Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.211
      1  1.211        ad /*	$NetBSD: uvm_page.c,v 1.211 2019/12/21 15:16:14 ad Exp $	*/
      2    1.1       mrg 
      3   1.62       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.62       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.62       chs  *
     49   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.62       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_page.c: page ops.
     66    1.1       mrg  */
     67   1.71     lukem 
     68   1.71     lukem #include <sys/cdefs.h>
     69  1.211        ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.211 2019/12/21 15:16:14 ad Exp $");
     70    1.6       mrg 
     71  1.151   thorpej #include "opt_ddb.h"
     72  1.187     joerg #include "opt_uvm.h"
     73   1.44       chs #include "opt_uvmhist.h"
     74  1.113      yamt #include "opt_readahead.h"
     75   1.44       chs 
     76    1.1       mrg #include <sys/param.h>
     77    1.1       mrg #include <sys/systm.h>
     78   1.35   thorpej #include <sys/sched.h>
     79   1.44       chs #include <sys/kernel.h>
     80   1.51       chs #include <sys/vnode.h>
     81   1.68       chs #include <sys/proc.h>
     82  1.202        ad #include <sys/radixtree.h>
     83  1.126        ad #include <sys/atomic.h>
     84  1.133        ad #include <sys/cpu.h>
     85  1.190    cherry #include <sys/extent.h>
     86    1.1       mrg 
     87    1.1       mrg #include <uvm/uvm.h>
     88  1.151   thorpej #include <uvm/uvm_ddb.h>
     89  1.113      yamt #include <uvm/uvm_pdpolicy.h>
     90    1.1       mrg 
     91    1.1       mrg /*
     92   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
     93   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
     94  1.155        ad  * We therefore provide a way to enable it from machdep code here.
     95   1.44       chs  */
     96  1.119   thorpej bool vm_page_zero_enable = false;
     97   1.34   thorpej 
     98   1.34   thorpej /*
     99  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    100  1.140        ad  */
    101  1.187     joerg #ifndef	UVM_RESERVED_PAGES_PER_CPU
    102  1.187     joerg #define	UVM_RESERVED_PAGES_PER_CPU	5
    103  1.187     joerg #endif
    104  1.187     joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    105  1.140        ad 
    106  1.140        ad /*
    107  1.148      matt  * physical memory size;
    108  1.148      matt  */
    109  1.189    cherry psize_t physmem;
    110  1.148      matt 
    111  1.148      matt /*
    112    1.1       mrg  * local variables
    113    1.1       mrg  */
    114    1.1       mrg 
    115    1.1       mrg /*
    116   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    117   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118   1.88   thorpej  * and pmap_startup here also uses them internally.
    119   1.88   thorpej  */
    120   1.88   thorpej 
    121   1.88   thorpej static vaddr_t      virtual_space_start;
    122   1.88   thorpej static vaddr_t      virtual_space_end;
    123   1.88   thorpej 
    124   1.88   thorpej /*
    125   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    126   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    127   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    128   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    129   1.60   thorpej  * uvm_pageboot_alloc().
    130   1.60   thorpej  */
    131   1.60   thorpej 
    132  1.179      para static size_t recolored_pages_memsize /* = 0 */;
    133   1.60   thorpej 
    134   1.91      yamt #ifdef DEBUG
    135   1.91      yamt vaddr_t uvm_zerocheckkva;
    136   1.91      yamt #endif /* DEBUG */
    137   1.91      yamt 
    138   1.60   thorpej /*
    139  1.190    cherry  * These functions are reserved for uvm(9) internal use and are not
    140  1.190    cherry  * exported in the header file uvm_physseg.h
    141  1.190    cherry  *
    142  1.190    cherry  * Thus they are redefined here.
    143  1.190    cherry  */
    144  1.190    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    145  1.190    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    146  1.190    cherry 
    147  1.190    cherry /* returns a pgs array */
    148  1.190    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    149  1.190    cherry 
    150  1.190    cherry /*
    151    1.1       mrg  * inline functions
    152    1.1       mrg  */
    153    1.1       mrg 
    154    1.1       mrg /*
    155  1.134        ad  * uvm_pageinsert: insert a page in the object.
    156    1.1       mrg  *
    157    1.1       mrg  * => caller must lock object
    158    1.1       mrg  * => call should have already set pg's object and offset pointers
    159    1.1       mrg  *    and bumped the version counter
    160    1.1       mrg  */
    161    1.1       mrg 
    162  1.136      yamt static inline void
    163  1.203        ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    164    1.1       mrg {
    165    1.1       mrg 
    166  1.136      yamt 	KASSERT(uobj == pg->uobject);
    167  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    168   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    169  1.123        ad 
    170   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    171   1.94      yamt 		if (uobj->uo_npages == 0) {
    172   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    173   1.94      yamt 
    174   1.94      yamt 			vholdl(vp);
    175   1.94      yamt 		}
    176   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    177  1.205        ad 			cpu_count(CPU_COUNT_EXECPAGES, 1);
    178   1.94      yamt 		} else {
    179  1.205        ad 			cpu_count(CPU_COUNT_FILEPAGES, 1);
    180   1.94      yamt 		}
    181   1.86      yamt 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    182  1.205        ad 		cpu_count(CPU_COUNT_ANONPAGES, 1);
    183   1.78       chs 	}
    184    1.7       mrg 	pg->flags |= PG_TABLED;
    185   1.67       chs 	uobj->uo_npages++;
    186    1.1       mrg }
    187    1.1       mrg 
    188  1.202        ad static inline int
    189  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    190  1.136      yamt {
    191  1.202        ad 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    192  1.202        ad 	int error;
    193  1.136      yamt 
    194  1.202        ad 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    195  1.202        ad 	if (error != 0) {
    196  1.202        ad 		return error;
    197  1.202        ad 	}
    198  1.202        ad 	return 0;
    199  1.136      yamt }
    200  1.136      yamt 
    201    1.1       mrg /*
    202  1.134        ad  * uvm_page_remove: remove page from object.
    203    1.1       mrg  *
    204    1.1       mrg  * => caller must lock object
    205    1.1       mrg  */
    206    1.1       mrg 
    207  1.109     perry static inline void
    208  1.203        ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    209    1.1       mrg {
    210    1.1       mrg 
    211  1.136      yamt 	KASSERT(uobj == pg->uobject);
    212  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
    213   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    214  1.123        ad 
    215   1.94      yamt 	if (UVM_OBJ_IS_VNODE(uobj)) {
    216   1.94      yamt 		if (uobj->uo_npages == 1) {
    217   1.94      yamt 			struct vnode *vp = (struct vnode *)uobj;
    218   1.94      yamt 
    219   1.94      yamt 			holdrelel(vp);
    220   1.94      yamt 		}
    221   1.94      yamt 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    222  1.205        ad 			cpu_count(CPU_COUNT_EXECPAGES, -1);
    223   1.94      yamt 		} else {
    224  1.205        ad 			cpu_count(CPU_COUNT_FILEPAGES, -1);
    225   1.94      yamt 		}
    226   1.78       chs 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    227  1.205        ad 		cpu_count(CPU_COUNT_ANONPAGES, -1);
    228   1.51       chs 	}
    229   1.44       chs 
    230    1.7       mrg 	/* object should be locked */
    231   1.67       chs 	uobj->uo_npages--;
    232    1.7       mrg 	pg->flags &= ~PG_TABLED;
    233    1.7       mrg 	pg->uobject = NULL;
    234    1.1       mrg }
    235    1.1       mrg 
    236  1.136      yamt static inline void
    237  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    238  1.136      yamt {
    239  1.202        ad 	struct vm_page *opg __unused;
    240  1.136      yamt 
    241  1.202        ad 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    242  1.202        ad 	KASSERT(pg == opg);
    243  1.136      yamt }
    244  1.136      yamt 
    245   1.60   thorpej static void
    246   1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    247   1.60   thorpej {
    248   1.60   thorpej 	int color, i;
    249   1.60   thorpej 
    250   1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    251   1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    252  1.133        ad 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    253   1.60   thorpej 		}
    254   1.60   thorpej 	}
    255   1.60   thorpej }
    256   1.60   thorpej 
    257    1.1       mrg /*
    258    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    259   1.62       chs  *
    260    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    261    1.1       mrg  */
    262    1.1       mrg 
    263    1.7       mrg void
    264  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    265    1.1       mrg {
    266  1.155        ad 	static struct uvm_cpu boot_cpu;
    267  1.154       jym 	psize_t freepages, pagecount, bucketcount, n;
    268  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray;
    269   1.63       chs 	struct vm_page *pagearray;
    270  1.190    cherry 	uvm_physseg_t bank;
    271   1.81   thorpej 	int lcv;
    272    1.7       mrg 
    273  1.133        ad 	KASSERT(ncpu <= 1);
    274  1.138      matt 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    275  1.133        ad 
    276    1.7       mrg 	/*
    277  1.201        ad 	 * init the page queues and free page queue lock, except the
    278  1.201        ad 	 * free list; we allocate that later (with the initial vm_page
    279   1.60   thorpej 	 * structures).
    280    1.7       mrg 	 */
    281   1.51       chs 
    282  1.155        ad 	uvm.cpus[0] = &boot_cpu;
    283  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    284  1.113      yamt 	uvmpdpol_init();
    285  1.123        ad 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    286    1.7       mrg 
    287    1.7       mrg 	/*
    288   1.51       chs 	 * allocate vm_page structures.
    289    1.7       mrg 	 */
    290    1.7       mrg 
    291    1.7       mrg 	/*
    292    1.7       mrg 	 * sanity check:
    293    1.7       mrg 	 * before calling this function the MD code is expected to register
    294    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    295    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    296    1.7       mrg 	 */
    297    1.7       mrg 
    298  1.190    cherry 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    299   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    300   1.62       chs 
    301    1.7       mrg 	/*
    302   1.62       chs 	 * first calculate the number of free pages...
    303    1.7       mrg 	 *
    304    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    305    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    306    1.7       mrg 	 * want to return some memory to the pool after booting.
    307    1.7       mrg 	 */
    308   1.62       chs 
    309    1.7       mrg 	freepages = 0;
    310  1.190    cherry 
    311  1.190    cherry 	for (bank = uvm_physseg_get_first();
    312  1.190    cherry 	     uvm_physseg_valid_p(bank) ;
    313  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    314  1.190    cherry 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    315  1.158  uebayasi 	}
    316    1.7       mrg 
    317    1.7       mrg 	/*
    318   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    319   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    320   1.60   thorpej 	 */
    321   1.60   thorpej 	if (uvmexp.ncolors == 0)
    322   1.60   thorpej 		uvmexp.ncolors = 1;
    323   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    324  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    325   1.60   thorpej 
    326   1.60   thorpej 	/*
    327    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    328    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    329    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    330    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    331    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    332    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    333    1.7       mrg 	 * pages).
    334    1.7       mrg 	 */
    335   1.62       chs 
    336   1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    337   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    338    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    339   1.60   thorpej 
    340   1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    341  1.133        ad 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    342   1.60   thorpej 	    sizeof(struct vm_page)));
    343  1.133        ad 	cpuarray = bucketarray + bucketcount;
    344  1.133        ad 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    345   1.60   thorpej 
    346   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    347   1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    348   1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    349   1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    350  1.155        ad 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    351  1.133        ad 		    (cpuarray + (lcv * uvmexp.ncolors));
    352  1.155        ad 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    353   1.60   thorpej 	}
    354   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    355   1.62       chs 
    356    1.7       mrg 	/*
    357   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    358    1.7       mrg 	 */
    359  1.190    cherry 	/* First init the extent */
    360    1.7       mrg 
    361  1.190    cherry 	for (bank = uvm_physseg_get_first(),
    362  1.190    cherry 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    363  1.190    cherry 	     uvm_physseg_valid_p(bank);
    364  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    365  1.190    cherry 
    366  1.190    cherry 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    367  1.190    cherry 		uvm_physseg_seg_alloc_from_slab(bank, n);
    368  1.190    cherry 		uvm_physseg_init_seg(bank, pagearray);
    369   1.51       chs 
    370    1.7       mrg 		/* set up page array pointers */
    371    1.7       mrg 		pagearray += n;
    372    1.7       mrg 		pagecount -= n;
    373    1.7       mrg 	}
    374   1.44       chs 
    375    1.7       mrg 	/*
    376   1.88   thorpej 	 * pass up the values of virtual_space_start and
    377   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    378   1.88   thorpej 	 * layers of the VM.
    379   1.88   thorpej 	 */
    380   1.88   thorpej 
    381   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    382   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    383   1.91      yamt #ifdef DEBUG
    384   1.91      yamt 	/*
    385   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    386   1.91      yamt 	 */
    387   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    388   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    389   1.91      yamt #endif /* DEBUG */
    390   1.88   thorpej 
    391   1.88   thorpej 	/*
    392   1.51       chs 	 * init various thresholds.
    393    1.7       mrg 	 */
    394   1.51       chs 
    395    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    396  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    397    1.7       mrg 
    398    1.7       mrg 	/*
    399   1.51       chs 	 * determine if we should zero pages in the idle loop.
    400   1.34   thorpej 	 */
    401   1.51       chs 
    402  1.155        ad 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    403   1.34   thorpej 
    404   1.34   thorpej 	/*
    405    1.7       mrg 	 * done!
    406    1.7       mrg 	 */
    407    1.1       mrg 
    408  1.119   thorpej 	uvm.page_init_done = true;
    409    1.1       mrg }
    410    1.1       mrg 
    411    1.1       mrg /*
    412    1.1       mrg  * uvm_setpagesize: set the page size
    413   1.62       chs  *
    414    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    415   1.62       chs  */
    416    1.1       mrg 
    417    1.7       mrg void
    418  1.105   thorpej uvm_setpagesize(void)
    419    1.1       mrg {
    420   1.85   thorpej 
    421   1.85   thorpej 	/*
    422   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    423   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    424   1.85   thorpej 	 */
    425   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    426   1.85   thorpej 		if (PAGE_SIZE == 0)
    427   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    428   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    429   1.85   thorpej 	}
    430    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    431    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    432  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    433  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    434    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    435    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    436    1.7       mrg 			break;
    437    1.1       mrg }
    438    1.1       mrg 
    439    1.1       mrg /*
    440    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    441    1.1       mrg  */
    442    1.1       mrg 
    443   1.14       eeh vaddr_t
    444  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    445    1.1       mrg {
    446  1.119   thorpej 	static bool initialized = false;
    447   1.14       eeh 	vaddr_t addr;
    448   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    449   1.52   thorpej 	vaddr_t vaddr;
    450   1.14       eeh 	paddr_t paddr;
    451   1.52   thorpej #endif
    452    1.1       mrg 
    453    1.7       mrg 	/*
    454   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    455    1.7       mrg 	 */
    456  1.119   thorpej 	if (initialized == false) {
    457   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    458    1.1       mrg 
    459    1.7       mrg 		/* round it the way we like it */
    460   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    461   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    462   1.19   thorpej 
    463  1.119   thorpej 		initialized = true;
    464    1.7       mrg 	}
    465   1.52   thorpej 
    466   1.52   thorpej 	/* round to page size */
    467   1.52   thorpej 	size = round_page(size);
    468  1.195       mrg 	uvmexp.bootpages += atop(size);
    469   1.52   thorpej 
    470   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    471   1.52   thorpej 
    472   1.62       chs 	/*
    473   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    474   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    475   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    476   1.52   thorpej 	 */
    477   1.52   thorpej 
    478   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    479   1.88   thorpej 	    &virtual_space_end);
    480   1.52   thorpej 
    481   1.52   thorpej 	return(addr);
    482   1.52   thorpej 
    483   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    484    1.1       mrg 
    485    1.7       mrg 	/*
    486    1.7       mrg 	 * allocate virtual memory for this request
    487    1.7       mrg 	 */
    488   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    489   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    490   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    491   1.20   thorpej 
    492   1.88   thorpej 	addr = virtual_space_start;
    493   1.20   thorpej 
    494   1.20   thorpej #ifdef PMAP_GROWKERNEL
    495   1.20   thorpej 	/*
    496   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    497   1.20   thorpej 	 * then allocate more resources for it.
    498   1.20   thorpej 	 */
    499   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    500   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    501   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    502   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    503   1.19   thorpej 	}
    504   1.20   thorpej #endif
    505    1.1       mrg 
    506   1.88   thorpej 	virtual_space_start += size;
    507    1.1       mrg 
    508    1.9   thorpej 	/*
    509    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    510    1.7       mrg 	 */
    511    1.1       mrg 
    512    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    513    1.7       mrg 	    vaddr += PAGE_SIZE) {
    514    1.1       mrg 
    515    1.7       mrg 		if (!uvm_page_physget(&paddr))
    516    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    517    1.1       mrg 
    518   1.23   thorpej 		/*
    519   1.23   thorpej 		 * Note this memory is no longer managed, so using
    520   1.23   thorpej 		 * pmap_kenter is safe.
    521   1.23   thorpej 		 */
    522  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    523    1.7       mrg 	}
    524   1.66     chris 	pmap_update(pmap_kernel());
    525    1.7       mrg 	return(addr);
    526    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    527    1.1       mrg }
    528    1.1       mrg 
    529    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    530    1.1       mrg /*
    531    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    532    1.1       mrg  *
    533    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    534    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    535    1.1       mrg  *    will advance both values (making them equal, and removing some
    536    1.1       mrg  *    vm_page structures from the non-avail area).
    537    1.1       mrg  * => return false if out of memory.
    538    1.1       mrg  */
    539    1.1       mrg 
    540   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    541  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    542   1.28  drochner 
    543  1.118   thorpej static bool
    544  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    545    1.1       mrg {
    546  1.190    cherry 	uvm_physseg_t lcv;
    547    1.1       mrg 
    548    1.7       mrg 	/* pass 1: try allocating from a matching end */
    549    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    550  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    551    1.1       mrg #else
    552  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    553    1.1       mrg #endif
    554    1.7       mrg 	{
    555  1.119   thorpej 		if (uvm.page_init_done == true)
    556   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    557    1.1       mrg 
    558  1.190    cherry 		/* Try to match at front or back on unused segment */
    559  1.200      maxv 		if (uvm_page_physunload(lcv, freelist, paddrp))
    560  1.190    cherry 			return true;
    561  1.191     skrll 	}
    562    1.1       mrg 
    563    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    564    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    565  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    566    1.1       mrg #else
    567  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    568    1.1       mrg #endif
    569    1.7       mrg 	{
    570  1.190    cherry 		/* Try the front regardless. */
    571  1.200      maxv 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    572  1.190    cherry 			return true;
    573  1.190    cherry 	}
    574  1.190    cherry 	return false;
    575   1.28  drochner }
    576   1.28  drochner 
    577  1.118   thorpej bool
    578  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    579   1.28  drochner {
    580   1.28  drochner 	int i;
    581   1.28  drochner 
    582   1.28  drochner 	/* try in the order of freelist preference */
    583   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    584  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    585  1.119   thorpej 			return (true);
    586  1.119   thorpej 	return (false);
    587    1.1       mrg }
    588    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    589    1.1       mrg 
    590    1.1       mrg /*
    591  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    592  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    593  1.163  uebayasi  */
    594  1.163  uebayasi struct vm_page *
    595  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    596  1.163  uebayasi {
    597  1.163  uebayasi 	paddr_t pf = atop(pa);
    598  1.190    cherry 	paddr_t	off;
    599  1.190    cherry 	uvm_physseg_t	upm;
    600  1.163  uebayasi 
    601  1.190    cherry 	upm = uvm_physseg_find(pf, &off);
    602  1.190    cherry 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    603  1.190    cherry 		return uvm_physseg_get_pg(upm, off);
    604  1.163  uebayasi 	return(NULL);
    605  1.163  uebayasi }
    606  1.163  uebayasi 
    607  1.163  uebayasi paddr_t
    608  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    609  1.163  uebayasi {
    610  1.163  uebayasi 
    611  1.211        ad 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    612  1.163  uebayasi }
    613  1.163  uebayasi 
    614  1.163  uebayasi /*
    615   1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    616   1.60   thorpej  * larger than the old one.
    617   1.60   thorpej  */
    618   1.60   thorpej 
    619   1.60   thorpej void
    620   1.60   thorpej uvm_page_recolor(int newncolors)
    621   1.60   thorpej {
    622  1.133        ad 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    623  1.133        ad 	struct pgfreelist gpgfl, pgfl;
    624   1.63       chs 	struct vm_page *pg;
    625   1.60   thorpej 	vsize_t bucketcount;
    626  1.179      para 	size_t bucketmemsize, oldbucketmemsize;
    627  1.190    cherry 	int color, i, ocolors;
    628  1.190    cherry 	int lcv;
    629  1.133        ad 	struct uvm_cpu *ucpu;
    630   1.60   thorpej 
    631  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    632  1.178  uebayasi 
    633   1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    634   1.60   thorpej 		return;
    635   1.77  wrstuden 
    636  1.119   thorpej 	if (uvm.page_init_done == false) {
    637   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    638   1.77  wrstuden 		return;
    639   1.77  wrstuden 	}
    640   1.60   thorpej 
    641   1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    642  1.179      para 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    643  1.179      para 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
    644  1.133        ad 	cpuarray = bucketarray + bucketcount;
    645   1.60   thorpej 
    646  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
    647   1.60   thorpej 
    648   1.60   thorpej 	/* Make sure we should still do this. */
    649   1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
    650  1.123        ad 		mutex_spin_exit(&uvm_fpageqlock);
    651  1.179      para 		kmem_free(bucketarray, bucketmemsize);
    652   1.60   thorpej 		return;
    653   1.60   thorpej 	}
    654   1.60   thorpej 
    655   1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    656   1.60   thorpej 	ocolors = uvmexp.ncolors;
    657   1.60   thorpej 
    658   1.60   thorpej 	uvmexp.ncolors = newncolors;
    659   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    660   1.60   thorpej 
    661  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    662   1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    663  1.133        ad 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    664  1.133        ad 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    665  1.133        ad 		uvm_page_init_buckets(&gpgfl);
    666   1.60   thorpej 		uvm_page_init_buckets(&pgfl);
    667   1.60   thorpej 		for (color = 0; color < ocolors; color++) {
    668   1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
    669  1.133        ad 				while ((pg = LIST_FIRST(&uvm.page_free[
    670   1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    671   1.60   thorpej 				    != NULL) {
    672  1.133        ad 					LIST_REMOVE(pg, pageq.list); /* global */
    673  1.133        ad 					LIST_REMOVE(pg, listq.list); /* cpu */
    674  1.133        ad 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    675  1.209        ad 					    VM_PGCOLOR(pg)].pgfl_queues[
    676  1.133        ad 					    i], pg, pageq.list);
    677  1.133        ad 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    678  1.209        ad 					    VM_PGCOLOR(pg)].pgfl_queues[
    679  1.133        ad 					    i], pg, listq.list);
    680   1.60   thorpej 				}
    681   1.60   thorpej 			}
    682   1.60   thorpej 		}
    683  1.133        ad 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    684  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    685   1.60   thorpej 	}
    686   1.60   thorpej 
    687  1.179      para 	oldbucketmemsize = recolored_pages_memsize;
    688  1.177       mrg 
    689  1.179      para 	recolored_pages_memsize = bucketmemsize;
    690  1.177       mrg 	mutex_spin_exit(&uvm_fpageqlock);
    691  1.176      matt 
    692  1.179      para 	if (oldbucketmemsize) {
    693  1.196  jakllsch 		kmem_free(oldbucketarray, oldbucketmemsize);
    694  1.179      para 	}
    695   1.60   thorpej 
    696  1.177       mrg 	/*
    697  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
    698  1.177       mrg 	 * uvm_fpageqlock.
    699  1.177       mrg 	 */
    700  1.177       mrg 	uvm_pager_realloc_emerg();
    701   1.60   thorpej }
    702    1.1       mrg 
    703    1.1       mrg /*
    704  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
    705  1.133        ad  */
    706  1.133        ad 
    707  1.133        ad void
    708  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
    709  1.133        ad {
    710  1.133        ad 	struct pgflbucket *bucketarray;
    711  1.133        ad 	struct pgfreelist pgfl;
    712  1.133        ad 	struct uvm_cpu *ucpu;
    713  1.133        ad 	vsize_t bucketcount;
    714  1.133        ad 	int lcv;
    715  1.133        ad 
    716  1.133        ad 	if (CPU_IS_PRIMARY(ci)) {
    717  1.133        ad 		/* Already done in uvm_page_init(). */
    718  1.181       tls 		goto attachrnd;
    719  1.133        ad 	}
    720  1.133        ad 
    721  1.140        ad 	/* Add more reserve pages for this CPU. */
    722  1.140        ad 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    723  1.140        ad 
    724  1.140        ad 	/* Configure this CPU's free lists. */
    725  1.133        ad 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    726  1.179      para 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
    727  1.179      para 	    KM_SLEEP);
    728  1.155        ad 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
    729  1.155        ad 	uvm.cpus[cpu_index(ci)] = ucpu;
    730  1.133        ad 	ci->ci_data.cpu_uvm = ucpu;
    731  1.133        ad 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    732  1.133        ad 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    733  1.133        ad 		uvm_page_init_buckets(&pgfl);
    734  1.133        ad 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    735  1.133        ad 	}
    736  1.181       tls 
    737  1.181       tls attachrnd:
    738  1.181       tls 	/*
    739  1.181       tls 	 * Attach RNG source for this CPU's VM events
    740  1.181       tls 	 */
    741  1.181       tls         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
    742  1.185       tls 			  ci->ci_data.cpu_name, RND_TYPE_VM,
    743  1.185       tls 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    744  1.185       tls 			  RND_FLAG_ESTIMATE_VALUE);
    745  1.181       tls 
    746  1.133        ad }
    747  1.133        ad 
    748  1.133        ad /*
    749  1.207        ad  * uvm_free: return total number of free pages in system.
    750  1.207        ad  */
    751  1.207        ad 
    752  1.207        ad int
    753  1.207        ad uvm_free(void)
    754  1.207        ad {
    755  1.207        ad 
    756  1.207        ad 	return uvmexp.free;
    757  1.207        ad }
    758  1.207        ad 
    759  1.207        ad /*
    760   1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    761   1.54   thorpej  */
    762   1.54   thorpej 
    763  1.114   thorpej static struct vm_page *
    764  1.133        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    765   1.69    simonb     int *trycolorp)
    766   1.54   thorpej {
    767  1.133        ad 	struct pgflist *freeq;
    768   1.54   thorpej 	struct vm_page *pg;
    769   1.58     enami 	int color, trycolor = *trycolorp;
    770  1.133        ad 	struct pgfreelist *gpgfl, *pgfl;
    771   1.54   thorpej 
    772  1.130        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
    773  1.130        ad 
    774   1.58     enami 	color = trycolor;
    775  1.133        ad 	pgfl = &ucpu->page_free[flist];
    776  1.133        ad 	gpgfl = &uvm.page_free[flist];
    777   1.58     enami 	do {
    778  1.133        ad 		/* cpu, try1 */
    779  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    780  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    781  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    782  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    783  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    784  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    785  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    786  1.205        ad 		    	CPU_COUNT(CPU_COUNT_CPUHIT, 1);
    787  1.133        ad 			goto gotit;
    788  1.133        ad 		}
    789  1.133        ad 		/* global, try1 */
    790  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    791  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    792  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    793  1.182      matt 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    794  1.182      matt 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    795  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    796  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    797  1.205        ad 		    	CPU_COUNT(CPU_COUNT_CPUMISS, 1);
    798   1.54   thorpej 			goto gotit;
    799  1.133        ad 		}
    800  1.133        ad 		/* cpu, try2 */
    801  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    802  1.133        ad 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    803  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    804  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    805  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    806  1.182      matt 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    807  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    808  1.205        ad 		    	CPU_COUNT(CPU_COUNT_CPUHIT, 1);
    809   1.54   thorpej 			goto gotit;
    810  1.133        ad 		}
    811  1.133        ad 		/* global, try2 */
    812  1.133        ad 		if ((pg = LIST_FIRST((freeq =
    813  1.133        ad 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    814  1.201        ad 			KASSERT(pg->flags & PG_FREE);
    815  1.182      matt 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    816  1.182      matt 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    817  1.182      matt 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    818  1.133        ad 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    819  1.205        ad 		    	CPU_COUNT(CPU_COUNT_CPUMISS, 1);
    820  1.133        ad 			goto gotit;
    821  1.133        ad 		}
    822   1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
    823   1.58     enami 	} while (color != trycolor);
    824   1.54   thorpej 
    825   1.54   thorpej 	return (NULL);
    826   1.54   thorpej 
    827   1.54   thorpej  gotit:
    828  1.133        ad 	LIST_REMOVE(pg, pageq.list);	/* global list */
    829  1.133        ad 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
    830   1.54   thorpej 	uvmexp.free--;
    831   1.54   thorpej 
    832   1.54   thorpej 	/* update zero'd page count */
    833   1.54   thorpej 	if (pg->flags & PG_ZERO)
    834  1.205        ad 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
    835   1.54   thorpej 
    836   1.54   thorpej 	if (color == trycolor)
    837  1.205        ad 	    	CPU_COUNT(CPU_COUNT_COLORHIT, 1);
    838   1.54   thorpej 	else {
    839  1.205        ad 	    	CPU_COUNT(CPU_COUNT_COLORMISS, 1);
    840   1.54   thorpej 		*trycolorp = color;
    841   1.54   thorpej 	}
    842   1.54   thorpej 
    843   1.54   thorpej 	return (pg);
    844   1.54   thorpej }
    845   1.54   thorpej 
    846   1.54   thorpej /*
    847   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    848    1.1       mrg  *
    849    1.1       mrg  * => return null if no pages free
    850    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    851  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
    852    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    853    1.1       mrg  * => only one of obj or anon can be non-null
    854    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    855   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    856   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    857   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    858   1.34   thorpej  *	unknown contents page.  This is because we live with the
    859   1.34   thorpej  *	consequences of a bad free list decision for the entire
    860   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    861   1.34   thorpej  *	is slower to access.
    862    1.1       mrg  */
    863    1.1       mrg 
    864    1.7       mrg struct vm_page *
    865  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
    866  1.105   thorpej     int flags, int strat, int free_list)
    867    1.1       mrg {
    868  1.190    cherry 	int try1, try2, zeroit = 0, color;
    869  1.202        ad 	int lcv, error;
    870  1.133        ad 	struct uvm_cpu *ucpu;
    871    1.7       mrg 	struct vm_page *pg;
    872  1.141        ad 	lwp_t *l;
    873    1.1       mrg 
    874   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
    875  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
    876   1.44       chs 	KASSERT(off == trunc_page(off));
    877  1.174     rmind 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
    878  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
    879  1.175     rmind 	    mutex_owned(anon->an_lock));
    880   1.48   thorpej 
    881    1.7       mrg 	/*
    882   1.54   thorpej 	 * This implements a global round-robin page coloring
    883   1.54   thorpej 	 * algorithm.
    884   1.54   thorpej 	 */
    885   1.67       chs 
    886  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
    887  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
    888  1.169      matt 		color = atop(off) & uvmexp.colormask;
    889  1.169      matt 	} else {
    890  1.169      matt 		color = ucpu->page_free_nextcolor;
    891  1.169      matt 	}
    892   1.54   thorpej 
    893   1.54   thorpej 	/*
    894    1.7       mrg 	 * check to see if we need to generate some free pages waking
    895    1.7       mrg 	 * the pagedaemon.
    896    1.7       mrg 	 */
    897    1.7       mrg 
    898  1.113      yamt 	uvm_kick_pdaemon();
    899    1.7       mrg 
    900    1.7       mrg 	/*
    901    1.7       mrg 	 * fail if any of these conditions is true:
    902    1.7       mrg 	 * [1]  there really are no free pages, or
    903    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
    904  1.141        ad 	 *        reserved pages have not been requested.
    905    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
    906    1.7       mrg 	 *        the requestor isn't the pagedaemon.
    907  1.141        ad 	 * we make kernel reserve pages available if called by a
    908  1.141        ad 	 * kernel thread or a realtime thread.
    909    1.7       mrg 	 */
    910  1.210        ad 	mutex_spin_enter(&uvm_fpageqlock);
    911  1.141        ad 	l = curlwp;
    912  1.141        ad 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
    913  1.141        ad 		flags |= UVM_PGA_USERESERVE;
    914  1.141        ad 	}
    915  1.141        ad 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    916  1.141        ad 	    (flags & UVM_PGA_USERESERVE) == 0) ||
    917    1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    918  1.141        ad 	     curlwp != uvm.pagedaemon_lwp))
    919   1.12   thorpej 		goto fail;
    920   1.12   thorpej 
    921   1.34   thorpej #if PGFL_NQUEUES != 2
    922   1.34   thorpej #error uvm_pagealloc_strat needs to be updated
    923   1.34   thorpej #endif
    924   1.34   thorpej 
    925   1.34   thorpej 	/*
    926   1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    927   1.34   thorpej 	 * we try the UNKNOWN queue first.
    928   1.34   thorpej 	 */
    929   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    930   1.34   thorpej 		try1 = PGFL_ZEROS;
    931   1.34   thorpej 		try2 = PGFL_UNKNOWN;
    932   1.34   thorpej 	} else {
    933   1.34   thorpej 		try1 = PGFL_UNKNOWN;
    934   1.34   thorpej 		try2 = PGFL_ZEROS;
    935   1.34   thorpej 	}
    936   1.34   thorpej 
    937   1.12   thorpej  again:
    938   1.12   thorpej 	switch (strat) {
    939   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
    940  1.145       abs 		/* Check freelists: descending priority (ascending id) order */
    941   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    942  1.133        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
    943   1.54   thorpej 			    try1, try2, &color);
    944   1.54   thorpej 			if (pg != NULL)
    945   1.12   thorpej 				goto gotit;
    946   1.12   thorpej 		}
    947   1.12   thorpej 
    948   1.12   thorpej 		/* No pages free! */
    949   1.12   thorpej 		goto fail;
    950   1.12   thorpej 
    951   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
    952   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
    953   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
    954   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    955  1.133        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
    956   1.54   thorpej 		    try1, try2, &color);
    957   1.54   thorpej 		if (pg != NULL)
    958   1.12   thorpej 			goto gotit;
    959   1.12   thorpej 
    960   1.12   thorpej 		/* Fall back, if possible. */
    961   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    962   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
    963   1.12   thorpej 			goto again;
    964   1.12   thorpej 		}
    965   1.12   thorpej 
    966   1.12   thorpej 		/* No pages free! */
    967   1.12   thorpej 		goto fail;
    968   1.12   thorpej 
    969   1.12   thorpej 	default:
    970   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    971   1.12   thorpej 		/* NOTREACHED */
    972    1.7       mrg 	}
    973    1.7       mrg 
    974   1.12   thorpej  gotit:
    975   1.54   thorpej 	/*
    976   1.54   thorpej 	 * We now know which color we actually allocated from; set
    977   1.54   thorpej 	 * the next color accordingly.
    978   1.54   thorpej 	 */
    979   1.67       chs 
    980  1.133        ad 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
    981   1.34   thorpej 
    982   1.34   thorpej 	/*
    983   1.34   thorpej 	 * update allocation statistics and remember if we have to
    984   1.34   thorpej 	 * zero the page
    985   1.34   thorpej 	 */
    986   1.67       chs 
    987   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    988   1.34   thorpej 		if (pg->flags & PG_ZERO) {
    989  1.205        ad 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
    990   1.34   thorpej 			zeroit = 0;
    991   1.34   thorpej 		} else {
    992  1.205        ad 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
    993   1.34   thorpej 			zeroit = 1;
    994   1.34   thorpej 		}
    995  1.133        ad 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
    996  1.133        ad 			ucpu->page_idle_zero = vm_page_zero_enable;
    997  1.133        ad 		}
    998   1.34   thorpej 	}
    999  1.201        ad 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1000    1.7       mrg 
   1001  1.201        ad 	/*
   1002  1.201        ad 	 * For now check this - later on we may do lazy dequeue, but need
   1003  1.201        ad 	 * to get page.queue used only by the pagedaemon policy first.
   1004  1.201        ad 	 */
   1005  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1006  1.201        ad 
   1007  1.201        ad 	/*
   1008  1.201        ad 	 * assign the page to the object.  we don't need to lock the page's
   1009  1.201        ad 	 * identity to do this, as the caller holds the objects locked, and
   1010  1.201        ad 	 * the page is not on any paging queues at this time.
   1011  1.201        ad 	 */
   1012    1.7       mrg 	pg->offset = off;
   1013    1.7       mrg 	pg->uobject = obj;
   1014    1.7       mrg 	pg->uanon = anon;
   1015  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1016    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1017  1.202        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1018    1.7       mrg 	if (anon) {
   1019  1.103      yamt 		anon->an_page = pg;
   1020  1.201        ad 		pg->flags |= PG_ANON;
   1021  1.205        ad 		cpu_count(CPU_COUNT_ANONPAGES, 1);
   1022  1.201        ad 	} else if (obj) {
   1023  1.206        ad 		uvm_pageinsert_object(obj, pg);
   1024  1.206        ad 		error = uvm_pageinsert_tree(obj, pg);
   1025  1.202        ad 		if (error != 0) {
   1026  1.206        ad 			uvm_pageremove_object(obj, pg);
   1027  1.202        ad 			uvm_pagefree(pg);
   1028  1.202        ad 			return NULL;
   1029  1.202        ad 		}
   1030    1.7       mrg 	}
   1031  1.143  drochner 
   1032    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1033    1.7       mrg 	pg->owner_tag = NULL;
   1034    1.1       mrg #endif
   1035    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1036   1.33   thorpej 
   1037   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1038   1.33   thorpej 		/*
   1039   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1040   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1041   1.33   thorpej 		 */
   1042   1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1043   1.34   thorpej 		if (zeroit)
   1044   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1045   1.33   thorpej 	}
   1046    1.1       mrg 
   1047    1.7       mrg 	return(pg);
   1048   1.12   thorpej 
   1049   1.12   thorpej  fail:
   1050  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1051   1.12   thorpej 	return (NULL);
   1052    1.1       mrg }
   1053    1.1       mrg 
   1054    1.1       mrg /*
   1055   1.96      yamt  * uvm_pagereplace: replace a page with another
   1056   1.96      yamt  *
   1057   1.96      yamt  * => object must be locked
   1058   1.96      yamt  */
   1059   1.96      yamt 
   1060   1.96      yamt void
   1061  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1062   1.96      yamt {
   1063  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1064   1.97  junyoung 
   1065   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1066  1.136      yamt 	KASSERT(uobj != NULL);
   1067   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1068   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1069  1.174     rmind 	KASSERT(mutex_owned(uobj->vmobjlock));
   1070   1.96      yamt 
   1071   1.96      yamt 	newpg->offset = oldpg->offset;
   1072  1.136      yamt 	uvm_pageremove_tree(uobj, oldpg);
   1073  1.136      yamt 	uvm_pageinsert_tree(uobj, newpg);
   1074  1.206        ad 
   1075  1.206        ad 	/* take page interlocks during rename */
   1076  1.206        ad 	if (oldpg < newpg) {
   1077  1.206        ad 		mutex_enter(&oldpg->interlock);
   1078  1.206        ad 		mutex_enter(&newpg->interlock);
   1079  1.206        ad 	} else {
   1080  1.206        ad 		mutex_enter(&newpg->interlock);
   1081  1.206        ad 		mutex_enter(&oldpg->interlock);
   1082  1.206        ad 	}
   1083  1.206        ad 	newpg->uobject = uobj;
   1084  1.203        ad 	uvm_pageinsert_object(uobj, newpg);
   1085  1.203        ad 	uvm_pageremove_object(uobj, oldpg);
   1086  1.206        ad 	mutex_exit(&oldpg->interlock);
   1087  1.206        ad 	mutex_exit(&newpg->interlock);
   1088   1.96      yamt }
   1089   1.96      yamt 
   1090   1.96      yamt /*
   1091    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1092    1.1       mrg  *
   1093    1.1       mrg  * => both objects must be locked
   1094  1.201        ad  * => both interlocks must be held
   1095    1.1       mrg  */
   1096    1.1       mrg 
   1097    1.7       mrg void
   1098  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1099    1.1       mrg {
   1100    1.7       mrg 	/*
   1101    1.7       mrg 	 * remove it from the old object
   1102    1.7       mrg 	 */
   1103    1.7       mrg 
   1104    1.7       mrg 	if (pg->uobject) {
   1105  1.206        ad 		uvm_pageremove_tree(pg->uobject, pg);
   1106  1.206        ad 		uvm_pageremove_object(pg->uobject, pg);
   1107    1.7       mrg 	}
   1108    1.7       mrg 
   1109    1.7       mrg 	/*
   1110    1.7       mrg 	 * put it in the new object
   1111    1.7       mrg 	 */
   1112    1.7       mrg 
   1113    1.7       mrg 	if (newobj) {
   1114  1.204        ad 		/*
   1115  1.204        ad 		 * XXX we have no in-tree users of this functionality
   1116  1.204        ad 		 */
   1117  1.204        ad 		panic("uvm_pagerealloc: no impl");
   1118    1.7       mrg 	}
   1119    1.1       mrg }
   1120    1.1       mrg 
   1121   1.91      yamt #ifdef DEBUG
   1122   1.91      yamt /*
   1123   1.91      yamt  * check if page is zero-filled
   1124   1.91      yamt  */
   1125   1.91      yamt void
   1126   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1127   1.91      yamt {
   1128   1.91      yamt 	int *p, *ep;
   1129   1.91      yamt 
   1130   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1131  1.123        ad 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1132   1.91      yamt 
   1133   1.91      yamt 	/*
   1134   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1135   1.91      yamt 	 * uvm page allocator.
   1136   1.91      yamt 	 *
   1137   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1138   1.91      yamt 	 */
   1139  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1140   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1141   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1142   1.92      yamt 	pmap_update(pmap_kernel());
   1143   1.91      yamt 	while (p < ep) {
   1144   1.91      yamt 		if (*p != 0)
   1145   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1146   1.91      yamt 		p++;
   1147   1.91      yamt 	}
   1148   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1149  1.131      yamt 	/*
   1150  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1151  1.131      yamt 	 * uses this VA.
   1152  1.131      yamt 	 */
   1153   1.91      yamt }
   1154   1.91      yamt #endif /* DEBUG */
   1155   1.91      yamt 
   1156    1.1       mrg /*
   1157    1.1       mrg  * uvm_pagefree: free page
   1158    1.1       mrg  *
   1159  1.133        ad  * => erase page's identity (i.e. remove from object)
   1160    1.1       mrg  * => put page on free list
   1161    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1162    1.1       mrg  * => assumes all valid mappings of pg are gone
   1163    1.1       mrg  */
   1164    1.1       mrg 
   1165   1.44       chs void
   1166  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1167    1.1       mrg {
   1168  1.133        ad 	struct pgflist *pgfl;
   1169  1.133        ad 	struct uvm_cpu *ucpu;
   1170  1.133        ad 	int index, color, queue;
   1171  1.201        ad 	bool iszero, locked;
   1172   1.67       chs 
   1173   1.44       chs #ifdef DEBUG
   1174   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1175   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1176   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1177   1.44       chs 	}
   1178   1.91      yamt #endif /* DEBUG */
   1179   1.44       chs 
   1180  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1181  1.201        ad 	KASSERT(!(pg->flags & PG_FREE));
   1182  1.182      matt 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1183  1.174     rmind 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1184  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1185  1.174     rmind 		mutex_owned(pg->uanon->an_lock));
   1186  1.123        ad 
   1187    1.7       mrg 	/*
   1188  1.206        ad 	 * remove the page from the object's tree beore acquiring any page
   1189  1.206        ad 	 * interlocks: this can acquire locks to free radixtree nodes.
   1190  1.206        ad 	 */
   1191  1.206        ad 	if (pg->uobject != NULL) {
   1192  1.206        ad 		uvm_pageremove_tree(pg->uobject, pg);
   1193  1.206        ad 	}
   1194  1.206        ad 
   1195  1.206        ad 	/*
   1196   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1197    1.7       mrg 	 */
   1198    1.7       mrg 
   1199   1.67       chs 	if (pg->loan_count) {
   1200   1.70       chs 		KASSERT(pg->wire_count == 0);
   1201    1.7       mrg 
   1202    1.7       mrg 		/*
   1203   1.67       chs 		 * if the page is owned by an anon then we just want to
   1204   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1205   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1206   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1207   1.70       chs 		 * of possible anon owners.
   1208   1.70       chs 		 *
   1209   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1210   1.70       chs 		 * unbusy the page, and we're done.
   1211    1.7       mrg 		 */
   1212    1.7       mrg 
   1213  1.201        ad 		mutex_enter(&pg->interlock);
   1214  1.201        ad 		locked = true;
   1215   1.73       chs 		if (pg->uobject != NULL) {
   1216  1.206        ad 			uvm_pageremove_object(pg->uobject, pg);
   1217   1.67       chs 			pg->flags &= ~PG_CLEAN;
   1218   1.73       chs 		} else if (pg->uanon != NULL) {
   1219  1.201        ad 			if ((pg->flags & PG_ANON) == 0) {
   1220   1.73       chs 				pg->loan_count--;
   1221   1.73       chs 			} else {
   1222  1.201        ad 				pg->flags &= ~PG_ANON;
   1223  1.205        ad 				cpu_count(CPU_COUNT_ANONPAGES, -1);
   1224   1.73       chs 			}
   1225  1.103      yamt 			pg->uanon->an_page = NULL;
   1226   1.73       chs 			pg->uanon = NULL;
   1227   1.67       chs 		}
   1228   1.70       chs 		if (pg->flags & PG_WANTED) {
   1229   1.70       chs 			wakeup(pg);
   1230   1.70       chs 		}
   1231   1.84  perseant 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1232   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1233   1.70       chs 		pg->owner_tag = NULL;
   1234   1.70       chs #endif
   1235   1.73       chs 		if (pg->loan_count) {
   1236  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1237  1.201        ad 			mutex_exit(&pg->interlock);
   1238  1.115      yamt 			if (pg->uanon == NULL) {
   1239  1.115      yamt 				uvm_pagedequeue(pg);
   1240  1.115      yamt 			}
   1241   1.73       chs 			return;
   1242   1.73       chs 		}
   1243  1.201        ad 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1244  1.201        ad 	           pg->wire_count != 0) {
   1245  1.201        ad 		mutex_enter(&pg->interlock);
   1246  1.201        ad 		locked = true;
   1247  1.201        ad 	} else {
   1248  1.201        ad 		locked = false;
   1249   1.67       chs 	}
   1250   1.62       chs 
   1251   1.67       chs 	/*
   1252   1.67       chs 	 * remove page from its object or anon.
   1253   1.67       chs 	 */
   1254   1.73       chs 	if (pg->uobject != NULL) {
   1255  1.206        ad 		uvm_pageremove_object(pg->uobject, pg);
   1256   1.73       chs 	} else if (pg->uanon != NULL) {
   1257  1.103      yamt 		pg->uanon->an_page = NULL;
   1258  1.201        ad 		pg->uanon = NULL;
   1259  1.205        ad 		cpu_count(CPU_COUNT_ANONPAGES, -1);
   1260    1.7       mrg 	}
   1261    1.1       mrg 
   1262    1.7       mrg 	/*
   1263    1.7       mrg 	 * if the page was wired, unwire it now.
   1264    1.7       mrg 	 */
   1265   1.44       chs 
   1266   1.34   thorpej 	if (pg->wire_count) {
   1267    1.7       mrg 		pg->wire_count = 0;
   1268  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1269  1.201        ad 	}
   1270  1.201        ad 	if (locked) {
   1271  1.201        ad 		mutex_exit(&pg->interlock);
   1272   1.44       chs 	}
   1273    1.7       mrg 
   1274    1.7       mrg 	/*
   1275  1.201        ad 	 * now remove the page from the queues.
   1276  1.201        ad 	 */
   1277  1.201        ad 	uvm_pagedequeue(pg);
   1278  1.201        ad 
   1279  1.201        ad 	/*
   1280   1.44       chs 	 * and put on free queue
   1281    1.7       mrg 	 */
   1282    1.7       mrg 
   1283   1.90      yamt 	iszero = (pg->flags & PG_ZERO);
   1284  1.209        ad 	index = uvm_page_get_freelist(pg);
   1285  1.209        ad 	color = VM_PGCOLOR(pg);
   1286  1.133        ad 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1287   1.34   thorpej 
   1288    1.3       chs #ifdef DEBUG
   1289    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1290    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1291    1.3       chs #endif
   1292   1.90      yamt 
   1293  1.123        ad 	mutex_spin_enter(&uvm_fpageqlock);
   1294  1.201        ad 	pg->flags = PG_FREE;
   1295   1.91      yamt 
   1296   1.91      yamt #ifdef DEBUG
   1297   1.91      yamt 	if (iszero)
   1298   1.91      yamt 		uvm_pagezerocheck(pg);
   1299   1.91      yamt #endif /* DEBUG */
   1300   1.91      yamt 
   1301  1.133        ad 
   1302  1.133        ad 	/* global list */
   1303  1.133        ad 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1304  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1305    1.7       mrg 	uvmexp.free++;
   1306  1.133        ad 	if (iszero) {
   1307  1.205        ad 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
   1308  1.133        ad 	}
   1309   1.34   thorpej 
   1310  1.133        ad 	/* per-cpu list */
   1311  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1312  1.133        ad 	pg->offset = (uintptr_t)ucpu;
   1313  1.133        ad 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1314  1.133        ad 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1315  1.133        ad 	ucpu->pages[queue]++;
   1316  1.133        ad 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1317  1.133        ad 		ucpu->page_idle_zero = vm_page_zero_enable;
   1318  1.133        ad 	}
   1319   1.34   thorpej 
   1320  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1321   1.44       chs }
   1322   1.44       chs 
   1323   1.44       chs /*
   1324   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1325   1.44       chs  *
   1326   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1327   1.44       chs  * => if pages are object-owned, object must be locked.
   1328   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1329   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1330   1.44       chs  */
   1331   1.44       chs 
   1332   1.44       chs void
   1333  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1334   1.44       chs {
   1335   1.44       chs 	struct vm_page *pg;
   1336   1.44       chs 	int i;
   1337   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1338   1.44       chs 
   1339   1.44       chs 	for (i = 0; i < npgs; i++) {
   1340   1.44       chs 		pg = pgs[i];
   1341   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1342   1.44       chs 			continue;
   1343   1.44       chs 		}
   1344   1.98      yamt 
   1345  1.180      matt 		KASSERT(uvm_page_locked_p(pg));
   1346   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1347   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1348   1.44       chs 		if (pg->flags & PG_WANTED) {
   1349  1.201        ad 			/* XXXAD thundering herd problem. */
   1350   1.44       chs 			wakeup(pg);
   1351   1.44       chs 		}
   1352   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1353  1.194  pgoyette 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1354  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1355   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1356   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1357   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1358   1.67       chs 			uvm_pagefree(pg);
   1359   1.44       chs 		} else {
   1360  1.194  pgoyette 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1361  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1362  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1363   1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1364   1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1365   1.44       chs 		}
   1366   1.44       chs 	}
   1367    1.1       mrg }
   1368    1.1       mrg 
   1369    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1370    1.1       mrg /*
   1371    1.1       mrg  * uvm_page_own: set or release page ownership
   1372    1.1       mrg  *
   1373    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1374    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1375    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1376    1.1       mrg  * => page's object [if any] must be locked
   1377    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1378    1.1       mrg  */
   1379    1.7       mrg void
   1380  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1381    1.1       mrg {
   1382  1.112      yamt 
   1383   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1384  1.184       chs 	KASSERT((pg->flags & PG_WANTED) == 0);
   1385  1.180      matt 	KASSERT(uvm_page_locked_p(pg));
   1386  1.112      yamt 
   1387    1.7       mrg 	/* gain ownership? */
   1388    1.7       mrg 	if (tag) {
   1389  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1390    1.7       mrg 		if (pg->owner_tag) {
   1391    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1392    1.7       mrg 			    "by proc %d [%s]\n", pg,
   1393   1.74     enami 			    pg->owner, pg->owner_tag);
   1394    1.7       mrg 			panic("uvm_page_own");
   1395    1.7       mrg 		}
   1396  1.184       chs 		pg->owner = curproc->p_pid;
   1397  1.184       chs 		pg->lowner = curlwp->l_lid;
   1398    1.7       mrg 		pg->owner_tag = tag;
   1399    1.7       mrg 		return;
   1400    1.7       mrg 	}
   1401    1.7       mrg 
   1402    1.7       mrg 	/* drop ownership */
   1403  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1404    1.7       mrg 	if (pg->owner_tag == NULL) {
   1405    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1406    1.7       mrg 		    "page (%p)\n", pg);
   1407    1.7       mrg 		panic("uvm_page_own");
   1408    1.7       mrg 	}
   1409  1.115      yamt 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1410  1.115      yamt 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1411  1.115      yamt 		    pg->wire_count > 0);
   1412  1.115      yamt 	} else {
   1413  1.115      yamt 		KASSERT(pg->wire_count == 0);
   1414  1.115      yamt 	}
   1415    1.7       mrg 	pg->owner_tag = NULL;
   1416    1.1       mrg }
   1417    1.1       mrg #endif
   1418   1.34   thorpej 
   1419   1.34   thorpej /*
   1420   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1421   1.34   thorpej  *
   1422   1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1423   1.54   thorpej  *	on the CPU cache.
   1424  1.132        ad  * => we loop until we either reach the target or there is a lwp ready
   1425  1.132        ad  *      to run, or MD code detects a reason to break early.
   1426   1.34   thorpej  */
   1427   1.34   thorpej void
   1428  1.105   thorpej uvm_pageidlezero(void)
   1429   1.34   thorpej {
   1430   1.34   thorpej 	struct vm_page *pg;
   1431  1.133        ad 	struct pgfreelist *pgfl, *gpgfl;
   1432  1.133        ad 	struct uvm_cpu *ucpu;
   1433  1.133        ad 	int free_list, firstbucket, nextbucket;
   1434  1.172     rmind 	bool lcont = false;
   1435  1.133        ad 
   1436  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1437  1.133        ad 	if (!ucpu->page_idle_zero ||
   1438  1.133        ad 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1439  1.133        ad 	    	ucpu->page_idle_zero = false;
   1440  1.132        ad 		return;
   1441  1.132        ad 	}
   1442  1.172     rmind 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1443  1.172     rmind 		/* Contention: let other CPUs to use the lock. */
   1444  1.172     rmind 		return;
   1445  1.172     rmind 	}
   1446  1.133        ad 	firstbucket = ucpu->page_free_nextcolor;
   1447  1.133        ad 	nextbucket = firstbucket;
   1448   1.58     enami 	do {
   1449   1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1450  1.139        ad 			if (sched_curcpu_runnable_p()) {
   1451  1.139        ad 				goto quit;
   1452  1.139        ad 			}
   1453  1.133        ad 			pgfl = &ucpu->page_free[free_list];
   1454  1.133        ad 			gpgfl = &uvm.page_free[free_list];
   1455  1.133        ad 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1456   1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1457  1.172     rmind 				if (lcont || sched_curcpu_runnable_p()) {
   1458  1.101      yamt 					goto quit;
   1459  1.132        ad 				}
   1460  1.133        ad 				LIST_REMOVE(pg, pageq.list); /* global list */
   1461  1.133        ad 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1462  1.133        ad 				ucpu->pages[PGFL_UNKNOWN]--;
   1463   1.54   thorpej 				uvmexp.free--;
   1464  1.201        ad 				KASSERT(pg->flags == PG_FREE);
   1465  1.201        ad 				pg->flags = 0;
   1466  1.123        ad 				mutex_spin_exit(&uvm_fpageqlock);
   1467   1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1468   1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1469   1.67       chs 
   1470   1.54   thorpej 					/*
   1471   1.54   thorpej 					 * The machine-dependent code detected
   1472   1.54   thorpej 					 * some reason for us to abort zeroing
   1473   1.54   thorpej 					 * pages, probably because there is a
   1474   1.54   thorpej 					 * process now ready to run.
   1475   1.54   thorpej 					 */
   1476   1.67       chs 
   1477  1.123        ad 					mutex_spin_enter(&uvm_fpageqlock);
   1478  1.201        ad 					pg->flags = PG_FREE;
   1479  1.133        ad 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1480  1.133        ad 					    nextbucket].pgfl_queues[
   1481  1.133        ad 					    PGFL_UNKNOWN], pg, pageq.list);
   1482  1.133        ad 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1483   1.54   thorpej 					    nextbucket].pgfl_queues[
   1484  1.133        ad 					    PGFL_UNKNOWN], pg, listq.list);
   1485  1.133        ad 					ucpu->pages[PGFL_UNKNOWN]++;
   1486   1.54   thorpej 					uvmexp.free++;
   1487  1.208        ad 				    	uvmexp.zeroaborts++;
   1488  1.101      yamt 					goto quit;
   1489   1.54   thorpej 				}
   1490   1.54   thorpej #else
   1491   1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1492   1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1493  1.172     rmind 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1494  1.172     rmind 					lcont = true;
   1495  1.172     rmind 					mutex_spin_enter(&uvm_fpageqlock);
   1496  1.172     rmind 				} else {
   1497  1.172     rmind 					lcont = false;
   1498  1.172     rmind 				}
   1499  1.201        ad 				pg->flags = PG_FREE | PG_ZERO;
   1500  1.133        ad 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1501  1.133        ad 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1502  1.133        ad 				    pg, pageq.list);
   1503  1.133        ad 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1504   1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1505  1.133        ad 				    pg, listq.list);
   1506  1.133        ad 				ucpu->pages[PGFL_ZEROS]++;
   1507   1.54   thorpej 				uvmexp.free++;
   1508  1.205        ad 			    	CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
   1509   1.54   thorpej 			}
   1510   1.41   thorpej 		}
   1511  1.133        ad 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1512  1.133        ad 			break;
   1513  1.133        ad 		}
   1514   1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1515   1.58     enami 	} while (nextbucket != firstbucket);
   1516  1.133        ad 	ucpu->page_idle_zero = false;
   1517  1.133        ad  quit:
   1518  1.123        ad 	mutex_spin_exit(&uvm_fpageqlock);
   1519   1.34   thorpej }
   1520  1.110      yamt 
   1521  1.110      yamt /*
   1522  1.110      yamt  * uvm_pagelookup: look up a page
   1523  1.110      yamt  *
   1524  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1525  1.110      yamt  *	out from under it
   1526  1.110      yamt  */
   1527  1.110      yamt 
   1528  1.110      yamt struct vm_page *
   1529  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1530  1.110      yamt {
   1531  1.110      yamt 	struct vm_page *pg;
   1532  1.110      yamt 
   1533  1.203        ad 	/* No - used from DDB. KASSERT(mutex_owned(obj->vmobjlock)); */
   1534  1.123        ad 
   1535  1.202        ad 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1536  1.134        ad 
   1537  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1538  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1539  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1540  1.156     rmind 	return pg;
   1541  1.110      yamt }
   1542  1.110      yamt 
   1543  1.110      yamt /*
   1544  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1545  1.110      yamt  *
   1546  1.201        ad  * => caller must lock objects
   1547  1.110      yamt  */
   1548  1.110      yamt 
   1549  1.110      yamt void
   1550  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1551  1.110      yamt {
   1552  1.201        ad 
   1553  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1554  1.113      yamt #if defined(READAHEAD_STATS)
   1555  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1556  1.113      yamt 		uvm_ra_hit.ev_count++;
   1557  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1558  1.113      yamt 	}
   1559  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1560  1.110      yamt 	if (pg->wire_count == 0) {
   1561  1.110      yamt 		uvm_pagedequeue(pg);
   1562  1.201        ad 		atomic_inc_uint(&uvmexp.wired);
   1563  1.110      yamt 	}
   1564  1.201        ad 	mutex_enter(&pg->interlock);
   1565  1.110      yamt 	pg->wire_count++;
   1566  1.201        ad 	mutex_exit(&pg->interlock);
   1567  1.197  jdolecek 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1568  1.110      yamt }
   1569  1.110      yamt 
   1570  1.110      yamt /*
   1571  1.110      yamt  * uvm_pageunwire: unwire the page.
   1572  1.110      yamt  *
   1573  1.110      yamt  * => activate if wire count goes to zero.
   1574  1.201        ad  * => caller must lock objects
   1575  1.110      yamt  */
   1576  1.110      yamt 
   1577  1.110      yamt void
   1578  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1579  1.110      yamt {
   1580  1.201        ad 
   1581  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1582  1.199       kre 	KASSERT(pg->wire_count != 0);
   1583  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1584  1.201        ad 	mutex_enter(&pg->interlock);
   1585  1.110      yamt 	pg->wire_count--;
   1586  1.201        ad 	mutex_exit(&pg->interlock);
   1587  1.110      yamt 	if (pg->wire_count == 0) {
   1588  1.111      yamt 		uvm_pageactivate(pg);
   1589  1.199       kre 		KASSERT(uvmexp.wired != 0);
   1590  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1591  1.110      yamt 	}
   1592  1.110      yamt }
   1593  1.110      yamt 
   1594  1.110      yamt /*
   1595  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1596  1.110      yamt  *
   1597  1.201        ad  * => caller must lock objects
   1598  1.110      yamt  * => caller must check to make sure page is not wired
   1599  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1600  1.110      yamt  * => caller must clear the reference on the page before calling
   1601  1.110      yamt  */
   1602  1.110      yamt 
   1603  1.110      yamt void
   1604  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1605  1.110      yamt {
   1606  1.113      yamt 
   1607  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1608  1.201        ad 	if (pg->wire_count == 0) {
   1609  1.201        ad 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1610  1.201        ad 		uvmpdpol_pagedeactivate(pg);
   1611  1.201        ad 	}
   1612  1.110      yamt }
   1613  1.110      yamt 
   1614  1.110      yamt /*
   1615  1.110      yamt  * uvm_pageactivate: activate page
   1616  1.110      yamt  *
   1617  1.201        ad  * => caller must lock objects
   1618  1.110      yamt  */
   1619  1.110      yamt 
   1620  1.110      yamt void
   1621  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1622  1.110      yamt {
   1623  1.113      yamt 
   1624  1.174     rmind 	KASSERT(uvm_page_locked_p(pg));
   1625  1.113      yamt #if defined(READAHEAD_STATS)
   1626  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1627  1.113      yamt 		uvm_ra_hit.ev_count++;
   1628  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1629  1.113      yamt 	}
   1630  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1631  1.201        ad 	if (pg->wire_count == 0) {
   1632  1.201        ad 		uvmpdpol_pageactivate(pg);
   1633  1.110      yamt 	}
   1634  1.110      yamt }
   1635  1.110      yamt 
   1636  1.110      yamt /*
   1637  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1638  1.201        ad  *
   1639  1.201        ad  * => caller must lock objects
   1640  1.110      yamt  */
   1641  1.110      yamt void
   1642  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1643  1.110      yamt {
   1644  1.113      yamt 
   1645  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1646  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1647  1.201        ad 		uvmpdpol_pagedequeue(pg);
   1648  1.110      yamt 	}
   1649  1.113      yamt }
   1650  1.113      yamt 
   1651  1.113      yamt /*
   1652  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1653  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1654  1.201        ad  *
   1655  1.201        ad  * => caller must lock objects
   1656  1.113      yamt  */
   1657  1.113      yamt void
   1658  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1659  1.113      yamt {
   1660  1.113      yamt 
   1661  1.201        ad 	KASSERT(uvm_page_locked_p(pg));
   1662  1.201        ad 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1663  1.201        ad 		uvmpdpol_pageenqueue(pg);
   1664  1.113      yamt 	}
   1665  1.110      yamt }
   1666  1.110      yamt 
   1667  1.110      yamt /*
   1668  1.110      yamt  * uvm_pagezero: zero fill a page
   1669  1.110      yamt  *
   1670  1.110      yamt  * => if page is part of an object then the object should be locked
   1671  1.110      yamt  *	to protect pg->flags.
   1672  1.110      yamt  */
   1673  1.110      yamt 
   1674  1.110      yamt void
   1675  1.110      yamt uvm_pagezero(struct vm_page *pg)
   1676  1.110      yamt {
   1677  1.110      yamt 	pg->flags &= ~PG_CLEAN;
   1678  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1679  1.110      yamt }
   1680  1.110      yamt 
   1681  1.110      yamt /*
   1682  1.110      yamt  * uvm_pagecopy: copy a page
   1683  1.110      yamt  *
   1684  1.110      yamt  * => if page is part of an object then the object should be locked
   1685  1.110      yamt  *	to protect pg->flags.
   1686  1.110      yamt  */
   1687  1.110      yamt 
   1688  1.110      yamt void
   1689  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1690  1.110      yamt {
   1691  1.110      yamt 
   1692  1.110      yamt 	dst->flags &= ~PG_CLEAN;
   1693  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1694  1.110      yamt }
   1695  1.110      yamt 
   1696  1.110      yamt /*
   1697  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1698  1.150   thorpej  */
   1699  1.150   thorpej 
   1700  1.150   thorpej bool
   1701  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   1702  1.150   thorpej {
   1703  1.150   thorpej 
   1704  1.190    cherry 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1705  1.150   thorpej }
   1706  1.150   thorpej 
   1707  1.150   thorpej /*
   1708  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   1709  1.110      yamt  */
   1710  1.110      yamt 
   1711  1.110      yamt int
   1712  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   1713  1.110      yamt {
   1714  1.190    cherry 	uvm_physseg_t upm;
   1715  1.110      yamt 
   1716  1.190    cherry 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1717  1.190    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1718  1.190    cherry 	return uvm_physseg_get_free_list(upm);
   1719  1.110      yamt }
   1720  1.151   thorpej 
   1721  1.174     rmind /*
   1722  1.174     rmind  * uvm_page_locked_p: return true if object associated with page is
   1723  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   1724  1.174     rmind  */
   1725  1.174     rmind 
   1726  1.174     rmind bool
   1727  1.174     rmind uvm_page_locked_p(struct vm_page *pg)
   1728  1.174     rmind {
   1729  1.174     rmind 
   1730  1.174     rmind 	if (pg->uobject != NULL) {
   1731  1.174     rmind 		return mutex_owned(pg->uobject->vmobjlock);
   1732  1.174     rmind 	}
   1733  1.174     rmind 	if (pg->uanon != NULL) {
   1734  1.174     rmind 		return mutex_owned(pg->uanon->an_lock);
   1735  1.174     rmind 	}
   1736  1.174     rmind 	return true;
   1737  1.174     rmind }
   1738  1.174     rmind 
   1739  1.198  jdolecek #ifdef PMAP_DIRECT
   1740  1.198  jdolecek /*
   1741  1.198  jdolecek  * Call pmap to translate physical address into a virtual and to run a callback
   1742  1.198  jdolecek  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   1743  1.198  jdolecek  * or equivalent.
   1744  1.198  jdolecek  */
   1745  1.198  jdolecek int
   1746  1.198  jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   1747  1.198  jdolecek             int (*process)(void *, size_t, void *), void *arg)
   1748  1.198  jdolecek {
   1749  1.198  jdolecek 	int error = 0;
   1750  1.198  jdolecek 	paddr_t pa;
   1751  1.198  jdolecek 	size_t todo;
   1752  1.198  jdolecek 	voff_t pgoff = (off & PAGE_MASK);
   1753  1.198  jdolecek 	struct vm_page *pg;
   1754  1.198  jdolecek 
   1755  1.198  jdolecek 	KASSERT(npages > 0 && len > 0);
   1756  1.198  jdolecek 
   1757  1.198  jdolecek 	for (int i = 0; i < npages; i++) {
   1758  1.198  jdolecek 		pg = pgs[i];
   1759  1.198  jdolecek 
   1760  1.198  jdolecek 		KASSERT(len > 0);
   1761  1.198  jdolecek 
   1762  1.198  jdolecek 		/*
   1763  1.198  jdolecek 		 * Caller is responsible for ensuring all the pages are
   1764  1.198  jdolecek 		 * available.
   1765  1.198  jdolecek 		 */
   1766  1.198  jdolecek 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   1767  1.198  jdolecek 
   1768  1.198  jdolecek 		pa = VM_PAGE_TO_PHYS(pg);
   1769  1.198  jdolecek 		todo = MIN(len, PAGE_SIZE - pgoff);
   1770  1.198  jdolecek 
   1771  1.198  jdolecek 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   1772  1.198  jdolecek 		if (error)
   1773  1.198  jdolecek 			break;
   1774  1.198  jdolecek 
   1775  1.198  jdolecek 		pgoff = 0;
   1776  1.198  jdolecek 		len -= todo;
   1777  1.198  jdolecek 	}
   1778  1.198  jdolecek 
   1779  1.198  jdolecek 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   1780  1.198  jdolecek 	return error;
   1781  1.198  jdolecek }
   1782  1.198  jdolecek #endif /* PMAP_DIRECT */
   1783  1.198  jdolecek 
   1784  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   1785  1.151   thorpej 
   1786  1.151   thorpej /*
   1787  1.151   thorpej  * uvm_page_printit: actually print the page
   1788  1.151   thorpej  */
   1789  1.151   thorpej 
   1790  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   1791  1.151   thorpej 
   1792  1.151   thorpej void
   1793  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   1794  1.151   thorpej     void (*pr)(const char *, ...))
   1795  1.151   thorpej {
   1796  1.151   thorpej 	struct vm_page *tpg;
   1797  1.151   thorpej 	struct uvm_object *uobj;
   1798  1.151   thorpej 	struct pgflist *pgl;
   1799  1.151   thorpej 	char pgbuf[128];
   1800  1.151   thorpej 
   1801  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   1802  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1803  1.201        ad 	(*pr)("  flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
   1804  1.201        ad 	    pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1805  1.151   thorpej 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1806  1.151   thorpej 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1807  1.209        ad 	(*pr)("  bucket=%d freelist=%d\n",
   1808  1.209        ad 	    uvm_page_get_bucket(pg), uvm_page_get_freelist(pg));
   1809  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   1810  1.151   thorpej 	if (pg->flags & PG_BUSY)
   1811  1.151   thorpej 		(*pr)("  owning process = %d, tag=%s\n",
   1812  1.151   thorpej 		    pg->owner, pg->owner_tag);
   1813  1.151   thorpej 	else
   1814  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   1815  1.151   thorpej #else
   1816  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   1817  1.151   thorpej #endif
   1818  1.151   thorpej 
   1819  1.151   thorpej 	if (!full)
   1820  1.151   thorpej 		return;
   1821  1.151   thorpej 
   1822  1.151   thorpej 	/* cross-verify object/anon */
   1823  1.201        ad 	if ((pg->flags & PG_FREE) == 0) {
   1824  1.201        ad 		if (pg->flags & PG_ANON) {
   1825  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1826  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1827  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1828  1.151   thorpej 			else
   1829  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   1830  1.151   thorpej 		} else {
   1831  1.151   thorpej 			uobj = pg->uobject;
   1832  1.151   thorpej 			if (uobj) {
   1833  1.151   thorpej 				(*pr)("  checking object list\n");
   1834  1.203        ad 				tpg = uvm_pagelookup(uobj, pg->offset);
   1835  1.151   thorpej 				if (tpg)
   1836  1.151   thorpej 					(*pr)("  page found on object list\n");
   1837  1.151   thorpej 				else
   1838  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1839  1.151   thorpej 			}
   1840  1.151   thorpej 		}
   1841  1.151   thorpej 	}
   1842  1.151   thorpej 
   1843  1.151   thorpej 	/* cross-verify page queue */
   1844  1.201        ad 	if (pg->flags & PG_FREE) {
   1845  1.209        ad 		int fl = uvm_page_get_freelist(pg);
   1846  1.209        ad 		int color = VM_PGCOLOR(pg);
   1847  1.151   thorpej 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1848  1.151   thorpej 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1849  1.151   thorpej 	} else {
   1850  1.151   thorpej 		pgl = NULL;
   1851  1.151   thorpej 	}
   1852  1.151   thorpej 
   1853  1.151   thorpej 	if (pgl) {
   1854  1.151   thorpej 		(*pr)("  checking pageq list\n");
   1855  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1856  1.151   thorpej 			if (tpg == pg) {
   1857  1.151   thorpej 				break;
   1858  1.151   thorpej 			}
   1859  1.151   thorpej 		}
   1860  1.151   thorpej 		if (tpg)
   1861  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   1862  1.151   thorpej 		else
   1863  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1864  1.151   thorpej 	}
   1865  1.151   thorpej }
   1866  1.151   thorpej 
   1867  1.151   thorpej /*
   1868  1.201        ad  * uvm_page_printall - print a summary of all managed pages
   1869  1.151   thorpej  */
   1870  1.151   thorpej 
   1871  1.151   thorpej void
   1872  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   1873  1.151   thorpej {
   1874  1.190    cherry 	uvm_physseg_t i;
   1875  1.190    cherry 	paddr_t pfn;
   1876  1.151   thorpej 	struct vm_page *pg;
   1877  1.151   thorpej 
   1878  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   1879  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1880  1.151   thorpej 	    " OWNER"
   1881  1.151   thorpej #endif
   1882  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1883  1.190    cherry 	for (i = uvm_physseg_get_first();
   1884  1.190    cherry 	     uvm_physseg_valid_p(i);
   1885  1.190    cherry 	     i = uvm_physseg_get_next(i)) {
   1886  1.190    cherry 		for (pfn = uvm_physseg_get_start(i);
   1887  1.192      maya 		     pfn < uvm_physseg_get_end(i);
   1888  1.190    cherry 		     pfn++) {
   1889  1.190    cherry 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   1890  1.190    cherry 
   1891  1.201        ad 			(*pr)("%18p %04x %08x %18p %18p",
   1892  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1893  1.151   thorpej 			    pg->uanon);
   1894  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   1895  1.151   thorpej 			if (pg->flags & PG_BUSY)
   1896  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1897  1.151   thorpej #endif
   1898  1.151   thorpej 			(*pr)("\n");
   1899  1.151   thorpej 		}
   1900  1.151   thorpej 	}
   1901  1.151   thorpej }
   1902  1.151   thorpej 
   1903  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   1904