Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.202
      1  1.202        ad /*	$NetBSD: uvm_page.c,v 1.202 2019/12/14 17:28:58 ad Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.62       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.62       chs  *
     49   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.62       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_page.c: page ops.
     66    1.1       mrg  */
     67   1.71     lukem 
     68   1.71     lukem #include <sys/cdefs.h>
     69  1.202        ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.202 2019/12/14 17:28:58 ad Exp $");
     70    1.6       mrg 
     71  1.151   thorpej #include "opt_ddb.h"
     72  1.187     joerg #include "opt_uvm.h"
     73   1.44       chs #include "opt_uvmhist.h"
     74  1.113      yamt #include "opt_readahead.h"
     75   1.44       chs 
     76    1.1       mrg #include <sys/param.h>
     77    1.1       mrg #include <sys/systm.h>
     78   1.35   thorpej #include <sys/sched.h>
     79   1.44       chs #include <sys/kernel.h>
     80   1.51       chs #include <sys/vnode.h>
     81   1.68       chs #include <sys/proc.h>
     82  1.202        ad #include <sys/radixtree.h>
     83  1.126        ad #include <sys/atomic.h>
     84  1.133        ad #include <sys/cpu.h>
     85  1.190    cherry #include <sys/extent.h>
     86    1.1       mrg 
     87    1.1       mrg #include <uvm/uvm.h>
     88  1.151   thorpej #include <uvm/uvm_ddb.h>
     89  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     90    1.1       mrg 
     91    1.1       mrg /*
     92   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
     93   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
     94  1.155        ad  * We therefore provide a way to enable it from machdep code here.
     95   1.44       chs  */
     96  1.119   thorpej bool vm_page_zero_enable = false;
     97   1.34   thorpej 
     98   1.34   thorpej /*
     99  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    100  1.140        ad  */
    101  1.187     joerg #ifndef	UVM_RESERVED_PAGES_PER_CPU
    102  1.187     joerg #define	UVM_RESERVED_PAGES_PER_CPU	5
    103  1.187     joerg #endif
    104  1.187     joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    105  1.140        ad 
    106  1.140        ad /*
    107  1.148      matt  * physical memory size;
    108  1.148      matt  */
    109  1.189    cherry psize_t physmem;
    110  1.148      matt 
    111  1.148      matt /*
    112    1.1       mrg  * local variables
    113    1.1       mrg  */
    114    1.1       mrg 
    115    1.1       mrg /*
    116   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    117   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118   1.88   thorpej  * and pmap_startup here also uses them internally.
    119   1.88   thorpej  */
    120   1.88   thorpej 
    121   1.88   thorpej static vaddr_t      virtual_space_start;
    122   1.88   thorpej static vaddr_t      virtual_space_end;
    123   1.88   thorpej 
    124   1.88   thorpej /*
    125   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    126   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    127   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    128   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    129   1.60   thorpej  * uvm_pageboot_alloc().
    130   1.60   thorpej  */
    131   1.60   thorpej 
    132  1.179      para static size_t recolored_pages_memsize /* = 0 */;
    133   1.60   thorpej 
    134   1.91      yamt #ifdef DEBUG
    135   1.91      yamt vaddr_t uvm_zerocheckkva;
    136   1.91      yamt #endif /* DEBUG */
    137   1.91      yamt 
    138   1.60   thorpej /*
    139  1.190    cherry  * These functions are reserved for uvm(9) internal use and are not
    140  1.190    cherry  * exported in the header file uvm_physseg.h
    141  1.190    cherry  *
    142  1.190    cherry  * Thus they are redefined here.
    143  1.190    cherry  */
    144  1.190    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    145  1.190    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    146  1.190    cherry 
    147  1.190    cherry /* returns a pgs array */
    148  1.190    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    149  1.190    cherry 
    150  1.190    cherry /*
    151  1.134        ad  * local prototypes
    152  1.124        ad  */
    153  1.124        ad 
    154  1.202        ad static int uvm_pageinsert(struct uvm_object *, struct vm_page *);
    155  1.153  uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    156  1.124        ad 
    157  1.124        ad /*
    158    1.1       mrg  * inline functions
    159    1.1       mrg  */
    160    1.1       mrg 
    161    1.1       mrg /*
    162  1.134        ad  * uvm_pageinsert: insert a page in the object.
    163    1.1       mrg  *
    164    1.1       mrg  * => caller must lock object
    165    1.1       mrg  * => call should have already set pg's object and offset pointers
    166    1.1       mrg  *    and bumped the version counter
    167    1.1       mrg  */
    168    1.1       mrg 
    169  1.136      yamt static inline void
    170  1.136      yamt uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    171  1.136      yamt     struct vm_page *where)
    172    1.1       mrg {
    173    1.1       mrg 
    174  1.136      yamt 	KASSERT(uobj == pg->uobject);
    175  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    176   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    177   1.96      yamt 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    178   1.96      yamt 	KASSERT(where == NULL || (where->uobject == uobj));
    179  1.123        ad 
    180   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    181   1.94      yamt 		if (uobj->uo_npages == 0) {
    182   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    183   1.94      yamt 
    184   1.94      yamt 			vholdl(vp);
    185   1.94      yamt 		}
    186   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    187  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    188   1.94      yamt 		} else {
    189  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    190   1.94      yamt 		}
    191   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    192  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    193   1.78       chs 	}
    194   1.78       chs 
    195   1.96      yamt 	if (where)
    196  1.133        ad 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    197   1.96      yamt 	else
    198  1.133        ad 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    199    1.7       mrg 	pg->flags |= PG_TABLED;
    200   1.67       chs 	uobj->uo_npages++;
    201    1.1       mrg }
    202    1.1       mrg 
    203  1.202        ad static inline int
    204  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    205  1.136      yamt {
    206  1.202        ad 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    207  1.202        ad 	int error;
    208  1.136      yamt 
    209  1.202        ad 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    210  1.202        ad 	if (error != 0) {
    211  1.202        ad 		return error;
    212  1.202        ad 	}
    213  1.202        ad 	return 0;
    214  1.136      yamt }
    215  1.136      yamt 
    216  1.202        ad static inline int
    217  1.153  uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    218   1.96      yamt {
    219  1.202        ad 	int error;
    220   1.96      yamt 
    221  1.153  uebayasi 	KDASSERT(uobj != NULL);
    222  1.202        ad 	KDASSERT(uobj == pg->uobject);
    223  1.202        ad 	error = uvm_pageinsert_tree(uobj, pg);
    224  1.202        ad 	if (error != 0) {
    225  1.202        ad 		KASSERT(error == ENOMEM);
    226  1.202        ad 		return error;
    227  1.202        ad 	}
    228  1.136      yamt 	uvm_pageinsert_list(uobj, pg, NULL);
    229  1.202        ad 	return error;
    230   1.96      yamt }
    231   1.96      yamt 
    232    1.1       mrg /*
    233  1.134        ad  * uvm_page_remove: remove page from object.
    234    1.1       mrg  *
    235    1.1       mrg  * => caller must lock object
    236    1.1       mrg  */
    237    1.1       mrg 
    238  1.109     perry static inline void
    239  1.136      yamt uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    240    1.1       mrg {
    241    1.1       mrg 
    242  1.136      yamt 	KASSERT(uobj == pg->uobject);
    243  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    244   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    245  1.123        ad 
    246   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    247   1.94      yamt 		if (uobj->uo_npages == 1) {
    248   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    249   1.94      yamt 
    250   1.94      yamt 			holdrelel(vp);
    251   1.94      yamt 		}
    252   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    253  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    254   1.94      yamt 		} else {
    255  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    256   1.94      yamt 		}
    257   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    258  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    259   1.51       chs 	}
    260   1.44       chs 
    261    1.7       mrg 	/* object should be locked */
    262   1.67       chs 	uobj->uo_npages--;
    263  1.133        ad 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    264    1.7       mrg 	pg->flags &= ~PG_TABLED;
    265    1.7       mrg 	pg->uobject = NULL;
    266    1.1       mrg }
    267    1.1       mrg 
    268  1.136      yamt static inline void
    269  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    270  1.136      yamt {
    271  1.202        ad 	struct vm_page *opg __unused;
    272  1.136      yamt 
    273  1.202        ad 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    274  1.202        ad 	KASSERT(pg == opg);
    275  1.136      yamt }
    276  1.136      yamt 
    277  1.136      yamt static inline void
    278  1.153  uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    279  1.136      yamt {
    280  1.136      yamt 
    281  1.153  uebayasi 	KDASSERT(uobj != NULL);
    282  1.202        ad 	KASSERT(uobj == pg->uobject);
    283  1.202        ad 	uvm_pageremove_list(uobj, pg);
    284  1.136      yamt 	uvm_pageremove_tree(uobj, pg);
    285  1.136      yamt }
    286  1.136      yamt 
    287   1.60   thorpej static void
    288   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    289   1.60   thorpej {
    290   1.60   thorpej 	int color, i;
    291   1.60   thorpej 
    292   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    293   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    294  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    295   1.60   thorpej 		}
    296   1.60   thorpej 	}
    297   1.60   thorpej }
    298   1.60   thorpej 
    299    1.1       mrg /*
    300    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    301   1.62       chs  *
    302    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    303    1.1       mrg  */
    304    1.1       mrg 
    305    1.7       mrg void
    306  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    307    1.1       mrg {
    308  1.155        ad 	static struct uvm_cpu boot_cpu;
    309  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    310  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    311   1.63       chs 	struct vm_page *pagearray;
    312  1.190    cherry 	uvm_physseg_t bank;
    313   1.81   thorpej 	int lcv;
    314    1.7       mrg 
    315  1.133        ad 	KASSERT(ncpu <= 1);
    316  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    317  1.133        ad 
    318    1.7       mrg 	/*
    319  1.201        ad 	 * init the page queues and free page queue lock, except the
    320  1.201        ad 	 * free list; we allocate that later (with the initial vm_page
    321   1.60   thorpej 	 * structures).
    322    1.7       mrg 	 */
    323   1.51       chs 
    324  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    325  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    326  1.113      yamt 	uvmpdpol_init();
    327  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    328    1.7       mrg 
    329    1.7       mrg 	/*
    330   1.51       chs 	 * allocate vm_page structures.
    331    1.7       mrg 	 */
    332    1.7       mrg 
    333    1.7       mrg 	/*
    334    1.7       mrg 	 * sanity check:
    335    1.7       mrg 	 * before calling this function the MD code is expected to register
    336    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    337    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    338    1.7       mrg 	 */
    339    1.7       mrg 
    340  1.190    cherry 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    341   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    342   1.62       chs 
    343    1.7       mrg 	/*
    344   1.62       chs 	 * first calculate the number of free pages...
    345    1.7       mrg 	 *
    346    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    347    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    348    1.7       mrg 	 * want to return some memory to the pool after booting.
    349    1.7       mrg 	 */
    350   1.62       chs 
    351    1.7       mrg 	freepages = 0;
    352  1.190    cherry 
    353  1.190    cherry 	for (bank = uvm_physseg_get_first();
    354  1.190    cherry 	     uvm_physseg_valid_p(bank) ;
    355  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    356  1.190    cherry 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    357  1.158  uebayasi 	}
    358    1.7       mrg 
    359    1.7       mrg 	/*
    360   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    361   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    362   1.60   thorpej 	 */
    363   1.60   thorpej 	if (uvmexp.ncolors == 0)
    364   1.60   thorpej 		uvmexp.ncolors = 1;
    365   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    366  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    367   1.60   thorpej 
    368   1.60   thorpej 	/*
    369    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    370    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    371    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    372    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    373    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    374    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    375    1.7       mrg 	 * pages).
    376    1.7       mrg 	 */
    377   1.62       chs 
    378   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    379   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    380    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    381   1.60   thorpej 
    382   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    383  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    384   1.60   thorpej 	    sizeof(struct vm_page)));
    385  1.133        ad 	cpuarray = bucketarray + bucketcount;
    386  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    387   1.60   thorpej 
    388   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    389   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    390   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    391   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    392  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    393  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    394  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    395   1.60   thorpej 	}
    396   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    397   1.62       chs 
    398    1.7       mrg 	/*
    399   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    400    1.7       mrg 	 */
    401  1.190    cherry 	/* First init the extent */
    402    1.7       mrg 
    403  1.190    cherry 	for (bank = uvm_physseg_get_first(),
    404  1.190    cherry 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    405  1.190    cherry 	     uvm_physseg_valid_p(bank);
    406  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    407  1.190    cherry 
    408  1.190    cherry 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    409  1.190    cherry 		uvm_physseg_seg_alloc_from_slab(bank, n);
    410  1.190    cherry 		uvm_physseg_init_seg(bank, pagearray);
    411   1.51       chs 
    412    1.7       mrg 		/* set up page array pointers */
    413    1.7       mrg 		pagearray += n;
    414    1.7       mrg 		pagecount -= n;
    415    1.7       mrg 	}
    416   1.44       chs 
    417    1.7       mrg 	/*
    418   1.88   thorpej 	 * pass up the values of virtual_space_start and
    419   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    420   1.88   thorpej 	 * layers of the VM.
    421   1.88   thorpej 	 */
    422   1.88   thorpej 
    423   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    424   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    425   1.91      yamt #ifdef DEBUG
    426   1.91      yamt 	/*
    427   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    428   1.91      yamt 	 */
    429   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    430   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    431   1.91      yamt #endif /* DEBUG */
    432   1.88   thorpej 
    433   1.88   thorpej 	/*
    434   1.51       chs 	 * init various thresholds.
    435    1.7       mrg 	 */
    436   1.51       chs 
    437    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    438  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    439    1.7       mrg 
    440    1.7       mrg 	/*
    441   1.51       chs 	 * determine if we should zero pages in the idle loop.
    442   1.34   thorpej 	 */
    443   1.51       chs 
    444  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    445   1.34   thorpej 
    446   1.34   thorpej 	/*
    447    1.7       mrg 	 * done!
    448    1.7       mrg 	 */
    449    1.1       mrg 
    450  1.119   thorpej 	uvm.page_init_done = true;
    451    1.1       mrg }
    452    1.1       mrg 
    453    1.1       mrg /*
    454    1.1       mrg  * uvm_setpagesize: set the page size
    455   1.62       chs  *
    456    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    457   1.62       chs  */
    458    1.1       mrg 
    459    1.7       mrg void
    460  1.105   thorpej uvm_setpagesize(void)
    461    1.1       mrg {
    462   1.85   thorpej 
    463   1.85   thorpej 	/*
    464   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    465   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    466   1.85   thorpej 	 */
    467   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    468   1.85   thorpej 		if (PAGE_SIZE == 0)
    469   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    470   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    471   1.85   thorpej 	}
    472    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    473    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    474  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    475  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    476    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    477    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    478    1.7       mrg 			break;
    479    1.1       mrg }
    480    1.1       mrg 
    481    1.1       mrg /*
    482    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    483    1.1       mrg  */
    484    1.1       mrg 
    485   1.14       eeh vaddr_t
    486  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    487    1.1       mrg {
    488  1.119   thorpej 	static bool initialized = false;
    489   1.14       eeh 	vaddr_t addr;
    490   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    491   1.52   thorpej 	vaddr_t vaddr;
    492   1.14       eeh 	paddr_t paddr;
    493   1.52   thorpej #endif
    494    1.1       mrg 
    495    1.7       mrg 	/*
    496   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    497    1.7       mrg 	 */
    498  1.119   thorpej 	if (initialized == false) {
    499   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    500    1.1       mrg 
    501    1.7       mrg 		/* round it the way we like it */
    502   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    503   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    504   1.19   thorpej 
    505  1.119   thorpej 		initialized = true;
    506    1.7       mrg 	}
    507   1.52   thorpej 
    508   1.52   thorpej 	/* round to page size */
    509   1.52   thorpej 	size = round_page(size);
    510  1.195       mrg 	uvmexp.bootpages += atop(size);
    511   1.52   thorpej 
    512   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    513   1.52   thorpej 
    514   1.62       chs 	/*
    515   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    516   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    517   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    518   1.52   thorpej 	 */
    519   1.52   thorpej 
    520   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    521   1.88   thorpej 	    &virtual_space_end);
    522   1.52   thorpej 
    523   1.52   thorpej 	return(addr);
    524   1.52   thorpej 
    525   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    526    1.1       mrg 
    527    1.7       mrg 	/*
    528    1.7       mrg 	 * allocate virtual memory for this request
    529    1.7       mrg 	 */
    530   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    531   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    532   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    533   1.20   thorpej 
    534   1.88   thorpej 	addr = virtual_space_start;
    535   1.20   thorpej 
    536   1.20   thorpej #ifdef PMAP_GROWKERNEL
    537   1.20   thorpej 	/*
    538   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    539   1.20   thorpej 	 * then allocate more resources for it.
    540   1.20   thorpej 	 */
    541   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    542   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    543   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    544   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    545   1.19   thorpej 	}
    546   1.20   thorpej #endif
    547    1.1       mrg 
    548   1.88   thorpej 	virtual_space_start += size;
    549    1.1       mrg 
    550    1.9   thorpej 	/*
    551    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    552    1.7       mrg 	 */
    553    1.1       mrg 
    554    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    555    1.7       mrg 	    vaddr += PAGE_SIZE) {
    556    1.1       mrg 
    557    1.7       mrg 		if (!uvm_page_physget(&paddr))
    558    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    559    1.1       mrg 
    560   1.23   thorpej 		/*
    561   1.23   thorpej 		 * Note this memory is no longer managed, so using
    562   1.23   thorpej 		 * pmap_kenter is safe.
    563   1.23   thorpej 		 */
    564  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    565    1.7       mrg 	}
    566   1.66     chris 	pmap_update(pmap_kernel());
    567    1.7       mrg 	return(addr);
    568    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    569    1.1       mrg }
    570    1.1       mrg 
    571    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    572    1.1       mrg /*
    573    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    574    1.1       mrg  *
    575    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    576    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    577    1.1       mrg  *    will advance both values (making them equal, and removing some
    578    1.1       mrg  *    vm_page structures from the non-avail area).
    579    1.1       mrg  * => return false if out of memory.
    580    1.1       mrg  */
    581    1.1       mrg 
    582   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    583  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    584   1.28  drochner 
    585  1.118   thorpej static bool
    586  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    587    1.1       mrg {
    588  1.190    cherry 	uvm_physseg_t lcv;
    589    1.1       mrg 
    590    1.7       mrg 	/* pass 1: try allocating from a matching end */
    591    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    592  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    593    1.1       mrg #else
    594  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    595    1.1       mrg #endif
    596    1.7       mrg 	{
    597  1.119   thorpej 		if (uvm.page_init_done == true)
    598   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    599    1.1       mrg 
    600  1.190    cherry 		/* Try to match at front or back on unused segment */
    601  1.200      maxv 		if (uvm_page_physunload(lcv, freelist, paddrp))
    602  1.190    cherry 			return true;
    603  1.191     skrll 	}
    604    1.1       mrg 
    605    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    606    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    607  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    608    1.1       mrg #else
    609  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    610    1.1       mrg #endif
    611    1.7       mrg 	{
    612  1.190    cherry 		/* Try the front regardless. */
    613  1.200      maxv 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    614  1.190    cherry 			return true;
    615  1.190    cherry 	}
    616  1.190    cherry 	return false;
    617   1.28  drochner }
    618   1.28  drochner 
    619  1.118   thorpej bool
    620  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    621   1.28  drochner {
    622   1.28  drochner 	int i;
    623   1.28  drochner 
    624   1.28  drochner 	/* try in the order of freelist preference */
    625   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    626  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    627  1.119   thorpej 			return (true);
    628  1.119   thorpej 	return (false);
    629    1.1       mrg }
    630    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    631    1.1       mrg 
    632    1.1       mrg /*
    633  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    634  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    635  1.163  uebayasi  */
    636  1.163  uebayasi struct vm_page *
    637  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    638  1.163  uebayasi {
    639  1.163  uebayasi 	paddr_t pf = atop(pa);
    640  1.190    cherry 	paddr_t	off;
    641  1.190    cherry 	uvm_physseg_t	upm;
    642  1.163  uebayasi 
    643  1.190    cherry 	upm = uvm_physseg_find(pf, &off);
    644  1.190    cherry 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    645  1.190    cherry 		return uvm_physseg_get_pg(upm, off);
    646  1.163  uebayasi 	return(NULL);
    647  1.163  uebayasi }
    648  1.163  uebayasi 
    649  1.163  uebayasi paddr_t
    650  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    651  1.163  uebayasi {
    652  1.163  uebayasi 
    653  1.163  uebayasi 	return pg->phys_addr;
    654  1.163  uebayasi }
    655  1.163  uebayasi 
    656  1.163  uebayasi /*
    657   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    658   1.60   thorpej  * larger than the old one.
    659   1.60   thorpej  */
    660   1.60   thorpej 
    661   1.60   thorpej void
    662   1.60   thorpej uvm_page_recolor(int newncolors)
    663   1.60   thorpej {
    664  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    665  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    666   1.63       chs 	struct vm_page *pg;
    667   1.60   thorpej 	vsize_t bucketcount;
    668  1.179      para 	size_t bucketmemsize, oldbucketmemsize;
    669  1.190    cherry 	int color, i, ocolors;
    670  1.190    cherry 	int lcv;
    671  1.133        ad 	struct uvm_cpu *ucpu;
    672   1.60   thorpej 
    673  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    674  1.178  uebayasi 
    675   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    676   1.60   thorpej 		return;
    677   1.77  wrstuden 
    678  1.119   thorpej 	if (uvm.page_init_done == false) {
    679   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    680   1.77  wrstuden 		return;
    681   1.77  wrstuden 	}
    682   1.60   thorpej 
    683   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    684  1.179      para 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    685  1.179      para 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
    686  1.133        ad 	cpuarray = bucketarray + bucketcount;
    687   1.60   thorpej 
    688  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    689   1.60   thorpej 
    690   1.60   thorpej 	/* Make sure we should still do this. */
    691   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
    692  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
    693  1.179      para 		kmem_free(bucketarray, bucketmemsize);
    694   1.60   thorpej 		return;
    695   1.60   thorpej 	}
    696   1.60   thorpej 
    697   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    698   1.60   thorpej 	ocolors = uvmexp.ncolors;
    699   1.60   thorpej 
    700   1.60   thorpej 	uvmexp.ncolors = newncolors;
    701   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    702   1.60   thorpej 
    703  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    704   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    705  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    706  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    707  1.133        ad 		uvm_page_init_buckets(&gpgfl);
    708   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
    709   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
    710   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
    711  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
    712   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    713   1.60   thorpej 				    != NULL) {
    714  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
    715  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
    716  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    717  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    718  1.133        ad 					    i], pg, pageq.list);
    719  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    720   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    721  1.133        ad 					    i], pg, listq.list);
    722   1.60   thorpej 				}
    723   1.60   thorpej 			}
    724   1.60   thorpej 		}
    725  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    726  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    727   1.60   thorpej 	}
    728   1.60   thorpej 
    729  1.179      para 	oldbucketmemsize = recolored_pages_memsize;
    730  1.177       mrg 
    731  1.179      para 	recolored_pages_memsize = bucketmemsize;
    732  1.177       mrg 	mutex_spin_exit(&uvm_fpageqlock);
    733  1.176      matt 
    734  1.179      para 	if (oldbucketmemsize) {
    735  1.196  jakllsch 		kmem_free(oldbucketarray, oldbucketmemsize);
    736  1.179      para 	}
    737   1.60   thorpej 
    738  1.177       mrg 	/*
    739  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
    740  1.177       mrg 	 * uvm_fpageqlock.
    741  1.177       mrg 	 */
    742  1.177       mrg 	uvm_pager_realloc_emerg();
    743   1.60   thorpej }
    744    1.1       mrg 
    745    1.1       mrg /*
    746  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
    747  1.133        ad  */
    748  1.133        ad 
    749  1.133        ad void
    750  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
    751  1.133        ad {
    752  1.133        ad 	struct pgflbucket *bucketarray;
    753  1.133        ad 	struct pgfreelist pgfl;
    754  1.133        ad 	struct uvm_cpu *ucpu;
    755  1.133        ad 	vsize_t bucketcount;
    756  1.133        ad 	int lcv;
    757  1.133        ad 
    758  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
    759  1.133        ad 		/* Already done in uvm_page_init(). */
    760  1.181       tls 		goto attachrnd;
    761  1.133        ad 	}
    762  1.133        ad 
    763  1.140        ad 	/* Add more reserve pages for this CPU. */
    764  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    765  1.140        ad 
    766  1.140        ad 	/* Configure this CPU's free lists. */
    767  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    768  1.179      para 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
    769  1.179      para 	    KM_SLEEP);
    770  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
    771  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
    772  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
    773  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    774  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    775  1.133        ad 		uvm_page_init_buckets(&pgfl);
    776  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    777  1.133        ad 	}
    778  1.181       tls 
    779  1.181       tls attachrnd:
    780  1.181       tls 	/*
    781  1.181       tls 	 * Attach RNG source for this CPU's VM events
    782  1.181       tls 	 */
    783  1.181       tls         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
    784  1.185       tls 			  ci->ci_data.cpu_name, RND_TYPE_VM,
    785  1.185       tls 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    786  1.185       tls 			  RND_FLAG_ESTIMATE_VALUE);
    787  1.181       tls 
    788  1.133        ad }
    789  1.133        ad 
    790  1.133        ad /*
    791   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    792   1.54   thorpej  */
    793   1.54   thorpej 
    794  1.114   thorpej static struct vm_page *
    795  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    796   1.69    simonb     int *trycolorp)
    797   1.54   thorpej {
    798  1.133        ad 	struct pgflist *freeq;
    799   1.54   thorpej 	struct vm_page *pg;
    800   1.58     enami 	int color, trycolor = *trycolorp;
    801  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
    802   1.54   thorpej 
    803  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
    804  1.130        ad 
    805   1.58     enami 	color = trycolor;
    806  1.133        ad 	pgfl = &ucpu->page_free[flist];
    807  1.133        ad 	gpgfl = &uvm.page_free[flist];
    808   1.58     enami 	do {
    809  1.133        ad 		/* cpu, try1 */
    810  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    811  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    812  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    813  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    814  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    815  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    816  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    817  1.133        ad 		    	uvmexp.cpuhit++;
    818  1.133        ad 			goto gotit;
    819  1.133        ad 		}
    820  1.133        ad 		/* global, try1 */
    821  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    822  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    823  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    824  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    825  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    826  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    827  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    828  1.133        ad 		    	uvmexp.cpumiss++;
    829   1.54   thorpej 			goto gotit;
    830  1.133        ad 		}
    831  1.133        ad 		/* cpu, try2 */
    832  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    833  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    834  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    835  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    836  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    837  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    838  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    839  1.133        ad 		    	uvmexp.cpuhit++;
    840   1.54   thorpej 			goto gotit;
    841  1.133        ad 		}
    842  1.133        ad 		/* global, try2 */
    843  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    844  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    845  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    846  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    847  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    848  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    849  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    850  1.133        ad 		    	uvmexp.cpumiss++;
    851  1.133        ad 			goto gotit;
    852  1.133        ad 		}
    853   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
    854   1.58     enami 	} while (color != trycolor);
    855   1.54   thorpej 
    856   1.54   thorpej 	return (NULL);
    857   1.54   thorpej 
    858   1.54   thorpej  gotit:
    859  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
    860  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
    861   1.54   thorpej 	uvmexp.free--;
    862   1.54   thorpej 
    863   1.54   thorpej 	/* update zero'd page count */
    864   1.54   thorpej 	if (pg->flags & PG_ZERO)
    865   1.54   thorpej 		uvmexp.zeropages--;
    866   1.54   thorpej 
    867   1.54   thorpej 	if (color == trycolor)
    868   1.54   thorpej 		uvmexp.colorhit++;
    869   1.54   thorpej 	else {
    870   1.54   thorpej 		uvmexp.colormiss++;
    871   1.54   thorpej 		*trycolorp = color;
    872   1.54   thorpej 	}
    873   1.54   thorpej 
    874   1.54   thorpej 	return (pg);
    875   1.54   thorpej }
    876   1.54   thorpej 
    877   1.54   thorpej /*
    878   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    879    1.1       mrg  *
    880    1.1       mrg  * => return null if no pages free
    881    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    882  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
    883    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    884    1.1       mrg  * => only one of obj or anon can be non-null
    885    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    886   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    887   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    888   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    889   1.34   thorpej  *	unknown contents page.  This is because we live with the
    890   1.34   thorpej  *	consequences of a bad free list decision for the entire
    891   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    892   1.34   thorpej  *	is slower to access.
    893    1.1       mrg  */
    894    1.1       mrg 
    895    1.7       mrg struct vm_page *
    896  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
    897  1.105   thorpej     int flags, int strat, int free_list)
    898    1.1       mrg {
    899  1.190    cherry 	int try1, try2, zeroit = 0, color;
    900  1.202        ad 	int lcv, error;
    901  1.133        ad 	struct uvm_cpu *ucpu;
    902    1.7       mrg 	struct vm_page *pg;
    903  1.141        ad 	lwp_t *l;
    904    1.1       mrg 
    905   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
    906  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
    907   1.44       chs 	KASSERT(off == trunc_page(off));
    908  1.174     rmind 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
    909  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
    910  1.175     rmind 	    mutex_owned(anon->an_lock));
    911   1.48   thorpej 
    912  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    913    1.1       mrg 
    914    1.7       mrg 	/*
    915   1.54   thorpej 	 * This implements a global round-robin page coloring
    916   1.54   thorpej 	 * algorithm.
    917   1.54   thorpej 	 */
    918   1.67       chs 
    919  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    920  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
    921  1.169      matt 		color = atop(off) & uvmexp.colormask;
    922  1.169      matt 	} else {
    923  1.169      matt 		color = ucpu->page_free_nextcolor;
    924  1.169      matt 	}
    925   1.54   thorpej 
    926   1.54   thorpej 	/*
    927    1.7       mrg 	 * check to see if we need to generate some free pages waking
    928    1.7       mrg 	 * the pagedaemon.
    929    1.7       mrg 	 */
    930    1.7       mrg 
    931  1.113      yamt 	uvm_kick_pdaemon();
    932    1.7       mrg 
    933    1.7       mrg 	/*
    934    1.7       mrg 	 * fail if any of these conditions is true:
    935    1.7       mrg 	 * [1]  there really are no free pages, or
    936    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
    937  1.141        ad 	 *        reserved pages have not been requested.
    938    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
    939    1.7       mrg 	 *        the requestor isn't the pagedaemon.
    940  1.141        ad 	 * we make kernel reserve pages available if called by a
    941  1.141        ad 	 * kernel thread or a realtime thread.
    942    1.7       mrg 	 */
    943  1.141        ad 	l = curlwp;
    944  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
    945  1.141        ad 		flags |= UVM_PGA_USERESERVE;
    946  1.141        ad 	}
    947  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    948  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
    949    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    950  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
    951   1.12   thorpej 		goto fail;
    952   1.12   thorpej 
    953   1.34   thorpej #if PGFL_NQUEUES != 2
    954   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
    955   1.34   thorpej #endif
    956   1.34   thorpej 
    957   1.34   thorpej 	/*
    958   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    959   1.34   thorpej 	 * we try the UNKNOWN queue first.
    960   1.34   thorpej 	 */
    961   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    962   1.34   thorpej 		try1 = PGFL_ZEROS;
    963   1.34   thorpej 		try2 = PGFL_UNKNOWN;
    964   1.34   thorpej 	} else {
    965   1.34   thorpej 		try1 = PGFL_UNKNOWN;
    966   1.34   thorpej 		try2 = PGFL_ZEROS;
    967   1.34   thorpej 	}
    968   1.34   thorpej 
    969   1.12   thorpej  again:
    970   1.12   thorpej 	switch (strat) {
    971   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
    972  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
    973   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    974  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
    975   1.54   thorpej 			    try1, try2, &color);
    976   1.54   thorpej 			if (pg != NULL)
    977   1.12   thorpej 				goto gotit;
    978   1.12   thorpej 		}
    979   1.12   thorpej 
    980   1.12   thorpej 		/* No pages free! */
    981   1.12   thorpej 		goto fail;
    982   1.12   thorpej 
    983   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
    984   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
    985   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
    986   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    987  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
    988   1.54   thorpej 		    try1, try2, &color);
    989   1.54   thorpej 		if (pg != NULL)
    990   1.12   thorpej 			goto gotit;
    991   1.12   thorpej 
    992   1.12   thorpej 		/* Fall back, if possible. */
    993   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    994   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
    995   1.12   thorpej 			goto again;
    996   1.12   thorpej 		}
    997   1.12   thorpej 
    998   1.12   thorpej 		/* No pages free! */
    999   1.12   thorpej 		goto fail;
   1000   1.12   thorpej 
   1001   1.12   thorpej 	default:
   1002   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1003   1.12   thorpej 		/* NOTREACHED */
   1004    1.7       mrg 	}
   1005    1.7       mrg 
   1006   1.12   thorpej  gotit:
   1007   1.54   thorpej 	/*
   1008   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1009   1.54   thorpej 	 * the next color accordingly.
   1010   1.54   thorpej 	 */
   1011   1.67       chs 
   1012  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1013   1.34   thorpej 
   1014   1.34   thorpej 	/*
   1015   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1016   1.34   thorpej 	 * zero the page
   1017   1.34   thorpej 	 */
   1018   1.67       chs 
   1019   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1020   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1021   1.34   thorpej 			uvmexp.pga_zerohit++;
   1022   1.34   thorpej 			zeroit = 0;
   1023   1.34   thorpej 		} else {
   1024   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1025   1.34   thorpej 			zeroit = 1;
   1026   1.34   thorpej 		}
   1027  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1028  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1029  1.133        ad 		}
   1030   1.34   thorpej 	}
   1031  1.201        ad 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1032    1.7       mrg 
   1033  1.201        ad 	/*
   1034  1.201        ad 	 * For now check this - later on we may do lazy dequeue, but need
   1035  1.201        ad 	 * to get page.queue used only by the pagedaemon policy first.
   1036  1.201        ad 	 */
   1037  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1038  1.201        ad 
   1039  1.201        ad 	/*
   1040  1.201        ad 	 * assign the page to the object.  we don't need to lock the page's
   1041  1.201        ad 	 * identity to do this, as the caller holds the objects locked, and
   1042  1.201        ad 	 * the page is not on any paging queues at this time.
   1043  1.201        ad 	 */
   1044    1.7       mrg 	pg->offset = off;
   1045    1.7       mrg 	pg->uobject = obj;
   1046    1.7       mrg 	pg->uanon = anon;
   1047  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1048    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1049  1.202        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1050    1.7       mrg 	if (anon) {
   1051  1.103      yamt 		anon->an_page = pg;
   1052  1.201        ad 		pg->flags |= PG_ANON;
   1053  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1054  1.201        ad 	} else if (obj) {
   1055  1.202        ad 		error = uvm_pageinsert(obj, pg);
   1056  1.202        ad 		if (error != 0) {
   1057  1.202        ad 			pg->uobject = NULL;
   1058  1.202        ad 			uvm_pagefree(pg);
   1059  1.202        ad 			return NULL;
   1060  1.202        ad 		}
   1061    1.7       mrg 	}
   1062  1.143  drochner 
   1063    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1064    1.7       mrg 	pg->owner_tag = NULL;
   1065    1.1       mrg #endif
   1066    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1067   1.33   thorpej 
   1068   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1069   1.33   thorpej 		/*
   1070   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1071   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1072   1.33   thorpej 		 */
   1073   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1074   1.34   thorpej 		if (zeroit)
   1075   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1076   1.33   thorpej 	}
   1077    1.1       mrg 
   1078    1.7       mrg 	return(pg);
   1079   1.12   thorpej 
   1080   1.12   thorpej  fail:
   1081  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1082   1.12   thorpej 	return (NULL);
   1083    1.1       mrg }
   1084    1.1       mrg 
   1085    1.1       mrg /*
   1086   1.96      yamt  * uvm_pagereplace: replace a page with another
   1087   1.96      yamt  *
   1088   1.96      yamt  * => object must be locked
   1089  1.201        ad  * => interlock must be held
   1090   1.96      yamt  */
   1091   1.96      yamt 
   1092   1.96      yamt void
   1093  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1094   1.96      yamt {
   1095  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1096   1.97  junyoung 
   1097   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1098  1.136      yamt 	KASSERT(uobj != NULL);
   1099   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1100   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1101  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
   1102   1.96      yamt 
   1103  1.136      yamt 	newpg->uobject = uobj;
   1104   1.96      yamt 	newpg->offset = oldpg->offset;
   1105   1.96      yamt 
   1106  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1107  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1108  1.136      yamt 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1109  1.136      yamt 	uvm_pageremove_list(uobj, oldpg);
   1110   1.96      yamt }
   1111   1.96      yamt 
   1112   1.96      yamt /*
   1113    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1114    1.1       mrg  *
   1115    1.1       mrg  * => both objects must be locked
   1116  1.201        ad  * => both interlocks must be held
   1117    1.1       mrg  */
   1118    1.1       mrg 
   1119    1.7       mrg void
   1120  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1121    1.1       mrg {
   1122    1.7       mrg 	/*
   1123    1.7       mrg 	 * remove it from the old object
   1124    1.7       mrg 	 */
   1125    1.7       mrg 
   1126    1.7       mrg 	if (pg->uobject) {
   1127  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1128    1.7       mrg 	}
   1129    1.7       mrg 
   1130    1.7       mrg 	/*
   1131    1.7       mrg 	 * put it in the new object
   1132    1.7       mrg 	 */
   1133    1.7       mrg 
   1134    1.7       mrg 	if (newobj) {
   1135    1.7       mrg 		pg->uobject = newobj;
   1136    1.7       mrg 		pg->offset = newoff;
   1137  1.153  uebayasi 		uvm_pageinsert(newobj, pg);
   1138    1.7       mrg 	}
   1139    1.1       mrg }
   1140    1.1       mrg 
   1141   1.91      yamt #ifdef DEBUG
   1142   1.91      yamt /*
   1143   1.91      yamt  * check if page is zero-filled
   1144   1.91      yamt  */
   1145   1.91      yamt void
   1146   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1147   1.91      yamt {
   1148   1.91      yamt 	int *p, *ep;
   1149   1.91      yamt 
   1150   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1151  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1152   1.91      yamt 
   1153   1.91      yamt 	/*
   1154   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1155   1.91      yamt 	 * uvm page allocator.
   1156   1.91      yamt 	 *
   1157   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1158   1.91      yamt 	 */
   1159  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1160   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1161   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1162   1.92      yamt 	pmap_update(pmap_kernel());
   1163   1.91      yamt 	while (p < ep) {
   1164   1.91      yamt 		if (*p != 0)
   1165   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1166   1.91      yamt 		p++;
   1167   1.91      yamt 	}
   1168   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1169  1.131      yamt 	/*
   1170  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1171  1.131      yamt 	 * uses this VA.
   1172  1.131      yamt 	 */
   1173   1.91      yamt }
   1174   1.91      yamt #endif /* DEBUG */
   1175   1.91      yamt 
   1176    1.1       mrg /*
   1177    1.1       mrg  * uvm_pagefree: free page
   1178    1.1       mrg  *
   1179  1.133        ad  * => erase page's identity (i.e. remove from object)
   1180    1.1       mrg  * => put page on free list
   1181    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1182    1.1       mrg  * => assumes all valid mappings of pg are gone
   1183    1.1       mrg  */
   1184    1.1       mrg 
   1185   1.44       chs void
   1186  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1187    1.1       mrg {
   1188  1.133        ad 	struct pgflist *pgfl;
   1189  1.133        ad 	struct uvm_cpu *ucpu;
   1190  1.133        ad 	int index, color, queue;
   1191  1.201        ad 	bool iszero, locked;
   1192   1.67       chs 
   1193   1.44       chs #ifdef DEBUG
   1194   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1195   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1196   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1197   1.44       chs 	}
   1198   1.91      yamt #endif /* DEBUG */
   1199   1.44       chs 
   1200  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1201  1.201        ad 	KASSERT(!(pg->flags & PG_FREE));
   1202  1.182      matt 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1203  1.174     rmind 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1204  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1205  1.174     rmind 		mutex_owned(pg->uanon->an_lock));
   1206  1.123        ad 
   1207    1.7       mrg 	/*
   1208   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1209    1.7       mrg 	 */
   1210    1.7       mrg 
   1211   1.67       chs 	if (pg->loan_count) {
   1212   1.70       chs 		KASSERT(pg->wire_count == 0);
   1213    1.7       mrg 
   1214    1.7       mrg 		/*
   1215   1.67       chs 		 * if the page is owned by an anon then we just want to
   1216   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1217   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1218   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1219   1.70       chs 		 * of possible anon owners.
   1220   1.70       chs 		 *
   1221   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1222   1.70       chs 		 * unbusy the page, and we're done.
   1223    1.7       mrg 		 */
   1224    1.7       mrg 
   1225  1.201        ad 		mutex_enter(&pg->interlock);
   1226  1.201        ad 		locked = true;
   1227   1.73       chs 		if (pg->uobject != NULL) {
   1228  1.153  uebayasi 			uvm_pageremove(pg->uobject, pg);
   1229   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1230   1.73       chs 		} else if (pg->uanon != NULL) {
   1231  1.201        ad 			if ((pg->flags & PG_ANON) == 0) {
   1232   1.73       chs 				pg->loan_count--;
   1233   1.73       chs 			} else {
   1234  1.201        ad 				pg->flags &= ~PG_ANON;
   1235  1.201        ad  				atomic_dec_uint(&uvmexp.anonpages);
   1236   1.73       chs 			}
   1237  1.103      yamt 			pg->uanon->an_page = NULL;
   1238   1.73       chs 			pg->uanon = NULL;
   1239   1.67       chs 		}
   1240   1.70       chs 		if (pg->flags & PG_WANTED) {
   1241   1.70       chs 			wakeup(pg);
   1242   1.70       chs 		}
   1243   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1244   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1245   1.70       chs 		pg->owner_tag = NULL;
   1246   1.70       chs #endif
   1247   1.73       chs 		if (pg->loan_count) {
   1248  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1249  1.201        ad 			mutex_exit(&pg->interlock);
   1250  1.115      yamt 			if (pg->uanon == NULL) {
   1251  1.115      yamt 				uvm_pagedequeue(pg);
   1252  1.115      yamt 			}
   1253   1.73       chs 			return;
   1254   1.73       chs 		}
   1255  1.201        ad 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1256  1.201        ad 	           pg->wire_count != 0) {
   1257  1.201        ad 		mutex_enter(&pg->interlock);
   1258  1.201        ad 		locked = true;
   1259  1.201        ad 	} else {
   1260  1.201        ad 		locked = false;
   1261   1.67       chs 	}
   1262   1.62       chs 
   1263   1.67       chs 	/*
   1264   1.67       chs 	 * remove page from its object or anon.
   1265   1.67       chs 	 */
   1266   1.73       chs 	if (pg->uobject != NULL) {
   1267  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1268   1.73       chs 	} else if (pg->uanon != NULL) {
   1269  1.103      yamt 		pg->uanon->an_page = NULL;
   1270  1.201        ad 		pg->uanon = NULL;
   1271  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1272    1.7       mrg 	}
   1273    1.1       mrg 
   1274    1.7       mrg 	/*
   1275    1.7       mrg 	 * if the page was wired, unwire it now.
   1276    1.7       mrg 	 */
   1277   1.44       chs 
   1278   1.34   thorpej 	if (pg->wire_count) {
   1279    1.7       mrg 		pg->wire_count = 0;
   1280  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1281  1.201        ad 	}
   1282  1.201        ad 	if (locked) {
   1283  1.201        ad 		mutex_exit(&pg->interlock);
   1284   1.44       chs 	}
   1285    1.7       mrg 
   1286    1.7       mrg 	/*
   1287  1.201        ad 	 * now remove the page from the queues.
   1288  1.201        ad 	 */
   1289  1.201        ad 	uvm_pagedequeue(pg);
   1290  1.201        ad 
   1291  1.201        ad 	/*
   1292   1.44       chs 	 * and put on free queue
   1293    1.7       mrg 	 */
   1294    1.7       mrg 
   1295   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1296  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1297  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1298  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1299   1.34   thorpej 
   1300    1.3       chs #ifdef DEBUG
   1301    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1302    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1303    1.3       chs #endif
   1304   1.90      yamt 
   1305  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1306  1.201        ad 	pg->flags = PG_FREE;
   1307   1.91      yamt 
   1308   1.91      yamt #ifdef DEBUG
   1309   1.91      yamt 	if (iszero)
   1310   1.91      yamt 		uvm_pagezerocheck(pg);
   1311   1.91      yamt #endif /* DEBUG */
   1312   1.91      yamt 
   1313  1.133        ad 
   1314  1.133        ad 	/* global list */
   1315  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1316  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1317    1.7       mrg 	uvmexp.free++;
   1318  1.133        ad 	if (iszero) {
   1319   1.90      yamt 		uvmexp.zeropages++;
   1320  1.133        ad 	}
   1321   1.34   thorpej 
   1322  1.133        ad 	/* per-cpu list */
   1323  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1324  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1325  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1326  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1327  1.133        ad 	ucpu->pages[queue]++;
   1328  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1329  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1330  1.133        ad 	}
   1331   1.34   thorpej 
   1332  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1333   1.44       chs }
   1334   1.44       chs 
   1335   1.44       chs /*
   1336   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1337   1.44       chs  *
   1338   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1339   1.44       chs  * => if pages are object-owned, object must be locked.
   1340   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1341   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1342   1.44       chs  */
   1343   1.44       chs 
   1344   1.44       chs void
   1345  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1346   1.44       chs {
   1347   1.44       chs 	struct vm_page *pg;
   1348   1.44       chs 	int i;
   1349   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1350   1.44       chs 
   1351   1.44       chs 	for (i = 0; i < npgs; i++) {
   1352   1.44       chs 		pg = pgs[i];
   1353   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1354   1.44       chs 			continue;
   1355   1.44       chs 		}
   1356   1.98      yamt 
   1357  1.180      matt 		KASSERT(uvm_page_locked_p(pg));
   1358   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1359   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1360   1.44       chs 		if (pg->flags & PG_WANTED) {
   1361  1.201        ad 			/* XXXAD thundering herd problem. */
   1362   1.44       chs 			wakeup(pg);
   1363   1.44       chs 		}
   1364   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1365  1.194  pgoyette 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1366  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1367   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1368   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1369   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1370   1.67       chs 			uvm_pagefree(pg);
   1371   1.44       chs 		} else {
   1372  1.194  pgoyette 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1373  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1374  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1375   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1376   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1377   1.44       chs 		}
   1378   1.44       chs 	}
   1379    1.1       mrg }
   1380    1.1       mrg 
   1381    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1382    1.1       mrg /*
   1383    1.1       mrg  * uvm_page_own: set or release page ownership
   1384    1.1       mrg  *
   1385    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1386    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1387    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1388    1.1       mrg  * => page's object [if any] must be locked
   1389    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1390    1.1       mrg  */
   1391    1.7       mrg void
   1392  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1393    1.1       mrg {
   1394  1.112      yamt 
   1395   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1396  1.184       chs 	KASSERT((pg->flags & PG_WANTED) == 0);
   1397  1.180      matt 	KASSERT(uvm_page_locked_p(pg));
   1398  1.112      yamt 
   1399    1.7       mrg 	/* gain ownership? */
   1400    1.7       mrg 	if (tag) {
   1401  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1402    1.7       mrg 		if (pg->owner_tag) {
   1403    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1404    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1405   1.74     enami 			    pg->owner, pg->owner_tag);
   1406    1.7       mrg 			panic("uvm_page_own");
   1407    1.7       mrg 		}
   1408  1.184       chs 		pg->owner = curproc->p_pid;
   1409  1.184       chs 		pg->lowner = curlwp->l_lid;
   1410    1.7       mrg 		pg->owner_tag = tag;
   1411    1.7       mrg 		return;
   1412    1.7       mrg 	}
   1413    1.7       mrg 
   1414    1.7       mrg 	/* drop ownership */
   1415  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1416    1.7       mrg 	if (pg->owner_tag == NULL) {
   1417    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1418    1.7       mrg 		    "page (%p)\n", pg);
   1419    1.7       mrg 		panic("uvm_page_own");
   1420    1.7       mrg 	}
   1421  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1422  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1423  1.115      yamt 		    pg->wire_count > 0);
   1424  1.115      yamt 	} else {
   1425  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1426  1.115      yamt 	}
   1427    1.7       mrg 	pg->owner_tag = NULL;
   1428    1.1       mrg }
   1429    1.1       mrg #endif
   1430   1.34   thorpej 
   1431   1.34   thorpej /*
   1432   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1433   1.34   thorpej  *
   1434   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1435   1.54   thorpej  *	on the CPU cache.
   1436  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1437  1.132        ad  *      to run, or MD code detects a reason to break early.
   1438   1.34   thorpej  */
   1439   1.34   thorpej void
   1440  1.105   thorpej uvm_pageidlezero(void)
   1441   1.34   thorpej {
   1442   1.34   thorpej 	struct vm_page *pg;
   1443  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1444  1.133        ad 	struct uvm_cpu *ucpu;
   1445  1.133        ad 	int free_list, firstbucket, nextbucket;
   1446  1.172     rmind 	bool lcont = false;
   1447  1.133        ad 
   1448  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1449  1.133        ad 	if (!ucpu->page_idle_zero ||
   1450  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1451  1.133        ad 	    	ucpu->page_idle_zero = false;
   1452  1.132        ad 		return;
   1453  1.132        ad 	}
   1454  1.172     rmind 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1455  1.172     rmind 		/* Contention: let other CPUs to use the lock. */
   1456  1.172     rmind 		return;
   1457  1.172     rmind 	}
   1458  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1459  1.133        ad 	nextbucket = firstbucket;
   1460   1.58     enami 	do {
   1461   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1462  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1463  1.139        ad 				goto quit;
   1464  1.139        ad 			}
   1465  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1466  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1467  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1468   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1469  1.172     rmind 				if (lcont || sched_curcpu_runnable_p()) {
   1470  1.101      yamt 					goto quit;
   1471  1.132        ad 				}
   1472  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1473  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1474  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1475   1.54   thorpej 				uvmexp.free--;
   1476  1.201        ad 				KASSERT(pg->flags == PG_FREE);
   1477  1.201        ad 				pg->flags = 0;
   1478  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1479   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1480   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1481   1.67       chs 
   1482   1.54   thorpej 					/*
   1483   1.54   thorpej 					 * The machine-dependent code detected
   1484   1.54   thorpej 					 * some reason for us to abort zeroing
   1485   1.54   thorpej 					 * pages, probably because there is a
   1486   1.54   thorpej 					 * process now ready to run.
   1487   1.54   thorpej 					 */
   1488   1.67       chs 
   1489  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1490  1.201        ad 					pg->flags = PG_FREE;
   1491  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1492  1.133        ad 					    nextbucket].pgfl_queues[
   1493  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1494  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1495   1.54   thorpej 					    nextbucket].pgfl_queues[
   1496  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1497  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1498   1.54   thorpej 					uvmexp.free++;
   1499   1.54   thorpej 					uvmexp.zeroaborts++;
   1500  1.101      yamt 					goto quit;
   1501   1.54   thorpej 				}
   1502   1.54   thorpej #else
   1503   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1504   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1505  1.172     rmind 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1506  1.172     rmind 					lcont = true;
   1507  1.172     rmind 					mutex_spin_enter(&uvm_fpageqlock);
   1508  1.172     rmind 				} else {
   1509  1.172     rmind 					lcont = false;
   1510  1.172     rmind 				}
   1511  1.201        ad 				pg->flags = PG_FREE | PG_ZERO;
   1512  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1513  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1514  1.133        ad 				    pg, pageq.list);
   1515  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1516   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1517  1.133        ad 				    pg, listq.list);
   1518  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1519   1.54   thorpej 				uvmexp.free++;
   1520   1.54   thorpej 				uvmexp.zeropages++;
   1521   1.54   thorpej 			}
   1522   1.41   thorpej 		}
   1523  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1524  1.133        ad 			break;
   1525  1.133        ad 		}
   1526   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1527   1.58     enami 	} while (nextbucket != firstbucket);
   1528  1.133        ad 	ucpu->page_idle_zero = false;
   1529  1.133        ad  quit:
   1530  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1531   1.34   thorpej }
   1532  1.110      yamt 
   1533  1.110      yamt /*
   1534  1.110      yamt  * uvm_pagelookup: look up a page
   1535  1.110      yamt  *
   1536  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1537  1.110      yamt  *	out from under it
   1538  1.110      yamt  */
   1539  1.110      yamt 
   1540  1.110      yamt struct vm_page *
   1541  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1542  1.110      yamt {
   1543  1.110      yamt 	struct vm_page *pg;
   1544  1.110      yamt 
   1545  1.174     rmind 	KASSERT(mutex_owned(obj->vmobjlock));
   1546  1.123        ad 
   1547  1.202        ad 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1548  1.134        ad 
   1549  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1550  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1551  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1552  1.156     rmind 	return pg;
   1553  1.110      yamt }
   1554  1.110      yamt 
   1555  1.110      yamt /*
   1556  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1557  1.110      yamt  *
   1558  1.201        ad  * => caller must lock objects
   1559  1.110      yamt  */
   1560  1.110      yamt 
   1561  1.110      yamt void
   1562  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1563  1.110      yamt {
   1564  1.201        ad 
   1565  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1566  1.113      yamt #if defined(READAHEAD_STATS)
   1567  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1568  1.113      yamt 		uvm_ra_hit.ev_count++;
   1569  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1570  1.113      yamt 	}
   1571  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1572  1.110      yamt 	if (pg->wire_count == 0) {
   1573  1.110      yamt 		uvm_pagedequeue(pg);
   1574  1.201        ad 		atomic_inc_uint(&uvmexp.wired);
   1575  1.110      yamt 	}
   1576  1.201        ad 	mutex_enter(&pg->interlock);
   1577  1.110      yamt 	pg->wire_count++;
   1578  1.201        ad 	mutex_exit(&pg->interlock);
   1579  1.197  jdolecek 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1580  1.110      yamt }
   1581  1.110      yamt 
   1582  1.110      yamt /*
   1583  1.110      yamt  * uvm_pageunwire: unwire the page.
   1584  1.110      yamt  *
   1585  1.110      yamt  * => activate if wire count goes to zero.
   1586  1.201        ad  * => caller must lock objects
   1587  1.110      yamt  */
   1588  1.110      yamt 
   1589  1.110      yamt void
   1590  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1591  1.110      yamt {
   1592  1.201        ad 
   1593  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1594  1.199       kre 	KASSERT(pg->wire_count != 0);
   1595  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1596  1.201        ad 	mutex_enter(&pg->interlock);
   1597  1.110      yamt 	pg->wire_count--;
   1598  1.201        ad 	mutex_exit(&pg->interlock);
   1599  1.110      yamt 	if (pg->wire_count == 0) {
   1600  1.111      yamt 		uvm_pageactivate(pg);
   1601  1.199       kre 		KASSERT(uvmexp.wired != 0);
   1602  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1603  1.110      yamt 	}
   1604  1.110      yamt }
   1605  1.110      yamt 
   1606  1.110      yamt /*
   1607  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1608  1.110      yamt  *
   1609  1.201        ad  * => caller must lock objects
   1610  1.110      yamt  * => caller must check to make sure page is not wired
   1611  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1612  1.110      yamt  * => caller must clear the reference on the page before calling
   1613  1.110      yamt  */
   1614  1.110      yamt 
   1615  1.110      yamt void
   1616  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1617  1.110      yamt {
   1618  1.113      yamt 
   1619  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1620  1.201        ad 	if (pg->wire_count == 0) {
   1621  1.201        ad 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1622  1.201        ad 		uvmpdpol_pagedeactivate(pg);
   1623  1.201        ad 	}
   1624  1.110      yamt }
   1625  1.110      yamt 
   1626  1.110      yamt /*
   1627  1.110      yamt  * uvm_pageactivate: activate page
   1628  1.110      yamt  *
   1629  1.201        ad  * => caller must lock objects
   1630  1.110      yamt  */
   1631  1.110      yamt 
   1632  1.110      yamt void
   1633  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1634  1.110      yamt {
   1635  1.113      yamt 
   1636  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1637  1.113      yamt #if defined(READAHEAD_STATS)
   1638  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1639  1.113      yamt 		uvm_ra_hit.ev_count++;
   1640  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1641  1.113      yamt 	}
   1642  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1643  1.201        ad 	if (pg->wire_count == 0) {
   1644  1.201        ad 		uvmpdpol_pageactivate(pg);
   1645  1.110      yamt 	}
   1646  1.110      yamt }
   1647  1.110      yamt 
   1648  1.110      yamt /*
   1649  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1650  1.201        ad  *
   1651  1.201        ad  * => caller must lock objects
   1652  1.110      yamt  */
   1653  1.110      yamt void
   1654  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1655  1.110      yamt {
   1656  1.113      yamt 
   1657  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1658  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1659  1.201        ad 		uvmpdpol_pagedequeue(pg);
   1660  1.110      yamt 	}
   1661  1.113      yamt }
   1662  1.113      yamt 
   1663  1.113      yamt /*
   1664  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1665  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1666  1.201        ad  *
   1667  1.201        ad  * => caller must lock objects
   1668  1.113      yamt  */
   1669  1.113      yamt void
   1670  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1671  1.113      yamt {
   1672  1.113      yamt 
   1673  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1674  1.201        ad 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1675  1.201        ad 		uvmpdpol_pageenqueue(pg);
   1676  1.113      yamt 	}
   1677  1.110      yamt }
   1678  1.110      yamt 
   1679  1.110      yamt /*
   1680  1.110      yamt  * uvm_pagezero: zero fill a page
   1681  1.110      yamt  *
   1682  1.110      yamt  * => if page is part of an object then the object should be locked
   1683  1.110      yamt  *	to protect pg->flags.
   1684  1.110      yamt  */
   1685  1.110      yamt 
   1686  1.110      yamt void
   1687  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1688  1.110      yamt {
   1689  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1690  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1691  1.110      yamt }
   1692  1.110      yamt 
   1693  1.110      yamt /*
   1694  1.110      yamt  * uvm_pagecopy: copy a page
   1695  1.110      yamt  *
   1696  1.110      yamt  * => if page is part of an object then the object should be locked
   1697  1.110      yamt  *	to protect pg->flags.
   1698  1.110      yamt  */
   1699  1.110      yamt 
   1700  1.110      yamt void
   1701  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1702  1.110      yamt {
   1703  1.110      yamt 
   1704  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1705  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1706  1.110      yamt }
   1707  1.110      yamt 
   1708  1.110      yamt /*
   1709  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1710  1.150   thorpej  */
   1711  1.150   thorpej 
   1712  1.150   thorpej bool
   1713  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   1714  1.150   thorpej {
   1715  1.150   thorpej 
   1716  1.190    cherry 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1717  1.150   thorpej }
   1718  1.150   thorpej 
   1719  1.150   thorpej /*
   1720  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   1721  1.110      yamt  */
   1722  1.110      yamt 
   1723  1.110      yamt int
   1724  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   1725  1.110      yamt {
   1726  1.190    cherry 	uvm_physseg_t upm;
   1727  1.110      yamt 
   1728  1.190    cherry 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1729  1.190    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1730  1.190    cherry 	return uvm_physseg_get_free_list(upm);
   1731  1.110      yamt }
   1732  1.151   thorpej 
   1733  1.174     rmind /*
   1734  1.174     rmind  * uvm_page_locked_p: return true if object associated with page is
   1735  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   1736  1.174     rmind  */
   1737  1.174     rmind 
   1738  1.174     rmind bool
   1739  1.174     rmind uvm_page_locked_p(struct vm_page *pg)
   1740  1.174     rmind {
   1741  1.174     rmind 
   1742  1.174     rmind 	if (pg->uobject != NULL) {
   1743  1.174     rmind 		return mutex_owned(pg->uobject->vmobjlock);
   1744  1.174     rmind 	}
   1745  1.174     rmind 	if (pg->uanon != NULL) {
   1746  1.174     rmind 		return mutex_owned(pg->uanon->an_lock);
   1747  1.174     rmind 	}
   1748  1.174     rmind 	return true;
   1749  1.174     rmind }
   1750  1.174     rmind 
   1751  1.198  jdolecek #ifdef PMAP_DIRECT
   1752  1.198  jdolecek /*
   1753  1.198  jdolecek  * Call pmap to translate physical address into a virtual and to run a callback
   1754  1.198  jdolecek  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   1755  1.198  jdolecek  * or equivalent.
   1756  1.198  jdolecek  */
   1757  1.198  jdolecek int
   1758  1.198  jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   1759  1.198  jdolecek             int (*process)(void *, size_t, void *), void *arg)
   1760  1.198  jdolecek {
   1761  1.198  jdolecek 	int error = 0;
   1762  1.198  jdolecek 	paddr_t pa;
   1763  1.198  jdolecek 	size_t todo;
   1764  1.198  jdolecek 	voff_t pgoff = (off & PAGE_MASK);
   1765  1.198  jdolecek 	struct vm_page *pg;
   1766  1.198  jdolecek 
   1767  1.198  jdolecek 	KASSERT(npages > 0 && len > 0);
   1768  1.198  jdolecek 
   1769  1.198  jdolecek 	for (int i = 0; i < npages; i++) {
   1770  1.198  jdolecek 		pg = pgs[i];
   1771  1.198  jdolecek 
   1772  1.198  jdolecek 		KASSERT(len > 0);
   1773  1.198  jdolecek 
   1774  1.198  jdolecek 		/*
   1775  1.198  jdolecek 		 * Caller is responsible for ensuring all the pages are
   1776  1.198  jdolecek 		 * available.
   1777  1.198  jdolecek 		 */
   1778  1.198  jdolecek 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   1779  1.198  jdolecek 
   1780  1.198  jdolecek 		pa = VM_PAGE_TO_PHYS(pg);
   1781  1.198  jdolecek 		todo = MIN(len, PAGE_SIZE - pgoff);
   1782  1.198  jdolecek 
   1783  1.198  jdolecek 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   1784  1.198  jdolecek 		if (error)
   1785  1.198  jdolecek 			break;
   1786  1.198  jdolecek 
   1787  1.198  jdolecek 		pgoff = 0;
   1788  1.198  jdolecek 		len -= todo;
   1789  1.198  jdolecek 	}
   1790  1.198  jdolecek 
   1791  1.198  jdolecek 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   1792  1.198  jdolecek 	return error;
   1793  1.198  jdolecek }
   1794  1.198  jdolecek #endif /* PMAP_DIRECT */
   1795  1.198  jdolecek 
   1796  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   1797  1.151   thorpej 
   1798  1.151   thorpej /*
   1799  1.151   thorpej  * uvm_page_printit: actually print the page
   1800  1.151   thorpej  */
   1801  1.151   thorpej 
   1802  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   1803  1.151   thorpej 
   1804  1.151   thorpej void
   1805  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   1806  1.151   thorpej     void (*pr)(const char *, ...))
   1807  1.151   thorpej {
   1808  1.151   thorpej 	struct vm_page *tpg;
   1809  1.151   thorpej 	struct uvm_object *uobj;
   1810  1.151   thorpej 	struct pgflist *pgl;
   1811  1.151   thorpej 	char pgbuf[128];
   1812  1.151   thorpej 
   1813  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   1814  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1815  1.201        ad 	(*pr)("  flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
   1816  1.201        ad 	    pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1817  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1818  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1819  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   1820  1.151   thorpej 	if (pg->flags & PG_BUSY)
   1821  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   1822  1.151   thorpej 		    pg->owner, pg->owner_tag);
   1823  1.151   thorpej 	else
   1824  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   1825  1.151   thorpej #else
   1826  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   1827  1.151   thorpej #endif
   1828  1.151   thorpej 
   1829  1.151   thorpej 	if (!full)
   1830  1.151   thorpej 		return;
   1831  1.151   thorpej 
   1832  1.151   thorpej 	/* cross-verify object/anon */
   1833  1.201        ad 	if ((pg->flags & PG_FREE) == 0) {
   1834  1.201        ad 		if (pg->flags & PG_ANON) {
   1835  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1836  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1837  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1838  1.151   thorpej 			else
   1839  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   1840  1.151   thorpej 		} else {
   1841  1.151   thorpej 			uobj = pg->uobject;
   1842  1.151   thorpej 			if (uobj) {
   1843  1.151   thorpej 				(*pr)("  checking object list\n");
   1844  1.151   thorpej 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   1845  1.151   thorpej 					if (tpg == pg) {
   1846  1.151   thorpej 						break;
   1847  1.151   thorpej 					}
   1848  1.151   thorpej 				}
   1849  1.151   thorpej 				if (tpg)
   1850  1.151   thorpej 					(*pr)("  page found on object list\n");
   1851  1.151   thorpej 				else
   1852  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1853  1.151   thorpej 			}
   1854  1.151   thorpej 		}
   1855  1.151   thorpej 	}
   1856  1.151   thorpej 
   1857  1.151   thorpej 	/* cross-verify page queue */
   1858  1.201        ad 	if (pg->flags & PG_FREE) {
   1859  1.151   thorpej 		int fl = uvm_page_lookup_freelist(pg);
   1860  1.151   thorpej 		int color = VM_PGCOLOR_BUCKET(pg);
   1861  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1862  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1863  1.151   thorpej 	} else {
   1864  1.151   thorpej 		pgl = NULL;
   1865  1.151   thorpej 	}
   1866  1.151   thorpej 
   1867  1.151   thorpej 	if (pgl) {
   1868  1.151   thorpej 		(*pr)("  checking pageq list\n");
   1869  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1870  1.151   thorpej 			if (tpg == pg) {
   1871  1.151   thorpej 				break;
   1872  1.151   thorpej 			}
   1873  1.151   thorpej 		}
   1874  1.151   thorpej 		if (tpg)
   1875  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   1876  1.151   thorpej 		else
   1877  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1878  1.151   thorpej 	}
   1879  1.151   thorpej }
   1880  1.151   thorpej 
   1881  1.151   thorpej /*
   1882  1.201        ad  * uvm_page_printall - print a summary of all managed pages
   1883  1.151   thorpej  */
   1884  1.151   thorpej 
   1885  1.151   thorpej void
   1886  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   1887  1.151   thorpej {
   1888  1.190    cherry 	uvm_physseg_t i;
   1889  1.190    cherry 	paddr_t pfn;
   1890  1.151   thorpej 	struct vm_page *pg;
   1891  1.151   thorpej 
   1892  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   1893  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1894  1.151   thorpej 	    " OWNER"
   1895  1.151   thorpej #endif
   1896  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1897  1.190    cherry 	for (i = uvm_physseg_get_first();
   1898  1.190    cherry 	     uvm_physseg_valid_p(i);
   1899  1.190    cherry 	     i = uvm_physseg_get_next(i)) {
   1900  1.190    cherry 		for (pfn = uvm_physseg_get_start(i);
   1901  1.192      maya 		     pfn < uvm_physseg_get_end(i);
   1902  1.190    cherry 		     pfn++) {
   1903  1.190    cherry 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   1904  1.190    cherry 
   1905  1.201        ad 			(*pr)("%18p %04x %08x %18p %18p",
   1906  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1907  1.151   thorpej 			    pg->uanon);
   1908  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1909  1.151   thorpej 			if (pg->flags & PG_BUSY)
   1910  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1911  1.151   thorpej #endif
   1912  1.151   thorpej 			(*pr)("\n");
   1913  1.151   thorpej 		}
   1914  1.151   thorpej 	}
   1915  1.151   thorpej }
   1916  1.151   thorpej 
   1917  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   1918