Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.203
      1  1.203        ad /*	$NetBSD: uvm_page.c,v 1.203 2019/12/15 21:11:35 ad Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.62       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.62       chs  *
     49   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.62       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_page.c: page ops.
     66    1.1       mrg  */
     67   1.71     lukem 
     68   1.71     lukem #include <sys/cdefs.h>
     69  1.203        ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.203 2019/12/15 21:11:35 ad Exp $");
     70    1.6       mrg 
     71  1.151   thorpej #include "opt_ddb.h"
     72  1.187     joerg #include "opt_uvm.h"
     73   1.44       chs #include "opt_uvmhist.h"
     74  1.113      yamt #include "opt_readahead.h"
     75   1.44       chs 
     76    1.1       mrg #include <sys/param.h>
     77    1.1       mrg #include <sys/systm.h>
     78   1.35   thorpej #include <sys/sched.h>
     79   1.44       chs #include <sys/kernel.h>
     80   1.51       chs #include <sys/vnode.h>
     81   1.68       chs #include <sys/proc.h>
     82  1.202        ad #include <sys/radixtree.h>
     83  1.126        ad #include <sys/atomic.h>
     84  1.133        ad #include <sys/cpu.h>
     85  1.190    cherry #include <sys/extent.h>
     86    1.1       mrg 
     87    1.1       mrg #include <uvm/uvm.h>
     88  1.151   thorpej #include <uvm/uvm_ddb.h>
     89  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     90    1.1       mrg 
     91    1.1       mrg /*
     92   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
     93   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
     94  1.155        ad  * We therefore provide a way to enable it from machdep code here.
     95   1.44       chs  */
     96  1.119   thorpej bool vm_page_zero_enable = false;
     97   1.34   thorpej 
     98   1.34   thorpej /*
     99  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    100  1.140        ad  */
    101  1.187     joerg #ifndef	UVM_RESERVED_PAGES_PER_CPU
    102  1.187     joerg #define	UVM_RESERVED_PAGES_PER_CPU	5
    103  1.187     joerg #endif
    104  1.187     joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    105  1.140        ad 
    106  1.140        ad /*
    107  1.148      matt  * physical memory size;
    108  1.148      matt  */
    109  1.189    cherry psize_t physmem;
    110  1.148      matt 
    111  1.148      matt /*
    112    1.1       mrg  * local variables
    113    1.1       mrg  */
    114    1.1       mrg 
    115    1.1       mrg /*
    116   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    117   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118   1.88   thorpej  * and pmap_startup here also uses them internally.
    119   1.88   thorpej  */
    120   1.88   thorpej 
    121   1.88   thorpej static vaddr_t      virtual_space_start;
    122   1.88   thorpej static vaddr_t      virtual_space_end;
    123   1.88   thorpej 
    124   1.88   thorpej /*
    125   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    126   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    127   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    128   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    129   1.60   thorpej  * uvm_pageboot_alloc().
    130   1.60   thorpej  */
    131   1.60   thorpej 
    132  1.179      para static size_t recolored_pages_memsize /* = 0 */;
    133   1.60   thorpej 
    134   1.91      yamt #ifdef DEBUG
    135   1.91      yamt vaddr_t uvm_zerocheckkva;
    136   1.91      yamt #endif /* DEBUG */
    137   1.91      yamt 
    138   1.60   thorpej /*
    139  1.190    cherry  * These functions are reserved for uvm(9) internal use and are not
    140  1.190    cherry  * exported in the header file uvm_physseg.h
    141  1.190    cherry  *
    142  1.190    cherry  * Thus they are redefined here.
    143  1.190    cherry  */
    144  1.190    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    145  1.190    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    146  1.190    cherry 
    147  1.190    cherry /* returns a pgs array */
    148  1.190    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    149  1.190    cherry 
    150  1.190    cherry /*
    151  1.134        ad  * local prototypes
    152  1.124        ad  */
    153  1.124        ad 
    154  1.202        ad static int uvm_pageinsert(struct uvm_object *, struct vm_page *);
    155  1.153  uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    156  1.124        ad 
    157  1.124        ad /*
    158    1.1       mrg  * inline functions
    159    1.1       mrg  */
    160    1.1       mrg 
    161    1.1       mrg /*
    162  1.134        ad  * uvm_pageinsert: insert a page in the object.
    163    1.1       mrg  *
    164    1.1       mrg  * => caller must lock object
    165    1.1       mrg  * => call should have already set pg's object and offset pointers
    166    1.1       mrg  *    and bumped the version counter
    167    1.1       mrg  */
    168    1.1       mrg 
    169  1.136      yamt static inline void
    170  1.203        ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    171    1.1       mrg {
    172    1.1       mrg 
    173  1.136      yamt 	KASSERT(uobj == pg->uobject);
    174  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    175   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    176  1.123        ad 
    177   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    178   1.94      yamt 		if (uobj->uo_npages == 0) {
    179   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    180   1.94      yamt 
    181   1.94      yamt 			vholdl(vp);
    182   1.94      yamt 		}
    183   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    184  1.126        ad 			atomic_inc_uint(&uvmexp.execpages);
    185   1.94      yamt 		} else {
    186  1.126        ad 			atomic_inc_uint(&uvmexp.filepages);
    187   1.94      yamt 		}
    188   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    189  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
    190   1.78       chs 	}
    191    1.7       mrg 	pg->flags |= PG_TABLED;
    192   1.67       chs 	uobj->uo_npages++;
    193    1.1       mrg }
    194    1.1       mrg 
    195  1.202        ad static inline int
    196  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    197  1.136      yamt {
    198  1.202        ad 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    199  1.202        ad 	int error;
    200  1.136      yamt 
    201  1.202        ad 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    202  1.202        ad 	if (error != 0) {
    203  1.202        ad 		return error;
    204  1.202        ad 	}
    205  1.202        ad 	return 0;
    206  1.136      yamt }
    207  1.136      yamt 
    208  1.202        ad static inline int
    209  1.153  uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    210   1.96      yamt {
    211  1.202        ad 	int error;
    212   1.96      yamt 
    213  1.153  uebayasi 	KDASSERT(uobj != NULL);
    214  1.202        ad 	KDASSERT(uobj == pg->uobject);
    215  1.202        ad 	error = uvm_pageinsert_tree(uobj, pg);
    216  1.202        ad 	if (error != 0) {
    217  1.202        ad 		KASSERT(error == ENOMEM);
    218  1.202        ad 		return error;
    219  1.202        ad 	}
    220  1.203        ad 	uvm_pageinsert_object(uobj, pg);
    221  1.202        ad 	return error;
    222   1.96      yamt }
    223   1.96      yamt 
    224    1.1       mrg /*
    225  1.134        ad  * uvm_page_remove: remove page from object.
    226    1.1       mrg  *
    227    1.1       mrg  * => caller must lock object
    228    1.1       mrg  */
    229    1.1       mrg 
    230  1.109     perry static inline void
    231  1.203        ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    232    1.1       mrg {
    233    1.1       mrg 
    234  1.136      yamt 	KASSERT(uobj == pg->uobject);
    235  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    236   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    237  1.123        ad 
    238   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    239   1.94      yamt 		if (uobj->uo_npages == 1) {
    240   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    241   1.94      yamt 
    242   1.94      yamt 			holdrelel(vp);
    243   1.94      yamt 		}
    244   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    245  1.126        ad 			atomic_dec_uint(&uvmexp.execpages);
    246   1.94      yamt 		} else {
    247  1.126        ad 			atomic_dec_uint(&uvmexp.filepages);
    248   1.94      yamt 		}
    249   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    250  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
    251   1.51       chs 	}
    252   1.44       chs 
    253    1.7       mrg 	/* object should be locked */
    254   1.67       chs 	uobj->uo_npages--;
    255    1.7       mrg 	pg->flags &= ~PG_TABLED;
    256    1.7       mrg 	pg->uobject = NULL;
    257    1.1       mrg }
    258    1.1       mrg 
    259  1.136      yamt static inline void
    260  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    261  1.136      yamt {
    262  1.202        ad 	struct vm_page *opg __unused;
    263  1.136      yamt 
    264  1.202        ad 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    265  1.202        ad 	KASSERT(pg == opg);
    266  1.136      yamt }
    267  1.136      yamt 
    268  1.136      yamt static inline void
    269  1.153  uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    270  1.136      yamt {
    271  1.136      yamt 
    272  1.153  uebayasi 	KDASSERT(uobj != NULL);
    273  1.202        ad 	KASSERT(uobj == pg->uobject);
    274  1.203        ad 	uvm_pageremove_object(uobj, pg);
    275  1.136      yamt 	uvm_pageremove_tree(uobj, pg);
    276  1.136      yamt }
    277  1.136      yamt 
    278   1.60   thorpej static void
    279   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    280   1.60   thorpej {
    281   1.60   thorpej 	int color, i;
    282   1.60   thorpej 
    283   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    284   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    285  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    286   1.60   thorpej 		}
    287   1.60   thorpej 	}
    288   1.60   thorpej }
    289   1.60   thorpej 
    290    1.1       mrg /*
    291    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    292   1.62       chs  *
    293    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    294    1.1       mrg  */
    295    1.1       mrg 
    296    1.7       mrg void
    297  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    298    1.1       mrg {
    299  1.155        ad 	static struct uvm_cpu boot_cpu;
    300  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    301  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    302   1.63       chs 	struct vm_page *pagearray;
    303  1.190    cherry 	uvm_physseg_t bank;
    304   1.81   thorpej 	int lcv;
    305    1.7       mrg 
    306  1.133        ad 	KASSERT(ncpu <= 1);
    307  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    308  1.133        ad 
    309    1.7       mrg 	/*
    310  1.201        ad 	 * init the page queues and free page queue lock, except the
    311  1.201        ad 	 * free list; we allocate that later (with the initial vm_page
    312   1.60   thorpej 	 * structures).
    313    1.7       mrg 	 */
    314   1.51       chs 
    315  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    316  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    317  1.113      yamt 	uvmpdpol_init();
    318  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    319    1.7       mrg 
    320    1.7       mrg 	/*
    321   1.51       chs 	 * allocate vm_page structures.
    322    1.7       mrg 	 */
    323    1.7       mrg 
    324    1.7       mrg 	/*
    325    1.7       mrg 	 * sanity check:
    326    1.7       mrg 	 * before calling this function the MD code is expected to register
    327    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    328    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    329    1.7       mrg 	 */
    330    1.7       mrg 
    331  1.190    cherry 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    332   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    333   1.62       chs 
    334    1.7       mrg 	/*
    335   1.62       chs 	 * first calculate the number of free pages...
    336    1.7       mrg 	 *
    337    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    338    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    339    1.7       mrg 	 * want to return some memory to the pool after booting.
    340    1.7       mrg 	 */
    341   1.62       chs 
    342    1.7       mrg 	freepages = 0;
    343  1.190    cherry 
    344  1.190    cherry 	for (bank = uvm_physseg_get_first();
    345  1.190    cherry 	     uvm_physseg_valid_p(bank) ;
    346  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    347  1.190    cherry 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    348  1.158  uebayasi 	}
    349    1.7       mrg 
    350    1.7       mrg 	/*
    351   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    352   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    353   1.60   thorpej 	 */
    354   1.60   thorpej 	if (uvmexp.ncolors == 0)
    355   1.60   thorpej 		uvmexp.ncolors = 1;
    356   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    357  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    358   1.60   thorpej 
    359   1.60   thorpej 	/*
    360    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    361    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    362    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    363    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    364    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    365    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    366    1.7       mrg 	 * pages).
    367    1.7       mrg 	 */
    368   1.62       chs 
    369   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    370   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    371    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    372   1.60   thorpej 
    373   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    374  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    375   1.60   thorpej 	    sizeof(struct vm_page)));
    376  1.133        ad 	cpuarray = bucketarray + bucketcount;
    377  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    378   1.60   thorpej 
    379   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    380   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    381   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    382   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    383  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    384  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    385  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    386   1.60   thorpej 	}
    387   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    388   1.62       chs 
    389    1.7       mrg 	/*
    390   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    391    1.7       mrg 	 */
    392  1.190    cherry 	/* First init the extent */
    393    1.7       mrg 
    394  1.190    cherry 	for (bank = uvm_physseg_get_first(),
    395  1.190    cherry 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    396  1.190    cherry 	     uvm_physseg_valid_p(bank);
    397  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    398  1.190    cherry 
    399  1.190    cherry 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    400  1.190    cherry 		uvm_physseg_seg_alloc_from_slab(bank, n);
    401  1.190    cherry 		uvm_physseg_init_seg(bank, pagearray);
    402   1.51       chs 
    403    1.7       mrg 		/* set up page array pointers */
    404    1.7       mrg 		pagearray += n;
    405    1.7       mrg 		pagecount -= n;
    406    1.7       mrg 	}
    407   1.44       chs 
    408    1.7       mrg 	/*
    409   1.88   thorpej 	 * pass up the values of virtual_space_start and
    410   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    411   1.88   thorpej 	 * layers of the VM.
    412   1.88   thorpej 	 */
    413   1.88   thorpej 
    414   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    415   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    416   1.91      yamt #ifdef DEBUG
    417   1.91      yamt 	/*
    418   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    419   1.91      yamt 	 */
    420   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    421   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    422   1.91      yamt #endif /* DEBUG */
    423   1.88   thorpej 
    424   1.88   thorpej 	/*
    425   1.51       chs 	 * init various thresholds.
    426    1.7       mrg 	 */
    427   1.51       chs 
    428    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    429  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    430    1.7       mrg 
    431    1.7       mrg 	/*
    432   1.51       chs 	 * determine if we should zero pages in the idle loop.
    433   1.34   thorpej 	 */
    434   1.51       chs 
    435  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    436   1.34   thorpej 
    437   1.34   thorpej 	/*
    438    1.7       mrg 	 * done!
    439    1.7       mrg 	 */
    440    1.1       mrg 
    441  1.119   thorpej 	uvm.page_init_done = true;
    442    1.1       mrg }
    443    1.1       mrg 
    444    1.1       mrg /*
    445    1.1       mrg  * uvm_setpagesize: set the page size
    446   1.62       chs  *
    447    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    448   1.62       chs  */
    449    1.1       mrg 
    450    1.7       mrg void
    451  1.105   thorpej uvm_setpagesize(void)
    452    1.1       mrg {
    453   1.85   thorpej 
    454   1.85   thorpej 	/*
    455   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    456   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    457   1.85   thorpej 	 */
    458   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    459   1.85   thorpej 		if (PAGE_SIZE == 0)
    460   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    461   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    462   1.85   thorpej 	}
    463    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    464    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    465  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    466  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    467    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    468    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    469    1.7       mrg 			break;
    470    1.1       mrg }
    471    1.1       mrg 
    472    1.1       mrg /*
    473    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    474    1.1       mrg  */
    475    1.1       mrg 
    476   1.14       eeh vaddr_t
    477  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    478    1.1       mrg {
    479  1.119   thorpej 	static bool initialized = false;
    480   1.14       eeh 	vaddr_t addr;
    481   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    482   1.52   thorpej 	vaddr_t vaddr;
    483   1.14       eeh 	paddr_t paddr;
    484   1.52   thorpej #endif
    485    1.1       mrg 
    486    1.7       mrg 	/*
    487   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    488    1.7       mrg 	 */
    489  1.119   thorpej 	if (initialized == false) {
    490   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    491    1.1       mrg 
    492    1.7       mrg 		/* round it the way we like it */
    493   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    494   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    495   1.19   thorpej 
    496  1.119   thorpej 		initialized = true;
    497    1.7       mrg 	}
    498   1.52   thorpej 
    499   1.52   thorpej 	/* round to page size */
    500   1.52   thorpej 	size = round_page(size);
    501  1.195       mrg 	uvmexp.bootpages += atop(size);
    502   1.52   thorpej 
    503   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    504   1.52   thorpej 
    505   1.62       chs 	/*
    506   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    507   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    508   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    509   1.52   thorpej 	 */
    510   1.52   thorpej 
    511   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    512   1.88   thorpej 	    &virtual_space_end);
    513   1.52   thorpej 
    514   1.52   thorpej 	return(addr);
    515   1.52   thorpej 
    516   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    517    1.1       mrg 
    518    1.7       mrg 	/*
    519    1.7       mrg 	 * allocate virtual memory for this request
    520    1.7       mrg 	 */
    521   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    522   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    523   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    524   1.20   thorpej 
    525   1.88   thorpej 	addr = virtual_space_start;
    526   1.20   thorpej 
    527   1.20   thorpej #ifdef PMAP_GROWKERNEL
    528   1.20   thorpej 	/*
    529   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    530   1.20   thorpej 	 * then allocate more resources for it.
    531   1.20   thorpej 	 */
    532   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    533   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    534   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    535   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    536   1.19   thorpej 	}
    537   1.20   thorpej #endif
    538    1.1       mrg 
    539   1.88   thorpej 	virtual_space_start += size;
    540    1.1       mrg 
    541    1.9   thorpej 	/*
    542    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    543    1.7       mrg 	 */
    544    1.1       mrg 
    545    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    546    1.7       mrg 	    vaddr += PAGE_SIZE) {
    547    1.1       mrg 
    548    1.7       mrg 		if (!uvm_page_physget(&paddr))
    549    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    550    1.1       mrg 
    551   1.23   thorpej 		/*
    552   1.23   thorpej 		 * Note this memory is no longer managed, so using
    553   1.23   thorpej 		 * pmap_kenter is safe.
    554   1.23   thorpej 		 */
    555  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    556    1.7       mrg 	}
    557   1.66     chris 	pmap_update(pmap_kernel());
    558    1.7       mrg 	return(addr);
    559    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    560    1.1       mrg }
    561    1.1       mrg 
    562    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    563    1.1       mrg /*
    564    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    565    1.1       mrg  *
    566    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    567    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    568    1.1       mrg  *    will advance both values (making them equal, and removing some
    569    1.1       mrg  *    vm_page structures from the non-avail area).
    570    1.1       mrg  * => return false if out of memory.
    571    1.1       mrg  */
    572    1.1       mrg 
    573   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    574  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    575   1.28  drochner 
    576  1.118   thorpej static bool
    577  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    578    1.1       mrg {
    579  1.190    cherry 	uvm_physseg_t lcv;
    580    1.1       mrg 
    581    1.7       mrg 	/* pass 1: try allocating from a matching end */
    582    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    583  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    584    1.1       mrg #else
    585  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    586    1.1       mrg #endif
    587    1.7       mrg 	{
    588  1.119   thorpej 		if (uvm.page_init_done == true)
    589   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    590    1.1       mrg 
    591  1.190    cherry 		/* Try to match at front or back on unused segment */
    592  1.200      maxv 		if (uvm_page_physunload(lcv, freelist, paddrp))
    593  1.190    cherry 			return true;
    594  1.191     skrll 	}
    595    1.1       mrg 
    596    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    597    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    598  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    599    1.1       mrg #else
    600  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    601    1.1       mrg #endif
    602    1.7       mrg 	{
    603  1.190    cherry 		/* Try the front regardless. */
    604  1.200      maxv 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    605  1.190    cherry 			return true;
    606  1.190    cherry 	}
    607  1.190    cherry 	return false;
    608   1.28  drochner }
    609   1.28  drochner 
    610  1.118   thorpej bool
    611  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    612   1.28  drochner {
    613   1.28  drochner 	int i;
    614   1.28  drochner 
    615   1.28  drochner 	/* try in the order of freelist preference */
    616   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    617  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    618  1.119   thorpej 			return (true);
    619  1.119   thorpej 	return (false);
    620    1.1       mrg }
    621    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    622    1.1       mrg 
    623    1.1       mrg /*
    624  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    625  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    626  1.163  uebayasi  */
    627  1.163  uebayasi struct vm_page *
    628  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    629  1.163  uebayasi {
    630  1.163  uebayasi 	paddr_t pf = atop(pa);
    631  1.190    cherry 	paddr_t	off;
    632  1.190    cherry 	uvm_physseg_t	upm;
    633  1.163  uebayasi 
    634  1.190    cherry 	upm = uvm_physseg_find(pf, &off);
    635  1.190    cherry 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    636  1.190    cherry 		return uvm_physseg_get_pg(upm, off);
    637  1.163  uebayasi 	return(NULL);
    638  1.163  uebayasi }
    639  1.163  uebayasi 
    640  1.163  uebayasi paddr_t
    641  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    642  1.163  uebayasi {
    643  1.163  uebayasi 
    644  1.163  uebayasi 	return pg->phys_addr;
    645  1.163  uebayasi }
    646  1.163  uebayasi 
    647  1.163  uebayasi /*
    648   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    649   1.60   thorpej  * larger than the old one.
    650   1.60   thorpej  */
    651   1.60   thorpej 
    652   1.60   thorpej void
    653   1.60   thorpej uvm_page_recolor(int newncolors)
    654   1.60   thorpej {
    655  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    656  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    657   1.63       chs 	struct vm_page *pg;
    658   1.60   thorpej 	vsize_t bucketcount;
    659  1.179      para 	size_t bucketmemsize, oldbucketmemsize;
    660  1.190    cherry 	int color, i, ocolors;
    661  1.190    cherry 	int lcv;
    662  1.133        ad 	struct uvm_cpu *ucpu;
    663   1.60   thorpej 
    664  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    665  1.178  uebayasi 
    666   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    667   1.60   thorpej 		return;
    668   1.77  wrstuden 
    669  1.119   thorpej 	if (uvm.page_init_done == false) {
    670   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    671   1.77  wrstuden 		return;
    672   1.77  wrstuden 	}
    673   1.60   thorpej 
    674   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    675  1.179      para 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    676  1.179      para 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
    677  1.133        ad 	cpuarray = bucketarray + bucketcount;
    678   1.60   thorpej 
    679  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    680   1.60   thorpej 
    681   1.60   thorpej 	/* Make sure we should still do this. */
    682   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
    683  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
    684  1.179      para 		kmem_free(bucketarray, bucketmemsize);
    685   1.60   thorpej 		return;
    686   1.60   thorpej 	}
    687   1.60   thorpej 
    688   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    689   1.60   thorpej 	ocolors = uvmexp.ncolors;
    690   1.60   thorpej 
    691   1.60   thorpej 	uvmexp.ncolors = newncolors;
    692   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    693   1.60   thorpej 
    694  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    695   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    696  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    697  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    698  1.133        ad 		uvm_page_init_buckets(&gpgfl);
    699   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
    700   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
    701   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
    702  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
    703   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    704   1.60   thorpej 				    != NULL) {
    705  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
    706  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
    707  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    708  1.133        ad 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    709  1.133        ad 					    i], pg, pageq.list);
    710  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    711   1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    712  1.133        ad 					    i], pg, listq.list);
    713   1.60   thorpej 				}
    714   1.60   thorpej 			}
    715   1.60   thorpej 		}
    716  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    717  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    718   1.60   thorpej 	}
    719   1.60   thorpej 
    720  1.179      para 	oldbucketmemsize = recolored_pages_memsize;
    721  1.177       mrg 
    722  1.179      para 	recolored_pages_memsize = bucketmemsize;
    723  1.177       mrg 	mutex_spin_exit(&uvm_fpageqlock);
    724  1.176      matt 
    725  1.179      para 	if (oldbucketmemsize) {
    726  1.196  jakllsch 		kmem_free(oldbucketarray, oldbucketmemsize);
    727  1.179      para 	}
    728   1.60   thorpej 
    729  1.177       mrg 	/*
    730  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
    731  1.177       mrg 	 * uvm_fpageqlock.
    732  1.177       mrg 	 */
    733  1.177       mrg 	uvm_pager_realloc_emerg();
    734   1.60   thorpej }
    735    1.1       mrg 
    736    1.1       mrg /*
    737  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
    738  1.133        ad  */
    739  1.133        ad 
    740  1.133        ad void
    741  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
    742  1.133        ad {
    743  1.133        ad 	struct pgflbucket *bucketarray;
    744  1.133        ad 	struct pgfreelist pgfl;
    745  1.133        ad 	struct uvm_cpu *ucpu;
    746  1.133        ad 	vsize_t bucketcount;
    747  1.133        ad 	int lcv;
    748  1.133        ad 
    749  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
    750  1.133        ad 		/* Already done in uvm_page_init(). */
    751  1.181       tls 		goto attachrnd;
    752  1.133        ad 	}
    753  1.133        ad 
    754  1.140        ad 	/* Add more reserve pages for this CPU. */
    755  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    756  1.140        ad 
    757  1.140        ad 	/* Configure this CPU's free lists. */
    758  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    759  1.179      para 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
    760  1.179      para 	    KM_SLEEP);
    761  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
    762  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
    763  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
    764  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    765  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    766  1.133        ad 		uvm_page_init_buckets(&pgfl);
    767  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    768  1.133        ad 	}
    769  1.181       tls 
    770  1.181       tls attachrnd:
    771  1.181       tls 	/*
    772  1.181       tls 	 * Attach RNG source for this CPU's VM events
    773  1.181       tls 	 */
    774  1.181       tls         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
    775  1.185       tls 			  ci->ci_data.cpu_name, RND_TYPE_VM,
    776  1.185       tls 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    777  1.185       tls 			  RND_FLAG_ESTIMATE_VALUE);
    778  1.181       tls 
    779  1.133        ad }
    780  1.133        ad 
    781  1.133        ad /*
    782   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    783   1.54   thorpej  */
    784   1.54   thorpej 
    785  1.114   thorpej static struct vm_page *
    786  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    787   1.69    simonb     int *trycolorp)
    788   1.54   thorpej {
    789  1.133        ad 	struct pgflist *freeq;
    790   1.54   thorpej 	struct vm_page *pg;
    791   1.58     enami 	int color, trycolor = *trycolorp;
    792  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
    793   1.54   thorpej 
    794  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
    795  1.130        ad 
    796   1.58     enami 	color = trycolor;
    797  1.133        ad 	pgfl = &ucpu->page_free[flist];
    798  1.133        ad 	gpgfl = &uvm.page_free[flist];
    799   1.58     enami 	do {
    800  1.133        ad 		/* cpu, try1 */
    801  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    802  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    803  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    804  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    805  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    806  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    807  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    808  1.133        ad 		    	uvmexp.cpuhit++;
    809  1.133        ad 			goto gotit;
    810  1.133        ad 		}
    811  1.133        ad 		/* global, try1 */
    812  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    813  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    814  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    815  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    816  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    817  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    818  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    819  1.133        ad 		    	uvmexp.cpumiss++;
    820   1.54   thorpej 			goto gotit;
    821  1.133        ad 		}
    822  1.133        ad 		/* cpu, try2 */
    823  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    824  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    825  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    826  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    827  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    828  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    829  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    830  1.133        ad 		    	uvmexp.cpuhit++;
    831   1.54   thorpej 			goto gotit;
    832  1.133        ad 		}
    833  1.133        ad 		/* global, try2 */
    834  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    835  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    836  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    837  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    838  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    839  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    840  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    841  1.133        ad 		    	uvmexp.cpumiss++;
    842  1.133        ad 			goto gotit;
    843  1.133        ad 		}
    844   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
    845   1.58     enami 	} while (color != trycolor);
    846   1.54   thorpej 
    847   1.54   thorpej 	return (NULL);
    848   1.54   thorpej 
    849   1.54   thorpej  gotit:
    850  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
    851  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
    852   1.54   thorpej 	uvmexp.free--;
    853   1.54   thorpej 
    854   1.54   thorpej 	/* update zero'd page count */
    855   1.54   thorpej 	if (pg->flags & PG_ZERO)
    856   1.54   thorpej 		uvmexp.zeropages--;
    857   1.54   thorpej 
    858   1.54   thorpej 	if (color == trycolor)
    859   1.54   thorpej 		uvmexp.colorhit++;
    860   1.54   thorpej 	else {
    861   1.54   thorpej 		uvmexp.colormiss++;
    862   1.54   thorpej 		*trycolorp = color;
    863   1.54   thorpej 	}
    864   1.54   thorpej 
    865   1.54   thorpej 	return (pg);
    866   1.54   thorpej }
    867   1.54   thorpej 
    868   1.54   thorpej /*
    869   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    870    1.1       mrg  *
    871    1.1       mrg  * => return null if no pages free
    872    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    873  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
    874    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    875    1.1       mrg  * => only one of obj or anon can be non-null
    876    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    877   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    878   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    879   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    880   1.34   thorpej  *	unknown contents page.  This is because we live with the
    881   1.34   thorpej  *	consequences of a bad free list decision for the entire
    882   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    883   1.34   thorpej  *	is slower to access.
    884    1.1       mrg  */
    885    1.1       mrg 
    886    1.7       mrg struct vm_page *
    887  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
    888  1.105   thorpej     int flags, int strat, int free_list)
    889    1.1       mrg {
    890  1.190    cherry 	int try1, try2, zeroit = 0, color;
    891  1.202        ad 	int lcv, error;
    892  1.133        ad 	struct uvm_cpu *ucpu;
    893    1.7       mrg 	struct vm_page *pg;
    894  1.141        ad 	lwp_t *l;
    895    1.1       mrg 
    896   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
    897  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
    898   1.44       chs 	KASSERT(off == trunc_page(off));
    899  1.174     rmind 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
    900  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
    901  1.175     rmind 	    mutex_owned(anon->an_lock));
    902   1.48   thorpej 
    903  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    904    1.1       mrg 
    905    1.7       mrg 	/*
    906   1.54   thorpej 	 * This implements a global round-robin page coloring
    907   1.54   thorpej 	 * algorithm.
    908   1.54   thorpej 	 */
    909   1.67       chs 
    910  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    911  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
    912  1.169      matt 		color = atop(off) & uvmexp.colormask;
    913  1.169      matt 	} else {
    914  1.169      matt 		color = ucpu->page_free_nextcolor;
    915  1.169      matt 	}
    916   1.54   thorpej 
    917   1.54   thorpej 	/*
    918    1.7       mrg 	 * check to see if we need to generate some free pages waking
    919    1.7       mrg 	 * the pagedaemon.
    920    1.7       mrg 	 */
    921    1.7       mrg 
    922  1.113      yamt 	uvm_kick_pdaemon();
    923    1.7       mrg 
    924    1.7       mrg 	/*
    925    1.7       mrg 	 * fail if any of these conditions is true:
    926    1.7       mrg 	 * [1]  there really are no free pages, or
    927    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
    928  1.141        ad 	 *        reserved pages have not been requested.
    929    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
    930    1.7       mrg 	 *        the requestor isn't the pagedaemon.
    931  1.141        ad 	 * we make kernel reserve pages available if called by a
    932  1.141        ad 	 * kernel thread or a realtime thread.
    933    1.7       mrg 	 */
    934  1.141        ad 	l = curlwp;
    935  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
    936  1.141        ad 		flags |= UVM_PGA_USERESERVE;
    937  1.141        ad 	}
    938  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    939  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
    940    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    941  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
    942   1.12   thorpej 		goto fail;
    943   1.12   thorpej 
    944   1.34   thorpej #if PGFL_NQUEUES != 2
    945   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
    946   1.34   thorpej #endif
    947   1.34   thorpej 
    948   1.34   thorpej 	/*
    949   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    950   1.34   thorpej 	 * we try the UNKNOWN queue first.
    951   1.34   thorpej 	 */
    952   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    953   1.34   thorpej 		try1 = PGFL_ZEROS;
    954   1.34   thorpej 		try2 = PGFL_UNKNOWN;
    955   1.34   thorpej 	} else {
    956   1.34   thorpej 		try1 = PGFL_UNKNOWN;
    957   1.34   thorpej 		try2 = PGFL_ZEROS;
    958   1.34   thorpej 	}
    959   1.34   thorpej 
    960   1.12   thorpej  again:
    961   1.12   thorpej 	switch (strat) {
    962   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
    963  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
    964   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    965  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
    966   1.54   thorpej 			    try1, try2, &color);
    967   1.54   thorpej 			if (pg != NULL)
    968   1.12   thorpej 				goto gotit;
    969   1.12   thorpej 		}
    970   1.12   thorpej 
    971   1.12   thorpej 		/* No pages free! */
    972   1.12   thorpej 		goto fail;
    973   1.12   thorpej 
    974   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
    975   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
    976   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
    977   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    978  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
    979   1.54   thorpej 		    try1, try2, &color);
    980   1.54   thorpej 		if (pg != NULL)
    981   1.12   thorpej 			goto gotit;
    982   1.12   thorpej 
    983   1.12   thorpej 		/* Fall back, if possible. */
    984   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    985   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
    986   1.12   thorpej 			goto again;
    987   1.12   thorpej 		}
    988   1.12   thorpej 
    989   1.12   thorpej 		/* No pages free! */
    990   1.12   thorpej 		goto fail;
    991   1.12   thorpej 
    992   1.12   thorpej 	default:
    993   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    994   1.12   thorpej 		/* NOTREACHED */
    995    1.7       mrg 	}
    996    1.7       mrg 
    997   1.12   thorpej  gotit:
    998   1.54   thorpej 	/*
    999   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1000   1.54   thorpej 	 * the next color accordingly.
   1001   1.54   thorpej 	 */
   1002   1.67       chs 
   1003  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1004   1.34   thorpej 
   1005   1.34   thorpej 	/*
   1006   1.34   thorpej 	 * update allocation statistics and remember if we have to
   1007   1.34   thorpej 	 * zero the page
   1008   1.34   thorpej 	 */
   1009   1.67       chs 
   1010   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1011   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1012   1.34   thorpej 			uvmexp.pga_zerohit++;
   1013   1.34   thorpej 			zeroit = 0;
   1014   1.34   thorpej 		} else {
   1015   1.34   thorpej 			uvmexp.pga_zeromiss++;
   1016   1.34   thorpej 			zeroit = 1;
   1017   1.34   thorpej 		}
   1018  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1019  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
   1020  1.133        ad 		}
   1021   1.34   thorpej 	}
   1022  1.201        ad 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1023    1.7       mrg 
   1024  1.201        ad 	/*
   1025  1.201        ad 	 * For now check this - later on we may do lazy dequeue, but need
   1026  1.201        ad 	 * to get page.queue used only by the pagedaemon policy first.
   1027  1.201        ad 	 */
   1028  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1029  1.201        ad 
   1030  1.201        ad 	/*
   1031  1.201        ad 	 * assign the page to the object.  we don't need to lock the page's
   1032  1.201        ad 	 * identity to do this, as the caller holds the objects locked, and
   1033  1.201        ad 	 * the page is not on any paging queues at this time.
   1034  1.201        ad 	 */
   1035    1.7       mrg 	pg->offset = off;
   1036    1.7       mrg 	pg->uobject = obj;
   1037    1.7       mrg 	pg->uanon = anon;
   1038  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1039    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1040  1.202        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1041    1.7       mrg 	if (anon) {
   1042  1.103      yamt 		anon->an_page = pg;
   1043  1.201        ad 		pg->flags |= PG_ANON;
   1044  1.126        ad 		atomic_inc_uint(&uvmexp.anonpages);
   1045  1.201        ad 	} else if (obj) {
   1046  1.202        ad 		error = uvm_pageinsert(obj, pg);
   1047  1.202        ad 		if (error != 0) {
   1048  1.202        ad 			pg->uobject = NULL;
   1049  1.202        ad 			uvm_pagefree(pg);
   1050  1.202        ad 			return NULL;
   1051  1.202        ad 		}
   1052    1.7       mrg 	}
   1053  1.143  drochner 
   1054    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1055    1.7       mrg 	pg->owner_tag = NULL;
   1056    1.1       mrg #endif
   1057    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1058   1.33   thorpej 
   1059   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1060   1.33   thorpej 		/*
   1061   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1062   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1063   1.33   thorpej 		 */
   1064   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1065   1.34   thorpej 		if (zeroit)
   1066   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1067   1.33   thorpej 	}
   1068    1.1       mrg 
   1069    1.7       mrg 	return(pg);
   1070   1.12   thorpej 
   1071   1.12   thorpej  fail:
   1072  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1073   1.12   thorpej 	return (NULL);
   1074    1.1       mrg }
   1075    1.1       mrg 
   1076    1.1       mrg /*
   1077   1.96      yamt  * uvm_pagereplace: replace a page with another
   1078   1.96      yamt  *
   1079   1.96      yamt  * => object must be locked
   1080  1.201        ad  * => interlock must be held
   1081   1.96      yamt  */
   1082   1.96      yamt 
   1083   1.96      yamt void
   1084  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1085   1.96      yamt {
   1086  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1087   1.97  junyoung 
   1088   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1089  1.136      yamt 	KASSERT(uobj != NULL);
   1090   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1091   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1092  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
   1093   1.96      yamt 
   1094  1.136      yamt 	newpg->uobject = uobj;
   1095   1.96      yamt 	newpg->offset = oldpg->offset;
   1096   1.96      yamt 
   1097  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1098  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1099  1.203        ad 	uvm_pageinsert_object(uobj, newpg);
   1100  1.203        ad 	uvm_pageremove_object(uobj, oldpg);
   1101   1.96      yamt }
   1102   1.96      yamt 
   1103   1.96      yamt /*
   1104    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1105    1.1       mrg  *
   1106    1.1       mrg  * => both objects must be locked
   1107  1.201        ad  * => both interlocks must be held
   1108    1.1       mrg  */
   1109    1.1       mrg 
   1110    1.7       mrg void
   1111  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1112    1.1       mrg {
   1113    1.7       mrg 	/*
   1114    1.7       mrg 	 * remove it from the old object
   1115    1.7       mrg 	 */
   1116    1.7       mrg 
   1117    1.7       mrg 	if (pg->uobject) {
   1118  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1119    1.7       mrg 	}
   1120    1.7       mrg 
   1121    1.7       mrg 	/*
   1122    1.7       mrg 	 * put it in the new object
   1123    1.7       mrg 	 */
   1124    1.7       mrg 
   1125    1.7       mrg 	if (newobj) {
   1126    1.7       mrg 		pg->uobject = newobj;
   1127    1.7       mrg 		pg->offset = newoff;
   1128  1.153  uebayasi 		uvm_pageinsert(newobj, pg);
   1129    1.7       mrg 	}
   1130    1.1       mrg }
   1131    1.1       mrg 
   1132   1.91      yamt #ifdef DEBUG
   1133   1.91      yamt /*
   1134   1.91      yamt  * check if page is zero-filled
   1135   1.91      yamt  */
   1136   1.91      yamt void
   1137   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1138   1.91      yamt {
   1139   1.91      yamt 	int *p, *ep;
   1140   1.91      yamt 
   1141   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1142  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1143   1.91      yamt 
   1144   1.91      yamt 	/*
   1145   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1146   1.91      yamt 	 * uvm page allocator.
   1147   1.91      yamt 	 *
   1148   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1149   1.91      yamt 	 */
   1150  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1151   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1152   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1153   1.92      yamt 	pmap_update(pmap_kernel());
   1154   1.91      yamt 	while (p < ep) {
   1155   1.91      yamt 		if (*p != 0)
   1156   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1157   1.91      yamt 		p++;
   1158   1.91      yamt 	}
   1159   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1160  1.131      yamt 	/*
   1161  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1162  1.131      yamt 	 * uses this VA.
   1163  1.131      yamt 	 */
   1164   1.91      yamt }
   1165   1.91      yamt #endif /* DEBUG */
   1166   1.91      yamt 
   1167    1.1       mrg /*
   1168    1.1       mrg  * uvm_pagefree: free page
   1169    1.1       mrg  *
   1170  1.133        ad  * => erase page's identity (i.e. remove from object)
   1171    1.1       mrg  * => put page on free list
   1172    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1173    1.1       mrg  * => assumes all valid mappings of pg are gone
   1174    1.1       mrg  */
   1175    1.1       mrg 
   1176   1.44       chs void
   1177  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1178    1.1       mrg {
   1179  1.133        ad 	struct pgflist *pgfl;
   1180  1.133        ad 	struct uvm_cpu *ucpu;
   1181  1.133        ad 	int index, color, queue;
   1182  1.201        ad 	bool iszero, locked;
   1183   1.67       chs 
   1184   1.44       chs #ifdef DEBUG
   1185   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1186   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1187   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1188   1.44       chs 	}
   1189   1.91      yamt #endif /* DEBUG */
   1190   1.44       chs 
   1191  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1192  1.201        ad 	KASSERT(!(pg->flags & PG_FREE));
   1193  1.182      matt 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1194  1.174     rmind 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1195  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1196  1.174     rmind 		mutex_owned(pg->uanon->an_lock));
   1197  1.123        ad 
   1198    1.7       mrg 	/*
   1199   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1200    1.7       mrg 	 */
   1201    1.7       mrg 
   1202   1.67       chs 	if (pg->loan_count) {
   1203   1.70       chs 		KASSERT(pg->wire_count == 0);
   1204    1.7       mrg 
   1205    1.7       mrg 		/*
   1206   1.67       chs 		 * if the page is owned by an anon then we just want to
   1207   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1208   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1209   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1210   1.70       chs 		 * of possible anon owners.
   1211   1.70       chs 		 *
   1212   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1213   1.70       chs 		 * unbusy the page, and we're done.
   1214    1.7       mrg 		 */
   1215    1.7       mrg 
   1216  1.201        ad 		mutex_enter(&pg->interlock);
   1217  1.201        ad 		locked = true;
   1218   1.73       chs 		if (pg->uobject != NULL) {
   1219  1.153  uebayasi 			uvm_pageremove(pg->uobject, pg);
   1220   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1221   1.73       chs 		} else if (pg->uanon != NULL) {
   1222  1.201        ad 			if ((pg->flags & PG_ANON) == 0) {
   1223   1.73       chs 				pg->loan_count--;
   1224   1.73       chs 			} else {
   1225  1.201        ad 				pg->flags &= ~PG_ANON;
   1226  1.201        ad  				atomic_dec_uint(&uvmexp.anonpages);
   1227   1.73       chs 			}
   1228  1.103      yamt 			pg->uanon->an_page = NULL;
   1229   1.73       chs 			pg->uanon = NULL;
   1230   1.67       chs 		}
   1231   1.70       chs 		if (pg->flags & PG_WANTED) {
   1232   1.70       chs 			wakeup(pg);
   1233   1.70       chs 		}
   1234   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1235   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1236   1.70       chs 		pg->owner_tag = NULL;
   1237   1.70       chs #endif
   1238   1.73       chs 		if (pg->loan_count) {
   1239  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1240  1.201        ad 			mutex_exit(&pg->interlock);
   1241  1.115      yamt 			if (pg->uanon == NULL) {
   1242  1.115      yamt 				uvm_pagedequeue(pg);
   1243  1.115      yamt 			}
   1244   1.73       chs 			return;
   1245   1.73       chs 		}
   1246  1.201        ad 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1247  1.201        ad 	           pg->wire_count != 0) {
   1248  1.201        ad 		mutex_enter(&pg->interlock);
   1249  1.201        ad 		locked = true;
   1250  1.201        ad 	} else {
   1251  1.201        ad 		locked = false;
   1252   1.67       chs 	}
   1253   1.62       chs 
   1254   1.67       chs 	/*
   1255   1.67       chs 	 * remove page from its object or anon.
   1256   1.67       chs 	 */
   1257   1.73       chs 	if (pg->uobject != NULL) {
   1258  1.153  uebayasi 		uvm_pageremove(pg->uobject, pg);
   1259   1.73       chs 	} else if (pg->uanon != NULL) {
   1260  1.103      yamt 		pg->uanon->an_page = NULL;
   1261  1.201        ad 		pg->uanon = NULL;
   1262  1.126        ad 		atomic_dec_uint(&uvmexp.anonpages);
   1263    1.7       mrg 	}
   1264    1.1       mrg 
   1265    1.7       mrg 	/*
   1266    1.7       mrg 	 * if the page was wired, unwire it now.
   1267    1.7       mrg 	 */
   1268   1.44       chs 
   1269   1.34   thorpej 	if (pg->wire_count) {
   1270    1.7       mrg 		pg->wire_count = 0;
   1271  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1272  1.201        ad 	}
   1273  1.201        ad 	if (locked) {
   1274  1.201        ad 		mutex_exit(&pg->interlock);
   1275   1.44       chs 	}
   1276    1.7       mrg 
   1277    1.7       mrg 	/*
   1278  1.201        ad 	 * now remove the page from the queues.
   1279  1.201        ad 	 */
   1280  1.201        ad 	uvm_pagedequeue(pg);
   1281  1.201        ad 
   1282  1.201        ad 	/*
   1283   1.44       chs 	 * and put on free queue
   1284    1.7       mrg 	 */
   1285    1.7       mrg 
   1286   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1287  1.133        ad 	index = uvm_page_lookup_freelist(pg);
   1288  1.133        ad 	color = VM_PGCOLOR_BUCKET(pg);
   1289  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1290   1.34   thorpej 
   1291    1.3       chs #ifdef DEBUG
   1292    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1293    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1294    1.3       chs #endif
   1295   1.90      yamt 
   1296  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1297  1.201        ad 	pg->flags = PG_FREE;
   1298   1.91      yamt 
   1299   1.91      yamt #ifdef DEBUG
   1300   1.91      yamt 	if (iszero)
   1301   1.91      yamt 		uvm_pagezerocheck(pg);
   1302   1.91      yamt #endif /* DEBUG */
   1303   1.91      yamt 
   1304  1.133        ad 
   1305  1.133        ad 	/* global list */
   1306  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1307  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1308    1.7       mrg 	uvmexp.free++;
   1309  1.133        ad 	if (iszero) {
   1310   1.90      yamt 		uvmexp.zeropages++;
   1311  1.133        ad 	}
   1312   1.34   thorpej 
   1313  1.133        ad 	/* per-cpu list */
   1314  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1315  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1316  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1317  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1318  1.133        ad 	ucpu->pages[queue]++;
   1319  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1320  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1321  1.133        ad 	}
   1322   1.34   thorpej 
   1323  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1324   1.44       chs }
   1325   1.44       chs 
   1326   1.44       chs /*
   1327   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1328   1.44       chs  *
   1329   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1330   1.44       chs  * => if pages are object-owned, object must be locked.
   1331   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1332   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1333   1.44       chs  */
   1334   1.44       chs 
   1335   1.44       chs void
   1336  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1337   1.44       chs {
   1338   1.44       chs 	struct vm_page *pg;
   1339   1.44       chs 	int i;
   1340   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1341   1.44       chs 
   1342   1.44       chs 	for (i = 0; i < npgs; i++) {
   1343   1.44       chs 		pg = pgs[i];
   1344   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1345   1.44       chs 			continue;
   1346   1.44       chs 		}
   1347   1.98      yamt 
   1348  1.180      matt 		KASSERT(uvm_page_locked_p(pg));
   1349   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1350   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1351   1.44       chs 		if (pg->flags & PG_WANTED) {
   1352  1.201        ad 			/* XXXAD thundering herd problem. */
   1353   1.44       chs 			wakeup(pg);
   1354   1.44       chs 		}
   1355   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1356  1.194  pgoyette 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1357  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1358   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1359   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1360   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1361   1.67       chs 			uvm_pagefree(pg);
   1362   1.44       chs 		} else {
   1363  1.194  pgoyette 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1364  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1365  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1366   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1367   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1368   1.44       chs 		}
   1369   1.44       chs 	}
   1370    1.1       mrg }
   1371    1.1       mrg 
   1372    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1373    1.1       mrg /*
   1374    1.1       mrg  * uvm_page_own: set or release page ownership
   1375    1.1       mrg  *
   1376    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1377    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1378    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1379    1.1       mrg  * => page's object [if any] must be locked
   1380    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1381    1.1       mrg  */
   1382    1.7       mrg void
   1383  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1384    1.1       mrg {
   1385  1.112      yamt 
   1386   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1387  1.184       chs 	KASSERT((pg->flags & PG_WANTED) == 0);
   1388  1.180      matt 	KASSERT(uvm_page_locked_p(pg));
   1389  1.112      yamt 
   1390    1.7       mrg 	/* gain ownership? */
   1391    1.7       mrg 	if (tag) {
   1392  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1393    1.7       mrg 		if (pg->owner_tag) {
   1394    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1395    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1396   1.74     enami 			    pg->owner, pg->owner_tag);
   1397    1.7       mrg 			panic("uvm_page_own");
   1398    1.7       mrg 		}
   1399  1.184       chs 		pg->owner = curproc->p_pid;
   1400  1.184       chs 		pg->lowner = curlwp->l_lid;
   1401    1.7       mrg 		pg->owner_tag = tag;
   1402    1.7       mrg 		return;
   1403    1.7       mrg 	}
   1404    1.7       mrg 
   1405    1.7       mrg 	/* drop ownership */
   1406  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1407    1.7       mrg 	if (pg->owner_tag == NULL) {
   1408    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1409    1.7       mrg 		    "page (%p)\n", pg);
   1410    1.7       mrg 		panic("uvm_page_own");
   1411    1.7       mrg 	}
   1412  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1413  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1414  1.115      yamt 		    pg->wire_count > 0);
   1415  1.115      yamt 	} else {
   1416  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1417  1.115      yamt 	}
   1418    1.7       mrg 	pg->owner_tag = NULL;
   1419    1.1       mrg }
   1420    1.1       mrg #endif
   1421   1.34   thorpej 
   1422   1.34   thorpej /*
   1423   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1424   1.34   thorpej  *
   1425   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1426   1.54   thorpej  *	on the CPU cache.
   1427  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1428  1.132        ad  *      to run, or MD code detects a reason to break early.
   1429   1.34   thorpej  */
   1430   1.34   thorpej void
   1431  1.105   thorpej uvm_pageidlezero(void)
   1432   1.34   thorpej {
   1433   1.34   thorpej 	struct vm_page *pg;
   1434  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1435  1.133        ad 	struct uvm_cpu *ucpu;
   1436  1.133        ad 	int free_list, firstbucket, nextbucket;
   1437  1.172     rmind 	bool lcont = false;
   1438  1.133        ad 
   1439  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1440  1.133        ad 	if (!ucpu->page_idle_zero ||
   1441  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1442  1.133        ad 	    	ucpu->page_idle_zero = false;
   1443  1.132        ad 		return;
   1444  1.132        ad 	}
   1445  1.172     rmind 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1446  1.172     rmind 		/* Contention: let other CPUs to use the lock. */
   1447  1.172     rmind 		return;
   1448  1.172     rmind 	}
   1449  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1450  1.133        ad 	nextbucket = firstbucket;
   1451   1.58     enami 	do {
   1452   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1453  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1454  1.139        ad 				goto quit;
   1455  1.139        ad 			}
   1456  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1457  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1458  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1459   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1460  1.172     rmind 				if (lcont || sched_curcpu_runnable_p()) {
   1461  1.101      yamt 					goto quit;
   1462  1.132        ad 				}
   1463  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1464  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1465  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1466   1.54   thorpej 				uvmexp.free--;
   1467  1.201        ad 				KASSERT(pg->flags == PG_FREE);
   1468  1.201        ad 				pg->flags = 0;
   1469  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1470   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1471   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1472   1.67       chs 
   1473   1.54   thorpej 					/*
   1474   1.54   thorpej 					 * The machine-dependent code detected
   1475   1.54   thorpej 					 * some reason for us to abort zeroing
   1476   1.54   thorpej 					 * pages, probably because there is a
   1477   1.54   thorpej 					 * process now ready to run.
   1478   1.54   thorpej 					 */
   1479   1.67       chs 
   1480  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1481  1.201        ad 					pg->flags = PG_FREE;
   1482  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1483  1.133        ad 					    nextbucket].pgfl_queues[
   1484  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1485  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1486   1.54   thorpej 					    nextbucket].pgfl_queues[
   1487  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1488  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1489   1.54   thorpej 					uvmexp.free++;
   1490   1.54   thorpej 					uvmexp.zeroaborts++;
   1491  1.101      yamt 					goto quit;
   1492   1.54   thorpej 				}
   1493   1.54   thorpej #else
   1494   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1495   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1496  1.172     rmind 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1497  1.172     rmind 					lcont = true;
   1498  1.172     rmind 					mutex_spin_enter(&uvm_fpageqlock);
   1499  1.172     rmind 				} else {
   1500  1.172     rmind 					lcont = false;
   1501  1.172     rmind 				}
   1502  1.201        ad 				pg->flags = PG_FREE | PG_ZERO;
   1503  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1504  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1505  1.133        ad 				    pg, pageq.list);
   1506  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1507   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1508  1.133        ad 				    pg, listq.list);
   1509  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1510   1.54   thorpej 				uvmexp.free++;
   1511   1.54   thorpej 				uvmexp.zeropages++;
   1512   1.54   thorpej 			}
   1513   1.41   thorpej 		}
   1514  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1515  1.133        ad 			break;
   1516  1.133        ad 		}
   1517   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1518   1.58     enami 	} while (nextbucket != firstbucket);
   1519  1.133        ad 	ucpu->page_idle_zero = false;
   1520  1.133        ad  quit:
   1521  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1522   1.34   thorpej }
   1523  1.110      yamt 
   1524  1.110      yamt /*
   1525  1.110      yamt  * uvm_pagelookup: look up a page
   1526  1.110      yamt  *
   1527  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1528  1.110      yamt  *	out from under it
   1529  1.110      yamt  */
   1530  1.110      yamt 
   1531  1.110      yamt struct vm_page *
   1532  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1533  1.110      yamt {
   1534  1.110      yamt 	struct vm_page *pg;
   1535  1.110      yamt 
   1536  1.203        ad 	/* No - used from DDB. KASSERT(mutex_owned(obj->vmobjlock)); */
   1537  1.123        ad 
   1538  1.202        ad 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1539  1.134        ad 
   1540  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1541  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1542  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1543  1.156     rmind 	return pg;
   1544  1.110      yamt }
   1545  1.110      yamt 
   1546  1.110      yamt /*
   1547  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1548  1.110      yamt  *
   1549  1.201        ad  * => caller must lock objects
   1550  1.110      yamt  */
   1551  1.110      yamt 
   1552  1.110      yamt void
   1553  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1554  1.110      yamt {
   1555  1.201        ad 
   1556  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1557  1.113      yamt #if defined(READAHEAD_STATS)
   1558  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1559  1.113      yamt 		uvm_ra_hit.ev_count++;
   1560  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1561  1.113      yamt 	}
   1562  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1563  1.110      yamt 	if (pg->wire_count == 0) {
   1564  1.110      yamt 		uvm_pagedequeue(pg);
   1565  1.201        ad 		atomic_inc_uint(&uvmexp.wired);
   1566  1.110      yamt 	}
   1567  1.201        ad 	mutex_enter(&pg->interlock);
   1568  1.110      yamt 	pg->wire_count++;
   1569  1.201        ad 	mutex_exit(&pg->interlock);
   1570  1.197  jdolecek 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1571  1.110      yamt }
   1572  1.110      yamt 
   1573  1.110      yamt /*
   1574  1.110      yamt  * uvm_pageunwire: unwire the page.
   1575  1.110      yamt  *
   1576  1.110      yamt  * => activate if wire count goes to zero.
   1577  1.201        ad  * => caller must lock objects
   1578  1.110      yamt  */
   1579  1.110      yamt 
   1580  1.110      yamt void
   1581  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1582  1.110      yamt {
   1583  1.201        ad 
   1584  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1585  1.199       kre 	KASSERT(pg->wire_count != 0);
   1586  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1587  1.201        ad 	mutex_enter(&pg->interlock);
   1588  1.110      yamt 	pg->wire_count--;
   1589  1.201        ad 	mutex_exit(&pg->interlock);
   1590  1.110      yamt 	if (pg->wire_count == 0) {
   1591  1.111      yamt 		uvm_pageactivate(pg);
   1592  1.199       kre 		KASSERT(uvmexp.wired != 0);
   1593  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1594  1.110      yamt 	}
   1595  1.110      yamt }
   1596  1.110      yamt 
   1597  1.110      yamt /*
   1598  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1599  1.110      yamt  *
   1600  1.201        ad  * => caller must lock objects
   1601  1.110      yamt  * => caller must check to make sure page is not wired
   1602  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1603  1.110      yamt  * => caller must clear the reference on the page before calling
   1604  1.110      yamt  */
   1605  1.110      yamt 
   1606  1.110      yamt void
   1607  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1608  1.110      yamt {
   1609  1.113      yamt 
   1610  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1611  1.201        ad 	if (pg->wire_count == 0) {
   1612  1.201        ad 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1613  1.201        ad 		uvmpdpol_pagedeactivate(pg);
   1614  1.201        ad 	}
   1615  1.110      yamt }
   1616  1.110      yamt 
   1617  1.110      yamt /*
   1618  1.110      yamt  * uvm_pageactivate: activate page
   1619  1.110      yamt  *
   1620  1.201        ad  * => caller must lock objects
   1621  1.110      yamt  */
   1622  1.110      yamt 
   1623  1.110      yamt void
   1624  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1625  1.110      yamt {
   1626  1.113      yamt 
   1627  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1628  1.113      yamt #if defined(READAHEAD_STATS)
   1629  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1630  1.113      yamt 		uvm_ra_hit.ev_count++;
   1631  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1632  1.113      yamt 	}
   1633  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1634  1.201        ad 	if (pg->wire_count == 0) {
   1635  1.201        ad 		uvmpdpol_pageactivate(pg);
   1636  1.110      yamt 	}
   1637  1.110      yamt }
   1638  1.110      yamt 
   1639  1.110      yamt /*
   1640  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1641  1.201        ad  *
   1642  1.201        ad  * => caller must lock objects
   1643  1.110      yamt  */
   1644  1.110      yamt void
   1645  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1646  1.110      yamt {
   1647  1.113      yamt 
   1648  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1649  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1650  1.201        ad 		uvmpdpol_pagedequeue(pg);
   1651  1.110      yamt 	}
   1652  1.113      yamt }
   1653  1.113      yamt 
   1654  1.113      yamt /*
   1655  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1656  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1657  1.201        ad  *
   1658  1.201        ad  * => caller must lock objects
   1659  1.113      yamt  */
   1660  1.113      yamt void
   1661  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1662  1.113      yamt {
   1663  1.113      yamt 
   1664  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1665  1.201        ad 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1666  1.201        ad 		uvmpdpol_pageenqueue(pg);
   1667  1.113      yamt 	}
   1668  1.110      yamt }
   1669  1.110      yamt 
   1670  1.110      yamt /*
   1671  1.110      yamt  * uvm_pagezero: zero fill a page
   1672  1.110      yamt  *
   1673  1.110      yamt  * => if page is part of an object then the object should be locked
   1674  1.110      yamt  *	to protect pg->flags.
   1675  1.110      yamt  */
   1676  1.110      yamt 
   1677  1.110      yamt void
   1678  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1679  1.110      yamt {
   1680  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1681  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1682  1.110      yamt }
   1683  1.110      yamt 
   1684  1.110      yamt /*
   1685  1.110      yamt  * uvm_pagecopy: copy a page
   1686  1.110      yamt  *
   1687  1.110      yamt  * => if page is part of an object then the object should be locked
   1688  1.110      yamt  *	to protect pg->flags.
   1689  1.110      yamt  */
   1690  1.110      yamt 
   1691  1.110      yamt void
   1692  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1693  1.110      yamt {
   1694  1.110      yamt 
   1695  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1696  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1697  1.110      yamt }
   1698  1.110      yamt 
   1699  1.110      yamt /*
   1700  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1701  1.150   thorpej  */
   1702  1.150   thorpej 
   1703  1.150   thorpej bool
   1704  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   1705  1.150   thorpej {
   1706  1.150   thorpej 
   1707  1.190    cherry 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1708  1.150   thorpej }
   1709  1.150   thorpej 
   1710  1.150   thorpej /*
   1711  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   1712  1.110      yamt  */
   1713  1.110      yamt 
   1714  1.110      yamt int
   1715  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   1716  1.110      yamt {
   1717  1.190    cherry 	uvm_physseg_t upm;
   1718  1.110      yamt 
   1719  1.190    cherry 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1720  1.190    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1721  1.190    cherry 	return uvm_physseg_get_free_list(upm);
   1722  1.110      yamt }
   1723  1.151   thorpej 
   1724  1.174     rmind /*
   1725  1.174     rmind  * uvm_page_locked_p: return true if object associated with page is
   1726  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   1727  1.174     rmind  */
   1728  1.174     rmind 
   1729  1.174     rmind bool
   1730  1.174     rmind uvm_page_locked_p(struct vm_page *pg)
   1731  1.174     rmind {
   1732  1.174     rmind 
   1733  1.174     rmind 	if (pg->uobject != NULL) {
   1734  1.174     rmind 		return mutex_owned(pg->uobject->vmobjlock);
   1735  1.174     rmind 	}
   1736  1.174     rmind 	if (pg->uanon != NULL) {
   1737  1.174     rmind 		return mutex_owned(pg->uanon->an_lock);
   1738  1.174     rmind 	}
   1739  1.174     rmind 	return true;
   1740  1.174     rmind }
   1741  1.174     rmind 
   1742  1.198  jdolecek #ifdef PMAP_DIRECT
   1743  1.198  jdolecek /*
   1744  1.198  jdolecek  * Call pmap to translate physical address into a virtual and to run a callback
   1745  1.198  jdolecek  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   1746  1.198  jdolecek  * or equivalent.
   1747  1.198  jdolecek  */
   1748  1.198  jdolecek int
   1749  1.198  jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   1750  1.198  jdolecek             int (*process)(void *, size_t, void *), void *arg)
   1751  1.198  jdolecek {
   1752  1.198  jdolecek 	int error = 0;
   1753  1.198  jdolecek 	paddr_t pa;
   1754  1.198  jdolecek 	size_t todo;
   1755  1.198  jdolecek 	voff_t pgoff = (off & PAGE_MASK);
   1756  1.198  jdolecek 	struct vm_page *pg;
   1757  1.198  jdolecek 
   1758  1.198  jdolecek 	KASSERT(npages > 0 && len > 0);
   1759  1.198  jdolecek 
   1760  1.198  jdolecek 	for (int i = 0; i < npages; i++) {
   1761  1.198  jdolecek 		pg = pgs[i];
   1762  1.198  jdolecek 
   1763  1.198  jdolecek 		KASSERT(len > 0);
   1764  1.198  jdolecek 
   1765  1.198  jdolecek 		/*
   1766  1.198  jdolecek 		 * Caller is responsible for ensuring all the pages are
   1767  1.198  jdolecek 		 * available.
   1768  1.198  jdolecek 		 */
   1769  1.198  jdolecek 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   1770  1.198  jdolecek 
   1771  1.198  jdolecek 		pa = VM_PAGE_TO_PHYS(pg);
   1772  1.198  jdolecek 		todo = MIN(len, PAGE_SIZE - pgoff);
   1773  1.198  jdolecek 
   1774  1.198  jdolecek 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   1775  1.198  jdolecek 		if (error)
   1776  1.198  jdolecek 			break;
   1777  1.198  jdolecek 
   1778  1.198  jdolecek 		pgoff = 0;
   1779  1.198  jdolecek 		len -= todo;
   1780  1.198  jdolecek 	}
   1781  1.198  jdolecek 
   1782  1.198  jdolecek 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   1783  1.198  jdolecek 	return error;
   1784  1.198  jdolecek }
   1785  1.198  jdolecek #endif /* PMAP_DIRECT */
   1786  1.198  jdolecek 
   1787  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   1788  1.151   thorpej 
   1789  1.151   thorpej /*
   1790  1.151   thorpej  * uvm_page_printit: actually print the page
   1791  1.151   thorpej  */
   1792  1.151   thorpej 
   1793  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   1794  1.151   thorpej 
   1795  1.151   thorpej void
   1796  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   1797  1.151   thorpej     void (*pr)(const char *, ...))
   1798  1.151   thorpej {
   1799  1.151   thorpej 	struct vm_page *tpg;
   1800  1.151   thorpej 	struct uvm_object *uobj;
   1801  1.151   thorpej 	struct pgflist *pgl;
   1802  1.151   thorpej 	char pgbuf[128];
   1803  1.151   thorpej 
   1804  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   1805  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1806  1.201        ad 	(*pr)("  flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
   1807  1.201        ad 	    pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1808  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1809  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1810  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   1811  1.151   thorpej 	if (pg->flags & PG_BUSY)
   1812  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   1813  1.151   thorpej 		    pg->owner, pg->owner_tag);
   1814  1.151   thorpej 	else
   1815  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   1816  1.151   thorpej #else
   1817  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   1818  1.151   thorpej #endif
   1819  1.151   thorpej 
   1820  1.151   thorpej 	if (!full)
   1821  1.151   thorpej 		return;
   1822  1.151   thorpej 
   1823  1.151   thorpej 	/* cross-verify object/anon */
   1824  1.201        ad 	if ((pg->flags & PG_FREE) == 0) {
   1825  1.201        ad 		if (pg->flags & PG_ANON) {
   1826  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1827  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1828  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1829  1.151   thorpej 			else
   1830  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   1831  1.151   thorpej 		} else {
   1832  1.151   thorpej 			uobj = pg->uobject;
   1833  1.151   thorpej 			if (uobj) {
   1834  1.151   thorpej 				(*pr)("  checking object list\n");
   1835  1.203        ad 				tpg = uvm_pagelookup(uobj, pg->offset);
   1836  1.151   thorpej 				if (tpg)
   1837  1.151   thorpej 					(*pr)("  page found on object list\n");
   1838  1.151   thorpej 				else
   1839  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1840  1.151   thorpej 			}
   1841  1.151   thorpej 		}
   1842  1.151   thorpej 	}
   1843  1.151   thorpej 
   1844  1.151   thorpej 	/* cross-verify page queue */
   1845  1.201        ad 	if (pg->flags & PG_FREE) {
   1846  1.151   thorpej 		int fl = uvm_page_lookup_freelist(pg);
   1847  1.151   thorpej 		int color = VM_PGCOLOR_BUCKET(pg);
   1848  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1849  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1850  1.151   thorpej 	} else {
   1851  1.151   thorpej 		pgl = NULL;
   1852  1.151   thorpej 	}
   1853  1.151   thorpej 
   1854  1.151   thorpej 	if (pgl) {
   1855  1.151   thorpej 		(*pr)("  checking pageq list\n");
   1856  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1857  1.151   thorpej 			if (tpg == pg) {
   1858  1.151   thorpej 				break;
   1859  1.151   thorpej 			}
   1860  1.151   thorpej 		}
   1861  1.151   thorpej 		if (tpg)
   1862  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   1863  1.151   thorpej 		else
   1864  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1865  1.151   thorpej 	}
   1866  1.151   thorpej }
   1867  1.151   thorpej 
   1868  1.151   thorpej /*
   1869  1.201        ad  * uvm_page_printall - print a summary of all managed pages
   1870  1.151   thorpej  */
   1871  1.151   thorpej 
   1872  1.151   thorpej void
   1873  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   1874  1.151   thorpej {
   1875  1.190    cherry 	uvm_physseg_t i;
   1876  1.190    cherry 	paddr_t pfn;
   1877  1.151   thorpej 	struct vm_page *pg;
   1878  1.151   thorpej 
   1879  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   1880  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1881  1.151   thorpej 	    " OWNER"
   1882  1.151   thorpej #endif
   1883  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1884  1.190    cherry 	for (i = uvm_physseg_get_first();
   1885  1.190    cherry 	     uvm_physseg_valid_p(i);
   1886  1.190    cherry 	     i = uvm_physseg_get_next(i)) {
   1887  1.190    cherry 		for (pfn = uvm_physseg_get_start(i);
   1888  1.192      maya 		     pfn < uvm_physseg_get_end(i);
   1889  1.190    cherry 		     pfn++) {
   1890  1.190    cherry 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   1891  1.190    cherry 
   1892  1.201        ad 			(*pr)("%18p %04x %08x %18p %18p",
   1893  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1894  1.151   thorpej 			    pg->uanon);
   1895  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1896  1.151   thorpej 			if (pg->flags & PG_BUSY)
   1897  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1898  1.151   thorpej #endif
   1899  1.151   thorpej 			(*pr)("\n");
   1900  1.151   thorpej 		}
   1901  1.151   thorpej 	}
   1902  1.151   thorpej }
   1903  1.151   thorpej 
   1904  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   1905