uvm_page.c revision 1.199 1 1.199 kre /* $NetBSD: uvm_page.c,v 1.199 2019/03/14 19:10:04 kre Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.62 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.62 chs *
49 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.62 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_page.c: page ops.
66 1.1 mrg */
67 1.71 lukem
68 1.71 lukem #include <sys/cdefs.h>
69 1.199 kre __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.199 2019/03/14 19:10:04 kre Exp $");
70 1.6 mrg
71 1.151 thorpej #include "opt_ddb.h"
72 1.187 joerg #include "opt_uvm.h"
73 1.44 chs #include "opt_uvmhist.h"
74 1.113 yamt #include "opt_readahead.h"
75 1.44 chs
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.68 chs #include <sys/proc.h>
82 1.126 ad #include <sys/atomic.h>
83 1.133 ad #include <sys/cpu.h>
84 1.190 cherry #include <sys/extent.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.151 thorpej #include <uvm/uvm_ddb.h>
88 1.113 yamt #include <uvm/uvm_pdpolicy.h>
89 1.1 mrg
90 1.1 mrg /*
91 1.36 thorpej * Some supported CPUs in a given architecture don't support all
92 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
93 1.155 ad * We therefore provide a way to enable it from machdep code here.
94 1.44 chs */
95 1.119 thorpej bool vm_page_zero_enable = false;
96 1.34 thorpej
97 1.34 thorpej /*
98 1.140 ad * number of pages per-CPU to reserve for the kernel.
99 1.140 ad */
100 1.187 joerg #ifndef UVM_RESERVED_PAGES_PER_CPU
101 1.187 joerg #define UVM_RESERVED_PAGES_PER_CPU 5
102 1.187 joerg #endif
103 1.187 joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104 1.140 ad
105 1.140 ad /*
106 1.148 matt * physical memory size;
107 1.148 matt */
108 1.189 cherry psize_t physmem;
109 1.148 matt
110 1.148 matt /*
111 1.1 mrg * local variables
112 1.1 mrg */
113 1.1 mrg
114 1.1 mrg /*
115 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
116 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
117 1.88 thorpej * and pmap_startup here also uses them internally.
118 1.88 thorpej */
119 1.88 thorpej
120 1.88 thorpej static vaddr_t virtual_space_start;
121 1.88 thorpej static vaddr_t virtual_space_end;
122 1.88 thorpej
123 1.88 thorpej /*
124 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
125 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
126 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
127 1.60 thorpej * free the initial set of buckets, since they are allocated using
128 1.60 thorpej * uvm_pageboot_alloc().
129 1.60 thorpej */
130 1.60 thorpej
131 1.179 para static size_t recolored_pages_memsize /* = 0 */;
132 1.60 thorpej
133 1.91 yamt #ifdef DEBUG
134 1.91 yamt vaddr_t uvm_zerocheckkva;
135 1.91 yamt #endif /* DEBUG */
136 1.91 yamt
137 1.60 thorpej /*
138 1.190 cherry * These functions are reserved for uvm(9) internal use and are not
139 1.190 cherry * exported in the header file uvm_physseg.h
140 1.190 cherry *
141 1.190 cherry * Thus they are redefined here.
142 1.190 cherry */
143 1.190 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 1.190 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145 1.190 cherry
146 1.190 cherry /* returns a pgs array */
147 1.190 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148 1.190 cherry
149 1.190 cherry /*
150 1.134 ad * local prototypes
151 1.124 ad */
152 1.124 ad
153 1.153 uebayasi static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155 1.124 ad
156 1.124 ad /*
157 1.134 ad * per-object tree of pages
158 1.1 mrg */
159 1.1 mrg
160 1.134 ad static signed int
161 1.156 rmind uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 1.134 ad {
163 1.156 rmind const struct vm_page *pg1 = n1;
164 1.156 rmind const struct vm_page *pg2 = n2;
165 1.134 ad const voff_t a = pg1->offset;
166 1.134 ad const voff_t b = pg2->offset;
167 1.134 ad
168 1.134 ad if (a < b)
169 1.156 rmind return -1;
170 1.156 rmind if (a > b)
171 1.134 ad return 1;
172 1.134 ad return 0;
173 1.134 ad }
174 1.134 ad
175 1.134 ad static signed int
176 1.156 rmind uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 1.134 ad {
178 1.156 rmind const struct vm_page *pg = n;
179 1.134 ad const voff_t a = pg->offset;
180 1.134 ad const voff_t b = *(const voff_t *)key;
181 1.134 ad
182 1.134 ad if (a < b)
183 1.156 rmind return -1;
184 1.156 rmind if (a > b)
185 1.134 ad return 1;
186 1.134 ad return 0;
187 1.134 ad }
188 1.134 ad
189 1.156 rmind const rb_tree_ops_t uvm_page_tree_ops = {
190 1.137 matt .rbto_compare_nodes = uvm_page_compare_nodes,
191 1.137 matt .rbto_compare_key = uvm_page_compare_key,
192 1.156 rmind .rbto_node_offset = offsetof(struct vm_page, rb_node),
193 1.156 rmind .rbto_context = NULL
194 1.134 ad };
195 1.1 mrg
196 1.1 mrg /*
197 1.1 mrg * inline functions
198 1.1 mrg */
199 1.1 mrg
200 1.1 mrg /*
201 1.134 ad * uvm_pageinsert: insert a page in the object.
202 1.1 mrg *
203 1.1 mrg * => caller must lock object
204 1.1 mrg * => caller must lock page queues
205 1.1 mrg * => call should have already set pg's object and offset pointers
206 1.1 mrg * and bumped the version counter
207 1.1 mrg */
208 1.1 mrg
209 1.136 yamt static inline void
210 1.136 yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211 1.136 yamt struct vm_page *where)
212 1.1 mrg {
213 1.1 mrg
214 1.136 yamt KASSERT(uobj == pg->uobject);
215 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
216 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
217 1.96 yamt KASSERT(where == NULL || (where->flags & PG_TABLED));
218 1.96 yamt KASSERT(where == NULL || (where->uobject == uobj));
219 1.123 ad
220 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
221 1.94 yamt if (uobj->uo_npages == 0) {
222 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
223 1.94 yamt
224 1.94 yamt vholdl(vp);
225 1.94 yamt }
226 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
227 1.126 ad atomic_inc_uint(&uvmexp.execpages);
228 1.94 yamt } else {
229 1.126 ad atomic_inc_uint(&uvmexp.filepages);
230 1.94 yamt }
231 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
233 1.78 chs }
234 1.78 chs
235 1.96 yamt if (where)
236 1.133 ad TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 1.96 yamt else
238 1.133 ad TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 1.7 mrg pg->flags |= PG_TABLED;
240 1.67 chs uobj->uo_npages++;
241 1.1 mrg }
242 1.1 mrg
243 1.136 yamt
244 1.136 yamt static inline void
245 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 1.136 yamt {
247 1.183 martin struct vm_page *ret __diagused;
248 1.136 yamt
249 1.136 yamt KASSERT(uobj == pg->uobject);
250 1.156 rmind ret = rb_tree_insert_node(&uobj->rb_tree, pg);
251 1.156 rmind KASSERT(ret == pg);
252 1.136 yamt }
253 1.136 yamt
254 1.136 yamt static inline void
255 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
256 1.96 yamt {
257 1.96 yamt
258 1.153 uebayasi KDASSERT(uobj != NULL);
259 1.136 yamt uvm_pageinsert_tree(uobj, pg);
260 1.136 yamt uvm_pageinsert_list(uobj, pg, NULL);
261 1.96 yamt }
262 1.96 yamt
263 1.1 mrg /*
264 1.134 ad * uvm_page_remove: remove page from object.
265 1.1 mrg *
266 1.1 mrg * => caller must lock object
267 1.1 mrg * => caller must lock page queues
268 1.1 mrg */
269 1.1 mrg
270 1.109 perry static inline void
271 1.136 yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 1.1 mrg {
273 1.1 mrg
274 1.136 yamt KASSERT(uobj == pg->uobject);
275 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
276 1.44 chs KASSERT(pg->flags & PG_TABLED);
277 1.123 ad
278 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
279 1.94 yamt if (uobj->uo_npages == 1) {
280 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
281 1.94 yamt
282 1.94 yamt holdrelel(vp);
283 1.94 yamt }
284 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
285 1.126 ad atomic_dec_uint(&uvmexp.execpages);
286 1.94 yamt } else {
287 1.126 ad atomic_dec_uint(&uvmexp.filepages);
288 1.94 yamt }
289 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
291 1.51 chs }
292 1.44 chs
293 1.7 mrg /* object should be locked */
294 1.67 chs uobj->uo_npages--;
295 1.133 ad TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 1.7 mrg pg->flags &= ~PG_TABLED;
297 1.7 mrg pg->uobject = NULL;
298 1.1 mrg }
299 1.1 mrg
300 1.136 yamt static inline void
301 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 1.136 yamt {
303 1.136 yamt
304 1.136 yamt KASSERT(uobj == pg->uobject);
305 1.156 rmind rb_tree_remove_node(&uobj->rb_tree, pg);
306 1.136 yamt }
307 1.136 yamt
308 1.136 yamt static inline void
309 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
310 1.136 yamt {
311 1.136 yamt
312 1.153 uebayasi KDASSERT(uobj != NULL);
313 1.136 yamt uvm_pageremove_tree(uobj, pg);
314 1.136 yamt uvm_pageremove_list(uobj, pg);
315 1.136 yamt }
316 1.136 yamt
317 1.60 thorpej static void
318 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
319 1.60 thorpej {
320 1.60 thorpej int color, i;
321 1.60 thorpej
322 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
323 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
324 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 1.60 thorpej }
326 1.60 thorpej }
327 1.60 thorpej }
328 1.60 thorpej
329 1.1 mrg /*
330 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
331 1.62 chs *
332 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333 1.1 mrg */
334 1.1 mrg
335 1.7 mrg void
336 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 1.1 mrg {
338 1.155 ad static struct uvm_cpu boot_cpu;
339 1.154 jym psize_t freepages, pagecount, bucketcount, n;
340 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
341 1.63 chs struct vm_page *pagearray;
342 1.190 cherry uvm_physseg_t bank;
343 1.81 thorpej int lcv;
344 1.7 mrg
345 1.133 ad KASSERT(ncpu <= 1);
346 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347 1.133 ad
348 1.7 mrg /*
349 1.60 thorpej * init the page queues and page queue locks, except the free
350 1.60 thorpej * list; we allocate that later (with the initial vm_page
351 1.60 thorpej * structures).
352 1.7 mrg */
353 1.51 chs
354 1.155 ad uvm.cpus[0] = &boot_cpu;
355 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
356 1.113 yamt uvmpdpol_init();
357 1.127 ad mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359 1.7 mrg
360 1.7 mrg /*
361 1.51 chs * allocate vm_page structures.
362 1.7 mrg */
363 1.7 mrg
364 1.7 mrg /*
365 1.7 mrg * sanity check:
366 1.7 mrg * before calling this function the MD code is expected to register
367 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
368 1.7 mrg * now is to allocate vm_page structures for this memory.
369 1.7 mrg */
370 1.7 mrg
371 1.190 cherry if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
372 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
373 1.62 chs
374 1.7 mrg /*
375 1.62 chs * first calculate the number of free pages...
376 1.7 mrg *
377 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
378 1.7 mrg * this allows us to allocate extra vm_page structures in case we
379 1.7 mrg * want to return some memory to the pool after booting.
380 1.7 mrg */
381 1.62 chs
382 1.7 mrg freepages = 0;
383 1.190 cherry
384 1.190 cherry for (bank = uvm_physseg_get_first();
385 1.190 cherry uvm_physseg_valid_p(bank) ;
386 1.190 cherry bank = uvm_physseg_get_next(bank)) {
387 1.190 cherry freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
388 1.158 uebayasi }
389 1.7 mrg
390 1.7 mrg /*
391 1.60 thorpej * Let MD code initialize the number of colors, or default
392 1.60 thorpej * to 1 color if MD code doesn't care.
393 1.60 thorpej */
394 1.60 thorpej if (uvmexp.ncolors == 0)
395 1.60 thorpej uvmexp.ncolors = 1;
396 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
397 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
398 1.60 thorpej
399 1.60 thorpej /*
400 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
401 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
402 1.7 mrg * thus, the total number of pages we can use is the total size of
403 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
404 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
405 1.7 mrg * truncation errors (since we can only allocate in terms of whole
406 1.7 mrg * pages).
407 1.7 mrg */
408 1.62 chs
409 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
410 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
411 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
412 1.60 thorpej
413 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
414 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
415 1.60 thorpej sizeof(struct vm_page)));
416 1.133 ad cpuarray = bucketarray + bucketcount;
417 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418 1.60 thorpej
419 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
420 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
421 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
422 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
423 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
424 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
425 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
426 1.60 thorpej }
427 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
428 1.62 chs
429 1.7 mrg /*
430 1.51 chs * init the vm_page structures and put them in the correct place.
431 1.7 mrg */
432 1.190 cherry /* First init the extent */
433 1.7 mrg
434 1.190 cherry for (bank = uvm_physseg_get_first(),
435 1.190 cherry uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
436 1.190 cherry uvm_physseg_valid_p(bank);
437 1.190 cherry bank = uvm_physseg_get_next(bank)) {
438 1.190 cherry
439 1.190 cherry n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
440 1.190 cherry uvm_physseg_seg_alloc_from_slab(bank, n);
441 1.190 cherry uvm_physseg_init_seg(bank, pagearray);
442 1.51 chs
443 1.7 mrg /* set up page array pointers */
444 1.7 mrg pagearray += n;
445 1.7 mrg pagecount -= n;
446 1.7 mrg }
447 1.44 chs
448 1.7 mrg /*
449 1.88 thorpej * pass up the values of virtual_space_start and
450 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
451 1.88 thorpej * layers of the VM.
452 1.88 thorpej */
453 1.88 thorpej
454 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
455 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
456 1.91 yamt #ifdef DEBUG
457 1.91 yamt /*
458 1.91 yamt * steal kva for uvm_pagezerocheck().
459 1.91 yamt */
460 1.91 yamt uvm_zerocheckkva = *kvm_startp;
461 1.91 yamt *kvm_startp += PAGE_SIZE;
462 1.91 yamt #endif /* DEBUG */
463 1.88 thorpej
464 1.88 thorpej /*
465 1.51 chs * init various thresholds.
466 1.7 mrg */
467 1.51 chs
468 1.7 mrg uvmexp.reserve_pagedaemon = 1;
469 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
470 1.7 mrg
471 1.7 mrg /*
472 1.51 chs * determine if we should zero pages in the idle loop.
473 1.34 thorpej */
474 1.51 chs
475 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
476 1.34 thorpej
477 1.34 thorpej /*
478 1.7 mrg * done!
479 1.7 mrg */
480 1.1 mrg
481 1.119 thorpej uvm.page_init_done = true;
482 1.1 mrg }
483 1.1 mrg
484 1.1 mrg /*
485 1.1 mrg * uvm_setpagesize: set the page size
486 1.62 chs *
487 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
488 1.62 chs */
489 1.1 mrg
490 1.7 mrg void
491 1.105 thorpej uvm_setpagesize(void)
492 1.1 mrg {
493 1.85 thorpej
494 1.85 thorpej /*
495 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
496 1.85 thorpej * to be a constant (indicated by being a non-zero value).
497 1.85 thorpej */
498 1.85 thorpej if (uvmexp.pagesize == 0) {
499 1.85 thorpej if (PAGE_SIZE == 0)
500 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
501 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
502 1.85 thorpej }
503 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
504 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
505 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
506 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
507 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 1.7 mrg break;
510 1.1 mrg }
511 1.1 mrg
512 1.1 mrg /*
513 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514 1.1 mrg */
515 1.1 mrg
516 1.14 eeh vaddr_t
517 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
518 1.1 mrg {
519 1.119 thorpej static bool initialized = false;
520 1.14 eeh vaddr_t addr;
521 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
522 1.52 thorpej vaddr_t vaddr;
523 1.14 eeh paddr_t paddr;
524 1.52 thorpej #endif
525 1.1 mrg
526 1.7 mrg /*
527 1.19 thorpej * on first call to this function, initialize ourselves.
528 1.7 mrg */
529 1.119 thorpej if (initialized == false) {
530 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531 1.1 mrg
532 1.7 mrg /* round it the way we like it */
533 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
534 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
535 1.19 thorpej
536 1.119 thorpej initialized = true;
537 1.7 mrg }
538 1.52 thorpej
539 1.52 thorpej /* round to page size */
540 1.52 thorpej size = round_page(size);
541 1.195 mrg uvmexp.bootpages += atop(size);
542 1.52 thorpej
543 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
544 1.52 thorpej
545 1.62 chs /*
546 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
547 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
548 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
549 1.52 thorpej */
550 1.52 thorpej
551 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
552 1.88 thorpej &virtual_space_end);
553 1.52 thorpej
554 1.52 thorpej return(addr);
555 1.52 thorpej
556 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
557 1.1 mrg
558 1.7 mrg /*
559 1.7 mrg * allocate virtual memory for this request
560 1.7 mrg */
561 1.88 thorpej if (virtual_space_start == virtual_space_end ||
562 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
563 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
564 1.20 thorpej
565 1.88 thorpej addr = virtual_space_start;
566 1.20 thorpej
567 1.20 thorpej #ifdef PMAP_GROWKERNEL
568 1.20 thorpej /*
569 1.20 thorpej * If the kernel pmap can't map the requested space,
570 1.20 thorpej * then allocate more resources for it.
571 1.20 thorpej */
572 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
573 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
574 1.20 thorpej if (uvm_maxkaddr < (addr + size))
575 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
576 1.19 thorpej }
577 1.20 thorpej #endif
578 1.1 mrg
579 1.88 thorpej virtual_space_start += size;
580 1.1 mrg
581 1.9 thorpej /*
582 1.7 mrg * allocate and mapin physical pages to back new virtual pages
583 1.7 mrg */
584 1.1 mrg
585 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
586 1.7 mrg vaddr += PAGE_SIZE) {
587 1.1 mrg
588 1.7 mrg if (!uvm_page_physget(&paddr))
589 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
590 1.1 mrg
591 1.23 thorpej /*
592 1.23 thorpej * Note this memory is no longer managed, so using
593 1.23 thorpej * pmap_kenter is safe.
594 1.23 thorpej */
595 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
596 1.7 mrg }
597 1.66 chris pmap_update(pmap_kernel());
598 1.7 mrg return(addr);
599 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
600 1.1 mrg }
601 1.1 mrg
602 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
603 1.1 mrg /*
604 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
605 1.1 mrg *
606 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
607 1.1 mrg * values match the start/end values. if we can't do that, then we
608 1.1 mrg * will advance both values (making them equal, and removing some
609 1.1 mrg * vm_page structures from the non-avail area).
610 1.1 mrg * => return false if out of memory.
611 1.1 mrg */
612 1.1 mrg
613 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
614 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
615 1.28 drochner
616 1.118 thorpej static bool
617 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
618 1.1 mrg {
619 1.190 cherry uvm_physseg_t lcv;
620 1.1 mrg
621 1.7 mrg /* pass 1: try allocating from a matching end */
622 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
623 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
624 1.1 mrg #else
625 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
626 1.1 mrg #endif
627 1.7 mrg {
628 1.119 thorpej if (uvm.page_init_done == true)
629 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
630 1.1 mrg
631 1.190 cherry /* Try to match at front or back on unused segment */
632 1.190 cherry if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
633 1.190 cherry if (paddrp == NULL) /* freelist fail, try next */
634 1.190 cherry continue;
635 1.190 cherry } else
636 1.190 cherry return true;
637 1.191 skrll }
638 1.1 mrg
639 1.7 mrg /* pass2: forget about matching ends, just allocate something */
640 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
641 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
642 1.1 mrg #else
643 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
644 1.1 mrg #endif
645 1.7 mrg {
646 1.190 cherry /* Try the front regardless. */
647 1.190 cherry if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
648 1.190 cherry if (paddrp == NULL) /* freelist fail, try next */
649 1.190 cherry continue;
650 1.190 cherry } else
651 1.190 cherry return true;
652 1.190 cherry }
653 1.190 cherry return false;
654 1.28 drochner }
655 1.28 drochner
656 1.118 thorpej bool
657 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
658 1.28 drochner {
659 1.28 drochner int i;
660 1.28 drochner
661 1.28 drochner /* try in the order of freelist preference */
662 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
663 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
664 1.119 thorpej return (true);
665 1.119 thorpej return (false);
666 1.1 mrg }
667 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
668 1.1 mrg
669 1.1 mrg /*
670 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
671 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
672 1.163 uebayasi */
673 1.163 uebayasi struct vm_page *
674 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
675 1.163 uebayasi {
676 1.163 uebayasi paddr_t pf = atop(pa);
677 1.190 cherry paddr_t off;
678 1.190 cherry uvm_physseg_t upm;
679 1.163 uebayasi
680 1.190 cherry upm = uvm_physseg_find(pf, &off);
681 1.190 cherry if (upm != UVM_PHYSSEG_TYPE_INVALID)
682 1.190 cherry return uvm_physseg_get_pg(upm, off);
683 1.163 uebayasi return(NULL);
684 1.163 uebayasi }
685 1.163 uebayasi
686 1.163 uebayasi paddr_t
687 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
688 1.163 uebayasi {
689 1.163 uebayasi
690 1.163 uebayasi return pg->phys_addr;
691 1.163 uebayasi }
692 1.163 uebayasi
693 1.163 uebayasi /*
694 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
695 1.60 thorpej * larger than the old one.
696 1.60 thorpej */
697 1.60 thorpej
698 1.60 thorpej void
699 1.60 thorpej uvm_page_recolor(int newncolors)
700 1.60 thorpej {
701 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
702 1.133 ad struct pgfreelist gpgfl, pgfl;
703 1.63 chs struct vm_page *pg;
704 1.60 thorpej vsize_t bucketcount;
705 1.179 para size_t bucketmemsize, oldbucketmemsize;
706 1.190 cherry int color, i, ocolors;
707 1.190 cherry int lcv;
708 1.133 ad struct uvm_cpu *ucpu;
709 1.60 thorpej
710 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
711 1.178 uebayasi
712 1.60 thorpej if (newncolors <= uvmexp.ncolors)
713 1.60 thorpej return;
714 1.77 wrstuden
715 1.119 thorpej if (uvm.page_init_done == false) {
716 1.77 wrstuden uvmexp.ncolors = newncolors;
717 1.77 wrstuden return;
718 1.77 wrstuden }
719 1.60 thorpej
720 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
721 1.179 para bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
722 1.179 para bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
723 1.133 ad cpuarray = bucketarray + bucketcount;
724 1.60 thorpej
725 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
726 1.60 thorpej
727 1.60 thorpej /* Make sure we should still do this. */
728 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
729 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
730 1.179 para kmem_free(bucketarray, bucketmemsize);
731 1.60 thorpej return;
732 1.60 thorpej }
733 1.60 thorpej
734 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
735 1.60 thorpej ocolors = uvmexp.ncolors;
736 1.60 thorpej
737 1.60 thorpej uvmexp.ncolors = newncolors;
738 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
739 1.60 thorpej
740 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
741 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
742 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
743 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
744 1.133 ad uvm_page_init_buckets(&gpgfl);
745 1.60 thorpej uvm_page_init_buckets(&pgfl);
746 1.60 thorpej for (color = 0; color < ocolors; color++) {
747 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
748 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
749 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
750 1.60 thorpej != NULL) {
751 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
752 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
753 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
754 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
755 1.133 ad i], pg, pageq.list);
756 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
757 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
758 1.133 ad i], pg, listq.list);
759 1.60 thorpej }
760 1.60 thorpej }
761 1.60 thorpej }
762 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
763 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
764 1.60 thorpej }
765 1.60 thorpej
766 1.179 para oldbucketmemsize = recolored_pages_memsize;
767 1.177 mrg
768 1.179 para recolored_pages_memsize = bucketmemsize;
769 1.177 mrg mutex_spin_exit(&uvm_fpageqlock);
770 1.176 matt
771 1.179 para if (oldbucketmemsize) {
772 1.196 jakllsch kmem_free(oldbucketarray, oldbucketmemsize);
773 1.179 para }
774 1.60 thorpej
775 1.177 mrg /*
776 1.177 mrg * this calls uvm_km_alloc() which may want to hold
777 1.177 mrg * uvm_fpageqlock.
778 1.177 mrg */
779 1.177 mrg uvm_pager_realloc_emerg();
780 1.60 thorpej }
781 1.1 mrg
782 1.1 mrg /*
783 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
784 1.133 ad */
785 1.133 ad
786 1.133 ad void
787 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
788 1.133 ad {
789 1.133 ad struct pgflbucket *bucketarray;
790 1.133 ad struct pgfreelist pgfl;
791 1.133 ad struct uvm_cpu *ucpu;
792 1.133 ad vsize_t bucketcount;
793 1.133 ad int lcv;
794 1.133 ad
795 1.133 ad if (CPU_IS_PRIMARY(ci)) {
796 1.133 ad /* Already done in uvm_page_init(). */
797 1.181 tls goto attachrnd;
798 1.133 ad }
799 1.133 ad
800 1.140 ad /* Add more reserve pages for this CPU. */
801 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
802 1.140 ad
803 1.140 ad /* Configure this CPU's free lists. */
804 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
805 1.179 para bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
806 1.179 para KM_SLEEP);
807 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
808 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
809 1.133 ad ci->ci_data.cpu_uvm = ucpu;
810 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
811 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
812 1.133 ad uvm_page_init_buckets(&pgfl);
813 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
814 1.133 ad }
815 1.181 tls
816 1.181 tls attachrnd:
817 1.181 tls /*
818 1.181 tls * Attach RNG source for this CPU's VM events
819 1.181 tls */
820 1.181 tls rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
821 1.185 tls ci->ci_data.cpu_name, RND_TYPE_VM,
822 1.185 tls RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
823 1.185 tls RND_FLAG_ESTIMATE_VALUE);
824 1.181 tls
825 1.133 ad }
826 1.133 ad
827 1.133 ad /*
828 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
829 1.54 thorpej */
830 1.54 thorpej
831 1.114 thorpej static struct vm_page *
832 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
833 1.69 simonb int *trycolorp)
834 1.54 thorpej {
835 1.133 ad struct pgflist *freeq;
836 1.54 thorpej struct vm_page *pg;
837 1.58 enami int color, trycolor = *trycolorp;
838 1.133 ad struct pgfreelist *gpgfl, *pgfl;
839 1.54 thorpej
840 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
841 1.130 ad
842 1.58 enami color = trycolor;
843 1.133 ad pgfl = &ucpu->page_free[flist];
844 1.133 ad gpgfl = &uvm.page_free[flist];
845 1.58 enami do {
846 1.133 ad /* cpu, try1 */
847 1.133 ad if ((pg = LIST_FIRST((freeq =
848 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
849 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
850 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
851 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
852 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
853 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
854 1.133 ad uvmexp.cpuhit++;
855 1.133 ad goto gotit;
856 1.133 ad }
857 1.133 ad /* global, try1 */
858 1.133 ad if ((pg = LIST_FIRST((freeq =
859 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
860 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
861 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
862 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
863 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
864 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
865 1.133 ad uvmexp.cpumiss++;
866 1.54 thorpej goto gotit;
867 1.133 ad }
868 1.133 ad /* cpu, try2 */
869 1.133 ad if ((pg = LIST_FIRST((freeq =
870 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
871 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
872 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
873 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
874 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
875 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
876 1.133 ad uvmexp.cpuhit++;
877 1.54 thorpej goto gotit;
878 1.133 ad }
879 1.133 ad /* global, try2 */
880 1.133 ad if ((pg = LIST_FIRST((freeq =
881 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
882 1.182 matt KASSERT(pg->pqflags & PQ_FREE);
883 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
884 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
885 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
886 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
887 1.133 ad uvmexp.cpumiss++;
888 1.133 ad goto gotit;
889 1.133 ad }
890 1.60 thorpej color = (color + 1) & uvmexp.colormask;
891 1.58 enami } while (color != trycolor);
892 1.54 thorpej
893 1.54 thorpej return (NULL);
894 1.54 thorpej
895 1.54 thorpej gotit:
896 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
897 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
898 1.54 thorpej uvmexp.free--;
899 1.54 thorpej
900 1.54 thorpej /* update zero'd page count */
901 1.54 thorpej if (pg->flags & PG_ZERO)
902 1.54 thorpej uvmexp.zeropages--;
903 1.54 thorpej
904 1.54 thorpej if (color == trycolor)
905 1.54 thorpej uvmexp.colorhit++;
906 1.54 thorpej else {
907 1.54 thorpej uvmexp.colormiss++;
908 1.54 thorpej *trycolorp = color;
909 1.54 thorpej }
910 1.54 thorpej
911 1.54 thorpej return (pg);
912 1.54 thorpej }
913 1.54 thorpej
914 1.54 thorpej /*
915 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
916 1.1 mrg *
917 1.1 mrg * => return null if no pages free
918 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
919 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
920 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
921 1.1 mrg * => only one of obj or anon can be non-null
922 1.1 mrg * => caller must activate/deactivate page if it is not wired.
923 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
924 1.34 thorpej * => policy decision: it is more important to pull a page off of the
925 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
926 1.34 thorpej * unknown contents page. This is because we live with the
927 1.34 thorpej * consequences of a bad free list decision for the entire
928 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
929 1.34 thorpej * is slower to access.
930 1.1 mrg */
931 1.1 mrg
932 1.7 mrg struct vm_page *
933 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
934 1.105 thorpej int flags, int strat, int free_list)
935 1.1 mrg {
936 1.190 cherry int try1, try2, zeroit = 0, color;
937 1.190 cherry int lcv;
938 1.133 ad struct uvm_cpu *ucpu;
939 1.7 mrg struct vm_page *pg;
940 1.141 ad lwp_t *l;
941 1.1 mrg
942 1.44 chs KASSERT(obj == NULL || anon == NULL);
943 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
944 1.44 chs KASSERT(off == trunc_page(off));
945 1.174 rmind KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
946 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
947 1.175 rmind mutex_owned(anon->an_lock));
948 1.48 thorpej
949 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
950 1.1 mrg
951 1.7 mrg /*
952 1.54 thorpej * This implements a global round-robin page coloring
953 1.54 thorpej * algorithm.
954 1.54 thorpej */
955 1.67 chs
956 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
957 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
958 1.169 matt color = atop(off) & uvmexp.colormask;
959 1.169 matt } else {
960 1.169 matt color = ucpu->page_free_nextcolor;
961 1.169 matt }
962 1.54 thorpej
963 1.54 thorpej /*
964 1.7 mrg * check to see if we need to generate some free pages waking
965 1.7 mrg * the pagedaemon.
966 1.7 mrg */
967 1.7 mrg
968 1.113 yamt uvm_kick_pdaemon();
969 1.7 mrg
970 1.7 mrg /*
971 1.7 mrg * fail if any of these conditions is true:
972 1.7 mrg * [1] there really are no free pages, or
973 1.7 mrg * [2] only kernel "reserved" pages remain and
974 1.141 ad * reserved pages have not been requested.
975 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
976 1.7 mrg * the requestor isn't the pagedaemon.
977 1.141 ad * we make kernel reserve pages available if called by a
978 1.141 ad * kernel thread or a realtime thread.
979 1.7 mrg */
980 1.141 ad l = curlwp;
981 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
982 1.141 ad flags |= UVM_PGA_USERESERVE;
983 1.141 ad }
984 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
985 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
986 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
987 1.141 ad curlwp != uvm.pagedaemon_lwp))
988 1.12 thorpej goto fail;
989 1.12 thorpej
990 1.34 thorpej #if PGFL_NQUEUES != 2
991 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
992 1.34 thorpej #endif
993 1.34 thorpej
994 1.34 thorpej /*
995 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
996 1.34 thorpej * we try the UNKNOWN queue first.
997 1.34 thorpej */
998 1.34 thorpej if (flags & UVM_PGA_ZERO) {
999 1.34 thorpej try1 = PGFL_ZEROS;
1000 1.34 thorpej try2 = PGFL_UNKNOWN;
1001 1.34 thorpej } else {
1002 1.34 thorpej try1 = PGFL_UNKNOWN;
1003 1.34 thorpej try2 = PGFL_ZEROS;
1004 1.34 thorpej }
1005 1.34 thorpej
1006 1.12 thorpej again:
1007 1.12 thorpej switch (strat) {
1008 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1009 1.145 abs /* Check freelists: descending priority (ascending id) order */
1010 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1011 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
1012 1.54 thorpej try1, try2, &color);
1013 1.54 thorpej if (pg != NULL)
1014 1.12 thorpej goto gotit;
1015 1.12 thorpej }
1016 1.12 thorpej
1017 1.12 thorpej /* No pages free! */
1018 1.12 thorpej goto fail;
1019 1.12 thorpej
1020 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1021 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1022 1.12 thorpej /* Attempt to allocate from the specified free list. */
1023 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1024 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
1025 1.54 thorpej try1, try2, &color);
1026 1.54 thorpej if (pg != NULL)
1027 1.12 thorpej goto gotit;
1028 1.12 thorpej
1029 1.12 thorpej /* Fall back, if possible. */
1030 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1031 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1032 1.12 thorpej goto again;
1033 1.12 thorpej }
1034 1.12 thorpej
1035 1.12 thorpej /* No pages free! */
1036 1.12 thorpej goto fail;
1037 1.12 thorpej
1038 1.12 thorpej default:
1039 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1040 1.12 thorpej /* NOTREACHED */
1041 1.7 mrg }
1042 1.7 mrg
1043 1.12 thorpej gotit:
1044 1.54 thorpej /*
1045 1.54 thorpej * We now know which color we actually allocated from; set
1046 1.54 thorpej * the next color accordingly.
1047 1.54 thorpej */
1048 1.67 chs
1049 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1050 1.34 thorpej
1051 1.34 thorpej /*
1052 1.34 thorpej * update allocation statistics and remember if we have to
1053 1.34 thorpej * zero the page
1054 1.34 thorpej */
1055 1.67 chs
1056 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1057 1.34 thorpej if (pg->flags & PG_ZERO) {
1058 1.34 thorpej uvmexp.pga_zerohit++;
1059 1.34 thorpej zeroit = 0;
1060 1.34 thorpej } else {
1061 1.34 thorpej uvmexp.pga_zeromiss++;
1062 1.34 thorpej zeroit = 1;
1063 1.34 thorpej }
1064 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1065 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1066 1.133 ad }
1067 1.34 thorpej }
1068 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1069 1.7 mrg
1070 1.7 mrg pg->offset = off;
1071 1.7 mrg pg->uobject = obj;
1072 1.7 mrg pg->uanon = anon;
1073 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1074 1.7 mrg if (anon) {
1075 1.103 yamt anon->an_page = pg;
1076 1.7 mrg pg->pqflags = PQ_ANON;
1077 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1078 1.7 mrg } else {
1079 1.67 chs if (obj) {
1080 1.153 uebayasi uvm_pageinsert(obj, pg);
1081 1.67 chs }
1082 1.7 mrg pg->pqflags = 0;
1083 1.7 mrg }
1084 1.143 drochner mutex_spin_exit(&uvm_fpageqlock);
1085 1.143 drochner
1086 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1087 1.7 mrg pg->owner_tag = NULL;
1088 1.1 mrg #endif
1089 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1090 1.33 thorpej
1091 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1092 1.33 thorpej /*
1093 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1094 1.34 thorpej * zero'd, then we have to zero it ourselves.
1095 1.33 thorpej */
1096 1.33 thorpej pg->flags &= ~PG_CLEAN;
1097 1.34 thorpej if (zeroit)
1098 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1099 1.33 thorpej }
1100 1.1 mrg
1101 1.7 mrg return(pg);
1102 1.12 thorpej
1103 1.12 thorpej fail:
1104 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1105 1.12 thorpej return (NULL);
1106 1.1 mrg }
1107 1.1 mrg
1108 1.1 mrg /*
1109 1.96 yamt * uvm_pagereplace: replace a page with another
1110 1.96 yamt *
1111 1.96 yamt * => object must be locked
1112 1.96 yamt */
1113 1.96 yamt
1114 1.96 yamt void
1115 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1116 1.96 yamt {
1117 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1118 1.97 junyoung
1119 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1120 1.136 yamt KASSERT(uobj != NULL);
1121 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1122 1.96 yamt KASSERT(newpg->uobject == NULL);
1123 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
1124 1.96 yamt
1125 1.136 yamt newpg->uobject = uobj;
1126 1.96 yamt newpg->offset = oldpg->offset;
1127 1.96 yamt
1128 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1129 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1130 1.136 yamt uvm_pageinsert_list(uobj, newpg, oldpg);
1131 1.136 yamt uvm_pageremove_list(uobj, oldpg);
1132 1.96 yamt }
1133 1.96 yamt
1134 1.96 yamt /*
1135 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1136 1.1 mrg *
1137 1.1 mrg * => both objects must be locked
1138 1.1 mrg */
1139 1.1 mrg
1140 1.7 mrg void
1141 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1142 1.1 mrg {
1143 1.7 mrg /*
1144 1.7 mrg * remove it from the old object
1145 1.7 mrg */
1146 1.7 mrg
1147 1.7 mrg if (pg->uobject) {
1148 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1149 1.7 mrg }
1150 1.7 mrg
1151 1.7 mrg /*
1152 1.7 mrg * put it in the new object
1153 1.7 mrg */
1154 1.7 mrg
1155 1.7 mrg if (newobj) {
1156 1.7 mrg pg->uobject = newobj;
1157 1.7 mrg pg->offset = newoff;
1158 1.153 uebayasi uvm_pageinsert(newobj, pg);
1159 1.7 mrg }
1160 1.1 mrg }
1161 1.1 mrg
1162 1.91 yamt #ifdef DEBUG
1163 1.91 yamt /*
1164 1.91 yamt * check if page is zero-filled
1165 1.91 yamt *
1166 1.91 yamt * - called with free page queue lock held.
1167 1.91 yamt */
1168 1.91 yamt void
1169 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1170 1.91 yamt {
1171 1.91 yamt int *p, *ep;
1172 1.91 yamt
1173 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1174 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1175 1.91 yamt
1176 1.91 yamt /*
1177 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1178 1.91 yamt * uvm page allocator.
1179 1.91 yamt *
1180 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1181 1.91 yamt */
1182 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1183 1.91 yamt p = (int *)uvm_zerocheckkva;
1184 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1185 1.92 yamt pmap_update(pmap_kernel());
1186 1.91 yamt while (p < ep) {
1187 1.91 yamt if (*p != 0)
1188 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1189 1.91 yamt p++;
1190 1.91 yamt }
1191 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1192 1.131 yamt /*
1193 1.131 yamt * pmap_update() is not necessary here because no one except us
1194 1.131 yamt * uses this VA.
1195 1.131 yamt */
1196 1.91 yamt }
1197 1.91 yamt #endif /* DEBUG */
1198 1.91 yamt
1199 1.1 mrg /*
1200 1.1 mrg * uvm_pagefree: free page
1201 1.1 mrg *
1202 1.133 ad * => erase page's identity (i.e. remove from object)
1203 1.1 mrg * => put page on free list
1204 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1205 1.1 mrg * => caller must lock page queues
1206 1.1 mrg * => assumes all valid mappings of pg are gone
1207 1.1 mrg */
1208 1.1 mrg
1209 1.44 chs void
1210 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1211 1.1 mrg {
1212 1.133 ad struct pgflist *pgfl;
1213 1.133 ad struct uvm_cpu *ucpu;
1214 1.133 ad int index, color, queue;
1215 1.118 thorpej bool iszero;
1216 1.67 chs
1217 1.44 chs #ifdef DEBUG
1218 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1219 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1220 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1221 1.44 chs }
1222 1.91 yamt #endif /* DEBUG */
1223 1.44 chs
1224 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1225 1.143 drochner KASSERT(!(pg->pqflags & PQ_FREE));
1226 1.182 matt //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1227 1.174 rmind KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1228 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1229 1.174 rmind mutex_owned(pg->uanon->an_lock));
1230 1.123 ad
1231 1.7 mrg /*
1232 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1233 1.7 mrg */
1234 1.7 mrg
1235 1.67 chs if (pg->loan_count) {
1236 1.70 chs KASSERT(pg->wire_count == 0);
1237 1.7 mrg
1238 1.7 mrg /*
1239 1.67 chs * if the page is owned by an anon then we just want to
1240 1.70 chs * drop anon ownership. the kernel will free the page when
1241 1.70 chs * it is done with it. if the page is owned by an object,
1242 1.70 chs * remove it from the object and mark it dirty for the benefit
1243 1.70 chs * of possible anon owners.
1244 1.70 chs *
1245 1.70 chs * regardless of previous ownership, wakeup any waiters,
1246 1.70 chs * unbusy the page, and we're done.
1247 1.7 mrg */
1248 1.7 mrg
1249 1.73 chs if (pg->uobject != NULL) {
1250 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1251 1.67 chs pg->flags &= ~PG_CLEAN;
1252 1.73 chs } else if (pg->uanon != NULL) {
1253 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1254 1.73 chs pg->loan_count--;
1255 1.73 chs } else {
1256 1.73 chs pg->pqflags &= ~PQ_ANON;
1257 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1258 1.73 chs }
1259 1.103 yamt pg->uanon->an_page = NULL;
1260 1.73 chs pg->uanon = NULL;
1261 1.67 chs }
1262 1.70 chs if (pg->flags & PG_WANTED) {
1263 1.70 chs wakeup(pg);
1264 1.70 chs }
1265 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1266 1.70 chs #ifdef UVM_PAGE_TRKOWN
1267 1.70 chs pg->owner_tag = NULL;
1268 1.70 chs #endif
1269 1.73 chs if (pg->loan_count) {
1270 1.115 yamt KASSERT(pg->uobject == NULL);
1271 1.115 yamt if (pg->uanon == NULL) {
1272 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1273 1.115 yamt uvm_pagedequeue(pg);
1274 1.115 yamt }
1275 1.73 chs return;
1276 1.73 chs }
1277 1.67 chs }
1278 1.62 chs
1279 1.67 chs /*
1280 1.67 chs * remove page from its object or anon.
1281 1.67 chs */
1282 1.44 chs
1283 1.73 chs if (pg->uobject != NULL) {
1284 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1285 1.73 chs } else if (pg->uanon != NULL) {
1286 1.103 yamt pg->uanon->an_page = NULL;
1287 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1288 1.7 mrg }
1289 1.1 mrg
1290 1.7 mrg /*
1291 1.70 chs * now remove the page from the queues.
1292 1.7 mrg */
1293 1.182 matt if (uvmpdpol_pageisqueued_p(pg)) {
1294 1.182 matt KASSERT(mutex_owned(&uvm_pageqlock));
1295 1.182 matt uvm_pagedequeue(pg);
1296 1.182 matt }
1297 1.7 mrg
1298 1.7 mrg /*
1299 1.7 mrg * if the page was wired, unwire it now.
1300 1.7 mrg */
1301 1.44 chs
1302 1.34 thorpej if (pg->wire_count) {
1303 1.7 mrg pg->wire_count = 0;
1304 1.7 mrg uvmexp.wired--;
1305 1.44 chs }
1306 1.7 mrg
1307 1.7 mrg /*
1308 1.44 chs * and put on free queue
1309 1.7 mrg */
1310 1.7 mrg
1311 1.90 yamt iszero = (pg->flags & PG_ZERO);
1312 1.133 ad index = uvm_page_lookup_freelist(pg);
1313 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1314 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1315 1.34 thorpej
1316 1.3 chs #ifdef DEBUG
1317 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1318 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1319 1.3 chs #endif
1320 1.90 yamt
1321 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1322 1.143 drochner pg->pqflags = PQ_FREE;
1323 1.91 yamt
1324 1.91 yamt #ifdef DEBUG
1325 1.91 yamt if (iszero)
1326 1.91 yamt uvm_pagezerocheck(pg);
1327 1.91 yamt #endif /* DEBUG */
1328 1.91 yamt
1329 1.133 ad
1330 1.133 ad /* global list */
1331 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1332 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1333 1.7 mrg uvmexp.free++;
1334 1.133 ad if (iszero) {
1335 1.90 yamt uvmexp.zeropages++;
1336 1.133 ad }
1337 1.34 thorpej
1338 1.133 ad /* per-cpu list */
1339 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1340 1.133 ad pg->offset = (uintptr_t)ucpu;
1341 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1342 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1343 1.133 ad ucpu->pages[queue]++;
1344 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1345 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1346 1.133 ad }
1347 1.34 thorpej
1348 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1349 1.44 chs }
1350 1.44 chs
1351 1.44 chs /*
1352 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1353 1.44 chs *
1354 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1355 1.44 chs * => if pages are object-owned, object must be locked.
1356 1.67 chs * => if pages are anon-owned, anons must be locked.
1357 1.76 enami * => caller must lock page queues if pages may be released.
1358 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1359 1.44 chs */
1360 1.44 chs
1361 1.44 chs void
1362 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1363 1.44 chs {
1364 1.44 chs struct vm_page *pg;
1365 1.44 chs int i;
1366 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1367 1.44 chs
1368 1.44 chs for (i = 0; i < npgs; i++) {
1369 1.44 chs pg = pgs[i];
1370 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1371 1.44 chs continue;
1372 1.44 chs }
1373 1.98 yamt
1374 1.180 matt KASSERT(uvm_page_locked_p(pg));
1375 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1376 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1377 1.44 chs if (pg->flags & PG_WANTED) {
1378 1.44 chs wakeup(pg);
1379 1.44 chs }
1380 1.44 chs if (pg->flags & PG_RELEASED) {
1381 1.194 pgoyette UVMHIST_LOG(ubchist, "releasing pg %#jx",
1382 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1383 1.98 yamt KASSERT(pg->uobject != NULL ||
1384 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1385 1.67 chs pg->flags &= ~PG_RELEASED;
1386 1.67 chs uvm_pagefree(pg);
1387 1.44 chs } else {
1388 1.194 pgoyette UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1389 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1390 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1391 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1392 1.44 chs UVM_PAGE_OWN(pg, NULL);
1393 1.44 chs }
1394 1.44 chs }
1395 1.1 mrg }
1396 1.1 mrg
1397 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1398 1.1 mrg /*
1399 1.1 mrg * uvm_page_own: set or release page ownership
1400 1.1 mrg *
1401 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1402 1.1 mrg * and where they do it. it can be used to track down problems
1403 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1404 1.1 mrg * => page's object [if any] must be locked
1405 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1406 1.1 mrg */
1407 1.7 mrg void
1408 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1409 1.1 mrg {
1410 1.112 yamt
1411 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1412 1.184 chs KASSERT((pg->flags & PG_WANTED) == 0);
1413 1.180 matt KASSERT(uvm_page_locked_p(pg));
1414 1.112 yamt
1415 1.7 mrg /* gain ownership? */
1416 1.7 mrg if (tag) {
1417 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1418 1.7 mrg if (pg->owner_tag) {
1419 1.7 mrg printf("uvm_page_own: page %p already owned "
1420 1.7 mrg "by proc %d [%s]\n", pg,
1421 1.74 enami pg->owner, pg->owner_tag);
1422 1.7 mrg panic("uvm_page_own");
1423 1.7 mrg }
1424 1.184 chs pg->owner = curproc->p_pid;
1425 1.184 chs pg->lowner = curlwp->l_lid;
1426 1.7 mrg pg->owner_tag = tag;
1427 1.7 mrg return;
1428 1.7 mrg }
1429 1.7 mrg
1430 1.7 mrg /* drop ownership */
1431 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1432 1.7 mrg if (pg->owner_tag == NULL) {
1433 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1434 1.7 mrg "page (%p)\n", pg);
1435 1.7 mrg panic("uvm_page_own");
1436 1.7 mrg }
1437 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1438 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1439 1.115 yamt pg->wire_count > 0);
1440 1.115 yamt } else {
1441 1.115 yamt KASSERT(pg->wire_count == 0);
1442 1.115 yamt }
1443 1.7 mrg pg->owner_tag = NULL;
1444 1.1 mrg }
1445 1.1 mrg #endif
1446 1.34 thorpej
1447 1.34 thorpej /*
1448 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1449 1.34 thorpej *
1450 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1451 1.54 thorpej * on the CPU cache.
1452 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1453 1.132 ad * to run, or MD code detects a reason to break early.
1454 1.34 thorpej */
1455 1.34 thorpej void
1456 1.105 thorpej uvm_pageidlezero(void)
1457 1.34 thorpej {
1458 1.34 thorpej struct vm_page *pg;
1459 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1460 1.133 ad struct uvm_cpu *ucpu;
1461 1.133 ad int free_list, firstbucket, nextbucket;
1462 1.172 rmind bool lcont = false;
1463 1.133 ad
1464 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1465 1.133 ad if (!ucpu->page_idle_zero ||
1466 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1467 1.133 ad ucpu->page_idle_zero = false;
1468 1.132 ad return;
1469 1.132 ad }
1470 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1471 1.172 rmind /* Contention: let other CPUs to use the lock. */
1472 1.172 rmind return;
1473 1.172 rmind }
1474 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1475 1.133 ad nextbucket = firstbucket;
1476 1.58 enami do {
1477 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1478 1.139 ad if (sched_curcpu_runnable_p()) {
1479 1.139 ad goto quit;
1480 1.139 ad }
1481 1.133 ad pgfl = &ucpu->page_free[free_list];
1482 1.133 ad gpgfl = &uvm.page_free[free_list];
1483 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1484 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1485 1.172 rmind if (lcont || sched_curcpu_runnable_p()) {
1486 1.101 yamt goto quit;
1487 1.132 ad }
1488 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1489 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1490 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1491 1.54 thorpej uvmexp.free--;
1492 1.143 drochner KASSERT(pg->pqflags == PQ_FREE);
1493 1.143 drochner pg->pqflags = 0;
1494 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1495 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1496 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1497 1.67 chs
1498 1.54 thorpej /*
1499 1.54 thorpej * The machine-dependent code detected
1500 1.54 thorpej * some reason for us to abort zeroing
1501 1.54 thorpej * pages, probably because there is a
1502 1.54 thorpej * process now ready to run.
1503 1.54 thorpej */
1504 1.67 chs
1505 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1506 1.144 drochner pg->pqflags = PQ_FREE;
1507 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1508 1.133 ad nextbucket].pgfl_queues[
1509 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1510 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1511 1.54 thorpej nextbucket].pgfl_queues[
1512 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1513 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1514 1.54 thorpej uvmexp.free++;
1515 1.54 thorpej uvmexp.zeroaborts++;
1516 1.101 yamt goto quit;
1517 1.54 thorpej }
1518 1.54 thorpej #else
1519 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1520 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1521 1.54 thorpej pg->flags |= PG_ZERO;
1522 1.54 thorpej
1523 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1524 1.172 rmind lcont = true;
1525 1.172 rmind mutex_spin_enter(&uvm_fpageqlock);
1526 1.172 rmind } else {
1527 1.172 rmind lcont = false;
1528 1.172 rmind }
1529 1.143 drochner pg->pqflags = PQ_FREE;
1530 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1531 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1532 1.133 ad pg, pageq.list);
1533 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1534 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1535 1.133 ad pg, listq.list);
1536 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1537 1.54 thorpej uvmexp.free++;
1538 1.54 thorpej uvmexp.zeropages++;
1539 1.54 thorpej }
1540 1.41 thorpej }
1541 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1542 1.133 ad break;
1543 1.133 ad }
1544 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1545 1.58 enami } while (nextbucket != firstbucket);
1546 1.133 ad ucpu->page_idle_zero = false;
1547 1.133 ad quit:
1548 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1549 1.34 thorpej }
1550 1.110 yamt
1551 1.110 yamt /*
1552 1.110 yamt * uvm_pagelookup: look up a page
1553 1.110 yamt *
1554 1.110 yamt * => caller should lock object to keep someone from pulling the page
1555 1.110 yamt * out from under it
1556 1.110 yamt */
1557 1.110 yamt
1558 1.110 yamt struct vm_page *
1559 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1560 1.110 yamt {
1561 1.110 yamt struct vm_page *pg;
1562 1.110 yamt
1563 1.174 rmind KASSERT(mutex_owned(obj->vmobjlock));
1564 1.123 ad
1565 1.156 rmind pg = rb_tree_find_node(&obj->rb_tree, &off);
1566 1.134 ad
1567 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1568 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1569 1.110 yamt (pg->flags & PG_BUSY) != 0);
1570 1.156 rmind return pg;
1571 1.110 yamt }
1572 1.110 yamt
1573 1.110 yamt /*
1574 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1575 1.110 yamt *
1576 1.110 yamt * => caller must lock page queues
1577 1.110 yamt */
1578 1.110 yamt
1579 1.110 yamt void
1580 1.110 yamt uvm_pagewire(struct vm_page *pg)
1581 1.110 yamt {
1582 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1583 1.113 yamt #if defined(READAHEAD_STATS)
1584 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1585 1.113 yamt uvm_ra_hit.ev_count++;
1586 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1587 1.113 yamt }
1588 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1589 1.110 yamt if (pg->wire_count == 0) {
1590 1.110 yamt uvm_pagedequeue(pg);
1591 1.110 yamt uvmexp.wired++;
1592 1.110 yamt }
1593 1.110 yamt pg->wire_count++;
1594 1.197 jdolecek KASSERT(pg->wire_count > 0); /* detect wraparound */
1595 1.110 yamt }
1596 1.110 yamt
1597 1.110 yamt /*
1598 1.110 yamt * uvm_pageunwire: unwire the page.
1599 1.110 yamt *
1600 1.110 yamt * => activate if wire count goes to zero.
1601 1.110 yamt * => caller must lock page queues
1602 1.110 yamt */
1603 1.110 yamt
1604 1.110 yamt void
1605 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1606 1.110 yamt {
1607 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1608 1.199 kre KASSERT(pg->wire_count != 0);
1609 1.110 yamt pg->wire_count--;
1610 1.110 yamt if (pg->wire_count == 0) {
1611 1.111 yamt uvm_pageactivate(pg);
1612 1.199 kre KASSERT(uvmexp.wired != 0);
1613 1.110 yamt uvmexp.wired--;
1614 1.110 yamt }
1615 1.110 yamt }
1616 1.110 yamt
1617 1.110 yamt /*
1618 1.110 yamt * uvm_pagedeactivate: deactivate page
1619 1.110 yamt *
1620 1.110 yamt * => caller must lock page queues
1621 1.110 yamt * => caller must check to make sure page is not wired
1622 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1623 1.110 yamt * => caller must clear the reference on the page before calling
1624 1.110 yamt */
1625 1.110 yamt
1626 1.110 yamt void
1627 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1628 1.110 yamt {
1629 1.113 yamt
1630 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1631 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1632 1.113 yamt KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1633 1.113 yamt uvmpdpol_pagedeactivate(pg);
1634 1.110 yamt }
1635 1.110 yamt
1636 1.110 yamt /*
1637 1.110 yamt * uvm_pageactivate: activate page
1638 1.110 yamt *
1639 1.110 yamt * => caller must lock page queues
1640 1.110 yamt */
1641 1.110 yamt
1642 1.110 yamt void
1643 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1644 1.110 yamt {
1645 1.113 yamt
1646 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1647 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1648 1.113 yamt #if defined(READAHEAD_STATS)
1649 1.113 yamt if ((pg->pqflags & PQ_READAHEAD) != 0) {
1650 1.113 yamt uvm_ra_hit.ev_count++;
1651 1.113 yamt pg->pqflags &= ~PQ_READAHEAD;
1652 1.113 yamt }
1653 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1654 1.113 yamt if (pg->wire_count != 0) {
1655 1.113 yamt return;
1656 1.110 yamt }
1657 1.113 yamt uvmpdpol_pageactivate(pg);
1658 1.110 yamt }
1659 1.110 yamt
1660 1.110 yamt /*
1661 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1662 1.110 yamt */
1663 1.110 yamt
1664 1.110 yamt void
1665 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1666 1.110 yamt {
1667 1.113 yamt
1668 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1669 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1670 1.110 yamt }
1671 1.123 ad
1672 1.113 yamt uvmpdpol_pagedequeue(pg);
1673 1.113 yamt }
1674 1.113 yamt
1675 1.113 yamt /*
1676 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1677 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1678 1.113 yamt */
1679 1.113 yamt
1680 1.113 yamt void
1681 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1682 1.113 yamt {
1683 1.113 yamt
1684 1.127 ad KASSERT(mutex_owned(&uvm_pageqlock));
1685 1.113 yamt if (pg->wire_count != 0) {
1686 1.113 yamt return;
1687 1.113 yamt }
1688 1.113 yamt uvmpdpol_pageenqueue(pg);
1689 1.110 yamt }
1690 1.110 yamt
1691 1.110 yamt /*
1692 1.110 yamt * uvm_pagezero: zero fill a page
1693 1.110 yamt *
1694 1.110 yamt * => if page is part of an object then the object should be locked
1695 1.110 yamt * to protect pg->flags.
1696 1.110 yamt */
1697 1.110 yamt
1698 1.110 yamt void
1699 1.110 yamt uvm_pagezero(struct vm_page *pg)
1700 1.110 yamt {
1701 1.110 yamt pg->flags &= ~PG_CLEAN;
1702 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1703 1.110 yamt }
1704 1.110 yamt
1705 1.110 yamt /*
1706 1.110 yamt * uvm_pagecopy: copy a page
1707 1.110 yamt *
1708 1.110 yamt * => if page is part of an object then the object should be locked
1709 1.110 yamt * to protect pg->flags.
1710 1.110 yamt */
1711 1.110 yamt
1712 1.110 yamt void
1713 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1714 1.110 yamt {
1715 1.110 yamt
1716 1.110 yamt dst->flags &= ~PG_CLEAN;
1717 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1718 1.110 yamt }
1719 1.110 yamt
1720 1.110 yamt /*
1721 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1722 1.150 thorpej */
1723 1.150 thorpej
1724 1.150 thorpej bool
1725 1.150 thorpej uvm_pageismanaged(paddr_t pa)
1726 1.150 thorpej {
1727 1.150 thorpej
1728 1.190 cherry return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1729 1.150 thorpej }
1730 1.150 thorpej
1731 1.150 thorpej /*
1732 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1733 1.110 yamt */
1734 1.110 yamt
1735 1.110 yamt int
1736 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1737 1.110 yamt {
1738 1.190 cherry uvm_physseg_t upm;
1739 1.110 yamt
1740 1.190 cherry upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1741 1.190 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1742 1.190 cherry return uvm_physseg_get_free_list(upm);
1743 1.110 yamt }
1744 1.151 thorpej
1745 1.174 rmind /*
1746 1.174 rmind * uvm_page_locked_p: return true if object associated with page is
1747 1.174 rmind * locked. this is a weak check for runtime assertions only.
1748 1.174 rmind */
1749 1.174 rmind
1750 1.174 rmind bool
1751 1.174 rmind uvm_page_locked_p(struct vm_page *pg)
1752 1.174 rmind {
1753 1.174 rmind
1754 1.174 rmind if (pg->uobject != NULL) {
1755 1.174 rmind return mutex_owned(pg->uobject->vmobjlock);
1756 1.174 rmind }
1757 1.174 rmind if (pg->uanon != NULL) {
1758 1.174 rmind return mutex_owned(pg->uanon->an_lock);
1759 1.174 rmind }
1760 1.174 rmind return true;
1761 1.174 rmind }
1762 1.174 rmind
1763 1.198 jdolecek #ifdef PMAP_DIRECT
1764 1.198 jdolecek /*
1765 1.198 jdolecek * Call pmap to translate physical address into a virtual and to run a callback
1766 1.198 jdolecek * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1767 1.198 jdolecek * or equivalent.
1768 1.198 jdolecek */
1769 1.198 jdolecek int
1770 1.198 jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1771 1.198 jdolecek int (*process)(void *, size_t, void *), void *arg)
1772 1.198 jdolecek {
1773 1.198 jdolecek int error = 0;
1774 1.198 jdolecek paddr_t pa;
1775 1.198 jdolecek size_t todo;
1776 1.198 jdolecek voff_t pgoff = (off & PAGE_MASK);
1777 1.198 jdolecek struct vm_page *pg;
1778 1.198 jdolecek
1779 1.198 jdolecek KASSERT(npages > 0 && len > 0);
1780 1.198 jdolecek
1781 1.198 jdolecek for (int i = 0; i < npages; i++) {
1782 1.198 jdolecek pg = pgs[i];
1783 1.198 jdolecek
1784 1.198 jdolecek KASSERT(len > 0);
1785 1.198 jdolecek
1786 1.198 jdolecek /*
1787 1.198 jdolecek * Caller is responsible for ensuring all the pages are
1788 1.198 jdolecek * available.
1789 1.198 jdolecek */
1790 1.198 jdolecek KASSERT(pg != NULL && pg != PGO_DONTCARE);
1791 1.198 jdolecek
1792 1.198 jdolecek pa = VM_PAGE_TO_PHYS(pg);
1793 1.198 jdolecek todo = MIN(len, PAGE_SIZE - pgoff);
1794 1.198 jdolecek
1795 1.198 jdolecek error = pmap_direct_process(pa, pgoff, todo, process, arg);
1796 1.198 jdolecek if (error)
1797 1.198 jdolecek break;
1798 1.198 jdolecek
1799 1.198 jdolecek pgoff = 0;
1800 1.198 jdolecek len -= todo;
1801 1.198 jdolecek }
1802 1.198 jdolecek
1803 1.198 jdolecek KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1804 1.198 jdolecek return error;
1805 1.198 jdolecek }
1806 1.198 jdolecek #endif /* PMAP_DIRECT */
1807 1.198 jdolecek
1808 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
1809 1.151 thorpej
1810 1.151 thorpej /*
1811 1.151 thorpej * uvm_page_printit: actually print the page
1812 1.151 thorpej */
1813 1.151 thorpej
1814 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
1815 1.151 thorpej static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1816 1.151 thorpej
1817 1.151 thorpej void
1818 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
1819 1.151 thorpej void (*pr)(const char *, ...))
1820 1.151 thorpej {
1821 1.151 thorpej struct vm_page *tpg;
1822 1.151 thorpej struct uvm_object *uobj;
1823 1.151 thorpej struct pgflist *pgl;
1824 1.151 thorpej char pgbuf[128];
1825 1.151 thorpej char pqbuf[128];
1826 1.151 thorpej
1827 1.151 thorpej (*pr)("PAGE %p:\n", pg);
1828 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1829 1.151 thorpej snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1830 1.151 thorpej (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1831 1.151 thorpej pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1832 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1833 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1834 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
1835 1.151 thorpej if (pg->flags & PG_BUSY)
1836 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
1837 1.151 thorpej pg->owner, pg->owner_tag);
1838 1.151 thorpej else
1839 1.151 thorpej (*pr)(" page not busy, no owner\n");
1840 1.151 thorpej #else
1841 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
1842 1.151 thorpej #endif
1843 1.151 thorpej
1844 1.151 thorpej if (!full)
1845 1.151 thorpej return;
1846 1.151 thorpej
1847 1.151 thorpej /* cross-verify object/anon */
1848 1.151 thorpej if ((pg->pqflags & PQ_FREE) == 0) {
1849 1.151 thorpej if (pg->pqflags & PQ_ANON) {
1850 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
1851 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1852 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
1853 1.151 thorpej else
1854 1.151 thorpej (*pr)(" anon backpointer is OK\n");
1855 1.151 thorpej } else {
1856 1.151 thorpej uobj = pg->uobject;
1857 1.151 thorpej if (uobj) {
1858 1.151 thorpej (*pr)(" checking object list\n");
1859 1.151 thorpej TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1860 1.151 thorpej if (tpg == pg) {
1861 1.151 thorpej break;
1862 1.151 thorpej }
1863 1.151 thorpej }
1864 1.151 thorpej if (tpg)
1865 1.151 thorpej (*pr)(" page found on object list\n");
1866 1.151 thorpej else
1867 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1868 1.151 thorpej }
1869 1.151 thorpej }
1870 1.151 thorpej }
1871 1.151 thorpej
1872 1.151 thorpej /* cross-verify page queue */
1873 1.151 thorpej if (pg->pqflags & PQ_FREE) {
1874 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
1875 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
1876 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1877 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1878 1.151 thorpej } else {
1879 1.151 thorpej pgl = NULL;
1880 1.151 thorpej }
1881 1.151 thorpej
1882 1.151 thorpej if (pgl) {
1883 1.151 thorpej (*pr)(" checking pageq list\n");
1884 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
1885 1.151 thorpej if (tpg == pg) {
1886 1.151 thorpej break;
1887 1.151 thorpej }
1888 1.151 thorpej }
1889 1.151 thorpej if (tpg)
1890 1.151 thorpej (*pr)(" page found on pageq list\n");
1891 1.151 thorpej else
1892 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1893 1.151 thorpej }
1894 1.151 thorpej }
1895 1.151 thorpej
1896 1.151 thorpej /*
1897 1.151 thorpej * uvm_pages_printthem - print a summary of all managed pages
1898 1.151 thorpej */
1899 1.151 thorpej
1900 1.151 thorpej void
1901 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
1902 1.151 thorpej {
1903 1.190 cherry uvm_physseg_t i;
1904 1.190 cherry paddr_t pfn;
1905 1.151 thorpej struct vm_page *pg;
1906 1.151 thorpej
1907 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
1908 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1909 1.151 thorpej " OWNER"
1910 1.151 thorpej #endif
1911 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1912 1.190 cherry for (i = uvm_physseg_get_first();
1913 1.190 cherry uvm_physseg_valid_p(i);
1914 1.190 cherry i = uvm_physseg_get_next(i)) {
1915 1.190 cherry for (pfn = uvm_physseg_get_start(i);
1916 1.192 maya pfn < uvm_physseg_get_end(i);
1917 1.190 cherry pfn++) {
1918 1.190 cherry pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1919 1.190 cherry
1920 1.151 thorpej (*pr)("%18p %04x %04x %18p %18p",
1921 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
1922 1.151 thorpej pg->uanon);
1923 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1924 1.151 thorpej if (pg->flags & PG_BUSY)
1925 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1926 1.151 thorpej #endif
1927 1.151 thorpej (*pr)("\n");
1928 1.151 thorpej }
1929 1.151 thorpej }
1930 1.151 thorpej }
1931 1.151 thorpej
1932 1.151 thorpej #endif /* DDB || DEBUGPRINT */
1933