1390   1.96      yamt  * => object must be locked
   1391   1.96      yamt  */
   1392   1.96      yamt 
   1393   1.96      yamt void
   1394  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1395   1.96      yamt {
   1396  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1397   1.97  junyoung 
   1398   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1399  1.136      yamt 	KASSERT(uobj != NULL);
   1400   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1401   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1402  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
   1403   1.96      yamt 
   1404  1.136      yamt 	newpg->uobject = uobj;
   1405   1.96      yamt 	newpg->offset = oldpg->offset;
   1406   1.96      yamt 
   1407  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1408  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1409  1.136      yamt 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1410  1.136      yamt 	uvm_pageremove_list(uobj, oldpg);
   1411   1.96      yamt }
   1412   1.96      yamt 
   1413   1.96      yamt /*
   1414    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1415    1.1       mrg  *
   1416    1.1       mrg  * => both objects must be locked
   1417    1.1       mrg  */
   1418    1.1       mrg 
   1419    1.7       mrg void
   1420  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1421    1.1       mrg {
   1422    1.7       mrg 	/*
   1423    1.7       mrg 	 * remove it from the old object
   1424    1.7       mrg 	 */
   1425    1.7       mrg 
   1426    1.7       mrg 	if (pg->uobject) {
   1427  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1428    1.7       mrg 	}
   1429    1.7       mrg 
   1430    1.7       mrg 	/*
   1431    1.7       mrg 	 * put it in the new object
   1432    1.7       mrg 	 */
   1433    1.7       mrg 
   1434    1.7       mrg 	if (newobj) {
   1435    1.7       mrg 		pg->uobject = newobj;
   1436    1.7       mrg 		pg->offset = newoff;
   1437  1.153  uebayasi 		uvm_pageinsert(newobj, pg);
   1438    1.7       mrg 	}
   1439    1.1       mrg }
   1440    1.1       mrg 
   1441   1.91      yamt #ifdef DEBUG
   1442   1.91      yamt /*
   1443   1.91      yamt  * check if page is zero-filled
   1444   1.91      yamt  *
   1445   1.91      yamt  *  - called with free page queue lock held.
   1446   1.91      yamt  */
   1447   1.91      yamt void
   1448   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1449   1.91      yamt {
   1450   1.91      yamt 	int *p, *ep;
   1451   1.91      yamt 
   1452   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1453  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1454   1.91      yamt 
   1455   1.91      yamt 	/*
   1456   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1457   1.91      yamt 	 * uvm page allocator.
   1458   1.91      yamt 	 *
   1459   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1460   1.91      yamt 	 */
   1461  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1462   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1463   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1464   1.92      yamt 	pmap_update(pmap_kernel());
   1465   1.91      yamt 	while (p < ep) {
   1466   1.91      yamt 		if (*p != 0)
   1467   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1468   1.91      yamt 		p++;
   1469   1.91      yamt 	}
   1470   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1471  1.131      yamt 	/*
   1472  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1473  1.131      yamt 	 * uses this VA.
   1474  1.131      yamt 	 */
   1475   1.91      yamt }
   1476   1.91      yamt #endif /* DEBUG */
   1477   1.91      yamt 
   1478    1.1       mrg /*
   1479    1.1       mrg  * uvm_pagefree: free page
   1480    1.1       mrg  *
   1481  1.133        ad  * => erase page's identity (i.e. remove from object)
   1482    1.1       mrg  * => put page on free list
   1483    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1484    1.1       mrg  * => caller must lock page queues
   1485    1.1       mrg  * => assumes all valid mappings of pg are gone
   1486    1.1       mrg  */
   1487    1.1       mrg 
   1488   1.44       chs void
   1489  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1490    1.1       mrg {
   1491  1.133        ad 	struct pgflist *pgfl;
   1492  1.133        ad 	struct uvm_cpu *ucpu;
   1493  1.133        ad 	int index, color, queue;
   1494  1.118   thorpej 	bool iszero;
   1495   1.67       chs 
   1496   1.44       chs #ifdef DEBUG
   1497   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1498   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1499   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1500   1.44       chs 	}
   1501   1.91      yamt #endif /* DEBUG */
   1502   1.44       chs 
   1503  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1504  1.143  drochner 	KASSERT(!(pg->pqflags & PQ_FREE));
   1505  1.182      matt 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1506  1.174     rmind 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1507  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1508  1.174     rmind 		mutex_owned(pg->uanon->an_lock));
   1509  1.123        ad 
   1510    1.7       mrg 	/*
   1511   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1512    1.7       mrg 	 */
   1513    1.7       mrg 
   1514   1.67       chs 	if (pg->loan_count) {
   1515   1.70       chs 		KASSERT(pg->wire_count == 0);
   1516    1.7       mrg 
   1517    1.7       mrg 		/*
   1518   1.67       chs 		 * if the page is owned by an anon then we just want to
   1519   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1520   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1521   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1522   1.70       chs 		 * of possible anon owners.
   1523   1.70       chs 		 *
   1524   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1525   1.70       chs 		 * unbusy the page, and we're done.
   1526    1.7       mrg 		 */
   1527    1.7       mrg 
   1528   1.73       chs 		if (pg->uobject != NULL) {
   1529  1.153  uebayasi 			uvm_pageremove(pg->uobject, pg);
   1530   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1531   1.73       chs 		} else if (pg->uanon != NULL) {
   1532   1.73       chs 			if ((pg->pqflags & PQ_ANON) == 0) {
   1533   1.73       chs 				pg->loan_count--;
   1534   1.73       chs 			} else {
   1535   1.73       chs 				pg->pqflags &= ~PQ_ANON;
   1536  1.126        ad 				atomic_dec_uint(&uvmexp.anonpages);
   1537   1.73       chs 			}
   1538  1.103      yamt 			pg->uanon->an_page = NULL;
   1539   1.73       chs 			pg->uanon = NULL;
   1540   1.67       chs 		}
   1541   1.70       chs 		if (pg->flags & PG_WANTED) {
   1542   1.70       chs 			wakeup(pg);
   1543   1.70       chs 		}
   1544   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1545   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1546   1.70       chs 		pg->owner_tag = NULL;
   1547   1.70       chs #endif
   1548   1.73       chs 		if (pg->loan_count) {
   1549  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1550  1.115      yamt 			if (pg->uanon == NULL) {
   1551  1.182      matt 				KASSERT(mutex_owned(&uvm_pageqlock));
   1552  1.115      yamt 				uvm_pagedequeue(pg);
   1553  1.115      yamt 			}
   1554   1.73       chs 			return;
   1555   1.73       chs 		}
   1556   1.67       chs 	}
   1557   1.62       chs 
   1558   1.67       chs 	/*
   1559   1.67       chs 	 * remove page from its object or anon.
   1560   1.67       chs 	 */
   1561   1.44       chs 
   1562   1.73       chs 	if (pg->uobject != NULL) {
   1563  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1564   1.73       chs 	} else if (pg->uanon != NULL) {
   1565  1.103      yamt 		pg->uanon->an_page = NULL;
   1566  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1567    1.7       mrg 	}
   1568    1.1       mrg 
   1569    1.7       mrg 	/*
   1570   1.70       chs 	 * now remove the page from the queues.
   1571    1.7       mrg 	 */
   1572  1.182      matt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1573  1.182      matt 		KASSERT(mutex_owned(&uvm_pageqlock));
   1574  1.182      matt 		uvm_pagedequeue(pg);
   1575  1.182      matt 	}
   1576    1.7       mrg 
   1577    1.7       mrg 	/*
   1578    1.7       mrg 	 * if the page was wired, unwire it now.
   1579    1.7       mrg 	 */
   1580   1.44       chs 
   1581   1.34   thorpej 	if (pg->wire_count) {
   1582    1.7       mrg 		pg->wire_count = 0;
   1583    1.7       mrg 		uvmexp.wired--;
   1584   1.44       chs 	}
   1585    1.7       mrg 
   1586    1.7       mrg 	/*
   1587   1.44       chs 	 * and put on free queue
   1588    1.7       mrg 	 */
   1589    1.7       mrg 
   1590   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1591  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1592  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1593  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1594   1.34   thorpej 
   1595    1.3       chs #ifdef DEBUG
   1596    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1597    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1598    1.3       chs #endif
   1599   1.90      yamt 
   1600  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1601  1.143  drochner 	pg->pqflags = PQ_FREE;
   1602   1.91      yamt 
   1603   1.91      yamt #ifdef DEBUG
   1604   1.91      yamt 	if (iszero)
   1605   1.91      yamt 		uvm_pagezerocheck(pg);
   1606   1.91      yamt #endif /* DEBUG */
   1607   1.91      yamt 
   1608  1.133        ad 
   1609  1.133        ad 	/* global list */
   1610  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1611  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1612    1.7       mrg 	uvmexp.free++;
   1613  1.133        ad 	if (iszero) {
   1614   1.90      yamt 		uvmexp.zeropages++;
   1615  1.133        ad 	}
   1616   1.34   thorpej 
   1617  1.133        ad 	/* per-cpu list */
   1618  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1619  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1620  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1621  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1622  1.133        ad 	ucpu->pages[queue]++;
   1623  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1624  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1625  1.133        ad 	}
   1626   1.34   thorpej 
   1627  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1628   1.44       chs }
   1629   1.44       chs 
   1630   1.44       chs /*
   1631   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1632   1.44       chs  *
   1633   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1634   1.44       chs  * => if pages are object-owned, object must be locked.
   1635   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1636   1.76     enami  * => caller must lock page queues if pages may be released.
   1637   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1638   1.44       chs  */
   1639   1.44       chs 
   1640   1.44       chs void
   1641  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1642   1.44       chs {
   1643   1.44       chs 	struct vm_page *pg;
   1644   1.44       chs 	int i;
   1645   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1646   1.44       chs 
   1647   1.44       chs 	for (i = 0; i < npgs; i++) {
   1648   1.44       chs 		pg = pgs[i];
   1649   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1650   1.44       chs 			continue;
   1651   1.44       chs 		}
   1652   1.98      yamt 
   1653  1.180      matt 		KASSERT(uvm_page_locked_p(pg));
   1654   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1655   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1656   1.44       chs 		if (pg->flags & PG_WANTED) {
   1657   1.44       chs 			wakeup(pg);
   1658   1.44       chs 		}
   1659   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1660   1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1661   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1662   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1663   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1664   1.67       chs 			uvm_pagefree(pg);
   1665   1.44       chs 		} else {
   1666   1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1667  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1668   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1669   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1670   1.44       chs 		}
   1671   1.44       chs 	}
   1672    1.1       mrg }
   1673    1.1       mrg 
   1674    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1675    1.1       mrg /*
   1676    1.1       mrg  * uvm_page_own: set or release page ownership
   1677    1.1       mrg  *
   1678    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1679    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1680    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1681    1.1       mrg  * => page's object [if any] must be locked
   1682    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1683    1.1       mrg  */
   1684    1.7       mrg void
   1685  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1686    1.1       mrg {
   1687  1.112      yamt 
   1688   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1689  1.184       chs 	KASSERT((pg->flags & PG_WANTED) == 0);
   1690  1.180      matt 	KASSERT(uvm_page_locked_p(pg));
   1691  1.112      yamt 
   1692    1.7       mrg 	/* gain ownership? */
   1693    1.7       mrg 	if (tag) {
   1694  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1695    1.7       mrg 		if (pg->owner_tag) {
   1696    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1697    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1698   1.74     enami 			    pg->owner, pg->owner_tag);
   1699    1.7       mrg 			panic("uvm_page_own");
   1700    1.7       mrg 		}
   1701  1.184       chs 		pg->owner = curproc->p_pid;
   1702  1.184       chs 		pg->lowner = curlwp->l_lid;
   1703    1.7       mrg 		pg->owner_tag = tag;
   1704    1.7       mrg 		return;
   1705    1.7       mrg 	}
   1706    1.7       mrg 
   1707    1.7       mrg 	/* drop ownership */
   1708  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1709    1.7       mrg 	if (pg->owner_tag == NULL) {
   1710    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1711    1.7       mrg 		    "page (%p)\n", pg);
   1712    1.7       mrg 		panic("uvm_page_own");
   1713    1.7       mrg 	}
   1714  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1715  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1716  1.115      yamt 		    pg->wire_count > 0);
   1717  1.115      yamt 	} else {
   1718  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1719  1.115      yamt 	}
   1720    1.7       mrg 	pg->owner_tag = NULL;
   1721    1.1       mrg }
   1722    1.1       mrg #endif
   1723   1.34   thorpej 
   1724   1.34   thorpej /*
   1725   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1726   1.34   thorpej  *
   1727   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1728   1.54   thorpej  *	on the CPU cache.
   1729  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1730  1.132        ad  *      to run, or MD code detects a reason to break early.
   1731   1.34   thorpej  */
   1732   1.34   thorpej void
   1733  1.105   thorpej uvm_pageidlezero(void)
   1734   1.34   thorpej {
   1735   1.34   thorpej 	struct vm_page *pg;
   1736  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1737  1.133        ad 	struct uvm_cpu *ucpu;
   1738  1.133        ad 	int free_list, firstbucket, nextbucket;
   1739  1.172     rmind 	bool lcont = false;
   1740  1.133        ad 
   1741  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1742  1.133        ad 	if (!ucpu->page_idle_zero ||
   1743  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1744  1.133        ad 	    	ucpu->page_idle_zero = false;
   1745  1.132        ad 		return;
   1746  1.132        ad 	}
   1747  1.172     rmind 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1748  1.172     rmind 		/* Contention: let other CPUs to use the lock. */
   1749  1.172     rmind 		return;
   1750  1.172     rmind 	}
   1751  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1752  1.133        ad 	nextbucket = firstbucket;
   1753   1.58     enami 	do {
   1754   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1755  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1756  1.139        ad 				goto quit;
   1757  1.139        ad 			}
   1758  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1759  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1760  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1761   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1762  1.172     rmind 				if (lcont || sched_curcpu_runnable_p()) {
   1763  1.101      yamt 					goto quit;
   1764  1.132        ad 				}
   1765  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1766  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1767  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1768   1.54   thorpej 				uvmexp.free--;
   1769  1.143  drochner 				KASSERT(pg->pqflags == PQ_FREE);
   1770  1.143  drochner 				pg->pqflags = 0;
   1771  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1772   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1773   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1774   1.67       chs 
   1775   1.54   thorpej 					/*
   1776   1.54   thorpej 					 * The machine-dependent code detected
   1777   1.54   thorpej 					 * some reason for us to abort zeroing
   1778   1.54   thorpej 					 * pages, probably because there is a
   1779   1.54   thorpej 					 * process now ready to run.
   1780   1.54   thorpej 					 */
   1781   1.67       chs 
   1782  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1783  1.144  drochner 					pg->pqflags = PQ_FREE;
   1784  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1785  1.133        ad 					    nextbucket].pgfl_queues[
   1786  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1787  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1788   1.54   thorpej 					    nextbucket].pgfl_queues[
   1789  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1790  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1791   1.54   thorpej 					uvmexp.free++;
   1792   1.54   thorpej 					uvmexp.zeroaborts++;
   1793  1.101      yamt 					goto quit;
   1794   1.54   thorpej 				}
   1795   1.54   thorpej #else
   1796   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1797   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1798   1.54   thorpej 				pg->flags |= PG_ZERO;
   1799   1.54   thorpej 
   1800  1.172     rmind 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1801  1.172     rmind 					lcont = true;
   1802  1.172     rmind 					mutex_spin_enter(&uvm_fpageqlock);
   1803  1.172     rmind 				} else {
   1804  1.172     rmind 					lcont = false;
   1805  1.172     rmind 				}
   1806  1.143  drochner 				pg->pqflags = PQ_FREE;
   1807  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1808  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1809  1.133        ad 				    pg, pageq.list);
   1810  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1811   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1812  1.133        ad 				    pg, listq.list);
   1813  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1814   1.54   thorpej 				uvmexp.free++;
   1815   1.54   thorpej 				uvmexp.zeropages++;
   1816   1.54   thorpej 			}
   1817   1.41   thorpej 		}
   1818  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1819  1.133        ad 			break;
   1820  1.133        ad 		}
   1821   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1822   1.58     enami 	} while (nextbucket != firstbucket);
   1823  1.133        ad 	ucpu->page_idle_zero = false;
   1824  1.133        ad  quit:
   1825  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1826   1.34   thorpej }
   1827  1.110      yamt 
   1828  1.110      yamt /*
   1829  1.110      yamt  * uvm_pagelookup: look up a page
   1830  1.110      yamt  *
   1831  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1832  1.110      yamt  *	out from under it
   1833  1.110      yamt  */
   1834  1.110      yamt 
   1835  1.110      yamt struct vm_page *
   1836  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1837  1.110      yamt {
   1838  1.110      yamt 	struct vm_page *pg;
   1839  1.110      yamt 
   1840  1.174     rmind 	KASSERT(mutex_owned(obj->vmobjlock));
   1841  1.123        ad 
   1842  1.156     rmind 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1843  1.134        ad 
   1844  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1845  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1846  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1847  1.156     rmind 	return pg;
   1848  1.110      yamt }
   1849  1.110      yamt 
   1850  1.110      yamt /*
   1851  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1852  1.110      yamt  *
   1853  1.110      yamt  * => caller must lock page queues
   1854  1.110      yamt  */
   1855  1.110      yamt 
   1856  1.110      yamt void
   1857  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1858  1.110      yamt {
   1859  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1860  1.113      yamt #if defined(READAHEAD_STATS)
   1861  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1862  1.113      yamt 		uvm_ra_hit.ev_count++;
   1863  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1864  1.113      yamt 	}
   1865  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1866  1.110      yamt 	if (pg->wire_count == 0) {
   1867  1.110      yamt 		uvm_pagedequeue(pg);
   1868  1.110      yamt 		uvmexp.wired++;
   1869  1.110      yamt 	}
   1870  1.110      yamt 	pg->wire_count++;
   1871  1.110      yamt }
   1872  1.110      yamt 
   1873  1.110      yamt /*
   1874  1.110      yamt  * uvm_pageunwire: unwire the page.
   1875  1.110      yamt  *
   1876  1.110      yamt  * => activate if wire count goes to zero.
   1877  1.110      yamt  * => caller must lock page queues
   1878  1.110      yamt  */
   1879  1.110      yamt 
   1880  1.110      yamt void
   1881  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1882  1.110      yamt {
   1883  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1884  1.110      yamt 	pg->wire_count--;
   1885  1.110      yamt 	if (pg->wire_count == 0) {
   1886  1.111      yamt 		uvm_pageactivate(pg);
   1887  1.110      yamt 		uvmexp.wired--;
   1888  1.110      yamt 	}
   1889  1.110      yamt }
   1890  1.110      yamt 
   1891  1.110      yamt /*
   1892  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1893  1.110      yamt  *
   1894  1.110      yamt  * => caller must lock page queues
   1895  1.110      yamt  * => caller must check to make sure page is not wired
   1896  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1897  1.110      yamt  * => caller must clear the reference on the page before calling
   1898  1.110      yamt  */
   1899  1.110      yamt 
   1900  1.110      yamt void
   1901  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1902  1.110      yamt {
   1903  1.113      yamt 
   1904  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1905  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1906  1.113      yamt 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1907  1.113      yamt 	uvmpdpol_pagedeactivate(pg);
   1908  1.110      yamt }
   1909  1.110      yamt 
   1910  1.110      yamt /*
   1911  1.110      yamt  * uvm_pageactivate: activate page
   1912  1.110      yamt  *
   1913  1.110      yamt  * => caller must lock page queues
   1914  1.110      yamt  */
   1915  1.110      yamt 
   1916  1.110      yamt void
   1917  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1918  1.110      yamt {
   1919  1.113      yamt 
   1920  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1921  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1922  1.113      yamt #if defined(READAHEAD_STATS)
   1923  1.113      yamt 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1924  1.113      yamt 		uvm_ra_hit.ev_count++;
   1925  1.113      yamt 		pg->pqflags &= ~PQ_READAHEAD;
   1926  1.113      yamt 	}
   1927  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1928  1.113      yamt 	if (pg->wire_count != 0) {
   1929  1.113      yamt 		return;
   1930  1.110      yamt 	}
   1931  1.113      yamt 	uvmpdpol_pageactivate(pg);
   1932  1.110      yamt }
   1933  1.110      yamt 
   1934  1.110      yamt /*
   1935  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1936  1.110      yamt  */
   1937  1.110      yamt 
   1938  1.110      yamt void
   1939  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1940  1.110      yamt {
   1941  1.113      yamt 
   1942  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1943  1.127        ad 		KASSERT(mutex_owned(&uvm_pageqlock));
   1944  1.110      yamt 	}
   1945  1.123        ad 
   1946  1.113      yamt 	uvmpdpol_pagedequeue(pg);
   1947  1.113      yamt }
   1948  1.113      yamt 
   1949  1.113      yamt /*
   1950  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1951  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1952  1.113      yamt  */
   1953  1.113      yamt 
   1954  1.113      yamt void
   1955  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1956  1.113      yamt {
   1957  1.113      yamt 
   1958  1.127        ad 	KASSERT(mutex_owned(&uvm_pageqlock));
   1959  1.113      yamt 	if (pg->wire_count != 0) {
   1960  1.113      yamt 		return;
   1961  1.113      yamt 	}
   1962  1.113      yamt 	uvmpdpol_pageenqueue(pg);
   1963  1.110      yamt }
   1964  1.110      yamt 
   1965  1.110      yamt /*
   1966  1.110      yamt  * uvm_pagezero: zero fill a page
   1967  1.110      yamt  *
   1968  1.110      yamt  * => if page is part of an object then the object should be locked
   1969  1.110      yamt  *	to protect pg->flags.
   1970  1.110      yamt  */
   1971  1.110      yamt 
   1972  1.110      yamt void
   1973  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1974  1.110      yamt {
   1975  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1976  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1977  1.110      yamt }
   1978  1.110      yamt 
   1979  1.110      yamt /*
   1980  1.110      yamt  * uvm_pagecopy: copy a page
   1981  1.110      yamt  *
   1982  1.110      yamt  * => if page is part of an object then the object should be locked
   1983  1.110      yamt  *	to protect pg->flags.
   1984  1.110      yamt  */
   1985  1.110      yamt 
   1986  1.110      yamt void
   1987  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1988  1.110      yamt {
   1989  1.110      yamt 
   1990  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1991  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1992  1.110      yamt }
   1993  1.110      yamt 
   1994  1.110      yamt /*
   1995  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1996  1.150   thorpej  */
   1997  1.150   thorpej 
   1998  1.150   thorpej bool
   1999  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   2000  1.150   thorpej {
   2001  1.150   thorpej 
   2002  1.150   thorpej 	return (vm_physseg_find(atop(pa), NULL) != -1);
   2003  1.150   thorpej }
   2004  1.150   thorpej 
   2005  1.150   thorpej /*
   2006  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   2007  1.110      yamt  */
   2008  1.110      yamt 
   2009  1.110      yamt int
   2010  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   2011  1.110      yamt {
   2012  1.110      yamt 	int lcv;
   2013  1.110      yamt 
   2014  1.110      yamt 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2015  1.110      yamt 	KASSERT(lcv != -1);
   2016  1.159  uebayasi 	return (VM_PHYSMEM_PTR(lcv)->free_list);
   2017  1.110      yamt }
   2018  1.151   thorpej 
   2019  1.174     rmind /*
   2020  1.174     rmind  * uvm_page_locked_p: return true if object associated with page is
   2021  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   2022  1.174     rmind  */
   2023  1.174     rmind 
   2024  1.174     rmind bool
   2025  1.174     rmind uvm_page_locked_p(struct vm_page *pg)
   2026  1.174     rmind {
   2027  1.174     rmind 
   2028  1.174     rmind 	if (pg->uobject != NULL) {
   2029  1.174     rmind 		return mutex_owned(pg->uobject->vmobjlock);
   2030  1.174     rmind 	}
   2031  1.174     rmind 	if (pg->uanon != NULL) {
   2032  1.174     rmind 		return mutex_owned(pg->uanon->an_lock);
   2033  1.174     rmind 	}
   2034  1.174     rmind 	return true;
   2035  1.174     rmind }
   2036  1.174     rmind 
   2037  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   2038  1.151   thorpej 
   2039  1.151   thorpej /*
   2040  1.151   thorpej  * uvm_page_printit: actually print the page
   2041  1.151   thorpej  */
   2042  1.151   thorpej 
   2043  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   2044  1.151   thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2045  1.151   thorpej 
   2046  1.151   thorpej void
   2047  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   2048  1.151   thorpej     void (*pr)(const char *, ...))
   2049  1.151   thorpej {
   2050  1.151   thorpej 	struct vm_page *tpg;
   2051  1.151   thorpej 	struct uvm_object *uobj;
   2052  1.151   thorpej 	struct pgflist *pgl;
   2053  1.151   thorpej 	char pgbuf[128];
   2054  1.151   thorpej 	char pqbuf[128];
   2055  1.151   thorpej 
   2056  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   2057  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2058  1.151   thorpej 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   2059  1.151   thorpej 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   2060  1.151   thorpej 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2061  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2062  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2063  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   2064  1.151   thorpej 	if (pg->flags & PG_BUSY)
   2065  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   2066  1.151   thorpej 		    pg->owner, pg->owner_tag);
   2067  1.151   thorpej 	else
   2068  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   2069  1.151   thorpej #else
   2070  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   2071  1.151   thorpej #endif
   2072  1.151   thorpej 
   2073  1.151   thorpej 	if (!full)
   2074  1.151   thorpej 		return;
   2075  1.151   thorpej 
   2076  1.151   thorpej 	/* cross-verify object/anon */
   2077  1.151   thorpej 	if ((pg->pqflags & PQ_FREE) == 0) {
   2078  1.151   thorpej 		if (pg->pqflags & PQ_ANON) {
   2079  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2080  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2081  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2082  1.151   thorpej 			else
   2083  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   2084  1.151   thorpej 		} else {
   2085  1.151   thorpej 			uobj = pg->uobject;
   2086  1.151   thorpej 			if (uobj) {
   2087  1.151   thorpej 				(*pr)("  checking object list\n");
   2088  1.151   thorpej 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   2089  1.151   thorpej 					if (tpg == pg) {
   2090  1.151   thorpej 						break;
   2091  1.151   thorpej 					}
   2092  1.151   thorpej 				}
   2093  1.151   thorpej 				if (tpg)
   2094  1.151   thorpej 					(*pr)("  page found on object list\n");
   2095  1.151   thorpej 				else
   2096  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2097  1.151   thorpej 			}
   2098  1.151   thorpej 		}
   2099  1.151   thorpej 	}
   2100  1.151   thorpej 
   2101  1.151   thorpej 	/* cross-verify page queue */
   2102  1.151   thorpej 	if (pg->pqflags & PQ_FREE) {
   2103  1.151   thorpej 		int fl = uvm_page_lookup_freelist(pg);
   2104  1.151   thorpej 		int color = VM_PGCOLOR_BUCKET(pg);
   2105  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   2106  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   2107  1.151   thorpej 	} else {
   2108  1.151   thorpej 		pgl = NULL;
   2109  1.151   thorpej 	}
   2110  1.151   thorpej 
   2111  1.151   thorpej 	if (pgl) {
   2112  1.151   thorpej 		(*pr)("  checking pageq list\n");
   2113  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2114  1.151   thorpej 			if (tpg == pg) {
   2115  1.151   thorpej 				break;
   2116  1.151   thorpej 			}
   2117  1.151   thorpej 		}
   2118  1.151   thorpej 		if (tpg)
   2119  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   2120  1.151   thorpej 		else
   2121  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2122  1.151   thorpej 	}
   2123  1.151   thorpej }
   2124  1.151   thorpej 
   2125  1.151   thorpej /*
   2126  1.151   thorpej  * uvm_pages_printthem - print a summary of all managed pages
   2127  1.151   thorpej  */
   2128  1.151   thorpej 
   2129  1.151   thorpej void
   2130  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   2131  1.151   thorpej {
   2132  1.151   thorpej 	unsigned i;
   2133  1.151   thorpej 	struct vm_page *pg;
   2134  1.151   thorpej 
   2135  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   2136  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2137  1.151   thorpej 	    " OWNER"
   2138  1.151   thorpej #endif
   2139  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2140  1.158  uebayasi 	for (i = 0; i < vm_nphysmem; i++) {
   2141  1.161  uebayasi 		for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
   2142  1.151   thorpej 			(*pr)("%18p %04x %04x %18p %18p",
   2143  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2144  1.151   thorpej 			    pg->uanon);
   2145  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2146  1.151   thorpej 			if (pg->flags & PG_BUSY)
   2147  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2148  1.151   thorpej #endif
   2149  1.151   thorpej 			(*pr)("\n");
   2150  1.151   thorpej 		}
   2151  1.151   thorpej 	}
   2152  1.151   thorpej }
   2153  1.151   thorpej 
   2154  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   2155