uvm_page.c revision 1.211 1 1.211 ad /* $NetBSD: uvm_page.c,v 1.211 2019/12/21 15:16:14 ad Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.62 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.62 chs *
49 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.62 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_page.c: page ops.
66 1.1 mrg */
67 1.71 lukem
68 1.71 lukem #include <sys/cdefs.h>
69 1.211 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.211 2019/12/21 15:16:14 ad Exp $");
70 1.6 mrg
71 1.151 thorpej #include "opt_ddb.h"
72 1.187 joerg #include "opt_uvm.h"
73 1.44 chs #include "opt_uvmhist.h"
74 1.113 yamt #include "opt_readahead.h"
75 1.44 chs
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.68 chs #include <sys/proc.h>
82 1.202 ad #include <sys/radixtree.h>
83 1.126 ad #include <sys/atomic.h>
84 1.133 ad #include <sys/cpu.h>
85 1.190 cherry #include <sys/extent.h>
86 1.1 mrg
87 1.1 mrg #include <uvm/uvm.h>
88 1.151 thorpej #include <uvm/uvm_ddb.h>
89 1.113 yamt #include <uvm/uvm_pdpolicy.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.36 thorpej * Some supported CPUs in a given architecture don't support all
93 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
94 1.155 ad * We therefore provide a way to enable it from machdep code here.
95 1.44 chs */
96 1.119 thorpej bool vm_page_zero_enable = false;
97 1.34 thorpej
98 1.34 thorpej /*
99 1.140 ad * number of pages per-CPU to reserve for the kernel.
100 1.140 ad */
101 1.187 joerg #ifndef UVM_RESERVED_PAGES_PER_CPU
102 1.187 joerg #define UVM_RESERVED_PAGES_PER_CPU 5
103 1.187 joerg #endif
104 1.187 joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
105 1.140 ad
106 1.140 ad /*
107 1.148 matt * physical memory size;
108 1.148 matt */
109 1.189 cherry psize_t physmem;
110 1.148 matt
111 1.148 matt /*
112 1.1 mrg * local variables
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
117 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
118 1.88 thorpej * and pmap_startup here also uses them internally.
119 1.88 thorpej */
120 1.88 thorpej
121 1.88 thorpej static vaddr_t virtual_space_start;
122 1.88 thorpej static vaddr_t virtual_space_end;
123 1.88 thorpej
124 1.88 thorpej /*
125 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
126 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
127 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
128 1.60 thorpej * free the initial set of buckets, since they are allocated using
129 1.60 thorpej * uvm_pageboot_alloc().
130 1.60 thorpej */
131 1.60 thorpej
132 1.179 para static size_t recolored_pages_memsize /* = 0 */;
133 1.60 thorpej
134 1.91 yamt #ifdef DEBUG
135 1.91 yamt vaddr_t uvm_zerocheckkva;
136 1.91 yamt #endif /* DEBUG */
137 1.91 yamt
138 1.60 thorpej /*
139 1.190 cherry * These functions are reserved for uvm(9) internal use and are not
140 1.190 cherry * exported in the header file uvm_physseg.h
141 1.190 cherry *
142 1.190 cherry * Thus they are redefined here.
143 1.190 cherry */
144 1.190 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
145 1.190 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
146 1.190 cherry
147 1.190 cherry /* returns a pgs array */
148 1.190 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
149 1.190 cherry
150 1.190 cherry /*
151 1.1 mrg * inline functions
152 1.1 mrg */
153 1.1 mrg
154 1.1 mrg /*
155 1.134 ad * uvm_pageinsert: insert a page in the object.
156 1.1 mrg *
157 1.1 mrg * => caller must lock object
158 1.1 mrg * => call should have already set pg's object and offset pointers
159 1.1 mrg * and bumped the version counter
160 1.1 mrg */
161 1.1 mrg
162 1.136 yamt static inline void
163 1.203 ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
164 1.1 mrg {
165 1.1 mrg
166 1.136 yamt KASSERT(uobj == pg->uobject);
167 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
168 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
169 1.123 ad
170 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
171 1.94 yamt if (uobj->uo_npages == 0) {
172 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
173 1.94 yamt
174 1.94 yamt vholdl(vp);
175 1.94 yamt }
176 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
177 1.205 ad cpu_count(CPU_COUNT_EXECPAGES, 1);
178 1.94 yamt } else {
179 1.205 ad cpu_count(CPU_COUNT_FILEPAGES, 1);
180 1.94 yamt }
181 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
182 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, 1);
183 1.78 chs }
184 1.7 mrg pg->flags |= PG_TABLED;
185 1.67 chs uobj->uo_npages++;
186 1.1 mrg }
187 1.1 mrg
188 1.202 ad static inline int
189 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
190 1.136 yamt {
191 1.202 ad const uint64_t idx = pg->offset >> PAGE_SHIFT;
192 1.202 ad int error;
193 1.136 yamt
194 1.202 ad error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
195 1.202 ad if (error != 0) {
196 1.202 ad return error;
197 1.202 ad }
198 1.202 ad return 0;
199 1.136 yamt }
200 1.136 yamt
201 1.1 mrg /*
202 1.134 ad * uvm_page_remove: remove page from object.
203 1.1 mrg *
204 1.1 mrg * => caller must lock object
205 1.1 mrg */
206 1.1 mrg
207 1.109 perry static inline void
208 1.203 ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
209 1.1 mrg {
210 1.1 mrg
211 1.136 yamt KASSERT(uobj == pg->uobject);
212 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
213 1.44 chs KASSERT(pg->flags & PG_TABLED);
214 1.123 ad
215 1.94 yamt if (UVM_OBJ_IS_VNODE(uobj)) {
216 1.94 yamt if (uobj->uo_npages == 1) {
217 1.94 yamt struct vnode *vp = (struct vnode *)uobj;
218 1.94 yamt
219 1.94 yamt holdrelel(vp);
220 1.94 yamt }
221 1.94 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
222 1.205 ad cpu_count(CPU_COUNT_EXECPAGES, -1);
223 1.94 yamt } else {
224 1.205 ad cpu_count(CPU_COUNT_FILEPAGES, -1);
225 1.94 yamt }
226 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
227 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, -1);
228 1.51 chs }
229 1.44 chs
230 1.7 mrg /* object should be locked */
231 1.67 chs uobj->uo_npages--;
232 1.7 mrg pg->flags &= ~PG_TABLED;
233 1.7 mrg pg->uobject = NULL;
234 1.1 mrg }
235 1.1 mrg
236 1.136 yamt static inline void
237 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
238 1.136 yamt {
239 1.202 ad struct vm_page *opg __unused;
240 1.136 yamt
241 1.202 ad opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
242 1.202 ad KASSERT(pg == opg);
243 1.136 yamt }
244 1.136 yamt
245 1.60 thorpej static void
246 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
247 1.60 thorpej {
248 1.60 thorpej int color, i;
249 1.60 thorpej
250 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
251 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
252 1.133 ad LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
253 1.60 thorpej }
254 1.60 thorpej }
255 1.60 thorpej }
256 1.60 thorpej
257 1.1 mrg /*
258 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
259 1.62 chs *
260 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
261 1.1 mrg */
262 1.1 mrg
263 1.7 mrg void
264 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
265 1.1 mrg {
266 1.155 ad static struct uvm_cpu boot_cpu;
267 1.154 jym psize_t freepages, pagecount, bucketcount, n;
268 1.133 ad struct pgflbucket *bucketarray, *cpuarray;
269 1.63 chs struct vm_page *pagearray;
270 1.190 cherry uvm_physseg_t bank;
271 1.81 thorpej int lcv;
272 1.7 mrg
273 1.133 ad KASSERT(ncpu <= 1);
274 1.138 matt CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
275 1.133 ad
276 1.7 mrg /*
277 1.201 ad * init the page queues and free page queue lock, except the
278 1.201 ad * free list; we allocate that later (with the initial vm_page
279 1.60 thorpej * structures).
280 1.7 mrg */
281 1.51 chs
282 1.155 ad uvm.cpus[0] = &boot_cpu;
283 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
284 1.113 yamt uvmpdpol_init();
285 1.123 ad mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
286 1.7 mrg
287 1.7 mrg /*
288 1.51 chs * allocate vm_page structures.
289 1.7 mrg */
290 1.7 mrg
291 1.7 mrg /*
292 1.7 mrg * sanity check:
293 1.7 mrg * before calling this function the MD code is expected to register
294 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
295 1.7 mrg * now is to allocate vm_page structures for this memory.
296 1.7 mrg */
297 1.7 mrg
298 1.190 cherry if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
299 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
300 1.62 chs
301 1.7 mrg /*
302 1.62 chs * first calculate the number of free pages...
303 1.7 mrg *
304 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
305 1.7 mrg * this allows us to allocate extra vm_page structures in case we
306 1.7 mrg * want to return some memory to the pool after booting.
307 1.7 mrg */
308 1.62 chs
309 1.7 mrg freepages = 0;
310 1.190 cherry
311 1.190 cherry for (bank = uvm_physseg_get_first();
312 1.190 cherry uvm_physseg_valid_p(bank) ;
313 1.190 cherry bank = uvm_physseg_get_next(bank)) {
314 1.190 cherry freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
315 1.158 uebayasi }
316 1.7 mrg
317 1.7 mrg /*
318 1.60 thorpej * Let MD code initialize the number of colors, or default
319 1.60 thorpej * to 1 color if MD code doesn't care.
320 1.60 thorpej */
321 1.60 thorpej if (uvmexp.ncolors == 0)
322 1.60 thorpej uvmexp.ncolors = 1;
323 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
324 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
325 1.60 thorpej
326 1.60 thorpej /*
327 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
328 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
329 1.7 mrg * thus, the total number of pages we can use is the total size of
330 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
331 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
332 1.7 mrg * truncation errors (since we can only allocate in terms of whole
333 1.7 mrg * pages).
334 1.7 mrg */
335 1.62 chs
336 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
337 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
338 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
339 1.60 thorpej
340 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
341 1.133 ad sizeof(struct pgflbucket) * 2) + (pagecount *
342 1.60 thorpej sizeof(struct vm_page)));
343 1.133 ad cpuarray = bucketarray + bucketcount;
344 1.133 ad pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
345 1.60 thorpej
346 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
347 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
348 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
349 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
350 1.155 ad uvm.cpus[0]->page_free[lcv].pgfl_buckets =
351 1.133 ad (cpuarray + (lcv * uvmexp.ncolors));
352 1.155 ad uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
353 1.60 thorpej }
354 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
355 1.62 chs
356 1.7 mrg /*
357 1.51 chs * init the vm_page structures and put them in the correct place.
358 1.7 mrg */
359 1.190 cherry /* First init the extent */
360 1.7 mrg
361 1.190 cherry for (bank = uvm_physseg_get_first(),
362 1.190 cherry uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
363 1.190 cherry uvm_physseg_valid_p(bank);
364 1.190 cherry bank = uvm_physseg_get_next(bank)) {
365 1.190 cherry
366 1.190 cherry n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
367 1.190 cherry uvm_physseg_seg_alloc_from_slab(bank, n);
368 1.190 cherry uvm_physseg_init_seg(bank, pagearray);
369 1.51 chs
370 1.7 mrg /* set up page array pointers */
371 1.7 mrg pagearray += n;
372 1.7 mrg pagecount -= n;
373 1.7 mrg }
374 1.44 chs
375 1.7 mrg /*
376 1.88 thorpej * pass up the values of virtual_space_start and
377 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
378 1.88 thorpej * layers of the VM.
379 1.88 thorpej */
380 1.88 thorpej
381 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
382 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
383 1.91 yamt #ifdef DEBUG
384 1.91 yamt /*
385 1.91 yamt * steal kva for uvm_pagezerocheck().
386 1.91 yamt */
387 1.91 yamt uvm_zerocheckkva = *kvm_startp;
388 1.91 yamt *kvm_startp += PAGE_SIZE;
389 1.91 yamt #endif /* DEBUG */
390 1.88 thorpej
391 1.88 thorpej /*
392 1.51 chs * init various thresholds.
393 1.7 mrg */
394 1.51 chs
395 1.7 mrg uvmexp.reserve_pagedaemon = 1;
396 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
397 1.7 mrg
398 1.7 mrg /*
399 1.51 chs * determine if we should zero pages in the idle loop.
400 1.34 thorpej */
401 1.51 chs
402 1.155 ad uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
403 1.34 thorpej
404 1.34 thorpej /*
405 1.7 mrg * done!
406 1.7 mrg */
407 1.1 mrg
408 1.119 thorpej uvm.page_init_done = true;
409 1.1 mrg }
410 1.1 mrg
411 1.1 mrg /*
412 1.1 mrg * uvm_setpagesize: set the page size
413 1.62 chs *
414 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
415 1.62 chs */
416 1.1 mrg
417 1.7 mrg void
418 1.105 thorpej uvm_setpagesize(void)
419 1.1 mrg {
420 1.85 thorpej
421 1.85 thorpej /*
422 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
423 1.85 thorpej * to be a constant (indicated by being a non-zero value).
424 1.85 thorpej */
425 1.85 thorpej if (uvmexp.pagesize == 0) {
426 1.85 thorpej if (PAGE_SIZE == 0)
427 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
428 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
429 1.85 thorpej }
430 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
431 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
432 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
433 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
434 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
435 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
436 1.7 mrg break;
437 1.1 mrg }
438 1.1 mrg
439 1.1 mrg /*
440 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
441 1.1 mrg */
442 1.1 mrg
443 1.14 eeh vaddr_t
444 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
445 1.1 mrg {
446 1.119 thorpej static bool initialized = false;
447 1.14 eeh vaddr_t addr;
448 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
449 1.52 thorpej vaddr_t vaddr;
450 1.14 eeh paddr_t paddr;
451 1.52 thorpej #endif
452 1.1 mrg
453 1.7 mrg /*
454 1.19 thorpej * on first call to this function, initialize ourselves.
455 1.7 mrg */
456 1.119 thorpej if (initialized == false) {
457 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
458 1.1 mrg
459 1.7 mrg /* round it the way we like it */
460 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
461 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
462 1.19 thorpej
463 1.119 thorpej initialized = true;
464 1.7 mrg }
465 1.52 thorpej
466 1.52 thorpej /* round to page size */
467 1.52 thorpej size = round_page(size);
468 1.195 mrg uvmexp.bootpages += atop(size);
469 1.52 thorpej
470 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
471 1.52 thorpej
472 1.62 chs /*
473 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
474 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
475 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
476 1.52 thorpej */
477 1.52 thorpej
478 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
479 1.88 thorpej &virtual_space_end);
480 1.52 thorpej
481 1.52 thorpej return(addr);
482 1.52 thorpej
483 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
484 1.1 mrg
485 1.7 mrg /*
486 1.7 mrg * allocate virtual memory for this request
487 1.7 mrg */
488 1.88 thorpej if (virtual_space_start == virtual_space_end ||
489 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
490 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
491 1.20 thorpej
492 1.88 thorpej addr = virtual_space_start;
493 1.20 thorpej
494 1.20 thorpej #ifdef PMAP_GROWKERNEL
495 1.20 thorpej /*
496 1.20 thorpej * If the kernel pmap can't map the requested space,
497 1.20 thorpej * then allocate more resources for it.
498 1.20 thorpej */
499 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
500 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
501 1.20 thorpej if (uvm_maxkaddr < (addr + size))
502 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
503 1.19 thorpej }
504 1.20 thorpej #endif
505 1.1 mrg
506 1.88 thorpej virtual_space_start += size;
507 1.1 mrg
508 1.9 thorpej /*
509 1.7 mrg * allocate and mapin physical pages to back new virtual pages
510 1.7 mrg */
511 1.1 mrg
512 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
513 1.7 mrg vaddr += PAGE_SIZE) {
514 1.1 mrg
515 1.7 mrg if (!uvm_page_physget(&paddr))
516 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
517 1.1 mrg
518 1.23 thorpej /*
519 1.23 thorpej * Note this memory is no longer managed, so using
520 1.23 thorpej * pmap_kenter is safe.
521 1.23 thorpej */
522 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
523 1.7 mrg }
524 1.66 chris pmap_update(pmap_kernel());
525 1.7 mrg return(addr);
526 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
527 1.1 mrg }
528 1.1 mrg
529 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
530 1.1 mrg /*
531 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
532 1.1 mrg *
533 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
534 1.1 mrg * values match the start/end values. if we can't do that, then we
535 1.1 mrg * will advance both values (making them equal, and removing some
536 1.1 mrg * vm_page structures from the non-avail area).
537 1.1 mrg * => return false if out of memory.
538 1.1 mrg */
539 1.1 mrg
540 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
541 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
542 1.28 drochner
543 1.118 thorpej static bool
544 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
545 1.1 mrg {
546 1.190 cherry uvm_physseg_t lcv;
547 1.1 mrg
548 1.7 mrg /* pass 1: try allocating from a matching end */
549 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
550 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
551 1.1 mrg #else
552 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
553 1.1 mrg #endif
554 1.7 mrg {
555 1.119 thorpej if (uvm.page_init_done == true)
556 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
557 1.1 mrg
558 1.190 cherry /* Try to match at front or back on unused segment */
559 1.200 maxv if (uvm_page_physunload(lcv, freelist, paddrp))
560 1.190 cherry return true;
561 1.191 skrll }
562 1.1 mrg
563 1.7 mrg /* pass2: forget about matching ends, just allocate something */
564 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
565 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
566 1.1 mrg #else
567 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
568 1.1 mrg #endif
569 1.7 mrg {
570 1.190 cherry /* Try the front regardless. */
571 1.200 maxv if (uvm_page_physunload_force(lcv, freelist, paddrp))
572 1.190 cherry return true;
573 1.190 cherry }
574 1.190 cherry return false;
575 1.28 drochner }
576 1.28 drochner
577 1.118 thorpej bool
578 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
579 1.28 drochner {
580 1.28 drochner int i;
581 1.28 drochner
582 1.28 drochner /* try in the order of freelist preference */
583 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
584 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
585 1.119 thorpej return (true);
586 1.119 thorpej return (false);
587 1.1 mrg }
588 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
589 1.1 mrg
590 1.1 mrg /*
591 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
592 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
593 1.163 uebayasi */
594 1.163 uebayasi struct vm_page *
595 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
596 1.163 uebayasi {
597 1.163 uebayasi paddr_t pf = atop(pa);
598 1.190 cherry paddr_t off;
599 1.190 cherry uvm_physseg_t upm;
600 1.163 uebayasi
601 1.190 cherry upm = uvm_physseg_find(pf, &off);
602 1.190 cherry if (upm != UVM_PHYSSEG_TYPE_INVALID)
603 1.190 cherry return uvm_physseg_get_pg(upm, off);
604 1.163 uebayasi return(NULL);
605 1.163 uebayasi }
606 1.163 uebayasi
607 1.163 uebayasi paddr_t
608 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
609 1.163 uebayasi {
610 1.163 uebayasi
611 1.211 ad return pg->phys_addr & ~(PAGE_SIZE - 1);
612 1.163 uebayasi }
613 1.163 uebayasi
614 1.163 uebayasi /*
615 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
616 1.60 thorpej * larger than the old one.
617 1.60 thorpej */
618 1.60 thorpej
619 1.60 thorpej void
620 1.60 thorpej uvm_page_recolor(int newncolors)
621 1.60 thorpej {
622 1.133 ad struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
623 1.133 ad struct pgfreelist gpgfl, pgfl;
624 1.63 chs struct vm_page *pg;
625 1.60 thorpej vsize_t bucketcount;
626 1.179 para size_t bucketmemsize, oldbucketmemsize;
627 1.190 cherry int color, i, ocolors;
628 1.190 cherry int lcv;
629 1.133 ad struct uvm_cpu *ucpu;
630 1.60 thorpej
631 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
632 1.178 uebayasi
633 1.60 thorpej if (newncolors <= uvmexp.ncolors)
634 1.60 thorpej return;
635 1.77 wrstuden
636 1.119 thorpej if (uvm.page_init_done == false) {
637 1.77 wrstuden uvmexp.ncolors = newncolors;
638 1.77 wrstuden return;
639 1.77 wrstuden }
640 1.60 thorpej
641 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
642 1.179 para bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
643 1.179 para bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
644 1.133 ad cpuarray = bucketarray + bucketcount;
645 1.60 thorpej
646 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
647 1.60 thorpej
648 1.60 thorpej /* Make sure we should still do this. */
649 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
650 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
651 1.179 para kmem_free(bucketarray, bucketmemsize);
652 1.60 thorpej return;
653 1.60 thorpej }
654 1.60 thorpej
655 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
656 1.60 thorpej ocolors = uvmexp.ncolors;
657 1.60 thorpej
658 1.60 thorpej uvmexp.ncolors = newncolors;
659 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
660 1.60 thorpej
661 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
662 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
663 1.133 ad gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
664 1.133 ad pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
665 1.133 ad uvm_page_init_buckets(&gpgfl);
666 1.60 thorpej uvm_page_init_buckets(&pgfl);
667 1.60 thorpej for (color = 0; color < ocolors; color++) {
668 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
669 1.133 ad while ((pg = LIST_FIRST(&uvm.page_free[
670 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
671 1.60 thorpej != NULL) {
672 1.133 ad LIST_REMOVE(pg, pageq.list); /* global */
673 1.133 ad LIST_REMOVE(pg, listq.list); /* cpu */
674 1.133 ad LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
675 1.209 ad VM_PGCOLOR(pg)].pgfl_queues[
676 1.133 ad i], pg, pageq.list);
677 1.133 ad LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
678 1.209 ad VM_PGCOLOR(pg)].pgfl_queues[
679 1.133 ad i], pg, listq.list);
680 1.60 thorpej }
681 1.60 thorpej }
682 1.60 thorpej }
683 1.133 ad uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
684 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
685 1.60 thorpej }
686 1.60 thorpej
687 1.179 para oldbucketmemsize = recolored_pages_memsize;
688 1.177 mrg
689 1.179 para recolored_pages_memsize = bucketmemsize;
690 1.177 mrg mutex_spin_exit(&uvm_fpageqlock);
691 1.176 matt
692 1.179 para if (oldbucketmemsize) {
693 1.196 jakllsch kmem_free(oldbucketarray, oldbucketmemsize);
694 1.179 para }
695 1.60 thorpej
696 1.177 mrg /*
697 1.177 mrg * this calls uvm_km_alloc() which may want to hold
698 1.177 mrg * uvm_fpageqlock.
699 1.177 mrg */
700 1.177 mrg uvm_pager_realloc_emerg();
701 1.60 thorpej }
702 1.1 mrg
703 1.1 mrg /*
704 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
705 1.133 ad */
706 1.133 ad
707 1.133 ad void
708 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
709 1.133 ad {
710 1.133 ad struct pgflbucket *bucketarray;
711 1.133 ad struct pgfreelist pgfl;
712 1.133 ad struct uvm_cpu *ucpu;
713 1.133 ad vsize_t bucketcount;
714 1.133 ad int lcv;
715 1.133 ad
716 1.133 ad if (CPU_IS_PRIMARY(ci)) {
717 1.133 ad /* Already done in uvm_page_init(). */
718 1.181 tls goto attachrnd;
719 1.133 ad }
720 1.133 ad
721 1.140 ad /* Add more reserve pages for this CPU. */
722 1.140 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
723 1.140 ad
724 1.140 ad /* Configure this CPU's free lists. */
725 1.133 ad bucketcount = uvmexp.ncolors * VM_NFREELIST;
726 1.179 para bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
727 1.179 para KM_SLEEP);
728 1.155 ad ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
729 1.155 ad uvm.cpus[cpu_index(ci)] = ucpu;
730 1.133 ad ci->ci_data.cpu_uvm = ucpu;
731 1.133 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
732 1.133 ad pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
733 1.133 ad uvm_page_init_buckets(&pgfl);
734 1.133 ad ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
735 1.133 ad }
736 1.181 tls
737 1.181 tls attachrnd:
738 1.181 tls /*
739 1.181 tls * Attach RNG source for this CPU's VM events
740 1.181 tls */
741 1.181 tls rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
742 1.185 tls ci->ci_data.cpu_name, RND_TYPE_VM,
743 1.185 tls RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
744 1.185 tls RND_FLAG_ESTIMATE_VALUE);
745 1.181 tls
746 1.133 ad }
747 1.133 ad
748 1.133 ad /*
749 1.207 ad * uvm_free: return total number of free pages in system.
750 1.207 ad */
751 1.207 ad
752 1.207 ad int
753 1.207 ad uvm_free(void)
754 1.207 ad {
755 1.207 ad
756 1.207 ad return uvmexp.free;
757 1.207 ad }
758 1.207 ad
759 1.207 ad /*
760 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
761 1.54 thorpej */
762 1.54 thorpej
763 1.114 thorpej static struct vm_page *
764 1.133 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
765 1.69 simonb int *trycolorp)
766 1.54 thorpej {
767 1.133 ad struct pgflist *freeq;
768 1.54 thorpej struct vm_page *pg;
769 1.58 enami int color, trycolor = *trycolorp;
770 1.133 ad struct pgfreelist *gpgfl, *pgfl;
771 1.54 thorpej
772 1.130 ad KASSERT(mutex_owned(&uvm_fpageqlock));
773 1.130 ad
774 1.58 enami color = trycolor;
775 1.133 ad pgfl = &ucpu->page_free[flist];
776 1.133 ad gpgfl = &uvm.page_free[flist];
777 1.58 enami do {
778 1.133 ad /* cpu, try1 */
779 1.133 ad if ((pg = LIST_FIRST((freeq =
780 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
781 1.201 ad KASSERT(pg->flags & PG_FREE);
782 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
783 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
784 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
785 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
786 1.205 ad CPU_COUNT(CPU_COUNT_CPUHIT, 1);
787 1.133 ad goto gotit;
788 1.133 ad }
789 1.133 ad /* global, try1 */
790 1.133 ad if ((pg = LIST_FIRST((freeq =
791 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
792 1.201 ad KASSERT(pg->flags & PG_FREE);
793 1.182 matt KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
794 1.182 matt KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
795 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
796 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
797 1.205 ad CPU_COUNT(CPU_COUNT_CPUMISS, 1);
798 1.54 thorpej goto gotit;
799 1.133 ad }
800 1.133 ad /* cpu, try2 */
801 1.133 ad if ((pg = LIST_FIRST((freeq =
802 1.133 ad &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
803 1.201 ad KASSERT(pg->flags & PG_FREE);
804 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
805 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
806 1.182 matt KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
807 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
808 1.205 ad CPU_COUNT(CPU_COUNT_CPUHIT, 1);
809 1.54 thorpej goto gotit;
810 1.133 ad }
811 1.133 ad /* global, try2 */
812 1.133 ad if ((pg = LIST_FIRST((freeq =
813 1.133 ad &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
814 1.201 ad KASSERT(pg->flags & PG_FREE);
815 1.182 matt KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
816 1.182 matt KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
817 1.182 matt KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
818 1.133 ad VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
819 1.205 ad CPU_COUNT(CPU_COUNT_CPUMISS, 1);
820 1.133 ad goto gotit;
821 1.133 ad }
822 1.60 thorpej color = (color + 1) & uvmexp.colormask;
823 1.58 enami } while (color != trycolor);
824 1.54 thorpej
825 1.54 thorpej return (NULL);
826 1.54 thorpej
827 1.54 thorpej gotit:
828 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
829 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
830 1.54 thorpej uvmexp.free--;
831 1.54 thorpej
832 1.54 thorpej /* update zero'd page count */
833 1.54 thorpej if (pg->flags & PG_ZERO)
834 1.205 ad CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
835 1.54 thorpej
836 1.54 thorpej if (color == trycolor)
837 1.205 ad CPU_COUNT(CPU_COUNT_COLORHIT, 1);
838 1.54 thorpej else {
839 1.205 ad CPU_COUNT(CPU_COUNT_COLORMISS, 1);
840 1.54 thorpej *trycolorp = color;
841 1.54 thorpej }
842 1.54 thorpej
843 1.54 thorpej return (pg);
844 1.54 thorpej }
845 1.54 thorpej
846 1.54 thorpej /*
847 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
848 1.1 mrg *
849 1.1 mrg * => return null if no pages free
850 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
851 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
852 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
853 1.1 mrg * => only one of obj or anon can be non-null
854 1.1 mrg * => caller must activate/deactivate page if it is not wired.
855 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
856 1.34 thorpej * => policy decision: it is more important to pull a page off of the
857 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
858 1.34 thorpej * unknown contents page. This is because we live with the
859 1.34 thorpej * consequences of a bad free list decision for the entire
860 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
861 1.34 thorpej * is slower to access.
862 1.1 mrg */
863 1.1 mrg
864 1.7 mrg struct vm_page *
865 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
866 1.105 thorpej int flags, int strat, int free_list)
867 1.1 mrg {
868 1.190 cherry int try1, try2, zeroit = 0, color;
869 1.202 ad int lcv, error;
870 1.133 ad struct uvm_cpu *ucpu;
871 1.7 mrg struct vm_page *pg;
872 1.141 ad lwp_t *l;
873 1.1 mrg
874 1.44 chs KASSERT(obj == NULL || anon == NULL);
875 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
876 1.44 chs KASSERT(off == trunc_page(off));
877 1.174 rmind KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
878 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
879 1.175 rmind mutex_owned(anon->an_lock));
880 1.48 thorpej
881 1.7 mrg /*
882 1.54 thorpej * This implements a global round-robin page coloring
883 1.54 thorpej * algorithm.
884 1.54 thorpej */
885 1.67 chs
886 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
887 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
888 1.169 matt color = atop(off) & uvmexp.colormask;
889 1.169 matt } else {
890 1.169 matt color = ucpu->page_free_nextcolor;
891 1.169 matt }
892 1.54 thorpej
893 1.54 thorpej /*
894 1.7 mrg * check to see if we need to generate some free pages waking
895 1.7 mrg * the pagedaemon.
896 1.7 mrg */
897 1.7 mrg
898 1.113 yamt uvm_kick_pdaemon();
899 1.7 mrg
900 1.7 mrg /*
901 1.7 mrg * fail if any of these conditions is true:
902 1.7 mrg * [1] there really are no free pages, or
903 1.7 mrg * [2] only kernel "reserved" pages remain and
904 1.141 ad * reserved pages have not been requested.
905 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
906 1.7 mrg * the requestor isn't the pagedaemon.
907 1.141 ad * we make kernel reserve pages available if called by a
908 1.141 ad * kernel thread or a realtime thread.
909 1.7 mrg */
910 1.210 ad mutex_spin_enter(&uvm_fpageqlock);
911 1.141 ad l = curlwp;
912 1.141 ad if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
913 1.141 ad flags |= UVM_PGA_USERESERVE;
914 1.141 ad }
915 1.141 ad if ((uvmexp.free <= uvmexp.reserve_kernel &&
916 1.141 ad (flags & UVM_PGA_USERESERVE) == 0) ||
917 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
918 1.141 ad curlwp != uvm.pagedaemon_lwp))
919 1.12 thorpej goto fail;
920 1.12 thorpej
921 1.34 thorpej #if PGFL_NQUEUES != 2
922 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
923 1.34 thorpej #endif
924 1.34 thorpej
925 1.34 thorpej /*
926 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
927 1.34 thorpej * we try the UNKNOWN queue first.
928 1.34 thorpej */
929 1.34 thorpej if (flags & UVM_PGA_ZERO) {
930 1.34 thorpej try1 = PGFL_ZEROS;
931 1.34 thorpej try2 = PGFL_UNKNOWN;
932 1.34 thorpej } else {
933 1.34 thorpej try1 = PGFL_UNKNOWN;
934 1.34 thorpej try2 = PGFL_ZEROS;
935 1.34 thorpej }
936 1.34 thorpej
937 1.12 thorpej again:
938 1.12 thorpej switch (strat) {
939 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
940 1.145 abs /* Check freelists: descending priority (ascending id) order */
941 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
942 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, lcv,
943 1.54 thorpej try1, try2, &color);
944 1.54 thorpej if (pg != NULL)
945 1.12 thorpej goto gotit;
946 1.12 thorpej }
947 1.12 thorpej
948 1.12 thorpej /* No pages free! */
949 1.12 thorpej goto fail;
950 1.12 thorpej
951 1.12 thorpej case UVM_PGA_STRAT_ONLY:
952 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
953 1.12 thorpej /* Attempt to allocate from the specified free list. */
954 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
955 1.133 ad pg = uvm_pagealloc_pgfl(ucpu, free_list,
956 1.54 thorpej try1, try2, &color);
957 1.54 thorpej if (pg != NULL)
958 1.12 thorpej goto gotit;
959 1.12 thorpej
960 1.12 thorpej /* Fall back, if possible. */
961 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
962 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
963 1.12 thorpej goto again;
964 1.12 thorpej }
965 1.12 thorpej
966 1.12 thorpej /* No pages free! */
967 1.12 thorpej goto fail;
968 1.12 thorpej
969 1.12 thorpej default:
970 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
971 1.12 thorpej /* NOTREACHED */
972 1.7 mrg }
973 1.7 mrg
974 1.12 thorpej gotit:
975 1.54 thorpej /*
976 1.54 thorpej * We now know which color we actually allocated from; set
977 1.54 thorpej * the next color accordingly.
978 1.54 thorpej */
979 1.67 chs
980 1.133 ad ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
981 1.34 thorpej
982 1.34 thorpej /*
983 1.34 thorpej * update allocation statistics and remember if we have to
984 1.34 thorpej * zero the page
985 1.34 thorpej */
986 1.67 chs
987 1.34 thorpej if (flags & UVM_PGA_ZERO) {
988 1.34 thorpej if (pg->flags & PG_ZERO) {
989 1.205 ad CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
990 1.34 thorpej zeroit = 0;
991 1.34 thorpej } else {
992 1.205 ad CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
993 1.34 thorpej zeroit = 1;
994 1.34 thorpej }
995 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
996 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
997 1.133 ad }
998 1.34 thorpej }
999 1.201 ad KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1000 1.7 mrg
1001 1.201 ad /*
1002 1.201 ad * For now check this - later on we may do lazy dequeue, but need
1003 1.201 ad * to get page.queue used only by the pagedaemon policy first.
1004 1.201 ad */
1005 1.201 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1006 1.201 ad
1007 1.201 ad /*
1008 1.201 ad * assign the page to the object. we don't need to lock the page's
1009 1.201 ad * identity to do this, as the caller holds the objects locked, and
1010 1.201 ad * the page is not on any paging queues at this time.
1011 1.201 ad */
1012 1.7 mrg pg->offset = off;
1013 1.7 mrg pg->uobject = obj;
1014 1.7 mrg pg->uanon = anon;
1015 1.201 ad KASSERT(uvm_page_locked_p(pg));
1016 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1017 1.202 ad mutex_spin_exit(&uvm_fpageqlock);
1018 1.7 mrg if (anon) {
1019 1.103 yamt anon->an_page = pg;
1020 1.201 ad pg->flags |= PG_ANON;
1021 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, 1);
1022 1.201 ad } else if (obj) {
1023 1.206 ad uvm_pageinsert_object(obj, pg);
1024 1.206 ad error = uvm_pageinsert_tree(obj, pg);
1025 1.202 ad if (error != 0) {
1026 1.206 ad uvm_pageremove_object(obj, pg);
1027 1.202 ad uvm_pagefree(pg);
1028 1.202 ad return NULL;
1029 1.202 ad }
1030 1.7 mrg }
1031 1.143 drochner
1032 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1033 1.7 mrg pg->owner_tag = NULL;
1034 1.1 mrg #endif
1035 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1036 1.33 thorpej
1037 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1038 1.33 thorpej /*
1039 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1040 1.34 thorpej * zero'd, then we have to zero it ourselves.
1041 1.33 thorpej */
1042 1.33 thorpej pg->flags &= ~PG_CLEAN;
1043 1.34 thorpej if (zeroit)
1044 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1045 1.33 thorpej }
1046 1.1 mrg
1047 1.7 mrg return(pg);
1048 1.12 thorpej
1049 1.12 thorpej fail:
1050 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1051 1.12 thorpej return (NULL);
1052 1.1 mrg }
1053 1.1 mrg
1054 1.1 mrg /*
1055 1.96 yamt * uvm_pagereplace: replace a page with another
1056 1.96 yamt *
1057 1.96 yamt * => object must be locked
1058 1.96 yamt */
1059 1.96 yamt
1060 1.96 yamt void
1061 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1062 1.96 yamt {
1063 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1064 1.97 junyoung
1065 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1066 1.136 yamt KASSERT(uobj != NULL);
1067 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1068 1.96 yamt KASSERT(newpg->uobject == NULL);
1069 1.174 rmind KASSERT(mutex_owned(uobj->vmobjlock));
1070 1.96 yamt
1071 1.96 yamt newpg->offset = oldpg->offset;
1072 1.136 yamt uvm_pageremove_tree(uobj, oldpg);
1073 1.136 yamt uvm_pageinsert_tree(uobj, newpg);
1074 1.206 ad
1075 1.206 ad /* take page interlocks during rename */
1076 1.206 ad if (oldpg < newpg) {
1077 1.206 ad mutex_enter(&oldpg->interlock);
1078 1.206 ad mutex_enter(&newpg->interlock);
1079 1.206 ad } else {
1080 1.206 ad mutex_enter(&newpg->interlock);
1081 1.206 ad mutex_enter(&oldpg->interlock);
1082 1.206 ad }
1083 1.206 ad newpg->uobject = uobj;
1084 1.203 ad uvm_pageinsert_object(uobj, newpg);
1085 1.203 ad uvm_pageremove_object(uobj, oldpg);
1086 1.206 ad mutex_exit(&oldpg->interlock);
1087 1.206 ad mutex_exit(&newpg->interlock);
1088 1.96 yamt }
1089 1.96 yamt
1090 1.96 yamt /*
1091 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1092 1.1 mrg *
1093 1.1 mrg * => both objects must be locked
1094 1.201 ad * => both interlocks must be held
1095 1.1 mrg */
1096 1.1 mrg
1097 1.7 mrg void
1098 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1099 1.1 mrg {
1100 1.7 mrg /*
1101 1.7 mrg * remove it from the old object
1102 1.7 mrg */
1103 1.7 mrg
1104 1.7 mrg if (pg->uobject) {
1105 1.206 ad uvm_pageremove_tree(pg->uobject, pg);
1106 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1107 1.7 mrg }
1108 1.7 mrg
1109 1.7 mrg /*
1110 1.7 mrg * put it in the new object
1111 1.7 mrg */
1112 1.7 mrg
1113 1.7 mrg if (newobj) {
1114 1.204 ad /*
1115 1.204 ad * XXX we have no in-tree users of this functionality
1116 1.204 ad */
1117 1.204 ad panic("uvm_pagerealloc: no impl");
1118 1.7 mrg }
1119 1.1 mrg }
1120 1.1 mrg
1121 1.91 yamt #ifdef DEBUG
1122 1.91 yamt /*
1123 1.91 yamt * check if page is zero-filled
1124 1.91 yamt */
1125 1.91 yamt void
1126 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1127 1.91 yamt {
1128 1.91 yamt int *p, *ep;
1129 1.91 yamt
1130 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1131 1.123 ad KASSERT(mutex_owned(&uvm_fpageqlock));
1132 1.91 yamt
1133 1.91 yamt /*
1134 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1135 1.91 yamt * uvm page allocator.
1136 1.91 yamt *
1137 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1138 1.91 yamt */
1139 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1140 1.91 yamt p = (int *)uvm_zerocheckkva;
1141 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1142 1.92 yamt pmap_update(pmap_kernel());
1143 1.91 yamt while (p < ep) {
1144 1.91 yamt if (*p != 0)
1145 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1146 1.91 yamt p++;
1147 1.91 yamt }
1148 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1149 1.131 yamt /*
1150 1.131 yamt * pmap_update() is not necessary here because no one except us
1151 1.131 yamt * uses this VA.
1152 1.131 yamt */
1153 1.91 yamt }
1154 1.91 yamt #endif /* DEBUG */
1155 1.91 yamt
1156 1.1 mrg /*
1157 1.1 mrg * uvm_pagefree: free page
1158 1.1 mrg *
1159 1.133 ad * => erase page's identity (i.e. remove from object)
1160 1.1 mrg * => put page on free list
1161 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1162 1.1 mrg * => assumes all valid mappings of pg are gone
1163 1.1 mrg */
1164 1.1 mrg
1165 1.44 chs void
1166 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1167 1.1 mrg {
1168 1.133 ad struct pgflist *pgfl;
1169 1.133 ad struct uvm_cpu *ucpu;
1170 1.133 ad int index, color, queue;
1171 1.201 ad bool iszero, locked;
1172 1.67 chs
1173 1.44 chs #ifdef DEBUG
1174 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1175 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1176 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1177 1.44 chs }
1178 1.91 yamt #endif /* DEBUG */
1179 1.44 chs
1180 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1181 1.201 ad KASSERT(!(pg->flags & PG_FREE));
1182 1.182 matt //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1183 1.174 rmind KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1184 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1185 1.174 rmind mutex_owned(pg->uanon->an_lock));
1186 1.123 ad
1187 1.7 mrg /*
1188 1.206 ad * remove the page from the object's tree beore acquiring any page
1189 1.206 ad * interlocks: this can acquire locks to free radixtree nodes.
1190 1.206 ad */
1191 1.206 ad if (pg->uobject != NULL) {
1192 1.206 ad uvm_pageremove_tree(pg->uobject, pg);
1193 1.206 ad }
1194 1.206 ad
1195 1.206 ad /*
1196 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1197 1.7 mrg */
1198 1.7 mrg
1199 1.67 chs if (pg->loan_count) {
1200 1.70 chs KASSERT(pg->wire_count == 0);
1201 1.7 mrg
1202 1.7 mrg /*
1203 1.67 chs * if the page is owned by an anon then we just want to
1204 1.70 chs * drop anon ownership. the kernel will free the page when
1205 1.70 chs * it is done with it. if the page is owned by an object,
1206 1.70 chs * remove it from the object and mark it dirty for the benefit
1207 1.70 chs * of possible anon owners.
1208 1.70 chs *
1209 1.70 chs * regardless of previous ownership, wakeup any waiters,
1210 1.70 chs * unbusy the page, and we're done.
1211 1.7 mrg */
1212 1.7 mrg
1213 1.201 ad mutex_enter(&pg->interlock);
1214 1.201 ad locked = true;
1215 1.73 chs if (pg->uobject != NULL) {
1216 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1217 1.67 chs pg->flags &= ~PG_CLEAN;
1218 1.73 chs } else if (pg->uanon != NULL) {
1219 1.201 ad if ((pg->flags & PG_ANON) == 0) {
1220 1.73 chs pg->loan_count--;
1221 1.73 chs } else {
1222 1.201 ad pg->flags &= ~PG_ANON;
1223 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, -1);
1224 1.73 chs }
1225 1.103 yamt pg->uanon->an_page = NULL;
1226 1.73 chs pg->uanon = NULL;
1227 1.67 chs }
1228 1.70 chs if (pg->flags & PG_WANTED) {
1229 1.70 chs wakeup(pg);
1230 1.70 chs }
1231 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1232 1.70 chs #ifdef UVM_PAGE_TRKOWN
1233 1.70 chs pg->owner_tag = NULL;
1234 1.70 chs #endif
1235 1.73 chs if (pg->loan_count) {
1236 1.115 yamt KASSERT(pg->uobject == NULL);
1237 1.201 ad mutex_exit(&pg->interlock);
1238 1.115 yamt if (pg->uanon == NULL) {
1239 1.115 yamt uvm_pagedequeue(pg);
1240 1.115 yamt }
1241 1.73 chs return;
1242 1.73 chs }
1243 1.201 ad } else if (pg->uobject != NULL || pg->uanon != NULL ||
1244 1.201 ad pg->wire_count != 0) {
1245 1.201 ad mutex_enter(&pg->interlock);
1246 1.201 ad locked = true;
1247 1.201 ad } else {
1248 1.201 ad locked = false;
1249 1.67 chs }
1250 1.62 chs
1251 1.67 chs /*
1252 1.67 chs * remove page from its object or anon.
1253 1.67 chs */
1254 1.73 chs if (pg->uobject != NULL) {
1255 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1256 1.73 chs } else if (pg->uanon != NULL) {
1257 1.103 yamt pg->uanon->an_page = NULL;
1258 1.201 ad pg->uanon = NULL;
1259 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, -1);
1260 1.7 mrg }
1261 1.1 mrg
1262 1.7 mrg /*
1263 1.7 mrg * if the page was wired, unwire it now.
1264 1.7 mrg */
1265 1.44 chs
1266 1.34 thorpej if (pg->wire_count) {
1267 1.7 mrg pg->wire_count = 0;
1268 1.201 ad atomic_dec_uint(&uvmexp.wired);
1269 1.201 ad }
1270 1.201 ad if (locked) {
1271 1.201 ad mutex_exit(&pg->interlock);
1272 1.44 chs }
1273 1.7 mrg
1274 1.7 mrg /*
1275 1.201 ad * now remove the page from the queues.
1276 1.201 ad */
1277 1.201 ad uvm_pagedequeue(pg);
1278 1.201 ad
1279 1.201 ad /*
1280 1.44 chs * and put on free queue
1281 1.7 mrg */
1282 1.7 mrg
1283 1.90 yamt iszero = (pg->flags & PG_ZERO);
1284 1.209 ad index = uvm_page_get_freelist(pg);
1285 1.209 ad color = VM_PGCOLOR(pg);
1286 1.133 ad queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1287 1.34 thorpej
1288 1.3 chs #ifdef DEBUG
1289 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1290 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1291 1.3 chs #endif
1292 1.90 yamt
1293 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1294 1.201 ad pg->flags = PG_FREE;
1295 1.91 yamt
1296 1.91 yamt #ifdef DEBUG
1297 1.91 yamt if (iszero)
1298 1.91 yamt uvm_pagezerocheck(pg);
1299 1.91 yamt #endif /* DEBUG */
1300 1.91 yamt
1301 1.133 ad
1302 1.133 ad /* global list */
1303 1.133 ad pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1304 1.133 ad LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1305 1.7 mrg uvmexp.free++;
1306 1.133 ad if (iszero) {
1307 1.205 ad CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
1308 1.133 ad }
1309 1.34 thorpej
1310 1.133 ad /* per-cpu list */
1311 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1312 1.133 ad pg->offset = (uintptr_t)ucpu;
1313 1.133 ad pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1314 1.133 ad LIST_INSERT_HEAD(pgfl, pg, listq.list);
1315 1.133 ad ucpu->pages[queue]++;
1316 1.133 ad if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1317 1.133 ad ucpu->page_idle_zero = vm_page_zero_enable;
1318 1.133 ad }
1319 1.34 thorpej
1320 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1321 1.44 chs }
1322 1.44 chs
1323 1.44 chs /*
1324 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1325 1.44 chs *
1326 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1327 1.44 chs * => if pages are object-owned, object must be locked.
1328 1.67 chs * => if pages are anon-owned, anons must be locked.
1329 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1330 1.44 chs */
1331 1.44 chs
1332 1.44 chs void
1333 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1334 1.44 chs {
1335 1.44 chs struct vm_page *pg;
1336 1.44 chs int i;
1337 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1338 1.44 chs
1339 1.44 chs for (i = 0; i < npgs; i++) {
1340 1.44 chs pg = pgs[i];
1341 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1342 1.44 chs continue;
1343 1.44 chs }
1344 1.98 yamt
1345 1.180 matt KASSERT(uvm_page_locked_p(pg));
1346 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1347 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1348 1.44 chs if (pg->flags & PG_WANTED) {
1349 1.201 ad /* XXXAD thundering herd problem. */
1350 1.44 chs wakeup(pg);
1351 1.44 chs }
1352 1.44 chs if (pg->flags & PG_RELEASED) {
1353 1.194 pgoyette UVMHIST_LOG(ubchist, "releasing pg %#jx",
1354 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1355 1.98 yamt KASSERT(pg->uobject != NULL ||
1356 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1357 1.67 chs pg->flags &= ~PG_RELEASED;
1358 1.67 chs uvm_pagefree(pg);
1359 1.44 chs } else {
1360 1.194 pgoyette UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1361 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1362 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1363 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1364 1.44 chs UVM_PAGE_OWN(pg, NULL);
1365 1.44 chs }
1366 1.44 chs }
1367 1.1 mrg }
1368 1.1 mrg
1369 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1370 1.1 mrg /*
1371 1.1 mrg * uvm_page_own: set or release page ownership
1372 1.1 mrg *
1373 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1374 1.1 mrg * and where they do it. it can be used to track down problems
1375 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1376 1.1 mrg * => page's object [if any] must be locked
1377 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1378 1.1 mrg */
1379 1.7 mrg void
1380 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1381 1.1 mrg {
1382 1.112 yamt
1383 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1384 1.184 chs KASSERT((pg->flags & PG_WANTED) == 0);
1385 1.180 matt KASSERT(uvm_page_locked_p(pg));
1386 1.112 yamt
1387 1.7 mrg /* gain ownership? */
1388 1.7 mrg if (tag) {
1389 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1390 1.7 mrg if (pg->owner_tag) {
1391 1.7 mrg printf("uvm_page_own: page %p already owned "
1392 1.7 mrg "by proc %d [%s]\n", pg,
1393 1.74 enami pg->owner, pg->owner_tag);
1394 1.7 mrg panic("uvm_page_own");
1395 1.7 mrg }
1396 1.184 chs pg->owner = curproc->p_pid;
1397 1.184 chs pg->lowner = curlwp->l_lid;
1398 1.7 mrg pg->owner_tag = tag;
1399 1.7 mrg return;
1400 1.7 mrg }
1401 1.7 mrg
1402 1.7 mrg /* drop ownership */
1403 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1404 1.7 mrg if (pg->owner_tag == NULL) {
1405 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1406 1.7 mrg "page (%p)\n", pg);
1407 1.7 mrg panic("uvm_page_own");
1408 1.7 mrg }
1409 1.115 yamt if (!uvmpdpol_pageisqueued_p(pg)) {
1410 1.115 yamt KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1411 1.115 yamt pg->wire_count > 0);
1412 1.115 yamt } else {
1413 1.115 yamt KASSERT(pg->wire_count == 0);
1414 1.115 yamt }
1415 1.7 mrg pg->owner_tag = NULL;
1416 1.1 mrg }
1417 1.1 mrg #endif
1418 1.34 thorpej
1419 1.34 thorpej /*
1420 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1421 1.34 thorpej *
1422 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1423 1.54 thorpej * on the CPU cache.
1424 1.132 ad * => we loop until we either reach the target or there is a lwp ready
1425 1.132 ad * to run, or MD code detects a reason to break early.
1426 1.34 thorpej */
1427 1.34 thorpej void
1428 1.105 thorpej uvm_pageidlezero(void)
1429 1.34 thorpej {
1430 1.34 thorpej struct vm_page *pg;
1431 1.133 ad struct pgfreelist *pgfl, *gpgfl;
1432 1.133 ad struct uvm_cpu *ucpu;
1433 1.133 ad int free_list, firstbucket, nextbucket;
1434 1.172 rmind bool lcont = false;
1435 1.133 ad
1436 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1437 1.133 ad if (!ucpu->page_idle_zero ||
1438 1.133 ad ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1439 1.133 ad ucpu->page_idle_zero = false;
1440 1.132 ad return;
1441 1.132 ad }
1442 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1443 1.172 rmind /* Contention: let other CPUs to use the lock. */
1444 1.172 rmind return;
1445 1.172 rmind }
1446 1.133 ad firstbucket = ucpu->page_free_nextcolor;
1447 1.133 ad nextbucket = firstbucket;
1448 1.58 enami do {
1449 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1450 1.139 ad if (sched_curcpu_runnable_p()) {
1451 1.139 ad goto quit;
1452 1.139 ad }
1453 1.133 ad pgfl = &ucpu->page_free[free_list];
1454 1.133 ad gpgfl = &uvm.page_free[free_list];
1455 1.133 ad while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1456 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1457 1.172 rmind if (lcont || sched_curcpu_runnable_p()) {
1458 1.101 yamt goto quit;
1459 1.132 ad }
1460 1.133 ad LIST_REMOVE(pg, pageq.list); /* global list */
1461 1.133 ad LIST_REMOVE(pg, listq.list); /* per-cpu list */
1462 1.133 ad ucpu->pages[PGFL_UNKNOWN]--;
1463 1.54 thorpej uvmexp.free--;
1464 1.201 ad KASSERT(pg->flags == PG_FREE);
1465 1.201 ad pg->flags = 0;
1466 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1467 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1468 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1469 1.67 chs
1470 1.54 thorpej /*
1471 1.54 thorpej * The machine-dependent code detected
1472 1.54 thorpej * some reason for us to abort zeroing
1473 1.54 thorpej * pages, probably because there is a
1474 1.54 thorpej * process now ready to run.
1475 1.54 thorpej */
1476 1.67 chs
1477 1.123 ad mutex_spin_enter(&uvm_fpageqlock);
1478 1.201 ad pg->flags = PG_FREE;
1479 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1480 1.133 ad nextbucket].pgfl_queues[
1481 1.133 ad PGFL_UNKNOWN], pg, pageq.list);
1482 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1483 1.54 thorpej nextbucket].pgfl_queues[
1484 1.133 ad PGFL_UNKNOWN], pg, listq.list);
1485 1.133 ad ucpu->pages[PGFL_UNKNOWN]++;
1486 1.54 thorpej uvmexp.free++;
1487 1.208 ad uvmexp.zeroaborts++;
1488 1.101 yamt goto quit;
1489 1.54 thorpej }
1490 1.54 thorpej #else
1491 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1492 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1493 1.172 rmind if (!mutex_tryenter(&uvm_fpageqlock)) {
1494 1.172 rmind lcont = true;
1495 1.172 rmind mutex_spin_enter(&uvm_fpageqlock);
1496 1.172 rmind } else {
1497 1.172 rmind lcont = false;
1498 1.172 rmind }
1499 1.201 ad pg->flags = PG_FREE | PG_ZERO;
1500 1.133 ad LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1501 1.133 ad nextbucket].pgfl_queues[PGFL_ZEROS],
1502 1.133 ad pg, pageq.list);
1503 1.133 ad LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1504 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1505 1.133 ad pg, listq.list);
1506 1.133 ad ucpu->pages[PGFL_ZEROS]++;
1507 1.54 thorpej uvmexp.free++;
1508 1.205 ad CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
1509 1.54 thorpej }
1510 1.41 thorpej }
1511 1.133 ad if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1512 1.133 ad break;
1513 1.133 ad }
1514 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1515 1.58 enami } while (nextbucket != firstbucket);
1516 1.133 ad ucpu->page_idle_zero = false;
1517 1.133 ad quit:
1518 1.123 ad mutex_spin_exit(&uvm_fpageqlock);
1519 1.34 thorpej }
1520 1.110 yamt
1521 1.110 yamt /*
1522 1.110 yamt * uvm_pagelookup: look up a page
1523 1.110 yamt *
1524 1.110 yamt * => caller should lock object to keep someone from pulling the page
1525 1.110 yamt * out from under it
1526 1.110 yamt */
1527 1.110 yamt
1528 1.110 yamt struct vm_page *
1529 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1530 1.110 yamt {
1531 1.110 yamt struct vm_page *pg;
1532 1.110 yamt
1533 1.203 ad /* No - used from DDB. KASSERT(mutex_owned(obj->vmobjlock)); */
1534 1.123 ad
1535 1.202 ad pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1536 1.134 ad
1537 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1538 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1539 1.110 yamt (pg->flags & PG_BUSY) != 0);
1540 1.156 rmind return pg;
1541 1.110 yamt }
1542 1.110 yamt
1543 1.110 yamt /*
1544 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1545 1.110 yamt *
1546 1.201 ad * => caller must lock objects
1547 1.110 yamt */
1548 1.110 yamt
1549 1.110 yamt void
1550 1.110 yamt uvm_pagewire(struct vm_page *pg)
1551 1.110 yamt {
1552 1.201 ad
1553 1.201 ad KASSERT(uvm_page_locked_p(pg));
1554 1.113 yamt #if defined(READAHEAD_STATS)
1555 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1556 1.113 yamt uvm_ra_hit.ev_count++;
1557 1.201 ad pg->flags &= ~PG_READAHEAD;
1558 1.113 yamt }
1559 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1560 1.110 yamt if (pg->wire_count == 0) {
1561 1.110 yamt uvm_pagedequeue(pg);
1562 1.201 ad atomic_inc_uint(&uvmexp.wired);
1563 1.110 yamt }
1564 1.201 ad mutex_enter(&pg->interlock);
1565 1.110 yamt pg->wire_count++;
1566 1.201 ad mutex_exit(&pg->interlock);
1567 1.197 jdolecek KASSERT(pg->wire_count > 0); /* detect wraparound */
1568 1.110 yamt }
1569 1.110 yamt
1570 1.110 yamt /*
1571 1.110 yamt * uvm_pageunwire: unwire the page.
1572 1.110 yamt *
1573 1.110 yamt * => activate if wire count goes to zero.
1574 1.201 ad * => caller must lock objects
1575 1.110 yamt */
1576 1.110 yamt
1577 1.110 yamt void
1578 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1579 1.110 yamt {
1580 1.201 ad
1581 1.201 ad KASSERT(uvm_page_locked_p(pg));
1582 1.199 kre KASSERT(pg->wire_count != 0);
1583 1.201 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1584 1.201 ad mutex_enter(&pg->interlock);
1585 1.110 yamt pg->wire_count--;
1586 1.201 ad mutex_exit(&pg->interlock);
1587 1.110 yamt if (pg->wire_count == 0) {
1588 1.111 yamt uvm_pageactivate(pg);
1589 1.199 kre KASSERT(uvmexp.wired != 0);
1590 1.201 ad atomic_dec_uint(&uvmexp.wired);
1591 1.110 yamt }
1592 1.110 yamt }
1593 1.110 yamt
1594 1.110 yamt /*
1595 1.110 yamt * uvm_pagedeactivate: deactivate page
1596 1.110 yamt *
1597 1.201 ad * => caller must lock objects
1598 1.110 yamt * => caller must check to make sure page is not wired
1599 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1600 1.110 yamt * => caller must clear the reference on the page before calling
1601 1.110 yamt */
1602 1.110 yamt
1603 1.110 yamt void
1604 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1605 1.110 yamt {
1606 1.113 yamt
1607 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1608 1.201 ad if (pg->wire_count == 0) {
1609 1.201 ad KASSERT(uvmpdpol_pageisqueued_p(pg));
1610 1.201 ad uvmpdpol_pagedeactivate(pg);
1611 1.201 ad }
1612 1.110 yamt }
1613 1.110 yamt
1614 1.110 yamt /*
1615 1.110 yamt * uvm_pageactivate: activate page
1616 1.110 yamt *
1617 1.201 ad * => caller must lock objects
1618 1.110 yamt */
1619 1.110 yamt
1620 1.110 yamt void
1621 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1622 1.110 yamt {
1623 1.113 yamt
1624 1.174 rmind KASSERT(uvm_page_locked_p(pg));
1625 1.113 yamt #if defined(READAHEAD_STATS)
1626 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1627 1.113 yamt uvm_ra_hit.ev_count++;
1628 1.201 ad pg->flags &= ~PG_READAHEAD;
1629 1.113 yamt }
1630 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1631 1.201 ad if (pg->wire_count == 0) {
1632 1.201 ad uvmpdpol_pageactivate(pg);
1633 1.110 yamt }
1634 1.110 yamt }
1635 1.110 yamt
1636 1.110 yamt /*
1637 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1638 1.201 ad *
1639 1.201 ad * => caller must lock objects
1640 1.110 yamt */
1641 1.110 yamt void
1642 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1643 1.110 yamt {
1644 1.113 yamt
1645 1.201 ad KASSERT(uvm_page_locked_p(pg));
1646 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1647 1.201 ad uvmpdpol_pagedequeue(pg);
1648 1.110 yamt }
1649 1.113 yamt }
1650 1.113 yamt
1651 1.113 yamt /*
1652 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1653 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1654 1.201 ad *
1655 1.201 ad * => caller must lock objects
1656 1.113 yamt */
1657 1.113 yamt void
1658 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1659 1.113 yamt {
1660 1.113 yamt
1661 1.201 ad KASSERT(uvm_page_locked_p(pg));
1662 1.201 ad if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1663 1.201 ad uvmpdpol_pageenqueue(pg);
1664 1.113 yamt }
1665 1.110 yamt }
1666 1.110 yamt
1667 1.110 yamt /*
1668 1.110 yamt * uvm_pagezero: zero fill a page
1669 1.110 yamt *
1670 1.110 yamt * => if page is part of an object then the object should be locked
1671 1.110 yamt * to protect pg->flags.
1672 1.110 yamt */
1673 1.110 yamt
1674 1.110 yamt void
1675 1.110 yamt uvm_pagezero(struct vm_page *pg)
1676 1.110 yamt {
1677 1.110 yamt pg->flags &= ~PG_CLEAN;
1678 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1679 1.110 yamt }
1680 1.110 yamt
1681 1.110 yamt /*
1682 1.110 yamt * uvm_pagecopy: copy a page
1683 1.110 yamt *
1684 1.110 yamt * => if page is part of an object then the object should be locked
1685 1.110 yamt * to protect pg->flags.
1686 1.110 yamt */
1687 1.110 yamt
1688 1.110 yamt void
1689 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1690 1.110 yamt {
1691 1.110 yamt
1692 1.110 yamt dst->flags &= ~PG_CLEAN;
1693 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1694 1.110 yamt }
1695 1.110 yamt
1696 1.110 yamt /*
1697 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1698 1.150 thorpej */
1699 1.150 thorpej
1700 1.150 thorpej bool
1701 1.150 thorpej uvm_pageismanaged(paddr_t pa)
1702 1.150 thorpej {
1703 1.150 thorpej
1704 1.190 cherry return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1705 1.150 thorpej }
1706 1.150 thorpej
1707 1.150 thorpej /*
1708 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
1709 1.110 yamt */
1710 1.110 yamt
1711 1.110 yamt int
1712 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
1713 1.110 yamt {
1714 1.190 cherry uvm_physseg_t upm;
1715 1.110 yamt
1716 1.190 cherry upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1717 1.190 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1718 1.190 cherry return uvm_physseg_get_free_list(upm);
1719 1.110 yamt }
1720 1.151 thorpej
1721 1.174 rmind /*
1722 1.174 rmind * uvm_page_locked_p: return true if object associated with page is
1723 1.174 rmind * locked. this is a weak check for runtime assertions only.
1724 1.174 rmind */
1725 1.174 rmind
1726 1.174 rmind bool
1727 1.174 rmind uvm_page_locked_p(struct vm_page *pg)
1728 1.174 rmind {
1729 1.174 rmind
1730 1.174 rmind if (pg->uobject != NULL) {
1731 1.174 rmind return mutex_owned(pg->uobject->vmobjlock);
1732 1.174 rmind }
1733 1.174 rmind if (pg->uanon != NULL) {
1734 1.174 rmind return mutex_owned(pg->uanon->an_lock);
1735 1.174 rmind }
1736 1.174 rmind return true;
1737 1.174 rmind }
1738 1.174 rmind
1739 1.198 jdolecek #ifdef PMAP_DIRECT
1740 1.198 jdolecek /*
1741 1.198 jdolecek * Call pmap to translate physical address into a virtual and to run a callback
1742 1.198 jdolecek * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1743 1.198 jdolecek * or equivalent.
1744 1.198 jdolecek */
1745 1.198 jdolecek int
1746 1.198 jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1747 1.198 jdolecek int (*process)(void *, size_t, void *), void *arg)
1748 1.198 jdolecek {
1749 1.198 jdolecek int error = 0;
1750 1.198 jdolecek paddr_t pa;
1751 1.198 jdolecek size_t todo;
1752 1.198 jdolecek voff_t pgoff = (off & PAGE_MASK);
1753 1.198 jdolecek struct vm_page *pg;
1754 1.198 jdolecek
1755 1.198 jdolecek KASSERT(npages > 0 && len > 0);
1756 1.198 jdolecek
1757 1.198 jdolecek for (int i = 0; i < npages; i++) {
1758 1.198 jdolecek pg = pgs[i];
1759 1.198 jdolecek
1760 1.198 jdolecek KASSERT(len > 0);
1761 1.198 jdolecek
1762 1.198 jdolecek /*
1763 1.198 jdolecek * Caller is responsible for ensuring all the pages are
1764 1.198 jdolecek * available.
1765 1.198 jdolecek */
1766 1.198 jdolecek KASSERT(pg != NULL && pg != PGO_DONTCARE);
1767 1.198 jdolecek
1768 1.198 jdolecek pa = VM_PAGE_TO_PHYS(pg);
1769 1.198 jdolecek todo = MIN(len, PAGE_SIZE - pgoff);
1770 1.198 jdolecek
1771 1.198 jdolecek error = pmap_direct_process(pa, pgoff, todo, process, arg);
1772 1.198 jdolecek if (error)
1773 1.198 jdolecek break;
1774 1.198 jdolecek
1775 1.198 jdolecek pgoff = 0;
1776 1.198 jdolecek len -= todo;
1777 1.198 jdolecek }
1778 1.198 jdolecek
1779 1.198 jdolecek KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1780 1.198 jdolecek return error;
1781 1.198 jdolecek }
1782 1.198 jdolecek #endif /* PMAP_DIRECT */
1783 1.198 jdolecek
1784 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
1785 1.151 thorpej
1786 1.151 thorpej /*
1787 1.151 thorpej * uvm_page_printit: actually print the page
1788 1.151 thorpej */
1789 1.151 thorpej
1790 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
1791 1.151 thorpej
1792 1.151 thorpej void
1793 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
1794 1.151 thorpej void (*pr)(const char *, ...))
1795 1.151 thorpej {
1796 1.151 thorpej struct vm_page *tpg;
1797 1.151 thorpej struct uvm_object *uobj;
1798 1.151 thorpej struct pgflist *pgl;
1799 1.151 thorpej char pgbuf[128];
1800 1.151 thorpej
1801 1.151 thorpej (*pr)("PAGE %p:\n", pg);
1802 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1803 1.201 ad (*pr)(" flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
1804 1.201 ad pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1805 1.151 thorpej (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1806 1.151 thorpej pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1807 1.209 ad (*pr)(" bucket=%d freelist=%d\n",
1808 1.209 ad uvm_page_get_bucket(pg), uvm_page_get_freelist(pg));
1809 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
1810 1.151 thorpej if (pg->flags & PG_BUSY)
1811 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
1812 1.151 thorpej pg->owner, pg->owner_tag);
1813 1.151 thorpej else
1814 1.151 thorpej (*pr)(" page not busy, no owner\n");
1815 1.151 thorpej #else
1816 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
1817 1.151 thorpej #endif
1818 1.151 thorpej
1819 1.151 thorpej if (!full)
1820 1.151 thorpej return;
1821 1.151 thorpej
1822 1.151 thorpej /* cross-verify object/anon */
1823 1.201 ad if ((pg->flags & PG_FREE) == 0) {
1824 1.201 ad if (pg->flags & PG_ANON) {
1825 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
1826 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1827 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
1828 1.151 thorpej else
1829 1.151 thorpej (*pr)(" anon backpointer is OK\n");
1830 1.151 thorpej } else {
1831 1.151 thorpej uobj = pg->uobject;
1832 1.151 thorpej if (uobj) {
1833 1.151 thorpej (*pr)(" checking object list\n");
1834 1.203 ad tpg = uvm_pagelookup(uobj, pg->offset);
1835 1.151 thorpej if (tpg)
1836 1.151 thorpej (*pr)(" page found on object list\n");
1837 1.151 thorpej else
1838 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1839 1.151 thorpej }
1840 1.151 thorpej }
1841 1.151 thorpej }
1842 1.151 thorpej
1843 1.151 thorpej /* cross-verify page queue */
1844 1.201 ad if (pg->flags & PG_FREE) {
1845 1.209 ad int fl = uvm_page_get_freelist(pg);
1846 1.209 ad int color = VM_PGCOLOR(pg);
1847 1.151 thorpej pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1848 1.151 thorpej ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1849 1.151 thorpej } else {
1850 1.151 thorpej pgl = NULL;
1851 1.151 thorpej }
1852 1.151 thorpej
1853 1.151 thorpej if (pgl) {
1854 1.151 thorpej (*pr)(" checking pageq list\n");
1855 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
1856 1.151 thorpej if (tpg == pg) {
1857 1.151 thorpej break;
1858 1.151 thorpej }
1859 1.151 thorpej }
1860 1.151 thorpej if (tpg)
1861 1.151 thorpej (*pr)(" page found on pageq list\n");
1862 1.151 thorpej else
1863 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1864 1.151 thorpej }
1865 1.151 thorpej }
1866 1.151 thorpej
1867 1.151 thorpej /*
1868 1.201 ad * uvm_page_printall - print a summary of all managed pages
1869 1.151 thorpej */
1870 1.151 thorpej
1871 1.151 thorpej void
1872 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
1873 1.151 thorpej {
1874 1.190 cherry uvm_physseg_t i;
1875 1.190 cherry paddr_t pfn;
1876 1.151 thorpej struct vm_page *pg;
1877 1.151 thorpej
1878 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
1879 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1880 1.151 thorpej " OWNER"
1881 1.151 thorpej #endif
1882 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1883 1.190 cherry for (i = uvm_physseg_get_first();
1884 1.190 cherry uvm_physseg_valid_p(i);
1885 1.190 cherry i = uvm_physseg_get_next(i)) {
1886 1.190 cherry for (pfn = uvm_physseg_get_start(i);
1887 1.192 maya pfn < uvm_physseg_get_end(i);
1888 1.190 cherry pfn++) {
1889 1.190 cherry pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1890 1.190 cherry
1891 1.201 ad (*pr)("%18p %04x %08x %18p %18p",
1892 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
1893 1.151 thorpej pg->uanon);
1894 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
1895 1.151 thorpej if (pg->flags & PG_BUSY)
1896 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1897 1.151 thorpej #endif
1898 1.151 thorpej (*pr)("\n");
1899 1.151 thorpej }
1900 1.151 thorpej }
1901 1.151 thorpej }
1902 1.151 thorpej
1903 1.151 thorpej #endif /* DDB || DEBUGPRINT */
1904