uvm_page.c revision 1.189 1 1.189 cherry /* $NetBSD: uvm_page.c,v 1.189 2016/12/22 16:05:15 cherry Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.62 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.62 chs *
49 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.62 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_page.c: page ops.
66 1.1 mrg */
67 1.71 lukem
68 1.71 lukem #include <sys/cdefs.h>
69 1.189 cherry __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.189 2016/12/22 16:05:15 cherry Exp $");
70 1.6 mrg
71 1.151 thorpej #include "opt_ddb.h"
72 1.187 joerg #include "opt_uvm.h"
73 1.44 chs #include "opt_uvmhist.h"
74 1.113 yamt #include "opt_readahead.h"
75 1.44 chs
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.68 chs #include <sys/proc.h>
82 1.126 ad #include <sys/atomic.h>
83 1.133 ad #include <sys/cpu.h>
84 1.1 mrg
85 1.1 mrg #include <uvm/uvm.h>
86 1.151 thorpej #include <uvm/uvm_ddb.h>
87 1.113 yamt #include <uvm/uvm_pdpolicy.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * physical memory config is stored in vm_physmem.
95 1.1 mrg */
96 1.1 mrg
97 1.167 uebayasi struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 1.167 uebayasi int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99 1.167 uebayasi #define vm_nphysmem vm_nphysseg
100 1.1 mrg
101 1.1 mrg /*
102 1.36 thorpej * Some supported CPUs in a given architecture don't support all
103 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
104 1.155 ad * We therefore provide a way to enable it from machdep code here.
105 1.44 chs */
106 1.119 thorpej bool vm_page_zero_enable = false;
107 1.34 thorpej
108 1.34 thorpej /*
109 1.140 ad * number of pages per-CPU to reserve for the kernel.
110 1.140 ad */
111 1.187 joerg #ifndef UVM_RESERVED_PAGES_PER_CPU
112 1.187 joerg #define UVM_RESERVED_PAGES_PER_CPU 5
113 1.187 joerg #endif
114 1.187 joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
115 1.140 ad
116 1.140 ad /*
117 1.148 matt * physical memory size;
118 1.148 matt */
119 1.189 cherry psize_t physmem;
120 1.148 matt
121 1.148 matt /*
122 1.1 mrg * local variables
123 1.1 mrg */
124 1.1 mrg
125 1.1 mrg /*
126 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
127 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
128 1.88 thorpej * and pmap_startup here also uses them internally.
129 1.88 thorpej */
130 1.88 thorpej
131 1.88 thorpej static vaddr_t virtual_space_start;
132 1.88 thorpej static vaddr_t virtual_space_end;
133 1.88 thorpej
134 1.88 thorpej /*
135 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
136 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
137 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
138 1.60 thorpej * free the initial set of buckets, since they are allocated using
139 1.60 thorpej * uvm_pageboot_alloc().
140 1.60 thorpej */
141 1.60 thorpej
142 1.179 para static size_t recolored_pages_memsize /* = 0 */;
143 1.60 thorpej
144 1.91 yamt #ifdef DEBUG
145 1.91 yamt vaddr_t uvm_zerocheckkva;
146 1.91 yamt #endif /* DEBUG */
147 1.91 yamt
148 1.60 thorpej /*
149 1.134 ad * local prototypes
150 1.124 ad */
151 1.124 ad
152 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
153 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
154 1.124 ad
155 1.124 ad /*
156 1.134 ad * per-object tree of pages
157 1.1 mrg */
158 1.1 mrg
159 1.134 ad static signed int
160 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
161 1.134 ad {
162 1.156 rmind const struct vm_page *pg1 = n1;
163 1.156 rmind const struct vm_page *pg2 = n2;
164 1.134 ad const voff_t a = pg1->offset;
165 1.134 ad const voff_t b = pg2->offset;
166 1.134 ad
167 1.134 ad if (a < b)
168 1.156 rmind return -1;
169 1.156 rmind if (a > b)
170 1.134 ad return 1;
171 1.134 ad return 0;
172 1.134 ad }
173 1.134 ad
174 1.134 ad static signed int
175 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
176 1.134 ad {
177 1.156 rmind const struct vm_page *pg = n;
178 1.134 ad const voff_t a = pg->offset;
179 1.134 ad const voff_t b = *(const voff_t *)key;
180 1.134 ad
181 1.134 ad if (a < b)
182 1.156 rmind return -1;
183 1.156 rmind if (a > b)
184 1.134 ad return 1;
185 1.134 ad return 0;
186 1.134 ad }
187 1.134 ad
188 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
189 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
190 1.137 matt .rbto_compare_key = uvm_page_compare_key,
191 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
192 1.156 rmind .rbto_context = NULL
193 1.134 ad };
194 1.1 mrg
195 1.1 mrg /*
196 1.1 mrg * inline functions
197 1.1 mrg */
198 1.1 mrg
199 1.1 mrg /*
200 1.134 ad * uvm_pageinsert: insert a page in the object.
201 1.1 mrg *
202 1.1 mrg * => caller must lock object
203 1.1 mrg * => caller must lock page queues
204 1.1 mrg * => call should have already set pg's object and offset pointers
205 1.1 mrg * and bumped the version counter
206 1.1 mrg */
207 1.1 mrg
208 1.136 yamt static inline void
209 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
210 1.136 yamt struct vm_page *where)
211 1.1 mrg {
212 1.1 mrg
213 1.136 yamt KASSERT(uobj == pg->uobject);
214 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
215 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
216 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
217 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
218 1.123 ad
219 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
220 1.94 yamt if (uobj->uo_npages == 0) {
221 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
222 1.94 yamt
223 1.94 yamt vholdl(vp);
224 1.94 yamt }
225 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
226 1.126 ad atomic_inc_uint(&uvmexp.execpages);
227 1.94 yamt } else {
228 1.126 ad atomic_inc_uint(&uvmexp.filepages);
229 1.94 yamt }
230 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
231 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
232 1.78 chs }
233 1.78 chs
234 1.96 yamt if (where)
235 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
236 1.96 yamt else
237 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
238 1.7 mrg pg->flags |= PG_TABLED;
239 1.67 chs uobj->uo_npages++;
240 1.1 mrg }
241 1.1 mrg
242 1.136 yamt
243 1.136 yamt static inline void
244 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
245 1.136 yamt {
246 1.183 martin struct vm_page *ret __diagused;
247 1.136 yamt
248 1.136 yamt KASSERT(uobj == pg->uobject);
249 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
250 1.156 rmind KASSERT(ret == pg);
251 1.136 yamt }
252 1.136 yamt
253 1.136 yamt static inline void
254 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
255 1.96 yamt {
256 1.96 yamt
257 1.153 uebayasi KDASSERT(uobj != NULL);
258 1.136 yamt uvm_pageinsert_tree(uobj, pg);
259 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
260 1.96 yamt }
261 1.96 yamt
262 1.1 mrg /*
263 1.134 ad * uvm_page_remove: remove page from object.
264 1.1 mrg *
265 1.1 mrg * => caller must lock object
266 1.1 mrg * => caller must lock page queues
267 1.1 mrg */
268 1.1 mrg
269 1.109 perry static inline void
270 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
271 1.1 mrg {
272 1.1 mrg
273 1.136 yamt KASSERT(uobj == pg->uobject);
274 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
275 1.44 chs KASSERT(pg->flags & PG_TABLED);
276 1.123 ad
277 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
278 1.94 yamt if (uobj->uo_npages == 1) {
279 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
280 1.94 yamt
281 1.94 yamt holdrelel(vp);
282 1.94 yamt }
283 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
284 1.126 ad atomic_dec_uint(&uvmexp.execpages);
285 1.94 yamt } else {
286 1.126 ad atomic_dec_uint(&uvmexp.filepages);
287 1.94 yamt }
288 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
289 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
290 1.51 chs }
291 1.44 chs
292 1.7 mrg /* object should be locked */
293 1.67 chs uobj->uo_npages--;
294 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
295 1.7 mrg pg->flags &= ~PG_TABLED;
296 1.7 mrg pg->uobject = NULL;
297 1.1 mrg }
298 1.1 mrg
299 1.136 yamt static inline void
300 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
301 1.136 yamt {
302 1.136 yamt
303 1.136 yamt KASSERT(uobj == pg->uobject);
304 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
305 1.136 yamt }
306 1.136 yamt
307 1.136 yamt static inline void
308 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
309 1.136 yamt {
310 1.136 yamt
311 1.153 uebayasi KDASSERT(uobj != NULL);
312 1.136 yamt uvm_pageremove_tree(uobj, pg);
313 1.136 yamt uvm_pageremove_list(uobj, pg);
314 1.136 yamt }
315 1.136 yamt
316 1.60 thorpej static void
317 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
318 1.60 thorpej {
319 1.60 thorpej int color, i;
320 1.60 thorpej
321 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
322 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
323 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
324 1.60 thorpej }
325 1.60 thorpej }
326 1.60 thorpej }
327 1.60 thorpej
328 1.1 mrg /*
329 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
330 1.62 chs *
331 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
332 1.1 mrg */
333 1.1 mrg
334 1.7 mrg void
335 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
336 1.1 mrg {
337 1.155 ad static struct uvm_cpu boot_cpu;
338 1.154 jym psize_t freepages, pagecount, bucketcount, n;
339 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
340 1.159 uebayasi struct vm_physseg *seg;
341 1.63 chs struct vm_page *pagearray;
342 1.81 thorpej int lcv;
343 1.81 thorpej u_int i;
344 1.14 eeh paddr_t paddr;
345 1.7 mrg
346 1.133 ad KASSERT(ncpu <= 1);
347 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
348 1.133 ad
349 1.7 mrg /*
350 1.60 thorpej * init the page queues and page queue locks, except the free
351 1.60 thorpej * list; we allocate that later (with the initial vm_page
352 1.60 thorpej * structures).
353 1.7 mrg */
354 1.51 chs
355 1.155 ad uvm.cpus[0] = &boot_cpu;
356 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
357 1.113 yamt uvmpdpol_init();
358 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
359 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
360 1.7 mrg
361 1.7 mrg /*
362 1.51 chs * allocate vm_page structures.
363 1.7 mrg */
364 1.7 mrg
365 1.7 mrg /*
366 1.7 mrg * sanity check:
367 1.7 mrg * before calling this function the MD code is expected to register
368 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
369 1.7 mrg * now is to allocate vm_page structures for this memory.
370 1.7 mrg */
371 1.7 mrg
372 1.158 uebayasi if (vm_nphysmem == 0)
373 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
374 1.62 chs
375 1.7 mrg /*
376 1.62 chs * first calculate the number of free pages...
377 1.7 mrg *
378 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
379 1.7 mrg * this allows us to allocate extra vm_page structures in case we
380 1.7 mrg * want to return some memory to the pool after booting.
381 1.7 mrg */
382 1.62 chs
383 1.7 mrg freepages = 0;
384 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
385 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
386 1.158 uebayasi freepages += (seg->end - seg->start);
387 1.158 uebayasi }
388 1.7 mrg
389 1.7 mrg /*
390 1.60 thorpej * Let MD code initialize the number of colors, or default
391 1.60 thorpej * to 1 color if MD code doesn't care.
392 1.60 thorpej */
393 1.60 thorpej if (uvmexp.ncolors == 0)
394 1.60 thorpej uvmexp.ncolors = 1;
395 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
396 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
397 1.60 thorpej
398 1.60 thorpej /*
399 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
400 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
401 1.7 mrg * thus, the total number of pages we can use is the total size of
402 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
403 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
404 1.7 mrg * truncation errors (since we can only allocate in terms of whole
405 1.7 mrg * pages).
406 1.7 mrg */
407 1.62 chs
408 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
409 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
410 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
411 1.60 thorpej
412 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
413 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
414 1.60 thorpej sizeof(struct vm_page)));
415 1.133 ad cpuarray = bucketarray + bucketcount;
416 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
417 1.60 thorpej
418 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
419 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
420 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
421 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
422 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
423 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
424 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
425 1.60 thorpej }
426 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
427 1.62 chs
428 1.7 mrg /*
429 1.51 chs * init the vm_page structures and put them in the correct place.
430 1.7 mrg */
431 1.7 mrg
432 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
433 1.158 uebayasi seg = VM_PHYSMEM_PTR(lcv);
434 1.158 uebayasi n = seg->end - seg->start;
435 1.51 chs
436 1.7 mrg /* set up page array pointers */
437 1.158 uebayasi seg->pgs = pagearray;
438 1.7 mrg pagearray += n;
439 1.7 mrg pagecount -= n;
440 1.161 uebayasi seg->lastpg = seg->pgs + n;
441 1.7 mrg
442 1.13 perry /* init and free vm_pages (we've already zeroed them) */
443 1.158 uebayasi paddr = ctob(seg->start);
444 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
445 1.158 uebayasi seg->pgs[i].phys_addr = paddr;
446 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
447 1.158 uebayasi VM_MDPAGE_INIT(&seg->pgs[i]);
448 1.56 thorpej #endif
449 1.158 uebayasi if (atop(paddr) >= seg->avail_start &&
450 1.173 matt atop(paddr) < seg->avail_end) {
451 1.7 mrg uvmexp.npages++;
452 1.7 mrg /* add page to free pool */
453 1.158 uebayasi uvm_pagefree(&seg->pgs[i]);
454 1.7 mrg }
455 1.7 mrg }
456 1.7 mrg }
457 1.44 chs
458 1.7 mrg /*
459 1.88 thorpej * pass up the values of virtual_space_start and
460 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
461 1.88 thorpej * layers of the VM.
462 1.88 thorpej */
463 1.88 thorpej
464 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
465 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
466 1.91 yamt #ifdef DEBUG
467 1.91 yamt /*
468 1.91 yamt * steal kva for uvm_pagezerocheck().
469 1.91 yamt */
470 1.91 yamt uvm_zerocheckkva = *kvm_startp;
471 1.91 yamt *kvm_startp += PAGE_SIZE;
472 1.91 yamt #endif /* DEBUG */
473 1.88 thorpej
474 1.88 thorpej /*
475 1.51 chs * init various thresholds.
476 1.7 mrg */
477 1.51 chs
478 1.7 mrg uvmexp.reserve_pagedaemon = 1;
479 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
480 1.7 mrg
481 1.7 mrg /*
482 1.51 chs * determine if we should zero pages in the idle loop.
483 1.34 thorpej */
484 1.51 chs
485 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
486 1.34 thorpej
487 1.34 thorpej /*
488 1.7 mrg * done!
489 1.7 mrg */
490 1.1 mrg
491 1.119 thorpej uvm.page_init_done = true;
492 1.1 mrg }
493 1.1 mrg
494 1.1 mrg /*
495 1.1 mrg * uvm_setpagesize: set the page size
496 1.62 chs *
497 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
498 1.62 chs */
499 1.1 mrg
500 1.7 mrg void
501 1.105 thorpej uvm_setpagesize(void)
502 1.1 mrg {
503 1.85 thorpej
504 1.85 thorpej /*
505 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
506 1.85 thorpej * to be a constant (indicated by being a non-zero value).
507 1.85 thorpej */
508 1.85 thorpej if (uvmexp.pagesize == 0) {
509 1.85 thorpej if (PAGE_SIZE == 0)
510 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
511 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
512 1.85 thorpej }
513 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
514 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
515 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
516 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
517 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
518 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
519 1.7 mrg break;
520 1.1 mrg }
521 1.1 mrg
522 1.1 mrg /*
523 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
524 1.1 mrg */
525 1.1 mrg
526 1.14 eeh vaddr_t
527 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
528 1.1 mrg {
529 1.119 thorpej static bool initialized = false;
530 1.14 eeh vaddr_t addr;
531 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
532 1.52 thorpej vaddr_t vaddr;
533 1.14 eeh paddr_t paddr;
534 1.52 thorpej #endif
535 1.1 mrg
536 1.7 mrg /*
537 1.19 thorpej * on first call to this function, initialize ourselves.
538 1.7 mrg */
539 1.119 thorpej if (initialized == false) {
540 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
541 1.1 mrg
542 1.7 mrg /* round it the way we like it */
543 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
544 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
545 1.19 thorpej
546 1.119 thorpej initialized = true;
547 1.7 mrg }
548 1.52 thorpej
549 1.52 thorpej /* round to page size */
550 1.52 thorpej size = round_page(size);
551 1.52 thorpej
552 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
553 1.52 thorpej
554 1.62 chs /*
555 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
556 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
557 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
558 1.52 thorpej */
559 1.52 thorpej
560 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
561 1.88 thorpej &virtual_space_end);
562 1.52 thorpej
563 1.52 thorpej return(addr);
564 1.52 thorpej
565 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
566 1.1 mrg
567 1.7 mrg /*
568 1.7 mrg * allocate virtual memory for this request
569 1.7 mrg */
570 1.88 thorpej if (virtual_space_start == virtual_space_end ||
571 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
572 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
573 1.20 thorpej
574 1.88 thorpej addr = virtual_space_start;
575 1.20 thorpej
576 1.20 thorpej #ifdef PMAP_GROWKERNEL
577 1.20 thorpej /*
578 1.20 thorpej * If the kernel pmap can't map the requested space,
579 1.20 thorpej * then allocate more resources for it.
580 1.20 thorpej */
581 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
582 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
583 1.20 thorpej if (uvm_maxkaddr < (addr + size))
584 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
585 1.19 thorpej }
586 1.20 thorpej #endif
587 1.1 mrg
588 1.88 thorpej virtual_space_start += size;
589 1.1 mrg
590 1.9 thorpej /*
591 1.7 mrg * allocate and mapin physical pages to back new virtual pages
592 1.7 mrg */
593 1.1 mrg
594 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
595 1.7 mrg vaddr += PAGE_SIZE) {
596 1.1 mrg
597 1.7 mrg if (!uvm_page_physget(&paddr))
598 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
599 1.1 mrg
600 1.23 thorpej /*
601 1.23 thorpej * Note this memory is no longer managed, so using
602 1.23 thorpej * pmap_kenter is safe.
603 1.23 thorpej */
604 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
605 1.7 mrg }
606 1.66 chris pmap_update(pmap_kernel());
607 1.7 mrg return(addr);
608 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
609 1.1 mrg }
610 1.1 mrg
611 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
612 1.1 mrg /*
613 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
614 1.1 mrg *
615 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
616 1.1 mrg * values match the start/end values. if we can't do that, then we
617 1.1 mrg * will advance both values (making them equal, and removing some
618 1.1 mrg * vm_page structures from the non-avail area).
619 1.1 mrg * => return false if out of memory.
620 1.1 mrg */
621 1.1 mrg
622 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
623 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
624 1.28 drochner
625 1.118 thorpej static bool
626 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
627 1.1 mrg {
628 1.159 uebayasi struct vm_physseg *seg;
629 1.7 mrg int lcv, x;
630 1.1 mrg
631 1.7 mrg /* pass 1: try allocating from a matching end */
632 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
633 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
634 1.1 mrg #else
635 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
636 1.1 mrg #endif
637 1.7 mrg {
638 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
639 1.1 mrg
640 1.119 thorpej if (uvm.page_init_done == true)
641 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
642 1.1 mrg
643 1.159 uebayasi if (seg->free_list != freelist)
644 1.28 drochner continue;
645 1.28 drochner
646 1.7 mrg /* try from front */
647 1.159 uebayasi if (seg->avail_start == seg->start &&
648 1.159 uebayasi seg->avail_start < seg->avail_end) {
649 1.159 uebayasi *paddrp = ctob(seg->avail_start);
650 1.159 uebayasi seg->avail_start++;
651 1.159 uebayasi seg->start++;
652 1.7 mrg /* nothing left? nuke it */
653 1.159 uebayasi if (seg->avail_start == seg->end) {
654 1.158 uebayasi if (vm_nphysmem == 1)
655 1.89 wiz panic("uvm_page_physget: out of memory!");
656 1.158 uebayasi vm_nphysmem--;
657 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
658 1.167 uebayasi /* structure copy */
659 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
660 1.7 mrg }
661 1.119 thorpej return (true);
662 1.7 mrg }
663 1.7 mrg
664 1.7 mrg /* try from rear */
665 1.159 uebayasi if (seg->avail_end == seg->end &&
666 1.159 uebayasi seg->avail_start < seg->avail_end) {
667 1.159 uebayasi *paddrp = ctob(seg->avail_end - 1);
668 1.159 uebayasi seg->avail_end--;
669 1.159 uebayasi seg->end--;
670 1.7 mrg /* nothing left? nuke it */
671 1.159 uebayasi if (seg->avail_end == seg->start) {
672 1.158 uebayasi if (vm_nphysmem == 1)
673 1.42 mrg panic("uvm_page_physget: out of memory!");
674 1.158 uebayasi vm_nphysmem--;
675 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
676 1.167 uebayasi /* structure copy */
677 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
678 1.7 mrg }
679 1.119 thorpej return (true);
680 1.7 mrg }
681 1.7 mrg }
682 1.1 mrg
683 1.7 mrg /* pass2: forget about matching ends, just allocate something */
684 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
685 1.158 uebayasi for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
686 1.1 mrg #else
687 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
688 1.1 mrg #endif
689 1.7 mrg {
690 1.159 uebayasi seg = VM_PHYSMEM_PTR(lcv);
691 1.1 mrg
692 1.7 mrg /* any room in this bank? */
693 1.159 uebayasi if (seg->avail_start >= seg->avail_end)
694 1.7 mrg continue; /* nope */
695 1.7 mrg
696 1.159 uebayasi *paddrp = ctob(seg->avail_start);
697 1.159 uebayasi seg->avail_start++;
698 1.7 mrg /* truncate! */
699 1.159 uebayasi seg->start = seg->avail_start;
700 1.7 mrg
701 1.7 mrg /* nothing left? nuke it */
702 1.159 uebayasi if (seg->avail_start == seg->end) {
703 1.158 uebayasi if (vm_nphysmem == 1)
704 1.42 mrg panic("uvm_page_physget: out of memory!");
705 1.158 uebayasi vm_nphysmem--;
706 1.158 uebayasi for (x = lcv ; x < vm_nphysmem ; x++)
707 1.167 uebayasi /* structure copy */
708 1.158 uebayasi VM_PHYSMEM_PTR_SWAP(x, x + 1);
709 1.7 mrg }
710 1.119 thorpej return (true);
711 1.7 mrg }
712 1.1 mrg
713 1.119 thorpej return (false); /* whoops! */
714 1.28 drochner }
715 1.28 drochner
716 1.118 thorpej bool
717 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
718 1.28 drochner {
719 1.28 drochner int i;
720 1.28 drochner
721 1.28 drochner /* try in the order of freelist preference */
722 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
723 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
724 1.119 thorpej return (true);
725 1.119 thorpej return (false);
726 1.1 mrg }
727 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
728 1.1 mrg
729 1.1 mrg /*
730 1.1 mrg * uvm_page_physload: load physical memory into VM system
731 1.1 mrg *
732 1.1 mrg * => all args are PFs
733 1.1 mrg * => all pages in start/end get vm_page structures
734 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
735 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
736 1.1 mrg */
737 1.1 mrg
738 1.188 cherry uvm_physseg_t
739 1.105 thorpej uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
740 1.105 thorpej paddr_t avail_end, int free_list)
741 1.1 mrg {
742 1.167 uebayasi int preload, lcv;
743 1.167 uebayasi psize_t npages;
744 1.167 uebayasi struct vm_page *pgs;
745 1.167 uebayasi struct vm_physseg *ps;
746 1.7 mrg
747 1.167 uebayasi if (uvmexp.pagesize == 0)
748 1.167 uebayasi panic("uvm_page_physload: page size not set!");
749 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
750 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
751 1.167 uebayasi if (start >= end)
752 1.167 uebayasi panic("uvm_page_physload: start >= end");
753 1.67 chs
754 1.167 uebayasi /*
755 1.167 uebayasi * do we have room?
756 1.167 uebayasi */
757 1.167 uebayasi
758 1.167 uebayasi if (vm_nphysmem == VM_PHYSSEG_MAX) {
759 1.167 uebayasi printf("uvm_page_physload: unable to load physical memory "
760 1.167 uebayasi "segment\n");
761 1.167 uebayasi printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
762 1.167 uebayasi VM_PHYSSEG_MAX, (long long)start, (long long)end);
763 1.167 uebayasi printf("\tincrease VM_PHYSSEG_MAX\n");
764 1.188 cherry return 0;
765 1.167 uebayasi }
766 1.7 mrg
767 1.7 mrg /*
768 1.160 uebayasi * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
769 1.179 para * called yet, so kmem is not available).
770 1.7 mrg */
771 1.67 chs
772 1.158 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
773 1.159 uebayasi if (VM_PHYSMEM_PTR(lcv)->pgs)
774 1.7 mrg break;
775 1.7 mrg }
776 1.167 uebayasi preload = (lcv == vm_nphysmem);
777 1.164 uebayasi
778 1.167 uebayasi /*
779 1.179 para * if VM is already running, attempt to kmem_alloc vm_page structures
780 1.167 uebayasi */
781 1.164 uebayasi
782 1.167 uebayasi if (!preload) {
783 1.167 uebayasi panic("uvm_page_physload: tried to add RAM after vm_mem_init");
784 1.167 uebayasi } else {
785 1.167 uebayasi pgs = NULL;
786 1.167 uebayasi npages = 0;
787 1.164 uebayasi }
788 1.164 uebayasi
789 1.167 uebayasi /*
790 1.167 uebayasi * now insert us in the proper place in vm_physmem[]
791 1.167 uebayasi */
792 1.1 mrg
793 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
794 1.7 mrg /* random: put it at the end (easy!) */
795 1.167 uebayasi ps = VM_PHYSMEM_PTR(vm_nphysmem);
796 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
797 1.7 mrg {
798 1.7 mrg int x;
799 1.7 mrg /* sort by address for binary search */
800 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
801 1.167 uebayasi if (start < VM_PHYSMEM_PTR(lcv)->start)
802 1.7 mrg break;
803 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
804 1.7 mrg /* move back other entries, if necessary ... */
805 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
806 1.167 uebayasi /* structure copy */
807 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
808 1.7 mrg }
809 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
810 1.7 mrg {
811 1.7 mrg int x;
812 1.7 mrg /* sort by largest segment first */
813 1.167 uebayasi for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
814 1.167 uebayasi if ((end - start) >
815 1.167 uebayasi (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
816 1.7 mrg break;
817 1.167 uebayasi ps = VM_PHYSMEM_PTR(lcv);
818 1.7 mrg /* move back other entries, if necessary ... */
819 1.167 uebayasi for (x = vm_nphysmem ; x > lcv ; x--)
820 1.167 uebayasi /* structure copy */
821 1.167 uebayasi VM_PHYSMEM_PTR_SWAP(x, x - 1);
822 1.7 mrg }
823 1.1 mrg #else
824 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
825 1.1 mrg #endif
826 1.1 mrg
827 1.167 uebayasi ps->start = start;
828 1.167 uebayasi ps->end = end;
829 1.167 uebayasi ps->avail_start = avail_start;
830 1.167 uebayasi ps->avail_end = avail_end;
831 1.167 uebayasi if (preload) {
832 1.167 uebayasi ps->pgs = NULL;
833 1.167 uebayasi } else {
834 1.167 uebayasi ps->pgs = pgs;
835 1.167 uebayasi ps->lastpg = pgs + npages;
836 1.167 uebayasi }
837 1.167 uebayasi ps->free_list = free_list;
838 1.167 uebayasi vm_nphysmem++;
839 1.7 mrg
840 1.167 uebayasi if (!preload) {
841 1.167 uebayasi uvmpdpol_reinit();
842 1.113 yamt }
843 1.188 cherry
844 1.188 cherry return 0;
845 1.1 mrg }
846 1.1 mrg
847 1.1 mrg /*
848 1.167 uebayasi * when VM_PHYSSEG_MAX is 1, we can simplify these functions
849 1.162 uebayasi */
850 1.162 uebayasi
851 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
852 1.167 uebayasi static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
853 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
854 1.167 uebayasi static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
855 1.162 uebayasi #else
856 1.167 uebayasi static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
857 1.162 uebayasi #endif
858 1.162 uebayasi
859 1.167 uebayasi /*
860 1.167 uebayasi * vm_physseg_find: find vm_physseg structure that belongs to a PA
861 1.167 uebayasi */
862 1.162 uebayasi int
863 1.162 uebayasi vm_physseg_find(paddr_t pframe, int *offp)
864 1.162 uebayasi {
865 1.162 uebayasi
866 1.167 uebayasi #if VM_PHYSSEG_MAX == 1
867 1.167 uebayasi return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
868 1.167 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
869 1.167 uebayasi return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
870 1.167 uebayasi #else
871 1.167 uebayasi return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
872 1.167 uebayasi #endif
873 1.162 uebayasi }
874 1.162 uebayasi
875 1.162 uebayasi #if VM_PHYSSEG_MAX == 1
876 1.162 uebayasi static inline int
877 1.167 uebayasi vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
878 1.162 uebayasi {
879 1.162 uebayasi
880 1.162 uebayasi /* 'contig' case */
881 1.167 uebayasi if (pframe >= segs[0].start && pframe < segs[0].end) {
882 1.167 uebayasi if (offp)
883 1.167 uebayasi *offp = pframe - segs[0].start;
884 1.162 uebayasi return(0);
885 1.162 uebayasi }
886 1.162 uebayasi return(-1);
887 1.162 uebayasi }
888 1.162 uebayasi
889 1.162 uebayasi #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
890 1.162 uebayasi
891 1.162 uebayasi static inline int
892 1.167 uebayasi vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
893 1.162 uebayasi {
894 1.162 uebayasi /* binary search for it */
895 1.186 matt u_int start, len, guess;
896 1.162 uebayasi
897 1.162 uebayasi /*
898 1.162 uebayasi * if try is too large (thus target is less than try) we reduce
899 1.162 uebayasi * the length to trunc(len/2) [i.e. everything smaller than "try"]
900 1.162 uebayasi *
901 1.162 uebayasi * if the try is too small (thus target is greater than try) then
902 1.162 uebayasi * we set the new start to be (try + 1). this means we need to
903 1.162 uebayasi * reduce the length to (round(len/2) - 1).
904 1.162 uebayasi *
905 1.162 uebayasi * note "adjust" below which takes advantage of the fact that
906 1.162 uebayasi * (round(len/2) - 1) == trunc((len - 1) / 2)
907 1.162 uebayasi * for any value of len we may have
908 1.162 uebayasi */
909 1.162 uebayasi
910 1.162 uebayasi for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
911 1.186 matt guess = start + (len / 2); /* try in the middle */
912 1.162 uebayasi
913 1.162 uebayasi /* start past our try? */
914 1.186 matt if (pframe >= segs[guess].start) {
915 1.162 uebayasi /* was try correct? */
916 1.186 matt if (pframe < segs[guess].end) {
917 1.167 uebayasi if (offp)
918 1.186 matt *offp = pframe - segs[guess].start;
919 1.186 matt return guess; /* got it */
920 1.162 uebayasi }
921 1.186 matt start = guess + 1; /* next time, start here */
922 1.162 uebayasi len--; /* "adjust" */
923 1.162 uebayasi } else {
924 1.162 uebayasi /*
925 1.162 uebayasi * pframe before try, just reduce length of
926 1.162 uebayasi * region, done in "for" loop
927 1.162 uebayasi */
928 1.162 uebayasi }
929 1.162 uebayasi }
930 1.162 uebayasi return(-1);
931 1.162 uebayasi }
932 1.162 uebayasi
933 1.162 uebayasi #else
934 1.162 uebayasi
935 1.162 uebayasi static inline int
936 1.167 uebayasi vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
937 1.162 uebayasi {
938 1.162 uebayasi /* linear search for it */
939 1.162 uebayasi int lcv;
940 1.162 uebayasi
941 1.162 uebayasi for (lcv = 0; lcv < nsegs; lcv++) {
942 1.167 uebayasi if (pframe >= segs[lcv].start &&
943 1.167 uebayasi pframe < segs[lcv].end) {
944 1.167 uebayasi if (offp)
945 1.167 uebayasi *offp = pframe - segs[lcv].start;
946 1.162 uebayasi return(lcv); /* got it */
947 1.162 uebayasi }
948 1.162 uebayasi }
949 1.162 uebayasi return(-1);
950 1.162 uebayasi }
951 1.162 uebayasi #endif
952 1.162 uebayasi
953 1.162 uebayasi /*
954 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
955 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
956 1.163 uebayasi */
957 1.163 uebayasi struct vm_page *
958 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
959 1.163 uebayasi {
960 1.163 uebayasi paddr_t pf = atop(pa);
961 1.163 uebayasi int off;
962 1.163 uebayasi int psi;
963 1.163 uebayasi
964 1.163 uebayasi psi = vm_physseg_find(pf, &off);
965 1.163 uebayasi if (psi != -1)
966 1.163 uebayasi return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
967 1.163 uebayasi return(NULL);
968 1.163 uebayasi }
969 1.163 uebayasi
970 1.163 uebayasi paddr_t
971 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
972 1.163 uebayasi {
973 1.163 uebayasi
974 1.163 uebayasi return pg->phys_addr;
975 1.163 uebayasi }
976 1.163 uebayasi
977 1.163 uebayasi /*
978 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
979 1.60 thorpej * larger than the old one.
980 1.60 thorpej */
981 1.60 thorpej
982 1.60 thorpej void
983 1.60 thorpej uvm_page_recolor(int newncolors)
984 1.60 thorpej {
985 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
986 1.133 ad struct pgfreelist gpgfl, pgfl;
987 1.63 chs struct vm_page *pg;
988 1.60 thorpej vsize_t bucketcount;
989 1.179 para size_t bucketmemsize, oldbucketmemsize;
990 1.123 ad int lcv, color, i, ocolors;
991 1.133 ad struct uvm_cpu *ucpu;
992 1.60 thorpej
993 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
994 1.178 uebayasi
995 1.60 thorpej if (newncolors <= uvmexp.ncolors)
996 1.60 thorpej return;
997 1.77 wrstuden
998 1.119 thorpej if (uvm.page_init_done == false) {
999 1.77 wrstuden uvmexp.ncolors = newncolors;
1000 1.77 wrstuden return;
1001 1.77 wrstuden }
1002 1.60 thorpej
1003 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
1004 1.179 para bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
1005 1.179 para bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
1006 1.133 ad cpuarray = bucketarray + bucketcount;
1007 1.60 thorpej if (bucketarray == NULL) {
1008 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
1009 1.60 thorpej (long) bucketcount);
1010 1.60 thorpej return;
1011 1.60 thorpej }
1012 1.60 thorpej
1013 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1014 1.60 thorpej
1015 1.60 thorpej /* Make sure we should still do this. */
1016 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
1017 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1018 1.179 para kmem_free(bucketarray, bucketmemsize);
1019 1.60 thorpej return;
1020 1.60 thorpej }
1021 1.60 thorpej
1022 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
1023 1.60 thorpej ocolors = uvmexp.ncolors;
1024 1.60 thorpej
1025 1.60 thorpej uvmexp.ncolors = newncolors;
1026 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
1027 1.60 thorpej
1028 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1029 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1030 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1031 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1032 1.133 ad uvm_page_init_buckets(&gpgfl);
1033 1.60 thorpej uvm_page_init_buckets(&pgfl);
1034 1.60 thorpej for (color = 0; color < ocolors; color++) {
1035 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
1036 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
1037 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
1038 1.60 thorpej != NULL) {
1039 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
1040 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
1041 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1042 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1043 1.133 ad i], pg, pageq.list);
1044 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1045 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1046 1.133 ad i], pg, listq.list);
1047 1.60 thorpej }
1048 1.60 thorpej }
1049 1.60 thorpej }
1050 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1051 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1052 1.60 thorpej }
1053 1.60 thorpej
1054 1.179 para oldbucketmemsize = recolored_pages_memsize;
1055 1.177 mrg
1056 1.179 para recolored_pages_memsize = bucketmemsize;
1057 1.177 mrg mutex_spin_exit(&uvm_fpageqlock);
1058 1.176 matt
1059 1.179 para if (oldbucketmemsize) {
1060 1.179 para kmem_free(oldbucketarray, recolored_pages_memsize);
1061 1.179 para }
1062 1.60 thorpej
1063 1.177 mrg /*
1064 1.177 mrg * this calls uvm_km_alloc() which may want to hold
1065 1.177 mrg * uvm_fpageqlock.
1066 1.177 mrg */
1067 1.177 mrg uvm_pager_realloc_emerg();
1068 1.60 thorpej }
1069 1.1 mrg
1070 1.1 mrg /*
1071 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
1072 1.133 ad */
1073 1.133 ad
1074 1.133 ad void
1075 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
1076 1.133 ad {
1077 1.133 ad struct pgflbucket *bucketarray;
1078 1.133 ad struct pgfreelist pgfl;
1079 1.133 ad struct uvm_cpu *ucpu;
1080 1.133 ad vsize_t bucketcount;
1081 1.133 ad int lcv;
1082 1.133 ad
1083 1.133 ad if (CPU_IS_PRIMARY(ci)) {
1084 1.133 ad /* Already done in uvm_page_init(). */
1085 1.181 tls goto attachrnd;
1086 1.133 ad }
1087 1.133 ad
1088 1.140 ad /* Add more reserve pages for this CPU. */
1089 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
1090 1.140 ad
1091 1.140 ad /* Configure this CPU's free lists. */
1092 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
1093 1.179 para bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
1094 1.179 para KM_SLEEP);
1095 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1096 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
1097 1.133 ad ci->ci_data.cpu_uvm = ucpu;
1098 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1099 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1100 1.133 ad uvm_page_init_buckets(&pgfl);
1101 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1102 1.133 ad }
1103 1.181 tls
1104 1.181 tls attachrnd:
1105 1.181 tls /*
1106 1.181 tls * Attach RNG source for this CPU's VM events
1107 1.181 tls */
1108 1.181 tls rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
1109 1.185 tls ci->ci_data.cpu_name, RND_TYPE_VM,
1110 1.185 tls RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
1111 1.185 tls RND_FLAG_ESTIMATE_VALUE);
1112 1.181 tls
1113 1.133 ad }
1114 1.133 ad
1115 1.133 ad /*
1116 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1117 1.54 thorpej */
1118 1.54 thorpej
1119 1.114 thorpej static struct vm_page *
1120 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1121 1.69 simonb int *trycolorp)
1122 1.54 thorpej {
1123 1.133 ad struct pgflist *freeq;
1124 1.54 thorpej struct vm_page *pg;
1125 1.58 enami int color, trycolor = *trycolorp;
1126 1.133 ad struct pgfreelist *gpgfl, *pgfl;
1127 1.54 thorpej
1128 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1129 1.130 ad
1130 1.58 enami color = trycolor;
1131 1.133 ad pgfl = &ucpu->page_free[flist];
1132 1.133 ad gpgfl = &uvm.page_free[flist];
1133 1.58 enami do {
1134 1.133 ad /* cpu, try1 */
1135 1.133 ad if ((pg = LIST_FIRST((freeq =
1136 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1137 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1138 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1139 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1140 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1141 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1142 1.133 ad uvmexp.cpuhit++;
1143 1.133 ad goto gotit;
1144 1.133 ad }
1145 1.133 ad /* global, try1 */
1146 1.133 ad if ((pg = LIST_FIRST((freeq =
1147 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1148 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1149 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1150 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1151 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1152 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1153 1.133 ad uvmexp.cpumiss++;
1154 1.54 thorpej goto gotit;
1155 1.133 ad }
1156 1.133 ad /* cpu, try2 */
1157 1.133 ad if ((pg = LIST_FIRST((freeq =
1158 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1159 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1160 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1161 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1162 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1163 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1164 1.133 ad uvmexp.cpuhit++;
1165 1.54 thorpej goto gotit;
1166 1.133 ad }
1167 1.133 ad /* global, try2 */
1168 1.133 ad if ((pg = LIST_FIRST((freeq =
1169 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1170 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
1171 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1172 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1173 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1174 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1175 1.133 ad uvmexp.cpumiss++;
1176 1.133 ad goto gotit;
1177 1.133 ad }
1178 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1179 1.58 enami } while (color != trycolor);
1180 1.54 thorpej
1181 1.54 thorpej return (NULL);
1182 1.54 thorpej
1183 1.54 thorpej gotit:
1184 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1185 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1186 1.54 thorpej uvmexp.free--;
1187 1.54 thorpej
1188 1.54 thorpej /* update zero'd page count */
1189 1.54 thorpej if (pg->flags & PG_ZERO)
1190 1.54 thorpej uvmexp.zeropages--;
1191 1.54 thorpej
1192 1.54 thorpej if (color == trycolor)
1193 1.54 thorpej uvmexp.colorhit++;
1194 1.54 thorpej else {
1195 1.54 thorpej uvmexp.colormiss++;
1196 1.54 thorpej *trycolorp = color;
1197 1.54 thorpej }
1198 1.54 thorpej
1199 1.54 thorpej return (pg);
1200 1.54 thorpej }
1201 1.54 thorpej
1202 1.54 thorpej /*
1203 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1204 1.1 mrg *
1205 1.1 mrg * => return null if no pages free
1206 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1207 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1208 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1209 1.1 mrg * => only one of obj or anon can be non-null
1210 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1211 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1212 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1213 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1214 1.34 thorpej * unknown contents page. This is because we live with the
1215 1.34 thorpej * consequences of a bad free list decision for the entire
1216 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1217 1.34 thorpej * is slower to access.
1218 1.1 mrg */
1219 1.1 mrg
1220 1.7 mrg struct vm_page *
1221 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1222 1.105 thorpej int flags, int strat, int free_list)
1223 1.1 mrg {
1224 1.123 ad int lcv, try1, try2, zeroit = 0, color;
1225 1.133 ad struct uvm_cpu *ucpu;
1226 1.7 mrg struct vm_page *pg;
1227 1.141 ad lwp_t *l;
1228 1.1 mrg
1229 1.44 chs KASSERT(obj == NULL || anon == NULL);
1230 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1231 1.44 chs KASSERT(off == trunc_page(off));
1232 1.174 rmind KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
1233 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
1234 1.175 rmind mutex_owned(anon->an_lock));
1235 1.48 thorpej
1236 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1237 1.1 mrg
1238 1.7 mrg /*
1239 1.54 thorpej * This implements a global round-robin page coloring
1240 1.54 thorpej * algorithm.
1241 1.54 thorpej */
1242 1.67 chs
1243 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1244 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
1245 1.169 matt color = atop(off) & uvmexp.colormask;
1246 1.169 matt } else {
1247 1.169 matt color = ucpu->page_free_nextcolor;
1248 1.169 matt }
1249 1.54 thorpej
1250 1.54 thorpej /*
1251 1.7 mrg * check to see if we need to generate some free pages waking
1252 1.7 mrg * the pagedaemon.
1253 1.7 mrg */
1254 1.7 mrg
1255 1.113 yamt uvm_kick_pdaemon();
1256 1.7 mrg
1257 1.7 mrg /*
1258 1.7 mrg * fail if any of these conditions is true:
1259 1.7 mrg * [1] there really are no free pages, or
1260 1.7 mrg * [2] only kernel "reserved" pages remain and
1261 1.141 ad * reserved pages have not been requested.
1262 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1263 1.7 mrg * the requestor isn't the pagedaemon.
1264 1.141 ad * we make kernel reserve pages available if called by a
1265 1.141 ad * kernel thread or a realtime thread.
1266 1.7 mrg */
1267 1.141 ad l = curlwp;
1268 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1269 1.141 ad flags |= UVM_PGA_USERESERVE;
1270 1.141 ad }
1271 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
1272 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
1273 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1274 1.141 ad curlwp != uvm.pagedaemon_lwp))
1275 1.12 thorpej goto fail;
1276 1.12 thorpej
1277 1.34 thorpej #if PGFL_NQUEUES != 2
1278 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1279 1.34 thorpej #endif
1280 1.34 thorpej
1281 1.34 thorpej /*
1282 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1283 1.34 thorpej * we try the UNKNOWN queue first.
1284 1.34 thorpej */
1285 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1286 1.34 thorpej try1 = PGFL_ZEROS;
1287 1.34 thorpej try2 = PGFL_UNKNOWN;
1288 1.34 thorpej } else {
1289 1.34 thorpej try1 = PGFL_UNKNOWN;
1290 1.34 thorpej try2 = PGFL_ZEROS;
1291 1.34 thorpej }
1292 1.34 thorpej
1293 1.12 thorpej again:
1294 1.12 thorpej switch (strat) {
1295 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1296 1.145 abs /* Check freelists: descending priority (ascending id) order */
1297 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1298 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1299 1.54 thorpej try1, try2, &color);
1300 1.54 thorpej if (pg != NULL)
1301 1.12 thorpej goto gotit;
1302 1.12 thorpej }
1303 1.12 thorpej
1304 1.12 thorpej /* No pages free! */
1305 1.12 thorpej goto fail;
1306 1.12 thorpej
1307 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1308 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1309 1.12 thorpej /* Attempt to allocate from the specified free list. */
1310 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1311 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1312 1.54 thorpej try1, try2, &color);
1313 1.54 thorpej if (pg != NULL)
1314 1.12 thorpej goto gotit;
1315 1.12 thorpej
1316 1.12 thorpej /* Fall back, if possible. */
1317 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1318 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1319 1.12 thorpej goto again;
1320 1.12 thorpej }
1321 1.12 thorpej
1322 1.12 thorpej /* No pages free! */
1323 1.12 thorpej goto fail;
1324 1.12 thorpej
1325 1.12 thorpej default:
1326 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1327 1.12 thorpej /* NOTREACHED */
1328 1.7 mrg }
1329 1.7 mrg
1330 1.12 thorpej gotit:
1331 1.54 thorpej /*
1332 1.54 thorpej * We now know which color we actually allocated from; set
1333 1.54 thorpej * the next color accordingly.
1334 1.54 thorpej */
1335 1.67 chs
1336 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1337 1.34 thorpej
1338 1.34 thorpej /*
1339 1.34 thorpej * update allocation statistics and remember if we have to
1340 1.34 thorpej * zero the page
1341 1.34 thorpej */
1342 1.67 chs
1343 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1344 1.34 thorpej if (pg->flags & PG_ZERO) {
1345 1.34 thorpej uvmexp.pga_zerohit++;
1346 1.34 thorpej zeroit = 0;
1347 1.34 thorpej } else {
1348 1.34 thorpej uvmexp.pga_zeromiss++;
1349 1.34 thorpej zeroit = 1;
1350 1.34 thorpej }
1351 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1352 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1353 1.133 ad }
1354 1.34 thorpej }
1355 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1356 1.7 mrg
1357 1.7 mrg pg->offset = off;
1358 1.7 mrg pg->uobject = obj;
1359 1.7 mrg pg->uanon = anon;
1360 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1361 1.7 mrg if (anon) {
1362 1.103 yamt anon->an_page = pg;
1363 1.7 mrg pg->pqflags = PQ_ANON;
1364 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1365 1.7 mrg } else {
1366 1.67 chs if (obj) {
1367 1.153 uebayasi uvm_pageinsert(obj, pg);
1368 1.67 chs }
1369 1.7 mrg pg->pqflags = 0;
1370 1.7 mrg }
1371 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1372 1.143 drochner
1373 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1374 1.7 mrg pg->owner_tag = NULL;
1375 1.1 mrg #endif
1376 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1377 1.33 thorpej
1378 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1379 1.33 thorpej /*
1380 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1381 1.34 thorpej * zero'd, then we have to zero it ourselves.
1382 1.33 thorpej */
1383 1.33 thorpej pg->flags &= ~PG_CLEAN;
1384 1.34 thorpej if (zeroit)
1385 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1386 1.33 thorpej }
1387 1.1 mrg
1388 1.7 mrg return(pg);
1389 1.12 thorpej
1390 1.12 thorpej fail:
1391 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1392 1.12 thorpej return (NULL);
1393 1.1 mrg }
1394 1.1 mrg
1395 1.1 mrg /*
1396 1.96 yamt * uvm_pagereplace: replace a page with another
1397 1.96 yamt *
1398 1.96 yamt * => object must be locked
1399 1.96 yamt */
1400 1.96 yamt
1401 1.96 yamt void
1402 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1403 1.96 yamt {
1404 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1405 1.97 junyoung
1406 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1407 1.136 yamt KASSERT(uobj != NULL);
1408 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1409 1.96 yamt KASSERT(newpg->uobject == NULL);
1410 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
1411 1.96 yamt
1412 1.136 yamt newpg->uobject = uobj;
1413 1.96 yamt newpg->offset = oldpg->offset;
1414 1.96 yamt
1415 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1416 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1417 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1418 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1419 1.96 yamt }
1420 1.96 yamt
1421 1.96 yamt /*
1422 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1423 1.1 mrg *
1424 1.1 mrg * => both objects must be locked
1425 1.1 mrg */
1426 1.1 mrg
1427 1.7 mrg void
1428 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1429 1.1 mrg {
1430 1.7 mrg /*
1431 1.7 mrg * remove it from the old object
1432 1.7 mrg */
1433 1.7 mrg
1434 1.7 mrg if (pg->uobject) {
1435 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1436 1.7 mrg }
1437 1.7 mrg
1438 1.7 mrg /*
1439 1.7 mrg * put it in the new object
1440 1.7 mrg */
1441 1.7 mrg
1442 1.7 mrg if (newobj) {
1443 1.7 mrg pg->uobject = newobj;
1444 1.7 mrg pg->offset = newoff;
1445 1.153 uebayasi uvm_pageinsert(newobj, pg);
1446 1.7 mrg }
1447 1.1 mrg }
1448 1.1 mrg
1449 1.91 yamt #ifdef DEBUG
1450 1.91 yamt /*
1451 1.91 yamt * check if page is zero-filled
1452 1.91 yamt *
1453 1.91 yamt * - called with free page queue lock held.
1454 1.91 yamt */
1455 1.91 yamt void
1456 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1457 1.91 yamt {
1458 1.91 yamt int *p, *ep;
1459 1.91 yamt
1460 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1461 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1462 1.91 yamt
1463 1.91 yamt /*
1464 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1465 1.91 yamt * uvm page allocator.
1466 1.91 yamt *
1467 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1468 1.91 yamt */
1469 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1470 1.91 yamt p = (int *)uvm_zerocheckkva;
1471 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1472 1.92 yamt pmap_update(pmap_kernel());
1473 1.91 yamt while (p < ep) {
1474 1.91 yamt if (*p != 0)
1475 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1476 1.91 yamt p++;
1477 1.91 yamt }
1478 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1479 1.131 yamt /*
1480 1.131 yamt * pmap_update() is not necessary here because no one except us
1481 1.131 yamt * uses this VA.
1482 1.131 yamt */
1483 1.91 yamt }
1484 1.91 yamt #endif /* DEBUG */
1485 1.91 yamt
1486 1.1 mrg /*
1487 1.1 mrg * uvm_pagefree: free page
1488 1.1 mrg *
1489 1.133 ad * => erase page's identity (i.e. remove from object)
1490 1.1 mrg * => put page on free list
1491 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1492 1.1 mrg * => caller must lock page queues
1493 1.1 mrg * => assumes all valid mappings of pg are gone
1494 1.1 mrg */
1495 1.1 mrg
1496 1.44 chs void
1497 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1498 1.1 mrg {
1499 1.133 ad struct pgflist *pgfl;
1500 1.133 ad struct uvm_cpu *ucpu;
1501 1.133 ad int index, color, queue;
1502 1.118 thorpej bool iszero;
1503 1.67 chs
1504 1.44 chs #ifdef DEBUG
1505 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1506 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1507 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1508 1.44 chs }
1509 1.91 yamt #endif /* DEBUG */
1510 1.44 chs
1511 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1512 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1513 1.182 matt //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1514 1.174 rmind KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1515 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1516 1.174 rmind mutex_owned(pg->uanon->an_lock));
1517 1.123 ad
1518 1.7 mrg /*
1519 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1520 1.7 mrg */
1521 1.7 mrg
1522 1.67 chs if (pg->loan_count) {
1523 1.70 chs KASSERT(pg->wire_count == 0);
1524 1.7 mrg
1525 1.7 mrg /*
1526 1.67 chs * if the page is owned by an anon then we just want to
1527 1.70 chs * drop anon ownership. the kernel will free the page when
1528 1.70 chs * it is done with it. if the page is owned by an object,
1529 1.70 chs * remove it from the object and mark it dirty for the benefit
1530 1.70 chs * of possible anon owners.
1531 1.70 chs *
1532 1.70 chs * regardless of previous ownership, wakeup any waiters,
1533 1.70 chs * unbusy the page, and we're done.
1534 1.7 mrg */
1535 1.7 mrg
1536 1.73 chs if (pg->uobject != NULL) {
1537 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1538 1.67 chs pg->flags &= ~PG_CLEAN;
1539 1.73 chs } else if (pg->uanon != NULL) {
1540 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1541 1.73 chs pg->loan_count--;
1542 1.73 chs } else {
1543 1.73 chs pg->pqflags &= ~PQ_ANON;
1544 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1545 1.73 chs }
1546 1.103 yamt pg->uanon->an_page = NULL;
1547 1.73 chs pg->uanon = NULL;
1548 1.67 chs }
1549 1.70 chs if (pg->flags & PG_WANTED) {
1550 1.70 chs wakeup(pg);
1551 1.70 chs }
1552 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1553 1.70 chs #ifdef UVM_PAGE_TRKOWN
1554 1.70 chs pg->owner_tag = NULL;
1555 1.70 chs #endif
1556 1.73 chs if (pg->loan_count) {
1557 1.115 yamt KASSERT(pg->uobject == NULL);
1558 1.115 yamt if (pg->uanon == NULL) {
1559 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1560 1.115 yamt uvm_pagedequeue(pg);
1561 1.115 yamt }
1562 1.73 chs return;
1563 1.73 chs }
1564 1.67 chs }
1565 1.62 chs
1566 1.67 chs /*
1567 1.67 chs * remove page from its object or anon.
1568 1.67 chs */
1569 1.44 chs
1570 1.73 chs if (pg->uobject != NULL) {
1571 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1572 1.73 chs } else if (pg->uanon != NULL) {
1573 1.103 yamt pg->uanon->an_page = NULL;
1574 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1575 1.7 mrg }
1576 1.1 mrg
1577 1.7 mrg /*
1578 1.70 chs * now remove the page from the queues.
1579 1.7 mrg */
1580 1.182 matt if (uvmpdpol_pageisqueued_p(pg)) {
1581 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1582 1.182 matt uvm_pagedequeue(pg);
1583 1.182 matt }
1584 1.7 mrg
1585 1.7 mrg /*
1586 1.7 mrg * if the page was wired, unwire it now.
1587 1.7 mrg */
1588 1.44 chs
1589 1.34 thorpej if (pg->wire_count) {
1590 1.7 mrg pg->wire_count = 0;
1591 1.7 mrg uvmexp.wired--;
1592 1.44 chs }
1593 1.7 mrg
1594 1.7 mrg /*
1595 1.44 chs * and put on free queue
1596 1.7 mrg */
1597 1.7 mrg
1598 1.90 yamt iszero = (pg->flags & PG_ZERO);
1599 1.133 ad index = uvm_page_lookup_freelist(pg);
1600 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1601 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1602 1.34 thorpej
1603 1.3 chs #ifdef DEBUG
1604 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1605 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1606 1.3 chs #endif
1607 1.90 yamt
1608 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1609 1.143 drochner pg->pqflags = PQ_FREE;
1610 1.91 yamt
1611 1.91 yamt #ifdef DEBUG
1612 1.91 yamt if (iszero)
1613 1.91 yamt uvm_pagezerocheck(pg);
1614 1.91 yamt #endif /* DEBUG */
1615 1.91 yamt
1616 1.133 ad
1617 1.133 ad /* global list */
1618 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1619 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1620 1.7 mrg uvmexp.free++;
1621 1.133 ad if (iszero) {
1622 1.90 yamt uvmexp.zeropages++;
1623 1.133 ad }
1624 1.34 thorpej
1625 1.133 ad /* per-cpu list */
1626 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1627 1.133 ad pg->offset = (uintptr_t)ucpu;
1628 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1629 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1630 1.133 ad ucpu->pages[queue]++;
1631 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1632 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1633 1.133 ad }
1634 1.34 thorpej
1635 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1636 1.44 chs }
1637 1.44 chs
1638 1.44 chs /*
1639 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1640 1.44 chs *
1641 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1642 1.44 chs * => if pages are object-owned, object must be locked.
1643 1.67 chs * => if pages are anon-owned, anons must be locked.
1644 1.76 enami * => caller must lock page queues if pages may be released.
1645 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1646 1.44 chs */
1647 1.44 chs
1648 1.44 chs void
1649 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1650 1.44 chs {
1651 1.44 chs struct vm_page *pg;
1652 1.44 chs int i;
1653 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1654 1.44 chs
1655 1.44 chs for (i = 0; i < npgs; i++) {
1656 1.44 chs pg = pgs[i];
1657 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1658 1.44 chs continue;
1659 1.44 chs }
1660 1.98 yamt
1661 1.180 matt KASSERT(uvm_page_locked_p(pg));
1662 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1663 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1664 1.44 chs if (pg->flags & PG_WANTED) {
1665 1.44 chs wakeup(pg);
1666 1.44 chs }
1667 1.44 chs if (pg->flags & PG_RELEASED) {
1668 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1669 1.98 yamt KASSERT(pg->uobject != NULL ||
1670 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1671 1.67 chs pg->flags &= ~PG_RELEASED;
1672 1.67 chs uvm_pagefree(pg);
1673 1.44 chs } else {
1674 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1675 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1676 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1677 1.44 chs UVM_PAGE_OWN(pg, NULL);
1678 1.44 chs }
1679 1.44 chs }
1680 1.1 mrg }
1681 1.1 mrg
1682 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1683 1.1 mrg /*
1684 1.1 mrg * uvm_page_own: set or release page ownership
1685 1.1 mrg *
1686 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1687 1.1 mrg * and where they do it. it can be used to track down problems
1688 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1689 1.1 mrg * => page's object [if any] must be locked
1690 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1691 1.1 mrg */
1692 1.7 mrg void
1693 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1694 1.1 mrg {
1695 1.112 yamt
1696 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1697 1.184 chs KASSERT((pg->flags & PG_WANTED) == 0);
1698 1.180 matt KASSERT(uvm_page_locked_p(pg));
1699 1.112 yamt
1700 1.7 mrg /* gain ownership? */
1701 1.7 mrg if (tag) {
1702 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1703 1.7 mrg if (pg->owner_tag) {
1704 1.7 mrg printf("uvm_page_own: page %p already owned "
1705 1.7 mrg "by proc %d [%s]\n", pg,
1706 1.74 enami pg->owner, pg->owner_tag);
1707 1.7 mrg panic("uvm_page_own");
1708 1.7 mrg }
1709 1.184 chs pg->owner = curproc->p_pid;
1710 1.184 chs pg->lowner = curlwp->l_lid;
1711 1.7 mrg pg->owner_tag = tag;
1712 1.7 mrg return;
1713 1.7 mrg }
1714 1.7 mrg
1715 1.7 mrg /* drop ownership */
1716 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1717 1.7 mrg if (pg->owner_tag == NULL) {
1718 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1719 1.7 mrg "page (%p)\n", pg);
1720 1.7 mrg panic("uvm_page_own");
1721 1.7 mrg }
1722 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1723 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1724 1.115 yamt pg->wire_count > 0);
1725 1.115 yamt } else {
1726 1.115 yamt KASSERT(pg->wire_count == 0);
1727 1.115 yamt }
1728 1.7 mrg pg->owner_tag = NULL;
1729 1.1 mrg }
1730 1.1 mrg #endif
1731 1.34 thorpej
1732 1.34 thorpej /*
1733 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1734 1.34 thorpej *
1735 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1736 1.54 thorpej * on the CPU cache.
1737 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1738 1.132 ad * to run, or MD code detects a reason to break early.
1739 1.34 thorpej */
1740 1.34 thorpej void
1741 1.105 thorpej uvm_pageidlezero(void)
1742 1.34 thorpej {
1743 1.34 thorpej struct vm_page *pg;
1744 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1745 1.133 ad struct uvm_cpu *ucpu;
1746 1.133 ad int free_list, firstbucket, nextbucket;
1747 1.172 rmind bool lcont = false;
1748 1.133 ad
1749 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1750 1.133 ad if (!ucpu->page_idle_zero ||
1751 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1752 1.133 ad ucpu->page_idle_zero = false;
1753 1.132 ad return;
1754 1.132 ad }
1755 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1756 1.172 rmind /* Contention: let other CPUs to use the lock. */
1757 1.172 rmind return;
1758 1.172 rmind }
1759 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1760 1.133 ad nextbucket = firstbucket;
1761 1.58 enami do {
1762 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1763 1.139 ad if (sched_curcpu_runnable_p()) {
1764 1.139 ad goto quit;
1765 1.139 ad }
1766 1.133 ad pgfl = &ucpu->page_free[free_list];
1767 1.133 ad gpgfl = &uvm.page_free[free_list];
1768 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1769 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1770 1.172 rmind if (lcont || sched_curcpu_runnable_p()) {
1771 1.101 yamt goto quit;
1772 1.132 ad }
1773 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1774 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1775 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1776 1.54 thorpej uvmexp.free--;
1777 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1778 1.143 drochner pg->pqflags = 0;
1779 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1780 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1781 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1782 1.67 chs
1783 1.54 thorpej /*
1784 1.54 thorpej * The machine-dependent code detected
1785 1.54 thorpej * some reason for us to abort zeroing
1786 1.54 thorpej * pages, probably because there is a
1787 1.54 thorpej * process now ready to run.
1788 1.54 thorpej */
1789 1.67 chs
1790 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1791 1.144 drochner pg->pqflags = PQ_FREE;
1792 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1793 1.133 ad nextbucket].pgfl_queues[
1794 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1795 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1796 1.54 thorpej nextbucket].pgfl_queues[
1797 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1798 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1799 1.54 thorpej uvmexp.free++;
1800 1.54 thorpej uvmexp.zeroaborts++;
1801 1.101 yamt goto quit;
1802 1.54 thorpej }
1803 1.54 thorpej #else
1804 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1805 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1806 1.54 thorpej pg->flags |= PG_ZERO;
1807 1.54 thorpej
1808 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1809 1.172 rmind lcont = true;
1810 1.172 rmind mutex_spin_enter(&uvm_fpageqlock);
1811 1.172 rmind } else {
1812 1.172 rmind lcont = false;
1813 1.172 rmind }
1814 1.143 drochner pg->pqflags = PQ_FREE;
1815 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1816 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1817 1.133 ad pg, pageq.list);
1818 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1819 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1820 1.133 ad pg, listq.list);
1821 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1822 1.54 thorpej uvmexp.free++;
1823 1.54 thorpej uvmexp.zeropages++;
1824 1.54 thorpej }
1825 1.41 thorpej }
1826 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1827 1.133 ad break;
1828 1.133 ad }
1829 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1830 1.58 enami } while (nextbucket != firstbucket);
1831 1.133 ad ucpu->page_idle_zero = false;
1832 1.133 ad quit:
1833 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1834 1.34 thorpej }
1835 1.110 yamt
1836 1.110 yamt /*
1837 1.110 yamt * uvm_pagelookup: look up a page
1838 1.110 yamt *
1839 1.110 yamt * => caller should lock object to keep someone from pulling the page
1840 1.110 yamt * out from under it
1841 1.110 yamt */
1842 1.110 yamt
1843 1.110 yamt struct vm_page *
1844 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1845 1.110 yamt {
1846 1.110 yamt struct vm_page *pg;
1847 1.110 yamt
1848 1.174 rmind KASSERT(mutex_owned(obj->vmobjlock));
1849 1.123 ad
1850 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1851 1.134 ad
1852 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1853 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1854 1.110 yamt (pg->flags & PG_BUSY) != 0);
1855 1.156 rmind return pg;
1856 1.110 yamt }
1857 1.110 yamt
1858 1.110 yamt /*
1859 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1860 1.110 yamt *
1861 1.110 yamt * => caller must lock page queues
1862 1.110 yamt */
1863 1.110 yamt
1864 1.110 yamt void
1865 1.110 yamt uvm_pagewire(struct vm_page *pg)
1866 1.110 yamt {
1867 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1868 1.113 yamt #if defined(READAHEAD_STATS)
1869 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1870 1.113 yamt uvm_ra_hit.ev_count++;
1871 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1872 1.113 yamt }
1873 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1874 1.110 yamt if (pg->wire_count == 0) {
1875 1.110 yamt uvm_pagedequeue(pg);
1876 1.110 yamt uvmexp.wired++;
1877 1.110 yamt }
1878 1.110 yamt pg->wire_count++;
1879 1.110 yamt }
1880 1.110 yamt
1881 1.110 yamt /*
1882 1.110 yamt * uvm_pageunwire: unwire the page.
1883 1.110 yamt *
1884 1.110 yamt * => activate if wire count goes to zero.
1885 1.110 yamt * => caller must lock page queues
1886 1.110 yamt */
1887 1.110 yamt
1888 1.110 yamt void
1889 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1890 1.110 yamt {
1891 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1892 1.110 yamt pg->wire_count--;
1893 1.110 yamt if (pg->wire_count == 0) {
1894 1.111 yamt uvm_pageactivate(pg);
1895 1.110 yamt uvmexp.wired--;
1896 1.110 yamt }
1897 1.110 yamt }
1898 1.110 yamt
1899 1.110 yamt /*
1900 1.110 yamt * uvm_pagedeactivate: deactivate page
1901 1.110 yamt *
1902 1.110 yamt * => caller must lock page queues
1903 1.110 yamt * => caller must check to make sure page is not wired
1904 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1905 1.110 yamt * => caller must clear the reference on the page before calling
1906 1.110 yamt */
1907 1.110 yamt
1908 1.110 yamt void
1909 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1910 1.110 yamt {
1911 1.113 yamt
1912 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1913 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1914 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1915 1.113 yamt uvmpdpol_pagedeactivate(pg);
1916 1.110 yamt }
1917 1.110 yamt
1918 1.110 yamt /*
1919 1.110 yamt * uvm_pageactivate: activate page
1920 1.110 yamt *
1921 1.110 yamt * => caller must lock page queues
1922 1.110 yamt */
1923 1.110 yamt
1924 1.110 yamt void
1925 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1926 1.110 yamt {
1927 1.113 yamt
1928 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1929 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1930 1.113 yamt #if defined(READAHEAD_STATS)
1931 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1932 1.113 yamt uvm_ra_hit.ev_count++;
1933 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1934 1.113 yamt }
1935 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1936 1.113 yamt if (pg->wire_count != 0) {
1937 1.113 yamt return;
1938 1.110 yamt }
1939 1.113 yamt uvmpdpol_pageactivate(pg);
1940 1.110 yamt }
1941 1.110 yamt
1942 1.110 yamt /*
1943 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1944 1.110 yamt */
1945 1.110 yamt
1946 1.110 yamt void
1947 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1948 1.110 yamt {
1949 1.113 yamt
1950 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1951 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1952 1.110 yamt }
1953 1.123 ad
1954 1.113 yamt uvmpdpol_pagedequeue(pg);
1955 1.113 yamt }
1956 1.113 yamt
1957 1.113 yamt /*
1958 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1959 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1960 1.113 yamt */
1961 1.113 yamt
1962 1.113 yamt void
1963 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1964 1.113 yamt {
1965 1.113 yamt
1966 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1967 1.113 yamt if (pg->wire_count != 0) {
1968 1.113 yamt return;
1969 1.113 yamt }
1970 1.113 yamt uvmpdpol_pageenqueue(pg);
1971 1.110 yamt }
1972 1.110 yamt
1973 1.110 yamt /*
1974 1.110 yamt * uvm_pagezero: zero fill a page
1975 1.110 yamt *
1976 1.110 yamt * => if page is part of an object then the object should be locked
1977 1.110 yamt * to protect pg->flags.
1978 1.110 yamt */
1979 1.110 yamt
1980 1.110 yamt void
1981 1.110 yamt uvm_pagezero(struct vm_page *pg)
1982 1.110 yamt {
1983 1.110 yamt pg->flags &= ~PG_CLEAN;
1984 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1985 1.110 yamt }
1986 1.110 yamt
1987 1.110 yamt /*
1988 1.110 yamt * uvm_pagecopy: copy a page
1989 1.110 yamt *
1990 1.110 yamt * => if page is part of an object then the object should be locked
1991 1.110 yamt * to protect pg->flags.
1992 1.110 yamt */
1993 1.110 yamt
1994 1.110 yamt void
1995 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1996 1.110 yamt {
1997 1.110 yamt
1998 1.110 yamt dst->flags &= ~PG_CLEAN;
1999 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2000 1.110 yamt }
2001 1.110 yamt
2002 1.110 yamt /*
2003 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2004 1.150 thorpej */
2005 1.150 thorpej
2006 1.150 thorpej bool
2007 1.150 thorpej uvm_pageismanaged(paddr_t pa)
2008 1.150 thorpej {
2009 1.150 thorpej
2010 1.150 thorpej return (vm_physseg_find(atop(pa), NULL) != -1);
2011 1.150 thorpej }
2012 1.150 thorpej
2013 1.150 thorpej /*
2014 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
2015 1.110 yamt */
2016 1.110 yamt
2017 1.110 yamt int
2018 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
2019 1.110 yamt {
2020 1.110 yamt int lcv;
2021 1.110 yamt
2022 1.110 yamt lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2023 1.110 yamt KASSERT(lcv != -1);
2024 1.159 uebayasi return (VM_PHYSMEM_PTR(lcv)->free_list);
2025 1.110 yamt }
2026 1.151 thorpej
2027 1.174 rmind /*
2028 1.174 rmind * uvm_page_locked_p: return true if object associated with page is
2029 1.174 rmind * locked. this is a weak check for runtime assertions only.
2030 1.174 rmind */
2031 1.174 rmind
2032 1.174 rmind bool
2033 1.174 rmind uvm_page_locked_p(struct vm_page *pg)
2034 1.174 rmind {
2035 1.174 rmind
2036 1.174 rmind if (pg->uobject != NULL) {
2037 1.174 rmind return mutex_owned(pg->uobject->vmobjlock);
2038 1.174 rmind }
2039 1.174 rmind if (pg->uanon != NULL) {
2040 1.174 rmind return mutex_owned(pg->uanon->an_lock);
2041 1.174 rmind }
2042 1.174 rmind return true;
2043 1.174 rmind }
2044 1.174 rmind
2045 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
2046 1.151 thorpej
2047 1.151 thorpej /*
2048 1.151 thorpej * uvm_page_printit: actually print the page
2049 1.151 thorpej */
2050 1.151 thorpej
2051 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
2052 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2053 1.151 thorpej
2054 1.151 thorpej void
2055 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
2056 1.151 thorpej void (*pr)(const char *, ...))
2057 1.151 thorpej {
2058 1.151 thorpej struct vm_page *tpg;
2059 1.151 thorpej struct uvm_object *uobj;
2060 1.151 thorpej struct pgflist *pgl;
2061 1.151 thorpej char pgbuf[128];
2062 1.151 thorpej char pqbuf[128];
2063 1.151 thorpej
2064 1.151 thorpej (*pr)("PAGE %p:\n", pg);
2065 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2066 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2067 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2068 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2069 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2070 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2071 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
2072 1.151 thorpej if (pg->flags & PG_BUSY)
2073 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
2074 1.151 thorpej pg->owner, pg->owner_tag);
2075 1.151 thorpej else
2076 1.151 thorpej (*pr)(" page not busy, no owner\n");
2077 1.151 thorpej #else
2078 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
2079 1.151 thorpej #endif
2080 1.151 thorpej
2081 1.151 thorpej if (!full)
2082 1.151 thorpej return;
2083 1.151 thorpej
2084 1.151 thorpej /* cross-verify object/anon */
2085 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
2086 1.151 thorpej if (pg->pqflags & PQ_ANON) {
2087 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
2088 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2089 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
2090 1.151 thorpej else
2091 1.151 thorpej (*pr)(" anon backpointer is OK\n");
2092 1.151 thorpej } else {
2093 1.151 thorpej uobj = pg->uobject;
2094 1.151 thorpej if (uobj) {
2095 1.151 thorpej (*pr)(" checking object list\n");
2096 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2097 1.151 thorpej if (tpg == pg) {
2098 1.151 thorpej break;
2099 1.151 thorpej }
2100 1.151 thorpej }
2101 1.151 thorpej if (tpg)
2102 1.151 thorpej (*pr)(" page found on object list\n");
2103 1.151 thorpej else
2104 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2105 1.151 thorpej }
2106 1.151 thorpej }
2107 1.151 thorpej }
2108 1.151 thorpej
2109 1.151 thorpej /* cross-verify page queue */
2110 1.151 thorpej if (pg->pqflags & PQ_FREE) {
2111 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
2112 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
2113 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2114 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2115 1.151 thorpej } else {
2116 1.151 thorpej pgl = NULL;
2117 1.151 thorpej }
2118 1.151 thorpej
2119 1.151 thorpej if (pgl) {
2120 1.151 thorpej (*pr)(" checking pageq list\n");
2121 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
2122 1.151 thorpej if (tpg == pg) {
2123 1.151 thorpej break;
2124 1.151 thorpej }
2125 1.151 thorpej }
2126 1.151 thorpej if (tpg)
2127 1.151 thorpej (*pr)(" page found on pageq list\n");
2128 1.151 thorpej else
2129 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2130 1.151 thorpej }
2131 1.151 thorpej }
2132 1.151 thorpej
2133 1.151 thorpej /*
2134 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
2135 1.151 thorpej */
2136 1.151 thorpej
2137 1.151 thorpej void
2138 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2139 1.151 thorpej {
2140 1.151 thorpej unsigned i;
2141 1.151 thorpej struct vm_page *pg;
2142 1.151 thorpej
2143 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2144 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2145 1.151 thorpej " OWNER"
2146 1.151 thorpej #endif
2147 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2148 1.158 uebayasi for (i = 0; i < vm_nphysmem; i++) {
2149 1.161 uebayasi for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2150 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
2151 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2152 1.151 thorpej pg->uanon);
2153 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2154 1.151 thorpej if (pg->flags & PG_BUSY)
2155 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2156 1.151 thorpej #endif
2157 1.151 thorpej (*pr)("\n");
2158 1.151 thorpej }
2159 1.151 thorpej }
2160 1.151 thorpej }
2161 1.151 thorpej
2162 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2163