uvm_page.c revision 1.203 1 1.203 ad /* $NetBSD: uvm_page.c,v 1.203 2019/12/15 21:11:35 ad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.62 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.62 chs *
49 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.62 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_page.c: page ops.
66 1.1 mrg */
67 1.71 lukem
68 1.71 lukem #include <sys/cdefs.h>
69 1.203 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.203 2019/12/15 21:11:35 ad Exp $");
70 1.6 mrg
71 1.151 thorpej #include "opt_ddb.h"
72 1.187 joerg #include "opt_uvm.h"
73 1.44 chs #include "opt_uvmhist.h"
74 1.113 yamt #include "opt_readahead.h"
75 1.44 chs
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.68 chs #include <sys/proc.h>
82 1.202 ad #include <sys/radixtree.h>
83 1.126 ad #include <sys/atomic.h>
84 1.133 ad #include <sys/cpu.h>
85 1.190 cherry #include <sys/extent.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.151 thorpej #include <uvm/uvm_ddb.h>
89 1.113 yamt #include <uvm/uvm_pdpolicy.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.36 thorpej * Some supported CPUs in a given architecture don't support all
93 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
94 1.155 ad * We therefore provide a way to enable it from machdep code here.
95 1.44 chs */
96 1.119 thorpej bool vm_page_zero_enable = false;
97 1.34 thorpej
98 1.34 thorpej /*
99 1.140 ad * number of pages per-CPU to reserve for the kernel.
100 1.140 ad */
101 1.187 joerg #ifndef UVM_RESERVED_PAGES_PER_CPU
102 1.187 joerg #define UVM_RESERVED_PAGES_PER_CPU 5
103 1.187 joerg #endif
104 1.187 joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
105 1.140 ad
106 1.140 ad /*
107 1.148 matt * physical memory size;
108 1.148 matt */
109 1.189 cherry psize_t physmem;
110 1.148 matt
111 1.148 matt /*
112 1.1 mrg * local variables
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
117 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
118 1.88 thorpej * and pmap_startup here also uses them internally.
119 1.88 thorpej */
120 1.88 thorpej
121 1.88 thorpej static vaddr_t virtual_space_start;
122 1.88 thorpej static vaddr_t virtual_space_end;
123 1.88 thorpej
124 1.88 thorpej /*
125 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
126 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
127 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
128 1.60 thorpej * free the initial set of buckets, since they are allocated using
129 1.60 thorpej * uvm_pageboot_alloc().
130 1.60 thorpej */
131 1.60 thorpej
132 1.179 para static size_t recolored_pages_memsize /* = 0 */;
133 1.60 thorpej
134 1.91 yamt #ifdef DEBUG
135 1.91 yamt vaddr_t uvm_zerocheckkva;
136 1.91 yamt #endif /* DEBUG */
137 1.91 yamt
138 1.60 thorpej /*
139 1.190 cherry * These functions are reserved for uvm(9) internal use and are not
140 1.190 cherry * exported in the header file uvm_physseg.h
141 1.190 cherry *
142 1.190 cherry * Thus they are redefined here.
143 1.190 cherry */
144 1.190 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
145 1.190 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
146 1.190 cherry
147 1.190 cherry /* returns a pgs array */
148 1.190 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
149 1.190 cherry
150 1.190 cherry /*
151 1.134 ad * local prototypes
152 1.124 ad */
153 1.124 ad
154 1.202 ad static int uvm_pageinsert(struct uvm_object *, struct vm_page *);
155 1.153 uebayasi static void uvm_pageremove(struct uvm_object *, struct vm_page *);
156 1.124 ad
157 1.124 ad /*
158 1.1 mrg * inline functions
159 1.1 mrg */
160 1.1 mrg
161 1.1 mrg /*
162 1.134 ad * uvm_pageinsert: insert a page in the object.
163 1.1 mrg *
164 1.1 mrg * => caller must lock object
165 1.1 mrg * => call should have already set pg's object and offset pointers
166 1.1 mrg * and bumped the version counter
167 1.1 mrg */
168 1.1 mrg
169 1.136 yamt static inline void
170 1.203 ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
171 1.1 mrg {
172 1.1 mrg
173 1.136 yamt KASSERT(uobj == pg->uobject);
174 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
175 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
176 1.123 ad
177 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
178 1.94 yamt if (uobj->uo_npages == 0) {
179 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
180 1.94 yamt
181 1.94 yamt vholdl(vp);
182 1.94 yamt }
183 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
184 1.126 ad atomic_inc_uint(&uvmexp.execpages);
185 1.94 yamt } else {
186 1.126 ad atomic_inc_uint(&uvmexp.filepages);
187 1.94 yamt }
188 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
189 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
190 1.78 chs }
191 1.7 mrg pg->flags |= PG_TABLED;
192 1.67 chs uobj->uo_npages++;
193 1.1 mrg }
194 1.1 mrg
195 1.202 ad static inline int
196 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
197 1.136 yamt {
198 1.202 ad const uint64_t idx = pg->offset >> PAGE_SHIFT;
199 1.202 ad int error;
200 1.136 yamt
201 1.202 ad error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
202 1.202 ad if (error != 0) {
203 1.202 ad return error;
204 1.202 ad }
205 1.202 ad return 0;
206 1.136 yamt }
207 1.136 yamt
208 1.202 ad static inline int
209 1.153 uebayasi uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
210 1.96 yamt {
211 1.202 ad int error;
212 1.96 yamt
213 1.153 uebayasi KDASSERT(uobj != NULL);
214 1.202 ad KDASSERT(uobj == pg->uobject);
215 1.202 ad error = uvm_pageinsert_tree(uobj, pg);
216 1.202 ad if (error != 0) {
217 1.202 ad KASSERT(error == ENOMEM);
218 1.202 ad return error;
219 1.202 ad }
220 1.203 ad uvm_pageinsert_object(uobj, pg);
221 1.202 ad return error;
222 1.96 yamt }
223 1.96 yamt
224 1.1 mrg /*
225 1.134 ad * uvm_page_remove: remove page from object.
226 1.1 mrg *
227 1.1 mrg * => caller must lock object
228 1.1 mrg */
229 1.1 mrg
230 1.109 perry static inline void
231 1.203 ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
232 1.1 mrg {
233 1.1 mrg
234 1.136 yamt KASSERT(uobj == pg->uobject);
235 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
236 1.44 chs KASSERT(pg->flags & PG_TABLED);
237 1.123 ad
238 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
239 1.94 yamt if (uobj->uo_npages == 1) {
240 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
241 1.94 yamt
242 1.94 yamt holdrelel(vp);
243 1.94 yamt }
244 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
245 1.126 ad atomic_dec_uint(&uvmexp.execpages);
246 1.94 yamt } else {
247 1.126 ad atomic_dec_uint(&uvmexp.filepages);
248 1.94 yamt }
249 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
250 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
251 1.51 chs }
252 1.44 chs
253 1.7 mrg /* object should be locked */
254 1.67 chs uobj->uo_npages--;
255 1.7 mrg pg->flags &= ~PG_TABLED;
256 1.7 mrg pg->uobject = NULL;
257 1.1 mrg }
258 1.1 mrg
259 1.136 yamt static inline void
260 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
261 1.136 yamt {
262 1.202 ad struct vm_page *opg __unused;
263 1.136 yamt
264 1.202 ad opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
265 1.202 ad KASSERT(pg == opg);
266 1.136 yamt }
267 1.136 yamt
268 1.136 yamt static inline void
269 1.153 uebayasi uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
270 1.136 yamt {
271 1.136 yamt
272 1.153 uebayasi KDASSERT(uobj != NULL);
273 1.202 ad KASSERT(uobj == pg->uobject);
274 1.203 ad uvm_pageremove_object(uobj, pg);
275 1.136 yamt uvm_pageremove_tree(uobj, pg);
276 1.136 yamt }
277 1.136 yamt
278 1.60 thorpej static void
279 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
280 1.60 thorpej {
281 1.60 thorpej int color, i;
282 1.60 thorpej
283 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
284 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
285 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
286 1.60 thorpej }
287 1.60 thorpej }
288 1.60 thorpej }
289 1.60 thorpej
290 1.1 mrg /*
291 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
292 1.62 chs *
293 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
294 1.1 mrg */
295 1.1 mrg
296 1.7 mrg void
297 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
298 1.1 mrg {
299 1.155 ad static struct uvm_cpu boot_cpu;
300 1.154 jym psize_t freepages, pagecount, bucketcount, n;
301 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
302 1.63 chs struct vm_page *pagearray;
303 1.190 cherry uvm_physseg_t bank;
304 1.81 thorpej int lcv;
305 1.7 mrg
306 1.133 ad KASSERT(ncpu <= 1);
307 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
308 1.133 ad
309 1.7 mrg /*
310 1.201 ad * init the page queues and free page queue lock, except the
311 1.201 ad * free list; we allocate that later (with the initial vm_page
312 1.60 thorpej * structures).
313 1.7 mrg */
314 1.51 chs
315 1.155 ad uvm.cpus[0] = &boot_cpu;
316 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
317 1.113 yamt uvmpdpol_init();
318 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
319 1.7 mrg
320 1.7 mrg /*
321 1.51 chs * allocate vm_page structures.
322 1.7 mrg */
323 1.7 mrg
324 1.7 mrg /*
325 1.7 mrg * sanity check:
326 1.7 mrg * before calling this function the MD code is expected to register
327 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
328 1.7 mrg * now is to allocate vm_page structures for this memory.
329 1.7 mrg */
330 1.7 mrg
331 1.190 cherry if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
332 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
333 1.62 chs
334 1.7 mrg /*
335 1.62 chs * first calculate the number of free pages...
336 1.7 mrg *
337 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
338 1.7 mrg * this allows us to allocate extra vm_page structures in case we
339 1.7 mrg * want to return some memory to the pool after booting.
340 1.7 mrg */
341 1.62 chs
342 1.7 mrg freepages = 0;
343 1.190 cherry
344 1.190 cherry for (bank = uvm_physseg_get_first();
345 1.190 cherry uvm_physseg_valid_p(bank) ;
346 1.190 cherry bank = uvm_physseg_get_next(bank)) {
347 1.190 cherry freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
348 1.158 uebayasi }
349 1.7 mrg
350 1.7 mrg /*
351 1.60 thorpej * Let MD code initialize the number of colors, or default
352 1.60 thorpej * to 1 color if MD code doesn't care.
353 1.60 thorpej */
354 1.60 thorpej if (uvmexp.ncolors == 0)
355 1.60 thorpej uvmexp.ncolors = 1;
356 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
357 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
358 1.60 thorpej
359 1.60 thorpej /*
360 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
361 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
362 1.7 mrg * thus, the total number of pages we can use is the total size of
363 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
364 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
365 1.7 mrg * truncation errors (since we can only allocate in terms of whole
366 1.7 mrg * pages).
367 1.7 mrg */
368 1.62 chs
369 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
370 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
371 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
372 1.60 thorpej
373 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
374 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
375 1.60 thorpej sizeof(struct vm_page)));
376 1.133 ad cpuarray = bucketarray + bucketcount;
377 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
378 1.60 thorpej
379 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
380 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
381 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
382 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
383 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
384 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
385 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
386 1.60 thorpej }
387 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
388 1.62 chs
389 1.7 mrg /*
390 1.51 chs * init the vm_page structures and put them in the correct place.
391 1.7 mrg */
392 1.190 cherry /* First init the extent */
393 1.7 mrg
394 1.190 cherry for (bank = uvm_physseg_get_first(),
395 1.190 cherry uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
396 1.190 cherry uvm_physseg_valid_p(bank);
397 1.190 cherry bank = uvm_physseg_get_next(bank)) {
398 1.190 cherry
399 1.190 cherry n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
400 1.190 cherry uvm_physseg_seg_alloc_from_slab(bank, n);
401 1.190 cherry uvm_physseg_init_seg(bank, pagearray);
402 1.51 chs
403 1.7 mrg /* set up page array pointers */
404 1.7 mrg pagearray += n;
405 1.7 mrg pagecount -= n;
406 1.7 mrg }
407 1.44 chs
408 1.7 mrg /*
409 1.88 thorpej * pass up the values of virtual_space_start and
410 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
411 1.88 thorpej * layers of the VM.
412 1.88 thorpej */
413 1.88 thorpej
414 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
415 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
416 1.91 yamt #ifdef DEBUG
417 1.91 yamt /*
418 1.91 yamt * steal kva for uvm_pagezerocheck().
419 1.91 yamt */
420 1.91 yamt uvm_zerocheckkva = *kvm_startp;
421 1.91 yamt *kvm_startp += PAGE_SIZE;
422 1.91 yamt #endif /* DEBUG */
423 1.88 thorpej
424 1.88 thorpej /*
425 1.51 chs * init various thresholds.
426 1.7 mrg */
427 1.51 chs
428 1.7 mrg uvmexp.reserve_pagedaemon = 1;
429 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
430 1.7 mrg
431 1.7 mrg /*
432 1.51 chs * determine if we should zero pages in the idle loop.
433 1.34 thorpej */
434 1.51 chs
435 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
436 1.34 thorpej
437 1.34 thorpej /*
438 1.7 mrg * done!
439 1.7 mrg */
440 1.1 mrg
441 1.119 thorpej uvm.page_init_done = true;
442 1.1 mrg }
443 1.1 mrg
444 1.1 mrg /*
445 1.1 mrg * uvm_setpagesize: set the page size
446 1.62 chs *
447 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
448 1.62 chs */
449 1.1 mrg
450 1.7 mrg void
451 1.105 thorpej uvm_setpagesize(void)
452 1.1 mrg {
453 1.85 thorpej
454 1.85 thorpej /*
455 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
456 1.85 thorpej * to be a constant (indicated by being a non-zero value).
457 1.85 thorpej */
458 1.85 thorpej if (uvmexp.pagesize == 0) {
459 1.85 thorpej if (PAGE_SIZE == 0)
460 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
461 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
462 1.85 thorpej }
463 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
464 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
465 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
466 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
467 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
468 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
469 1.7 mrg break;
470 1.1 mrg }
471 1.1 mrg
472 1.1 mrg /*
473 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
474 1.1 mrg */
475 1.1 mrg
476 1.14 eeh vaddr_t
477 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
478 1.1 mrg {
479 1.119 thorpej static bool initialized = false;
480 1.14 eeh vaddr_t addr;
481 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
482 1.52 thorpej vaddr_t vaddr;
483 1.14 eeh paddr_t paddr;
484 1.52 thorpej #endif
485 1.1 mrg
486 1.7 mrg /*
487 1.19 thorpej * on first call to this function, initialize ourselves.
488 1.7 mrg */
489 1.119 thorpej if (initialized == false) {
490 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
491 1.1 mrg
492 1.7 mrg /* round it the way we like it */
493 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
494 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
495 1.19 thorpej
496 1.119 thorpej initialized = true;
497 1.7 mrg }
498 1.52 thorpej
499 1.52 thorpej /* round to page size */
500 1.52 thorpej size = round_page(size);
501 1.195 mrg uvmexp.bootpages += atop(size);
502 1.52 thorpej
503 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
504 1.52 thorpej
505 1.62 chs /*
506 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
507 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
508 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
509 1.52 thorpej */
510 1.52 thorpej
511 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
512 1.88 thorpej &virtual_space_end);
513 1.52 thorpej
514 1.52 thorpej return(addr);
515 1.52 thorpej
516 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
517 1.1 mrg
518 1.7 mrg /*
519 1.7 mrg * allocate virtual memory for this request
520 1.7 mrg */
521 1.88 thorpej if (virtual_space_start == virtual_space_end ||
522 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
523 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
524 1.20 thorpej
525 1.88 thorpej addr = virtual_space_start;
526 1.20 thorpej
527 1.20 thorpej #ifdef PMAP_GROWKERNEL
528 1.20 thorpej /*
529 1.20 thorpej * If the kernel pmap can't map the requested space,
530 1.20 thorpej * then allocate more resources for it.
531 1.20 thorpej */
532 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
533 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
534 1.20 thorpej if (uvm_maxkaddr < (addr + size))
535 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
536 1.19 thorpej }
537 1.20 thorpej #endif
538 1.1 mrg
539 1.88 thorpej virtual_space_start += size;
540 1.1 mrg
541 1.9 thorpej /*
542 1.7 mrg * allocate and mapin physical pages to back new virtual pages
543 1.7 mrg */
544 1.1 mrg
545 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
546 1.7 mrg vaddr += PAGE_SIZE) {
547 1.1 mrg
548 1.7 mrg if (!uvm_page_physget(&paddr))
549 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
550 1.1 mrg
551 1.23 thorpej /*
552 1.23 thorpej * Note this memory is no longer managed, so using
553 1.23 thorpej * pmap_kenter is safe.
554 1.23 thorpej */
555 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
556 1.7 mrg }
557 1.66 chris pmap_update(pmap_kernel());
558 1.7 mrg return(addr);
559 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
560 1.1 mrg }
561 1.1 mrg
562 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
563 1.1 mrg /*
564 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
565 1.1 mrg *
566 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
567 1.1 mrg * values match the start/end values. if we can't do that, then we
568 1.1 mrg * will advance both values (making them equal, and removing some
569 1.1 mrg * vm_page structures from the non-avail area).
570 1.1 mrg * => return false if out of memory.
571 1.1 mrg */
572 1.1 mrg
573 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
574 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
575 1.28 drochner
576 1.118 thorpej static bool
577 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
578 1.1 mrg {
579 1.190 cherry uvm_physseg_t lcv;
580 1.1 mrg
581 1.7 mrg /* pass 1: try allocating from a matching end */
582 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
583 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
584 1.1 mrg #else
585 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
586 1.1 mrg #endif
587 1.7 mrg {
588 1.119 thorpej if (uvm.page_init_done == true)
589 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
590 1.1 mrg
591 1.190 cherry /* Try to match at front or back on unused segment */
592 1.200 maxv if (uvm_page_physunload(lcv, freelist, paddrp))
593 1.190 cherry return true;
594 1.191 skrll }
595 1.1 mrg
596 1.7 mrg /* pass2: forget about matching ends, just allocate something */
597 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
598 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
599 1.1 mrg #else
600 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
601 1.1 mrg #endif
602 1.7 mrg {
603 1.190 cherry /* Try the front regardless. */
604 1.200 maxv if (uvm_page_physunload_force(lcv, freelist, paddrp))
605 1.190 cherry return true;
606 1.190 cherry }
607 1.190 cherry return false;
608 1.28 drochner }
609 1.28 drochner
610 1.118 thorpej bool
611 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
612 1.28 drochner {
613 1.28 drochner int i;
614 1.28 drochner
615 1.28 drochner /* try in the order of freelist preference */
616 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
617 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
618 1.119 thorpej return (true);
619 1.119 thorpej return (false);
620 1.1 mrg }
621 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
622 1.1 mrg
623 1.1 mrg /*
624 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
625 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
626 1.163 uebayasi */
627 1.163 uebayasi struct vm_page *
628 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
629 1.163 uebayasi {
630 1.163 uebayasi paddr_t pf = atop(pa);
631 1.190 cherry paddr_t off;
632 1.190 cherry uvm_physseg_t upm;
633 1.163 uebayasi
634 1.190 cherry upm = uvm_physseg_find(pf, &off);
635 1.190 cherry if (upm != UVM_PHYSSEG_TYPE_INVALID)
636 1.190 cherry return uvm_physseg_get_pg(upm, off);
637 1.163 uebayasi return(NULL);
638 1.163 uebayasi }
639 1.163 uebayasi
640 1.163 uebayasi paddr_t
641 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
642 1.163 uebayasi {
643 1.163 uebayasi
644 1.163 uebayasi return pg->phys_addr;
645 1.163 uebayasi }
646 1.163 uebayasi
647 1.163 uebayasi /*
648 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
649 1.60 thorpej * larger than the old one.
650 1.60 thorpej */
651 1.60 thorpej
652 1.60 thorpej void
653 1.60 thorpej uvm_page_recolor(int newncolors)
654 1.60 thorpej {
655 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
656 1.133 ad struct pgfreelist gpgfl, pgfl;
657 1.63 chs struct vm_page *pg;
658 1.60 thorpej vsize_t bucketcount;
659 1.179 para size_t bucketmemsize, oldbucketmemsize;
660 1.190 cherry int color, i, ocolors;
661 1.190 cherry int lcv;
662 1.133 ad struct uvm_cpu *ucpu;
663 1.60 thorpej
664 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
665 1.178 uebayasi
666 1.60 thorpej if (newncolors <= uvmexp.ncolors)
667 1.60 thorpej return;
668 1.77 wrstuden
669 1.119 thorpej if (uvm.page_init_done == false) {
670 1.77 wrstuden uvmexp.ncolors = newncolors;
671 1.77 wrstuden return;
672 1.77 wrstuden }
673 1.60 thorpej
674 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
675 1.179 para bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
676 1.179 para bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
677 1.133 ad cpuarray = bucketarray + bucketcount;
678 1.60 thorpej
679 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
680 1.60 thorpej
681 1.60 thorpej /* Make sure we should still do this. */
682 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
683 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
684 1.179 para kmem_free(bucketarray, bucketmemsize);
685 1.60 thorpej return;
686 1.60 thorpej }
687 1.60 thorpej
688 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
689 1.60 thorpej ocolors = uvmexp.ncolors;
690 1.60 thorpej
691 1.60 thorpej uvmexp.ncolors = newncolors;
692 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
693 1.60 thorpej
694 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
695 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
696 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
697 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
698 1.133 ad uvm_page_init_buckets(&gpgfl);
699 1.60 thorpej uvm_page_init_buckets(&pgfl);
700 1.60 thorpej for (color = 0; color < ocolors; color++) {
701 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
702 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
703 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
704 1.60 thorpej != NULL) {
705 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
706 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
707 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
708 1.133 ad VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
709 1.133 ad i], pg, pageq.list);
710 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
711 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
712 1.133 ad i], pg, listq.list);
713 1.60 thorpej }
714 1.60 thorpej }
715 1.60 thorpej }
716 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
717 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
718 1.60 thorpej }
719 1.60 thorpej
720 1.179 para oldbucketmemsize = recolored_pages_memsize;
721 1.177 mrg
722 1.179 para recolored_pages_memsize = bucketmemsize;
723 1.177 mrg mutex_spin_exit(&uvm_fpageqlock);
724 1.176 matt
725 1.179 para if (oldbucketmemsize) {
726 1.196 jakllsch kmem_free(oldbucketarray, oldbucketmemsize);
727 1.179 para }
728 1.60 thorpej
729 1.177 mrg /*
730 1.177 mrg * this calls uvm_km_alloc() which may want to hold
731 1.177 mrg * uvm_fpageqlock.
732 1.177 mrg */
733 1.177 mrg uvm_pager_realloc_emerg();
734 1.60 thorpej }
735 1.1 mrg
736 1.1 mrg /*
737 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
738 1.133 ad */
739 1.133 ad
740 1.133 ad void
741 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
742 1.133 ad {
743 1.133 ad struct pgflbucket *bucketarray;
744 1.133 ad struct pgfreelist pgfl;
745 1.133 ad struct uvm_cpu *ucpu;
746 1.133 ad vsize_t bucketcount;
747 1.133 ad int lcv;
748 1.133 ad
749 1.133 ad if (CPU_IS_PRIMARY(ci)) {
750 1.133 ad /* Already done in uvm_page_init(). */
751 1.181 tls goto attachrnd;
752 1.133 ad }
753 1.133 ad
754 1.140 ad /* Add more reserve pages for this CPU. */
755 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
756 1.140 ad
757 1.140 ad /* Configure this CPU's free lists. */
758 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
759 1.179 para bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
760 1.179 para KM_SLEEP);
761 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
762 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
763 1.133 ad ci->ci_data.cpu_uvm = ucpu;
764 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
765 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
766 1.133 ad uvm_page_init_buckets(&pgfl);
767 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
768 1.133 ad }
769 1.181 tls
770 1.181 tls attachrnd:
771 1.181 tls /*
772 1.181 tls * Attach RNG source for this CPU's VM events
773 1.181 tls */
774 1.181 tls rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
775 1.185 tls ci->ci_data.cpu_name, RND_TYPE_VM,
776 1.185 tls RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
777 1.185 tls RND_FLAG_ESTIMATE_VALUE);
778 1.181 tls
779 1.133 ad }
780 1.133 ad
781 1.133 ad /*
782 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
783 1.54 thorpej */
784 1.54 thorpej
785 1.114 thorpej static struct vm_page *
786 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
787 1.69 simonb int *trycolorp)
788 1.54 thorpej {
789 1.133 ad struct pgflist *freeq;
790 1.54 thorpej struct vm_page *pg;
791 1.58 enami int color, trycolor = *trycolorp;
792 1.133 ad struct pgfreelist *gpgfl, *pgfl;
793 1.54 thorpej
794 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
795 1.130 ad
796 1.58 enami color = trycolor;
797 1.133 ad pgfl = &ucpu->page_free[flist];
798 1.133 ad gpgfl = &uvm.page_free[flist];
799 1.58 enami do {
800 1.133 ad /* cpu, try1 */
801 1.133 ad if ((pg = LIST_FIRST((freeq =
802 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
803 1.201 ad KASSERT(pg->flags & PG_FREE);
804 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
805 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
806 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
807 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
808 1.133 ad uvmexp.cpuhit++;
809 1.133 ad goto gotit;
810 1.133 ad }
811 1.133 ad /* global, try1 */
812 1.133 ad if ((pg = LIST_FIRST((freeq =
813 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
814 1.201 ad KASSERT(pg->flags & PG_FREE);
815 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
816 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
817 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
818 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
819 1.133 ad uvmexp.cpumiss++;
820 1.54 thorpej goto gotit;
821 1.133 ad }
822 1.133 ad /* cpu, try2 */
823 1.133 ad if ((pg = LIST_FIRST((freeq =
824 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
825 1.201 ad KASSERT(pg->flags & PG_FREE);
826 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
827 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
828 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
829 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
830 1.133 ad uvmexp.cpuhit++;
831 1.54 thorpej goto gotit;
832 1.133 ad }
833 1.133 ad /* global, try2 */
834 1.133 ad if ((pg = LIST_FIRST((freeq =
835 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
836 1.201 ad KASSERT(pg->flags & PG_FREE);
837 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
838 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
839 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
840 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
841 1.133 ad uvmexp.cpumiss++;
842 1.133 ad goto gotit;
843 1.133 ad }
844 1.60 thorpej color = (color + 1) & uvmexp.colormask;
845 1.58 enami } while (color != trycolor);
846 1.54 thorpej
847 1.54 thorpej return (NULL);
848 1.54 thorpej
849 1.54 thorpej gotit:
850 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
851 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
852 1.54 thorpej uvmexp.free--;
853 1.54 thorpej
854 1.54 thorpej /* update zero'd page count */
855 1.54 thorpej if (pg->flags & PG_ZERO)
856 1.54 thorpej uvmexp.zeropages--;
857 1.54 thorpej
858 1.54 thorpej if (color == trycolor)
859 1.54 thorpej uvmexp.colorhit++;
860 1.54 thorpej else {
861 1.54 thorpej uvmexp.colormiss++;
862 1.54 thorpej *trycolorp = color;
863 1.54 thorpej }
864 1.54 thorpej
865 1.54 thorpej return (pg);
866 1.54 thorpej }
867 1.54 thorpej
868 1.54 thorpej /*
869 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
870 1.1 mrg *
871 1.1 mrg * => return null if no pages free
872 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
873 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
874 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
875 1.1 mrg * => only one of obj or anon can be non-null
876 1.1 mrg * => caller must activate/deactivate page if it is not wired.
877 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
878 1.34 thorpej * => policy decision: it is more important to pull a page off of the
879 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
880 1.34 thorpej * unknown contents page. This is because we live with the
881 1.34 thorpej * consequences of a bad free list decision for the entire
882 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
883 1.34 thorpej * is slower to access.
884 1.1 mrg */
885 1.1 mrg
886 1.7 mrg struct vm_page *
887 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
888 1.105 thorpej int flags, int strat, int free_list)
889 1.1 mrg {
890 1.190 cherry int try1, try2, zeroit = 0, color;
891 1.202 ad int lcv, error;
892 1.133 ad struct uvm_cpu *ucpu;
893 1.7 mrg struct vm_page *pg;
894 1.141 ad lwp_t *l;
895 1.1 mrg
896 1.44 chs KASSERT(obj == NULL || anon == NULL);
897 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
898 1.44 chs KASSERT(off == trunc_page(off));
899 1.174 rmind KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
900 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
901 1.175 rmind mutex_owned(anon->an_lock));
902 1.48 thorpej
903 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
904 1.1 mrg
905 1.7 mrg /*
906 1.54 thorpej * This implements a global round-robin page coloring
907 1.54 thorpej * algorithm.
908 1.54 thorpej */
909 1.67 chs
910 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
911 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
912 1.169 matt color = atop(off) & uvmexp.colormask;
913 1.169 matt } else {
914 1.169 matt color = ucpu->page_free_nextcolor;
915 1.169 matt }
916 1.54 thorpej
917 1.54 thorpej /*
918 1.7 mrg * check to see if we need to generate some free pages waking
919 1.7 mrg * the pagedaemon.
920 1.7 mrg */
921 1.7 mrg
922 1.113 yamt uvm_kick_pdaemon();
923 1.7 mrg
924 1.7 mrg /*
925 1.7 mrg * fail if any of these conditions is true:
926 1.7 mrg * [1] there really are no free pages, or
927 1.7 mrg * [2] only kernel "reserved" pages remain and
928 1.141 ad * reserved pages have not been requested.
929 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
930 1.7 mrg * the requestor isn't the pagedaemon.
931 1.141 ad * we make kernel reserve pages available if called by a
932 1.141 ad * kernel thread or a realtime thread.
933 1.7 mrg */
934 1.141 ad l = curlwp;
935 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
936 1.141 ad flags |= UVM_PGA_USERESERVE;
937 1.141 ad }
938 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
939 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
940 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
941 1.141 ad curlwp != uvm.pagedaemon_lwp))
942 1.12 thorpej goto fail;
943 1.12 thorpej
944 1.34 thorpej #if PGFL_NQUEUES != 2
945 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
946 1.34 thorpej #endif
947 1.34 thorpej
948 1.34 thorpej /*
949 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
950 1.34 thorpej * we try the UNKNOWN queue first.
951 1.34 thorpej */
952 1.34 thorpej if (flags & UVM_PGA_ZERO) {
953 1.34 thorpej try1 = PGFL_ZEROS;
954 1.34 thorpej try2 = PGFL_UNKNOWN;
955 1.34 thorpej } else {
956 1.34 thorpej try1 = PGFL_UNKNOWN;
957 1.34 thorpej try2 = PGFL_ZEROS;
958 1.34 thorpej }
959 1.34 thorpej
960 1.12 thorpej again:
961 1.12 thorpej switch (strat) {
962 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
963 1.145 abs /* Check freelists: descending priority (ascending id) order */
964 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
965 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
966 1.54 thorpej try1, try2, &color);
967 1.54 thorpej if (pg != NULL)
968 1.12 thorpej goto gotit;
969 1.12 thorpej }
970 1.12 thorpej
971 1.12 thorpej /* No pages free! */
972 1.12 thorpej goto fail;
973 1.12 thorpej
974 1.12 thorpej case UVM_PGA_STRAT_ONLY:
975 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
976 1.12 thorpej /* Attempt to allocate from the specified free list. */
977 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
978 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
979 1.54 thorpej try1, try2, &color);
980 1.54 thorpej if (pg != NULL)
981 1.12 thorpej goto gotit;
982 1.12 thorpej
983 1.12 thorpej /* Fall back, if possible. */
984 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
985 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
986 1.12 thorpej goto again;
987 1.12 thorpej }
988 1.12 thorpej
989 1.12 thorpej /* No pages free! */
990 1.12 thorpej goto fail;
991 1.12 thorpej
992 1.12 thorpej default:
993 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
994 1.12 thorpej /* NOTREACHED */
995 1.7 mrg }
996 1.7 mrg
997 1.12 thorpej gotit:
998 1.54 thorpej /*
999 1.54 thorpej * We now know which color we actually allocated from; set
1000 1.54 thorpej * the next color accordingly.
1001 1.54 thorpej */
1002 1.67 chs
1003 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1004 1.34 thorpej
1005 1.34 thorpej /*
1006 1.34 thorpej * update allocation statistics and remember if we have to
1007 1.34 thorpej * zero the page
1008 1.34 thorpej */
1009 1.67 chs
1010 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1011 1.34 thorpej if (pg->flags & PG_ZERO) {
1012 1.34 thorpej uvmexp.pga_zerohit++;
1013 1.34 thorpej zeroit = 0;
1014 1.34 thorpej } else {
1015 1.34 thorpej uvmexp.pga_zeromiss++;
1016 1.34 thorpej zeroit = 1;
1017 1.34 thorpej }
1018 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1019 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1020 1.133 ad }
1021 1.34 thorpej }
1022 1.201 ad KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1023 1.7 mrg
1024 1.201 ad /*
1025 1.201 ad * For now check this - later on we may do lazy dequeue, but need
1026 1.201 ad * to get page.queue used only by the pagedaemon policy first.
1027 1.201 ad */
1028 1.201 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1029 1.201 ad
1030 1.201 ad /*
1031 1.201 ad * assign the page to the object. we don't need to lock the page's
1032 1.201 ad * identity to do this, as the caller holds the objects locked, and
1033 1.201 ad * the page is not on any paging queues at this time.
1034 1.201 ad */
1035 1.7 mrg pg->offset = off;
1036 1.7 mrg pg->uobject = obj;
1037 1.7 mrg pg->uanon = anon;
1038 1.201 ad KASSERT(uvm_page_locked_p(pg));
1039 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1040 1.202 ad mutex_spin_exit(&uvm_fpageqlock);
1041 1.7 mrg if (anon) {
1042 1.103 yamt anon->an_page = pg;
1043 1.201 ad pg->flags |= PG_ANON;
1044 1.126 ad atomic_inc_uint(&uvmexp.anonpages);
1045 1.201 ad } else if (obj) {
1046 1.202 ad error = uvm_pageinsert(obj, pg);
1047 1.202 ad if (error != 0) {
1048 1.202 ad pg->uobject = NULL;
1049 1.202 ad uvm_pagefree(pg);
1050 1.202 ad return NULL;
1051 1.202 ad }
1052 1.7 mrg }
1053 1.143 drochner
1054 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1055 1.7 mrg pg->owner_tag = NULL;
1056 1.1 mrg #endif
1057 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1058 1.33 thorpej
1059 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1060 1.33 thorpej /*
1061 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1062 1.34 thorpej * zero'd, then we have to zero it ourselves.
1063 1.33 thorpej */
1064 1.33 thorpej pg->flags &= ~PG_CLEAN;
1065 1.34 thorpej if (zeroit)
1066 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1067 1.33 thorpej }
1068 1.1 mrg
1069 1.7 mrg return(pg);
1070 1.12 thorpej
1071 1.12 thorpej fail:
1072 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1073 1.12 thorpej return (NULL);
1074 1.1 mrg }
1075 1.1 mrg
1076 1.1 mrg /*
1077 1.96 yamt * uvm_pagereplace: replace a page with another
1078 1.96 yamt *
1079 1.96 yamt * => object must be locked
1080 1.201 ad * => interlock must be held
1081 1.96 yamt */
1082 1.96 yamt
1083 1.96 yamt void
1084 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1085 1.96 yamt {
1086 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1087 1.97 junyoung
1088 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1089 1.136 yamt KASSERT(uobj != NULL);
1090 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1091 1.96 yamt KASSERT(newpg->uobject == NULL);
1092 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
1093 1.96 yamt
1094 1.136 yamt newpg->uobject = uobj;
1095 1.96 yamt newpg->offset = oldpg->offset;
1096 1.96 yamt
1097 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1098 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1099 1.203 ad uvm_pageinsert_object(uobj, newpg);
1100 1.203 ad uvm_pageremove_object(uobj, oldpg);
1101 1.96 yamt }
1102 1.96 yamt
1103 1.96 yamt /*
1104 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1105 1.1 mrg *
1106 1.1 mrg * => both objects must be locked
1107 1.201 ad * => both interlocks must be held
1108 1.1 mrg */
1109 1.1 mrg
1110 1.7 mrg void
1111 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1112 1.1 mrg {
1113 1.7 mrg /*
1114 1.7 mrg * remove it from the old object
1115 1.7 mrg */
1116 1.7 mrg
1117 1.7 mrg if (pg->uobject) {
1118 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1119 1.7 mrg }
1120 1.7 mrg
1121 1.7 mrg /*
1122 1.7 mrg * put it in the new object
1123 1.7 mrg */
1124 1.7 mrg
1125 1.7 mrg if (newobj) {
1126 1.7 mrg pg->uobject = newobj;
1127 1.7 mrg pg->offset = newoff;
1128 1.153 uebayasi uvm_pageinsert(newobj, pg);
1129 1.7 mrg }
1130 1.1 mrg }
1131 1.1 mrg
1132 1.91 yamt #ifdef DEBUG
1133 1.91 yamt /*
1134 1.91 yamt * check if page is zero-filled
1135 1.91 yamt */
1136 1.91 yamt void
1137 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1138 1.91 yamt {
1139 1.91 yamt int *p, *ep;
1140 1.91 yamt
1141 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1142 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1143 1.91 yamt
1144 1.91 yamt /*
1145 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1146 1.91 yamt * uvm page allocator.
1147 1.91 yamt *
1148 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1149 1.91 yamt */
1150 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1151 1.91 yamt p = (int *)uvm_zerocheckkva;
1152 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1153 1.92 yamt pmap_update(pmap_kernel());
1154 1.91 yamt while (p < ep) {
1155 1.91 yamt if (*p != 0)
1156 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1157 1.91 yamt p++;
1158 1.91 yamt }
1159 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1160 1.131 yamt /*
1161 1.131 yamt * pmap_update() is not necessary here because no one except us
1162 1.131 yamt * uses this VA.
1163 1.131 yamt */
1164 1.91 yamt }
1165 1.91 yamt #endif /* DEBUG */
1166 1.91 yamt
1167 1.1 mrg /*
1168 1.1 mrg * uvm_pagefree: free page
1169 1.1 mrg *
1170 1.133 ad * => erase page's identity (i.e. remove from object)
1171 1.1 mrg * => put page on free list
1172 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1173 1.1 mrg * => assumes all valid mappings of pg are gone
1174 1.1 mrg */
1175 1.1 mrg
1176 1.44 chs void
1177 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1178 1.1 mrg {
1179 1.133 ad struct pgflist *pgfl;
1180 1.133 ad struct uvm_cpu *ucpu;
1181 1.133 ad int index, color, queue;
1182 1.201 ad bool iszero, locked;
1183 1.67 chs
1184 1.44 chs #ifdef DEBUG
1185 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1186 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1187 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1188 1.44 chs }
1189 1.91 yamt #endif /* DEBUG */
1190 1.44 chs
1191 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1192 1.201 ad KASSERT(!(pg->flags & PG_FREE));
1193 1.182 matt //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1194 1.174 rmind KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1195 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1196 1.174 rmind mutex_owned(pg->uanon->an_lock));
1197 1.123 ad
1198 1.7 mrg /*
1199 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1200 1.7 mrg */
1201 1.7 mrg
1202 1.67 chs if (pg->loan_count) {
1203 1.70 chs KASSERT(pg->wire_count == 0);
1204 1.7 mrg
1205 1.7 mrg /*
1206 1.67 chs * if the page is owned by an anon then we just want to
1207 1.70 chs * drop anon ownership. the kernel will free the page when
1208 1.70 chs * it is done with it. if the page is owned by an object,
1209 1.70 chs * remove it from the object and mark it dirty for the benefit
1210 1.70 chs * of possible anon owners.
1211 1.70 chs *
1212 1.70 chs * regardless of previous ownership, wakeup any waiters,
1213 1.70 chs * unbusy the page, and we're done.
1214 1.7 mrg */
1215 1.7 mrg
1216 1.201 ad mutex_enter(&pg->interlock);
1217 1.201 ad locked = true;
1218 1.73 chs if (pg->uobject != NULL) {
1219 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1220 1.67 chs pg->flags &= ~PG_CLEAN;
1221 1.73 chs } else if (pg->uanon != NULL) {
1222 1.201 ad if ((pg->flags & PG_ANON) == 0) {
1223 1.73 chs pg->loan_count--;
1224 1.73 chs } else {
1225 1.201 ad pg->flags &= ~PG_ANON;
1226 1.201 ad atomic_dec_uint(&uvmexp.anonpages);
1227 1.73 chs }
1228 1.103 yamt pg->uanon->an_page = NULL;
1229 1.73 chs pg->uanon = NULL;
1230 1.67 chs }
1231 1.70 chs if (pg->flags & PG_WANTED) {
1232 1.70 chs wakeup(pg);
1233 1.70 chs }
1234 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1235 1.70 chs #ifdef UVM_PAGE_TRKOWN
1236 1.70 chs pg->owner_tag = NULL;
1237 1.70 chs #endif
1238 1.73 chs if (pg->loan_count) {
1239 1.115 yamt KASSERT(pg->uobject == NULL);
1240 1.201 ad mutex_exit(&pg->interlock);
1241 1.115 yamt if (pg->uanon == NULL) {
1242 1.115 yamt uvm_pagedequeue(pg);
1243 1.115 yamt }
1244 1.73 chs return;
1245 1.73 chs }
1246 1.201 ad } else if (pg->uobject != NULL || pg->uanon != NULL ||
1247 1.201 ad pg->wire_count != 0) {
1248 1.201 ad mutex_enter(&pg->interlock);
1249 1.201 ad locked = true;
1250 1.201 ad } else {
1251 1.201 ad locked = false;
1252 1.67 chs }
1253 1.62 chs
1254 1.67 chs /*
1255 1.67 chs * remove page from its object or anon.
1256 1.67 chs */
1257 1.73 chs if (pg->uobject != NULL) {
1258 1.153 uebayasi uvm_pageremove(pg->uobject, pg);
1259 1.73 chs } else if (pg->uanon != NULL) {
1260 1.103 yamt pg->uanon->an_page = NULL;
1261 1.201 ad pg->uanon = NULL;
1262 1.126 ad atomic_dec_uint(&uvmexp.anonpages);
1263 1.7 mrg }
1264 1.1 mrg
1265 1.7 mrg /*
1266 1.7 mrg * if the page was wired, unwire it now.
1267 1.7 mrg */
1268 1.44 chs
1269 1.34 thorpej if (pg->wire_count) {
1270 1.7 mrg pg->wire_count = 0;
1271 1.201 ad atomic_dec_uint(&uvmexp.wired);
1272 1.201 ad }
1273 1.201 ad if (locked) {
1274 1.201 ad mutex_exit(&pg->interlock);
1275 1.44 chs }
1276 1.7 mrg
1277 1.7 mrg /*
1278 1.201 ad * now remove the page from the queues.
1279 1.201 ad */
1280 1.201 ad uvm_pagedequeue(pg);
1281 1.201 ad
1282 1.201 ad /*
1283 1.44 chs * and put on free queue
1284 1.7 mrg */
1285 1.7 mrg
1286 1.90 yamt iszero = (pg->flags & PG_ZERO);
1287 1.133 ad index = uvm_page_lookup_freelist(pg);
1288 1.133 ad color = VM_PGCOLOR_BUCKET(pg);
1289 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1290 1.34 thorpej
1291 1.3 chs #ifdef DEBUG
1292 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1293 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1294 1.3 chs #endif
1295 1.90 yamt
1296 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1297 1.201 ad pg->flags = PG_FREE;
1298 1.91 yamt
1299 1.91 yamt #ifdef DEBUG
1300 1.91 yamt if (iszero)
1301 1.91 yamt uvm_pagezerocheck(pg);
1302 1.91 yamt #endif /* DEBUG */
1303 1.91 yamt
1304 1.133 ad
1305 1.133 ad /* global list */
1306 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1307 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1308 1.7 mrg uvmexp.free++;
1309 1.133 ad if (iszero) {
1310 1.90 yamt uvmexp.zeropages++;
1311 1.133 ad }
1312 1.34 thorpej
1313 1.133 ad /* per-cpu list */
1314 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1315 1.133 ad pg->offset = (uintptr_t)ucpu;
1316 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1317 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1318 1.133 ad ucpu->pages[queue]++;
1319 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1320 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1321 1.133 ad }
1322 1.34 thorpej
1323 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1324 1.44 chs }
1325 1.44 chs
1326 1.44 chs /*
1327 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1328 1.44 chs *
1329 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1330 1.44 chs * => if pages are object-owned, object must be locked.
1331 1.67 chs * => if pages are anon-owned, anons must be locked.
1332 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1333 1.44 chs */
1334 1.44 chs
1335 1.44 chs void
1336 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1337 1.44 chs {
1338 1.44 chs struct vm_page *pg;
1339 1.44 chs int i;
1340 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1341 1.44 chs
1342 1.44 chs for (i = 0; i < npgs; i++) {
1343 1.44 chs pg = pgs[i];
1344 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1345 1.44 chs continue;
1346 1.44 chs }
1347 1.98 yamt
1348 1.180 matt KASSERT(uvm_page_locked_p(pg));
1349 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1350 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1351 1.44 chs if (pg->flags & PG_WANTED) {
1352 1.201 ad /* XXXAD thundering herd problem. */
1353 1.44 chs wakeup(pg);
1354 1.44 chs }
1355 1.44 chs if (pg->flags & PG_RELEASED) {
1356 1.194 pgoyette UVMHIST_LOG(ubchist, "releasing pg %#jx",
1357 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1358 1.98 yamt KASSERT(pg->uobject != NULL ||
1359 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1360 1.67 chs pg->flags &= ~PG_RELEASED;
1361 1.67 chs uvm_pagefree(pg);
1362 1.44 chs } else {
1363 1.194 pgoyette UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1364 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1365 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1366 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1367 1.44 chs UVM_PAGE_OWN(pg, NULL);
1368 1.44 chs }
1369 1.44 chs }
1370 1.1 mrg }
1371 1.1 mrg
1372 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1373 1.1 mrg /*
1374 1.1 mrg * uvm_page_own: set or release page ownership
1375 1.1 mrg *
1376 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1377 1.1 mrg * and where they do it. it can be used to track down problems
1378 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1379 1.1 mrg * => page's object [if any] must be locked
1380 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1381 1.1 mrg */
1382 1.7 mrg void
1383 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1384 1.1 mrg {
1385 1.112 yamt
1386 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1387 1.184 chs KASSERT((pg->flags & PG_WANTED) == 0);
1388 1.180 matt KASSERT(uvm_page_locked_p(pg));
1389 1.112 yamt
1390 1.7 mrg /* gain ownership? */
1391 1.7 mrg if (tag) {
1392 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1393 1.7 mrg if (pg->owner_tag) {
1394 1.7 mrg printf("uvm_page_own: page %p already owned "
1395 1.7 mrg "by proc %d [%s]\n", pg,
1396 1.74 enami pg->owner, pg->owner_tag);
1397 1.7 mrg panic("uvm_page_own");
1398 1.7 mrg }
1399 1.184 chs pg->owner = curproc->p_pid;
1400 1.184 chs pg->lowner = curlwp->l_lid;
1401 1.7 mrg pg->owner_tag = tag;
1402 1.7 mrg return;
1403 1.7 mrg }
1404 1.7 mrg
1405 1.7 mrg /* drop ownership */
1406 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1407 1.7 mrg if (pg->owner_tag == NULL) {
1408 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1409 1.7 mrg "page (%p)\n", pg);
1410 1.7 mrg panic("uvm_page_own");
1411 1.7 mrg }
1412 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1413 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1414 1.115 yamt pg->wire_count > 0);
1415 1.115 yamt } else {
1416 1.115 yamt KASSERT(pg->wire_count == 0);
1417 1.115 yamt }
1418 1.7 mrg pg->owner_tag = NULL;
1419 1.1 mrg }
1420 1.1 mrg #endif
1421 1.34 thorpej
1422 1.34 thorpej /*
1423 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1424 1.34 thorpej *
1425 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1426 1.54 thorpej * on the CPU cache.
1427 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1428 1.132 ad * to run, or MD code detects a reason to break early.
1429 1.34 thorpej */
1430 1.34 thorpej void
1431 1.105 thorpej uvm_pageidlezero(void)
1432 1.34 thorpej {
1433 1.34 thorpej struct vm_page *pg;
1434 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1435 1.133 ad struct uvm_cpu *ucpu;
1436 1.133 ad int free_list, firstbucket, nextbucket;
1437 1.172 rmind bool lcont = false;
1438 1.133 ad
1439 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1440 1.133 ad if (!ucpu->page_idle_zero ||
1441 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1442 1.133 ad ucpu->page_idle_zero = false;
1443 1.132 ad return;
1444 1.132 ad }
1445 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1446 1.172 rmind /* Contention: let other CPUs to use the lock. */
1447 1.172 rmind return;
1448 1.172 rmind }
1449 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1450 1.133 ad nextbucket = firstbucket;
1451 1.58 enami do {
1452 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1453 1.139 ad if (sched_curcpu_runnable_p()) {
1454 1.139 ad goto quit;
1455 1.139 ad }
1456 1.133 ad pgfl = &ucpu->page_free[free_list];
1457 1.133 ad gpgfl = &uvm.page_free[free_list];
1458 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1459 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1460 1.172 rmind if (lcont || sched_curcpu_runnable_p()) {
1461 1.101 yamt goto quit;
1462 1.132 ad }
1463 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1464 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1465 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1466 1.54 thorpej uvmexp.free--;
1467 1.201 ad KASSERT(pg->flags == PG_FREE);
1468 1.201 ad pg->flags = 0;
1469 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1470 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1471 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1472 1.67 chs
1473 1.54 thorpej /*
1474 1.54 thorpej * The machine-dependent code detected
1475 1.54 thorpej * some reason for us to abort zeroing
1476 1.54 thorpej * pages, probably because there is a
1477 1.54 thorpej * process now ready to run.
1478 1.54 thorpej */
1479 1.67 chs
1480 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1481 1.201 ad pg->flags = PG_FREE;
1482 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1483 1.133 ad nextbucket].pgfl_queues[
1484 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1485 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1486 1.54 thorpej nextbucket].pgfl_queues[
1487 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1488 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1489 1.54 thorpej uvmexp.free++;
1490 1.54 thorpej uvmexp.zeroaborts++;
1491 1.101 yamt goto quit;
1492 1.54 thorpej }
1493 1.54 thorpej #else
1494 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1495 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1496 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1497 1.172 rmind lcont = true;
1498 1.172 rmind mutex_spin_enter(&uvm_fpageqlock);
1499 1.172 rmind } else {
1500 1.172 rmind lcont = false;
1501 1.172 rmind }
1502 1.201 ad pg->flags = PG_FREE | PG_ZERO;
1503 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1504 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1505 1.133 ad pg, pageq.list);
1506 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1507 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1508 1.133 ad pg, listq.list);
1509 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1510 1.54 thorpej uvmexp.free++;
1511 1.54 thorpej uvmexp.zeropages++;
1512 1.54 thorpej }
1513 1.41 thorpej }
1514 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1515 1.133 ad break;
1516 1.133 ad }
1517 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1518 1.58 enami } while (nextbucket != firstbucket);
1519 1.133 ad ucpu->page_idle_zero = false;
1520 1.133 ad quit:
1521 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1522 1.34 thorpej }
1523 1.110 yamt
1524 1.110 yamt /*
1525 1.110 yamt * uvm_pagelookup: look up a page
1526 1.110 yamt *
1527 1.110 yamt * => caller should lock object to keep someone from pulling the page
1528 1.110 yamt * out from under it
1529 1.110 yamt */
1530 1.110 yamt
1531 1.110 yamt struct vm_page *
1532 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1533 1.110 yamt {
1534 1.110 yamt struct vm_page *pg;
1535 1.110 yamt
1536 1.203 ad /* No - used from DDB. KASSERT(mutex_owned(obj->vmobjlock)); */
1537 1.123 ad
1538 1.202 ad pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1539 1.134 ad
1540 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1541 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1542 1.110 yamt (pg->flags & PG_BUSY) != 0);
1543 1.156 rmind return pg;
1544 1.110 yamt }
1545 1.110 yamt
1546 1.110 yamt /*
1547 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1548 1.110 yamt *
1549 1.201 ad * => caller must lock objects
1550 1.110 yamt */
1551 1.110 yamt
1552 1.110 yamt void
1553 1.110 yamt uvm_pagewire(struct vm_page *pg)
1554 1.110 yamt {
1555 1.201 ad
1556 1.201 ad KASSERT(uvm_page_locked_p(pg));
1557 1.113 yamt #if defined(READAHEAD_STATS)
1558 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1559 1.113 yamt uvm_ra_hit.ev_count++;
1560 1.201 ad pg->flags &= ~PG_READAHEAD;
1561 1.113 yamt }
1562 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1563 1.110 yamt if (pg->wire_count == 0) {
1564 1.110 yamt uvm_pagedequeue(pg);
1565 1.201 ad atomic_inc_uint(&uvmexp.wired);
1566 1.110 yamt }
1567 1.201 ad mutex_enter(&pg->interlock);
1568 1.110 yamt pg->wire_count++;
1569 1.201 ad mutex_exit(&pg->interlock);
1570 1.197 jdolecek KASSERT(pg->wire_count > 0); /* detect wraparound */
1571 1.110 yamt }
1572 1.110 yamt
1573 1.110 yamt /*
1574 1.110 yamt * uvm_pageunwire: unwire the page.
1575 1.110 yamt *
1576 1.110 yamt * => activate if wire count goes to zero.
1577 1.201 ad * => caller must lock objects
1578 1.110 yamt */
1579 1.110 yamt
1580 1.110 yamt void
1581 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1582 1.110 yamt {
1583 1.201 ad
1584 1.201 ad KASSERT(uvm_page_locked_p(pg));
1585 1.199 kre KASSERT(pg->wire_count != 0);
1586 1.201 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1587 1.201 ad mutex_enter(&pg->interlock);
1588 1.110 yamt pg->wire_count--;
1589 1.201 ad mutex_exit(&pg->interlock);
1590 1.110 yamt if (pg->wire_count == 0) {
1591 1.111 yamt uvm_pageactivate(pg);
1592 1.199 kre KASSERT(uvmexp.wired != 0);
1593 1.201 ad atomic_dec_uint(&uvmexp.wired);
1594 1.110 yamt }
1595 1.110 yamt }
1596 1.110 yamt
1597 1.110 yamt /*
1598 1.110 yamt * uvm_pagedeactivate: deactivate page
1599 1.110 yamt *
1600 1.201 ad * => caller must lock objects
1601 1.110 yamt * => caller must check to make sure page is not wired
1602 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1603 1.110 yamt * => caller must clear the reference on the page before calling
1604 1.110 yamt */
1605 1.110 yamt
1606 1.110 yamt void
1607 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1608 1.110 yamt {
1609 1.113 yamt
1610 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1611 1.201 ad if (pg->wire_count == 0) {
1612 1.201 ad KASSERT(uvmpdpol_pageisqueued_p(pg));
1613 1.201 ad uvmpdpol_pagedeactivate(pg);
1614 1.201 ad }
1615 1.110 yamt }
1616 1.110 yamt
1617 1.110 yamt /*
1618 1.110 yamt * uvm_pageactivate: activate page
1619 1.110 yamt *
1620 1.201 ad * => caller must lock objects
1621 1.110 yamt */
1622 1.110 yamt
1623 1.110 yamt void
1624 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1625 1.110 yamt {
1626 1.113 yamt
1627 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1628 1.113 yamt #if defined(READAHEAD_STATS)
1629 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1630 1.113 yamt uvm_ra_hit.ev_count++;
1631 1.201 ad pg->flags &= ~PG_READAHEAD;
1632 1.113 yamt }
1633 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1634 1.201 ad if (pg->wire_count == 0) {
1635 1.201 ad uvmpdpol_pageactivate(pg);
1636 1.110 yamt }
1637 1.110 yamt }
1638 1.110 yamt
1639 1.110 yamt /*
1640 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1641 1.201 ad *
1642 1.201 ad * => caller must lock objects
1643 1.110 yamt */
1644 1.110 yamt void
1645 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1646 1.110 yamt {
1647 1.113 yamt
1648 1.201 ad KASSERT(uvm_page_locked_p(pg));
1649 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1650 1.201 ad uvmpdpol_pagedequeue(pg);
1651 1.110 yamt }
1652 1.113 yamt }
1653 1.113 yamt
1654 1.113 yamt /*
1655 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1656 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1657 1.201 ad *
1658 1.201 ad * => caller must lock objects
1659 1.113 yamt */
1660 1.113 yamt void
1661 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1662 1.113 yamt {
1663 1.113 yamt
1664 1.201 ad KASSERT(uvm_page_locked_p(pg));
1665 1.201 ad if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1666 1.201 ad uvmpdpol_pageenqueue(pg);
1667 1.113 yamt }
1668 1.110 yamt }
1669 1.110 yamt
1670 1.110 yamt /*
1671 1.110 yamt * uvm_pagezero: zero fill a page
1672 1.110 yamt *
1673 1.110 yamt * => if page is part of an object then the object should be locked
1674 1.110 yamt * to protect pg->flags.
1675 1.110 yamt */
1676 1.110 yamt
1677 1.110 yamt void
1678 1.110 yamt uvm_pagezero(struct vm_page *pg)
1679 1.110 yamt {
1680 1.110 yamt pg->flags &= ~PG_CLEAN;
1681 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1682 1.110 yamt }
1683 1.110 yamt
1684 1.110 yamt /*
1685 1.110 yamt * uvm_pagecopy: copy a page
1686 1.110 yamt *
1687 1.110 yamt * => if page is part of an object then the object should be locked
1688 1.110 yamt * to protect pg->flags.
1689 1.110 yamt */
1690 1.110 yamt
1691 1.110 yamt void
1692 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1693 1.110 yamt {
1694 1.110 yamt
1695 1.110 yamt dst->flags &= ~PG_CLEAN;
1696 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1697 1.110 yamt }
1698 1.110 yamt
1699 1.110 yamt /*
1700 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1701 1.150 thorpej */
1702 1.150 thorpej
1703 1.150 thorpej bool
1704 1.150 thorpej uvm_pageismanaged(paddr_t pa)
1705 1.150 thorpej {
1706 1.150 thorpej
1707 1.190 cherry return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1708 1.150 thorpej }
1709 1.150 thorpej
1710 1.150 thorpej /*
1711 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1712 1.110 yamt */
1713 1.110 yamt
1714 1.110 yamt int
1715 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1716 1.110 yamt {
1717 1.190 cherry uvm_physseg_t upm;
1718 1.110 yamt
1719 1.190 cherry upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1720 1.190 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1721 1.190 cherry return uvm_physseg_get_free_list(upm);
1722 1.110 yamt }
1723 1.151 thorpej
1724 1.174 rmind /*
1725 1.174 rmind * uvm_page_locked_p: return true if object associated with page is
1726 1.174 rmind * locked. this is a weak check for runtime assertions only.
1727 1.174 rmind */
1728 1.174 rmind
1729 1.174 rmind bool
1730 1.174 rmind uvm_page_locked_p(struct vm_page *pg)
1731 1.174 rmind {
1732 1.174 rmind
1733 1.174 rmind if (pg->uobject != NULL) {
1734 1.174 rmind return mutex_owned(pg->uobject->vmobjlock);
1735 1.174 rmind }
1736 1.174 rmind if (pg->uanon != NULL) {
1737 1.174 rmind return mutex_owned(pg->uanon->an_lock);
1738 1.174 rmind }
1739 1.174 rmind return true;
1740 1.174 rmind }
1741 1.174 rmind
1742 1.198 jdolecek #ifdef PMAP_DIRECT
1743 1.198 jdolecek /*
1744 1.198 jdolecek * Call pmap to translate physical address into a virtual and to run a callback
1745 1.198 jdolecek * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1746 1.198 jdolecek * or equivalent.
1747 1.198 jdolecek */
1748 1.198 jdolecek int
1749 1.198 jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1750 1.198 jdolecek int (*process)(void *, size_t, void *), void *arg)
1751 1.198 jdolecek {
1752 1.198 jdolecek int error = 0;
1753 1.198 jdolecek paddr_t pa;
1754 1.198 jdolecek size_t todo;
1755 1.198 jdolecek voff_t pgoff = (off & PAGE_MASK);
1756 1.198 jdolecek struct vm_page *pg;
1757 1.198 jdolecek
1758 1.198 jdolecek KASSERT(npages > 0 && len > 0);
1759 1.198 jdolecek
1760 1.198 jdolecek for (int i = 0; i < npages; i++) {
1761 1.198 jdolecek pg = pgs[i];
1762 1.198 jdolecek
1763 1.198 jdolecek KASSERT(len > 0);
1764 1.198 jdolecek
1765 1.198 jdolecek /*
1766 1.198 jdolecek * Caller is responsible for ensuring all the pages are
1767 1.198 jdolecek * available.
1768 1.198 jdolecek */
1769 1.198 jdolecek KASSERT(pg != NULL && pg != PGO_DONTCARE);
1770 1.198 jdolecek
1771 1.198 jdolecek pa = VM_PAGE_TO_PHYS(pg);
1772 1.198 jdolecek todo = MIN(len, PAGE_SIZE - pgoff);
1773 1.198 jdolecek
1774 1.198 jdolecek error = pmap_direct_process(pa, pgoff, todo, process, arg);
1775 1.198 jdolecek if (error)
1776 1.198 jdolecek break;
1777 1.198 jdolecek
1778 1.198 jdolecek pgoff = 0;
1779 1.198 jdolecek len -= todo;
1780 1.198 jdolecek }
1781 1.198 jdolecek
1782 1.198 jdolecek KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1783 1.198 jdolecek return error;
1784 1.198 jdolecek }
1785 1.198 jdolecek #endif /* PMAP_DIRECT */
1786 1.198 jdolecek
1787 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
1788 1.151 thorpej
1789 1.151 thorpej /*
1790 1.151 thorpej * uvm_page_printit: actually print the page
1791 1.151 thorpej */
1792 1.151 thorpej
1793 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
1794 1.151 thorpej
1795 1.151 thorpej void
1796 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
1797 1.151 thorpej void (*pr)(const char *, ...))
1798 1.151 thorpej {
1799 1.151 thorpej struct vm_page *tpg;
1800 1.151 thorpej struct uvm_object *uobj;
1801 1.151 thorpej struct pgflist *pgl;
1802 1.151 thorpej char pgbuf[128];
1803 1.151 thorpej
1804 1.151 thorpej (*pr)("PAGE %p:\n", pg);
1805 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1806 1.201 ad (*pr)(" flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
1807 1.201 ad pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1808 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1809 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1810 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
1811 1.151 thorpej if (pg->flags & PG_BUSY)
1812 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
1813 1.151 thorpej pg->owner, pg->owner_tag);
1814 1.151 thorpej else
1815 1.151 thorpej (*pr)(" page not busy, no owner\n");
1816 1.151 thorpej #else
1817 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
1818 1.151 thorpej #endif
1819 1.151 thorpej
1820 1.151 thorpej if (!full)
1821 1.151 thorpej return;
1822 1.151 thorpej
1823 1.151 thorpej /* cross-verify object/anon */
1824 1.201 ad if ((pg->flags & PG_FREE) == 0) {
1825 1.201 ad if (pg->flags & PG_ANON) {
1826 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
1827 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1828 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
1829 1.151 thorpej else
1830 1.151 thorpej (*pr)(" anon backpointer is OK\n");
1831 1.151 thorpej } else {
1832 1.151 thorpej uobj = pg->uobject;
1833 1.151 thorpej if (uobj) {
1834 1.151 thorpej (*pr)(" checking object list\n");
1835 1.203 ad tpg = uvm_pagelookup(uobj, pg->offset);
1836 1.151 thorpej if (tpg)
1837 1.151 thorpej (*pr)(" page found on object list\n");
1838 1.151 thorpej else
1839 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1840 1.151 thorpej }
1841 1.151 thorpej }
1842 1.151 thorpej }
1843 1.151 thorpej
1844 1.151 thorpej /* cross-verify page queue */
1845 1.201 ad if (pg->flags & PG_FREE) {
1846 1.151 thorpej int fl = uvm_page_lookup_freelist(pg);
1847 1.151 thorpej int color = VM_PGCOLOR_BUCKET(pg);
1848 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1849 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1850 1.151 thorpej } else {
1851 1.151 thorpej pgl = NULL;
1852 1.151 thorpej }
1853 1.151 thorpej
1854 1.151 thorpej if (pgl) {
1855 1.151 thorpej (*pr)(" checking pageq list\n");
1856 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
1857 1.151 thorpej if (tpg == pg) {
1858 1.151 thorpej break;
1859 1.151 thorpej }
1860 1.151 thorpej }
1861 1.151 thorpej if (tpg)
1862 1.151 thorpej (*pr)(" page found on pageq list\n");
1863 1.151 thorpej else
1864 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1865 1.151 thorpej }
1866 1.151 thorpej }
1867 1.151 thorpej
1868 1.151 thorpej /*
1869 1.201 ad * uvm_page_printall - print a summary of all managed pages
1870 1.151 thorpej */
1871 1.151 thorpej
1872 1.151 thorpej void
1873 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
1874 1.151 thorpej {
1875 1.190 cherry uvm_physseg_t i;
1876 1.190 cherry paddr_t pfn;
1877 1.151 thorpej struct vm_page *pg;
1878 1.151 thorpej
1879 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
1880 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1881 1.151 thorpej " OWNER"
1882 1.151 thorpej #endif
1883 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1884 1.190 cherry for (i = uvm_physseg_get_first();
1885 1.190 cherry uvm_physseg_valid_p(i);
1886 1.190 cherry i = uvm_physseg_get_next(i)) {
1887 1.190 cherry for (pfn = uvm_physseg_get_start(i);
1888 1.192 maya pfn < uvm_physseg_get_end(i);
1889 1.190 cherry pfn++) {
1890 1.190 cherry pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1891 1.190 cherry
1892 1.201 ad (*pr)("%18p %04x %08x %18p %18p",
1893 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
1894 1.151 thorpej pg->uanon);
1895 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1896 1.151 thorpej if (pg->flags & PG_BUSY)
1897 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1898 1.151 thorpej #endif
1899 1.151 thorpej (*pr)("\n");
1900 1.151 thorpej }
1901 1.151 thorpej }
1902 1.151 thorpej }
1903 1.151 thorpej
1904 1.151 thorpej #endif /* DDB || DEBUGPRINT */
1905