uvm_page.c revision 1.23 1 1.23 thorpej /* $NetBSD: uvm_page.c,v 1.23 1999/05/25 01:34:13 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.6 mrg #include "opt_pmap_new.h"
74 1.1 mrg
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.1 mrg #include <sys/proc.h>
79 1.1 mrg
80 1.1 mrg #include <vm/vm.h>
81 1.1 mrg #include <vm/vm_page.h>
82 1.1 mrg #include <vm/vm_kern.h>
83 1.1 mrg
84 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
85 1.1 mrg #include <uvm/uvm.h>
86 1.1 mrg
87 1.1 mrg /*
88 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
89 1.1 mrg */
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * physical memory config is stored in vm_physmem.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
96 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
97 1.1 mrg
98 1.1 mrg /*
99 1.1 mrg * local variables
100 1.1 mrg */
101 1.1 mrg
102 1.1 mrg /*
103 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
104 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
105 1.1 mrg * and pmap_startup here also uses them internally.
106 1.1 mrg */
107 1.1 mrg
108 1.14 eeh static vaddr_t virtual_space_start;
109 1.14 eeh static vaddr_t virtual_space_end;
110 1.1 mrg
111 1.1 mrg /*
112 1.1 mrg * we use a hash table with only one bucket during bootup. we will
113 1.1 mrg * later rehash (resize) the hash table once malloc() is ready.
114 1.1 mrg * we static allocate the bootstrap bucket below...
115 1.1 mrg */
116 1.1 mrg
117 1.1 mrg static struct pglist uvm_bootbucket;
118 1.1 mrg
119 1.1 mrg /*
120 1.1 mrg * local prototypes
121 1.1 mrg */
122 1.1 mrg
123 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
124 1.1 mrg
125 1.1 mrg
126 1.1 mrg /*
127 1.1 mrg * inline functions
128 1.1 mrg */
129 1.1 mrg
130 1.1 mrg /*
131 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
132 1.1 mrg *
133 1.1 mrg * => caller must lock object
134 1.1 mrg * => caller must lock page queues
135 1.1 mrg * => call should have already set pg's object and offset pointers
136 1.1 mrg * and bumped the version counter
137 1.1 mrg */
138 1.1 mrg
139 1.7 mrg __inline static void
140 1.7 mrg uvm_pageinsert(pg)
141 1.7 mrg struct vm_page *pg;
142 1.1 mrg {
143 1.7 mrg struct pglist *buck;
144 1.7 mrg int s;
145 1.1 mrg
146 1.1 mrg #ifdef DIAGNOSTIC
147 1.7 mrg if (pg->flags & PG_TABLED)
148 1.7 mrg panic("uvm_pageinsert: already inserted");
149 1.1 mrg #endif
150 1.1 mrg
151 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
152 1.7 mrg s = splimp();
153 1.7 mrg simple_lock(&uvm.hashlock);
154 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
155 1.7 mrg simple_unlock(&uvm.hashlock);
156 1.7 mrg splx(s);
157 1.7 mrg
158 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
159 1.7 mrg pg->flags |= PG_TABLED;
160 1.7 mrg pg->uobject->uo_npages++;
161 1.1 mrg
162 1.1 mrg }
163 1.1 mrg
164 1.1 mrg /*
165 1.1 mrg * uvm_page_remove: remove page from object and hash
166 1.1 mrg *
167 1.1 mrg * => caller must lock object
168 1.1 mrg * => caller must lock page queues
169 1.1 mrg */
170 1.1 mrg
171 1.7 mrg void __inline
172 1.7 mrg uvm_pageremove(pg)
173 1.7 mrg struct vm_page *pg;
174 1.1 mrg {
175 1.7 mrg struct pglist *buck;
176 1.7 mrg int s;
177 1.1 mrg
178 1.1 mrg #ifdef DIAGNOSTIC
179 1.7 mrg if ((pg->flags & (PG_FAULTING)) != 0)
180 1.7 mrg panic("uvm_pageremove: page is faulting");
181 1.1 mrg #endif
182 1.1 mrg
183 1.7 mrg if ((pg->flags & PG_TABLED) == 0)
184 1.7 mrg return; /* XXX: log */
185 1.1 mrg
186 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
187 1.7 mrg s = splimp();
188 1.7 mrg simple_lock(&uvm.hashlock);
189 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
190 1.7 mrg simple_unlock(&uvm.hashlock);
191 1.7 mrg splx(s);
192 1.7 mrg
193 1.7 mrg /* object should be locked */
194 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
195 1.7 mrg
196 1.7 mrg pg->flags &= ~PG_TABLED;
197 1.7 mrg pg->uobject->uo_npages--;
198 1.7 mrg pg->uobject = NULL;
199 1.7 mrg pg->version++;
200 1.1 mrg
201 1.1 mrg }
202 1.1 mrg
203 1.1 mrg /*
204 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
205 1.1 mrg *
206 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
207 1.1 mrg */
208 1.1 mrg
209 1.7 mrg void
210 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
211 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
212 1.1 mrg {
213 1.7 mrg int freepages, pagecount;
214 1.7 mrg vm_page_t pagearray;
215 1.7 mrg int lcv, n, i;
216 1.14 eeh paddr_t paddr;
217 1.7 mrg
218 1.7 mrg
219 1.7 mrg /*
220 1.7 mrg * step 1: init the page queues and page queue locks
221 1.7 mrg */
222 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++)
223 1.12 thorpej TAILQ_INIT(&uvm.page_free[lcv]);
224 1.7 mrg TAILQ_INIT(&uvm.page_active);
225 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
226 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
227 1.7 mrg simple_lock_init(&uvm.pageqlock);
228 1.7 mrg simple_lock_init(&uvm.fpageqlock);
229 1.7 mrg
230 1.7 mrg /*
231 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
232 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
233 1.7 mrg * will malloc() new buckets as we dynamically resize the hash table.
234 1.7 mrg */
235 1.7 mrg
236 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
237 1.7 mrg uvm.page_hashmask = 0; /* mask for hash function */
238 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
239 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
240 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
241 1.7 mrg
242 1.7 mrg /*
243 1.7 mrg * step 3: allocate vm_page structures.
244 1.7 mrg */
245 1.7 mrg
246 1.7 mrg /*
247 1.7 mrg * sanity check:
248 1.7 mrg * before calling this function the MD code is expected to register
249 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
250 1.7 mrg * now is to allocate vm_page structures for this memory.
251 1.7 mrg */
252 1.7 mrg
253 1.7 mrg if (vm_nphysseg == 0)
254 1.7 mrg panic("vm_page_bootstrap: no memory pre-allocated");
255 1.7 mrg
256 1.7 mrg /*
257 1.7 mrg * first calculate the number of free pages...
258 1.7 mrg *
259 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
260 1.7 mrg * this allows us to allocate extra vm_page structures in case we
261 1.7 mrg * want to return some memory to the pool after booting.
262 1.7 mrg */
263 1.7 mrg
264 1.7 mrg freepages = 0;
265 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
266 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
267 1.7 mrg
268 1.7 mrg /*
269 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
270 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
271 1.7 mrg * thus, the total number of pages we can use is the total size of
272 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
273 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
274 1.7 mrg * truncation errors (since we can only allocate in terms of whole
275 1.7 mrg * pages).
276 1.7 mrg */
277 1.7 mrg
278 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
279 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
280 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
281 1.7 mrg sizeof(struct vm_page));
282 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
283 1.7 mrg
284 1.7 mrg /*
285 1.7 mrg * step 4: init the vm_page structures and put them in the correct
286 1.7 mrg * place...
287 1.7 mrg */
288 1.7 mrg
289 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
290 1.7 mrg
291 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
292 1.7 mrg if (n > pagecount) {
293 1.7 mrg printf("uvm_page_init: lost %d page(s) in init\n",
294 1.7 mrg n - pagecount);
295 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
296 1.7 mrg /* n = pagecount; */
297 1.7 mrg }
298 1.7 mrg /* set up page array pointers */
299 1.7 mrg vm_physmem[lcv].pgs = pagearray;
300 1.7 mrg pagearray += n;
301 1.7 mrg pagecount -= n;
302 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
303 1.7 mrg
304 1.13 perry /* init and free vm_pages (we've already zeroed them) */
305 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
306 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
307 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
308 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
309 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
310 1.7 mrg uvmexp.npages++;
311 1.7 mrg /* add page to free pool */
312 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
313 1.7 mrg }
314 1.7 mrg }
315 1.7 mrg }
316 1.7 mrg /*
317 1.7 mrg * step 5: pass up the values of virtual_space_start and
318 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
319 1.7 mrg * layers of the VM.
320 1.7 mrg */
321 1.7 mrg
322 1.7 mrg *kvm_startp = round_page(virtual_space_start);
323 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
324 1.7 mrg
325 1.7 mrg /*
326 1.7 mrg * step 6: init pagedaemon lock
327 1.7 mrg */
328 1.7 mrg
329 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
330 1.7 mrg
331 1.7 mrg /*
332 1.7 mrg * step 7: init reserve thresholds
333 1.7 mrg * XXXCDC - values may need adjusting
334 1.7 mrg */
335 1.7 mrg uvmexp.reserve_pagedaemon = 1;
336 1.7 mrg uvmexp.reserve_kernel = 5;
337 1.7 mrg
338 1.7 mrg /*
339 1.7 mrg * done!
340 1.7 mrg */
341 1.1 mrg
342 1.1 mrg }
343 1.1 mrg
344 1.1 mrg /*
345 1.1 mrg * uvm_setpagesize: set the page size
346 1.1 mrg *
347 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
348 1.1 mrg * => XXXCDC: move global vars.
349 1.1 mrg */
350 1.1 mrg
351 1.7 mrg void
352 1.7 mrg uvm_setpagesize()
353 1.1 mrg {
354 1.7 mrg if (uvmexp.pagesize == 0)
355 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
356 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
357 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
358 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
359 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
360 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
361 1.7 mrg break;
362 1.1 mrg }
363 1.1 mrg
364 1.1 mrg /*
365 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
366 1.1 mrg */
367 1.1 mrg
368 1.14 eeh vaddr_t
369 1.7 mrg uvm_pageboot_alloc(size)
370 1.14 eeh vsize_t size;
371 1.1 mrg {
372 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
373 1.14 eeh vaddr_t addr;
374 1.1 mrg
375 1.7 mrg /*
376 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
377 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
378 1.7 mrg * off virtual_space_start/virtual_space_end.
379 1.7 mrg */
380 1.1 mrg
381 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
382 1.7 mrg &virtual_space_end);
383 1.1 mrg
384 1.7 mrg return(addr);
385 1.1 mrg
386 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
387 1.1 mrg
388 1.19 thorpej static boolean_t initialized = FALSE;
389 1.14 eeh vaddr_t addr, vaddr;
390 1.14 eeh paddr_t paddr;
391 1.1 mrg
392 1.7 mrg /* round to page size */
393 1.7 mrg size = round_page(size);
394 1.1 mrg
395 1.7 mrg /*
396 1.19 thorpej * on first call to this function, initialize ourselves.
397 1.7 mrg */
398 1.19 thorpej if (initialized == FALSE) {
399 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
400 1.1 mrg
401 1.7 mrg /* round it the way we like it */
402 1.7 mrg virtual_space_start = round_page(virtual_space_start);
403 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
404 1.19 thorpej
405 1.19 thorpej initialized = TRUE;
406 1.7 mrg }
407 1.1 mrg
408 1.7 mrg /*
409 1.7 mrg * allocate virtual memory for this request
410 1.7 mrg */
411 1.19 thorpej if (virtual_space_start == virtual_space_end ||
412 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
413 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
414 1.20 thorpej
415 1.20 thorpej addr = virtual_space_start;
416 1.20 thorpej
417 1.20 thorpej #ifdef PMAP_GROWKERNEL
418 1.20 thorpej /*
419 1.20 thorpej * If the kernel pmap can't map the requested space,
420 1.20 thorpej * then allocate more resources for it.
421 1.20 thorpej */
422 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
423 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
424 1.20 thorpej if (uvm_maxkaddr < (addr + size))
425 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
426 1.19 thorpej }
427 1.20 thorpej #endif
428 1.1 mrg
429 1.7 mrg virtual_space_start += size;
430 1.1 mrg
431 1.9 thorpej /*
432 1.7 mrg * allocate and mapin physical pages to back new virtual pages
433 1.7 mrg */
434 1.1 mrg
435 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
436 1.7 mrg vaddr += PAGE_SIZE) {
437 1.1 mrg
438 1.7 mrg if (!uvm_page_physget(&paddr))
439 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
440 1.1 mrg
441 1.7 mrg /* XXX: should be wired, but some pmaps don't like that ... */
442 1.1 mrg #if defined(PMAP_NEW)
443 1.23 thorpej /*
444 1.23 thorpej * Note this memory is no longer managed, so using
445 1.23 thorpej * pmap_kenter is safe.
446 1.23 thorpej */
447 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
448 1.1 mrg #else
449 1.7 mrg pmap_enter(pmap_kernel(), vaddr, paddr,
450 1.17 mycroft VM_PROT_READ|VM_PROT_WRITE, FALSE,
451 1.17 mycroft VM_PROT_READ|VM_PROT_WRITE);
452 1.1 mrg #endif
453 1.1 mrg
454 1.7 mrg }
455 1.7 mrg return(addr);
456 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
457 1.1 mrg }
458 1.1 mrg
459 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
460 1.1 mrg /*
461 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
462 1.1 mrg *
463 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
464 1.1 mrg * values match the start/end values. if we can't do that, then we
465 1.1 mrg * will advance both values (making them equal, and removing some
466 1.1 mrg * vm_page structures from the non-avail area).
467 1.1 mrg * => return false if out of memory.
468 1.1 mrg */
469 1.1 mrg
470 1.11 chuck boolean_t
471 1.7 mrg uvm_page_physget(paddrp)
472 1.14 eeh paddr_t *paddrp;
473 1.1 mrg {
474 1.7 mrg int lcv, x;
475 1.1 mrg
476 1.7 mrg /* pass 1: try allocating from a matching end */
477 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
478 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
479 1.1 mrg #else
480 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
481 1.1 mrg #endif
482 1.7 mrg {
483 1.1 mrg
484 1.7 mrg if (vm_physmem[lcv].pgs)
485 1.7 mrg panic("vm_page_physget: called _after_ bootstrap");
486 1.1 mrg
487 1.7 mrg /* try from front */
488 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
489 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
490 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
491 1.7 mrg vm_physmem[lcv].avail_start++;
492 1.7 mrg vm_physmem[lcv].start++;
493 1.7 mrg /* nothing left? nuke it */
494 1.7 mrg if (vm_physmem[lcv].avail_start ==
495 1.7 mrg vm_physmem[lcv].end) {
496 1.7 mrg if (vm_nphysseg == 1)
497 1.7 mrg panic("vm_page_physget: out of memory!");
498 1.7 mrg vm_nphysseg--;
499 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
500 1.7 mrg /* structure copy */
501 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
502 1.7 mrg }
503 1.7 mrg return (TRUE);
504 1.7 mrg }
505 1.7 mrg
506 1.7 mrg /* try from rear */
507 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
508 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
509 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
510 1.7 mrg vm_physmem[lcv].avail_end--;
511 1.7 mrg vm_physmem[lcv].end--;
512 1.7 mrg /* nothing left? nuke it */
513 1.7 mrg if (vm_physmem[lcv].avail_end ==
514 1.7 mrg vm_physmem[lcv].start) {
515 1.7 mrg if (vm_nphysseg == 1)
516 1.7 mrg panic("vm_page_physget: out of memory!");
517 1.7 mrg vm_nphysseg--;
518 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
519 1.7 mrg /* structure copy */
520 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
521 1.7 mrg }
522 1.7 mrg return (TRUE);
523 1.7 mrg }
524 1.7 mrg }
525 1.1 mrg
526 1.7 mrg /* pass2: forget about matching ends, just allocate something */
527 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
528 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
529 1.1 mrg #else
530 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
531 1.1 mrg #endif
532 1.7 mrg {
533 1.1 mrg
534 1.7 mrg /* any room in this bank? */
535 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
536 1.7 mrg continue; /* nope */
537 1.7 mrg
538 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
539 1.7 mrg vm_physmem[lcv].avail_start++;
540 1.7 mrg /* truncate! */
541 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
542 1.7 mrg
543 1.7 mrg /* nothing left? nuke it */
544 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
545 1.7 mrg if (vm_nphysseg == 1)
546 1.7 mrg panic("vm_page_physget: out of memory!");
547 1.7 mrg vm_nphysseg--;
548 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
549 1.7 mrg /* structure copy */
550 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
551 1.7 mrg }
552 1.7 mrg return (TRUE);
553 1.7 mrg }
554 1.1 mrg
555 1.7 mrg return (FALSE); /* whoops! */
556 1.1 mrg }
557 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
558 1.1 mrg
559 1.1 mrg /*
560 1.1 mrg * uvm_page_physload: load physical memory into VM system
561 1.1 mrg *
562 1.1 mrg * => all args are PFs
563 1.1 mrg * => all pages in start/end get vm_page structures
564 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
565 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
566 1.1 mrg */
567 1.1 mrg
568 1.7 mrg void
569 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
570 1.14 eeh vaddr_t start, end, avail_start, avail_end;
571 1.12 thorpej int free_list;
572 1.1 mrg {
573 1.14 eeh int preload, lcv;
574 1.14 eeh psize_t npages;
575 1.7 mrg struct vm_page *pgs;
576 1.7 mrg struct vm_physseg *ps;
577 1.7 mrg
578 1.7 mrg if (uvmexp.pagesize == 0)
579 1.7 mrg panic("vm_page_physload: page size not set!");
580 1.7 mrg
581 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
582 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
583 1.12 thorpej
584 1.7 mrg /*
585 1.7 mrg * do we have room?
586 1.7 mrg */
587 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
588 1.7 mrg printf("vm_page_physload: unable to load physical memory "
589 1.7 mrg "segment\n");
590 1.7 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
591 1.7 mrg VM_PHYSSEG_MAX, start, end);
592 1.7 mrg return;
593 1.7 mrg }
594 1.7 mrg
595 1.7 mrg /*
596 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
597 1.7 mrg * called yet, so malloc is not available).
598 1.7 mrg */
599 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
600 1.7 mrg if (vm_physmem[lcv].pgs)
601 1.7 mrg break;
602 1.7 mrg }
603 1.7 mrg preload = (lcv == vm_nphysseg);
604 1.7 mrg
605 1.7 mrg /*
606 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
607 1.7 mrg */
608 1.7 mrg if (!preload) {
609 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
610 1.7 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
611 1.1 mrg #else
612 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
613 1.14 eeh paddr_t paddr;
614 1.7 mrg npages = end - start; /* # of pages */
615 1.7 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
616 1.7 mrg M_VMPAGE, M_NOWAIT);
617 1.7 mrg if (pgs == NULL) {
618 1.7 mrg printf("vm_page_physload: can not malloc vm_page "
619 1.7 mrg "structs for segment\n");
620 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
621 1.7 mrg return;
622 1.7 mrg }
623 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
624 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
625 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
626 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
627 1.7 mrg pgs[lcv].phys_addr = paddr;
628 1.12 thorpej pgs[lcv].free_list = free_list;
629 1.7 mrg if (atop(paddr) >= avail_start &&
630 1.7 mrg atop(paddr) <= avail_end)
631 1.8 chuck uvm_pagefree(&pgs[lcv]);
632 1.7 mrg }
633 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
634 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
635 1.1 mrg #endif
636 1.7 mrg } else {
637 1.1 mrg
638 1.7 mrg /* gcc complains if these don't get init'd */
639 1.7 mrg pgs = NULL;
640 1.7 mrg npages = 0;
641 1.1 mrg
642 1.7 mrg }
643 1.1 mrg
644 1.7 mrg /*
645 1.7 mrg * now insert us in the proper place in vm_physmem[]
646 1.7 mrg */
647 1.1 mrg
648 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
649 1.1 mrg
650 1.7 mrg /* random: put it at the end (easy!) */
651 1.7 mrg ps = &vm_physmem[vm_nphysseg];
652 1.1 mrg
653 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
654 1.1 mrg
655 1.7 mrg {
656 1.7 mrg int x;
657 1.7 mrg /* sort by address for binary search */
658 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
659 1.7 mrg if (start < vm_physmem[lcv].start)
660 1.7 mrg break;
661 1.7 mrg ps = &vm_physmem[lcv];
662 1.7 mrg /* move back other entries, if necessary ... */
663 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
664 1.7 mrg /* structure copy */
665 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
666 1.7 mrg }
667 1.1 mrg
668 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
669 1.1 mrg
670 1.7 mrg {
671 1.7 mrg int x;
672 1.7 mrg /* sort by largest segment first */
673 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
674 1.7 mrg if ((end - start) >
675 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
676 1.7 mrg break;
677 1.7 mrg ps = &vm_physmem[lcv];
678 1.7 mrg /* move back other entries, if necessary ... */
679 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
680 1.7 mrg /* structure copy */
681 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
682 1.7 mrg }
683 1.1 mrg
684 1.1 mrg #else
685 1.1 mrg
686 1.7 mrg panic("vm_page_physload: unknown physseg strategy selected!");
687 1.1 mrg
688 1.1 mrg #endif
689 1.1 mrg
690 1.7 mrg ps->start = start;
691 1.7 mrg ps->end = end;
692 1.7 mrg ps->avail_start = avail_start;
693 1.7 mrg ps->avail_end = avail_end;
694 1.7 mrg if (preload) {
695 1.7 mrg ps->pgs = NULL;
696 1.7 mrg } else {
697 1.7 mrg ps->pgs = pgs;
698 1.7 mrg ps->lastpg = pgs + npages - 1;
699 1.7 mrg }
700 1.12 thorpej ps->free_list = free_list;
701 1.7 mrg vm_nphysseg++;
702 1.7 mrg
703 1.7 mrg /*
704 1.7 mrg * done!
705 1.7 mrg */
706 1.1 mrg
707 1.7 mrg if (!preload)
708 1.7 mrg uvm_page_rehash();
709 1.1 mrg
710 1.7 mrg return;
711 1.1 mrg }
712 1.1 mrg
713 1.1 mrg /*
714 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
715 1.1 mrg */
716 1.1 mrg
717 1.7 mrg void
718 1.7 mrg uvm_page_rehash()
719 1.1 mrg {
720 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
721 1.7 mrg struct pglist *newbuckets, *oldbuckets;
722 1.7 mrg struct vm_page *pg;
723 1.7 mrg
724 1.7 mrg /*
725 1.7 mrg * compute number of pages that can go in the free pool
726 1.7 mrg */
727 1.7 mrg
728 1.7 mrg freepages = 0;
729 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
730 1.7 mrg freepages +=
731 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
732 1.7 mrg
733 1.7 mrg /*
734 1.7 mrg * compute number of buckets needed for this number of pages
735 1.7 mrg */
736 1.7 mrg
737 1.7 mrg bucketcount = 1;
738 1.7 mrg while (bucketcount < freepages)
739 1.7 mrg bucketcount = bucketcount * 2;
740 1.7 mrg
741 1.7 mrg /*
742 1.7 mrg * malloc new buckets
743 1.7 mrg */
744 1.7 mrg
745 1.7 mrg MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
746 1.7 mrg M_VMPBUCKET, M_NOWAIT);
747 1.7 mrg if (newbuckets == NULL) {
748 1.7 mrg printf("vm_page_physrehash: WARNING: could not grow page "
749 1.7 mrg "hash table\n");
750 1.7 mrg return;
751 1.7 mrg }
752 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
753 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
754 1.7 mrg
755 1.7 mrg /*
756 1.7 mrg * now replace the old buckets with the new ones and rehash everything
757 1.7 mrg */
758 1.7 mrg
759 1.7 mrg s = splimp();
760 1.7 mrg simple_lock(&uvm.hashlock);
761 1.7 mrg /* swap old for new ... */
762 1.7 mrg oldbuckets = uvm.page_hash;
763 1.7 mrg oldcount = uvm.page_nhash;
764 1.7 mrg uvm.page_hash = newbuckets;
765 1.7 mrg uvm.page_nhash = bucketcount;
766 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
767 1.7 mrg
768 1.7 mrg /* ... and rehash */
769 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
770 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
771 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
772 1.7 mrg TAILQ_INSERT_TAIL(
773 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
774 1.7 mrg pg, hashq);
775 1.7 mrg }
776 1.7 mrg }
777 1.7 mrg simple_unlock(&uvm.hashlock);
778 1.7 mrg splx(s);
779 1.7 mrg
780 1.7 mrg /*
781 1.7 mrg * free old bucket array if we malloc'd it previously
782 1.7 mrg */
783 1.7 mrg
784 1.7 mrg if (oldbuckets != &uvm_bootbucket)
785 1.7 mrg FREE(oldbuckets, M_VMPBUCKET);
786 1.7 mrg
787 1.7 mrg /*
788 1.7 mrg * done
789 1.7 mrg */
790 1.7 mrg return;
791 1.1 mrg }
792 1.1 mrg
793 1.1 mrg
794 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
795 1.1 mrg
796 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
797 1.1 mrg
798 1.1 mrg /* call from DDB */
799 1.7 mrg void
800 1.7 mrg uvm_page_physdump()
801 1.7 mrg {
802 1.7 mrg int lcv;
803 1.7 mrg
804 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
805 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
806 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
807 1.7 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
808 1.7 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
809 1.7 mrg vm_physmem[lcv].avail_end);
810 1.7 mrg printf("STRATEGY = ");
811 1.7 mrg switch (VM_PHYSSEG_STRAT) {
812 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
813 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
814 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
815 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
816 1.7 mrg }
817 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
818 1.1 mrg }
819 1.1 mrg #endif
820 1.1 mrg
821 1.1 mrg /*
822 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
823 1.1 mrg *
824 1.1 mrg * => return null if no pages free
825 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
826 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
827 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
828 1.1 mrg * => only one of obj or anon can be non-null
829 1.1 mrg * => caller must activate/deactivate page if it is not wired.
830 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
831 1.1 mrg */
832 1.1 mrg
833 1.7 mrg struct vm_page *
834 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
835 1.7 mrg struct uvm_object *obj;
836 1.14 eeh vaddr_t off;
837 1.18 chs int flags;
838 1.7 mrg struct vm_anon *anon;
839 1.12 thorpej int strat, free_list;
840 1.1 mrg {
841 1.12 thorpej int lcv, s;
842 1.7 mrg struct vm_page *pg;
843 1.12 thorpej struct pglist *freeq;
844 1.18 chs boolean_t use_reserve;
845 1.1 mrg
846 1.1 mrg #ifdef DIAGNOSTIC
847 1.7 mrg /* sanity check */
848 1.7 mrg if (obj && anon)
849 1.7 mrg panic("uvm_pagealloc: obj and anon != NULL");
850 1.1 mrg #endif
851 1.1 mrg
852 1.21 thorpej s = uvm_lock_fpageq(); /* lock free page queue */
853 1.1 mrg
854 1.7 mrg /*
855 1.7 mrg * check to see if we need to generate some free pages waking
856 1.7 mrg * the pagedaemon.
857 1.7 mrg */
858 1.7 mrg
859 1.7 mrg if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
860 1.7 mrg uvmexp.inactive < uvmexp.inactarg))
861 1.7 mrg thread_wakeup(&uvm.pagedaemon);
862 1.7 mrg
863 1.7 mrg /*
864 1.7 mrg * fail if any of these conditions is true:
865 1.7 mrg * [1] there really are no free pages, or
866 1.7 mrg * [2] only kernel "reserved" pages remain and
867 1.7 mrg * the page isn't being allocated to a kernel object.
868 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
869 1.7 mrg * the requestor isn't the pagedaemon.
870 1.7 mrg */
871 1.7 mrg
872 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
873 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
874 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
875 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
876 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
877 1.12 thorpej goto fail;
878 1.12 thorpej
879 1.12 thorpej again:
880 1.12 thorpej switch (strat) {
881 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
882 1.12 thorpej /* Check all freelists in descending priority order. */
883 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
884 1.12 thorpej freeq = &uvm.page_free[lcv];
885 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
886 1.12 thorpej goto gotit;
887 1.12 thorpej }
888 1.12 thorpej
889 1.12 thorpej /* No pages free! */
890 1.12 thorpej goto fail;
891 1.12 thorpej
892 1.12 thorpej case UVM_PGA_STRAT_ONLY:
893 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
894 1.12 thorpej /* Attempt to allocate from the specified free list. */
895 1.12 thorpej #ifdef DIAGNOSTIC
896 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < 0)
897 1.12 thorpej panic("uvm_pagealloc_strat: bad free list %d",
898 1.12 thorpej free_list);
899 1.12 thorpej #endif
900 1.12 thorpej freeq = &uvm.page_free[free_list];
901 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
902 1.12 thorpej goto gotit;
903 1.12 thorpej
904 1.12 thorpej /* Fall back, if possible. */
905 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
906 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
907 1.12 thorpej goto again;
908 1.12 thorpej }
909 1.12 thorpej
910 1.12 thorpej /* No pages free! */
911 1.12 thorpej goto fail;
912 1.12 thorpej
913 1.12 thorpej default:
914 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
915 1.12 thorpej /* NOTREACHED */
916 1.7 mrg }
917 1.7 mrg
918 1.12 thorpej gotit:
919 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
920 1.7 mrg uvmexp.free--;
921 1.7 mrg
922 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
923 1.7 mrg
924 1.7 mrg pg->offset = off;
925 1.7 mrg pg->uobject = obj;
926 1.7 mrg pg->uanon = anon;
927 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
928 1.7 mrg pg->version++;
929 1.7 mrg pg->wire_count = 0;
930 1.7 mrg pg->loan_count = 0;
931 1.7 mrg if (anon) {
932 1.7 mrg anon->u.an_page = pg;
933 1.7 mrg pg->pqflags = PQ_ANON;
934 1.7 mrg } else {
935 1.7 mrg if (obj)
936 1.7 mrg uvm_pageinsert(pg);
937 1.7 mrg pg->pqflags = 0;
938 1.7 mrg }
939 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
940 1.7 mrg pg->owner_tag = NULL;
941 1.1 mrg #endif
942 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
943 1.1 mrg
944 1.7 mrg return(pg);
945 1.12 thorpej
946 1.12 thorpej fail:
947 1.21 thorpej uvm_unlock_fpageq(s);
948 1.12 thorpej return (NULL);
949 1.1 mrg }
950 1.1 mrg
951 1.1 mrg /*
952 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
953 1.1 mrg *
954 1.1 mrg * => both objects must be locked
955 1.1 mrg */
956 1.1 mrg
957 1.7 mrg void
958 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
959 1.7 mrg struct vm_page *pg;
960 1.7 mrg struct uvm_object *newobj;
961 1.14 eeh vaddr_t newoff;
962 1.1 mrg {
963 1.7 mrg /*
964 1.7 mrg * remove it from the old object
965 1.7 mrg */
966 1.7 mrg
967 1.7 mrg if (pg->uobject) {
968 1.7 mrg uvm_pageremove(pg);
969 1.7 mrg }
970 1.7 mrg
971 1.7 mrg /*
972 1.7 mrg * put it in the new object
973 1.7 mrg */
974 1.7 mrg
975 1.7 mrg if (newobj) {
976 1.7 mrg pg->uobject = newobj;
977 1.7 mrg pg->offset = newoff;
978 1.7 mrg pg->version++;
979 1.7 mrg uvm_pageinsert(pg);
980 1.7 mrg }
981 1.1 mrg
982 1.7 mrg return;
983 1.1 mrg }
984 1.1 mrg
985 1.1 mrg
986 1.1 mrg /*
987 1.1 mrg * uvm_pagefree: free page
988 1.1 mrg *
989 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
990 1.1 mrg * => put page on free list
991 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
992 1.1 mrg * => caller must lock page queues
993 1.1 mrg * => assumes all valid mappings of pg are gone
994 1.1 mrg */
995 1.1 mrg
996 1.1 mrg void uvm_pagefree(pg)
997 1.1 mrg
998 1.1 mrg struct vm_page *pg;
999 1.1 mrg
1000 1.1 mrg {
1001 1.7 mrg int s;
1002 1.7 mrg int saved_loan_count = pg->loan_count;
1003 1.1 mrg
1004 1.7 mrg /*
1005 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1006 1.7 mrg * from the object.
1007 1.7 mrg */
1008 1.7 mrg
1009 1.7 mrg if (pg->flags & PG_TABLED) {
1010 1.7 mrg
1011 1.7 mrg /*
1012 1.7 mrg * if the object page is on loan we are going to drop ownership.
1013 1.7 mrg * it is possible that an anon will take over as owner for this
1014 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1015 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1016 1.7 mrg * page out.
1017 1.7 mrg */
1018 1.7 mrg
1019 1.7 mrg if (saved_loan_count)
1020 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1021 1.7 mrg
1022 1.7 mrg uvm_pageremove(pg);
1023 1.7 mrg
1024 1.7 mrg /*
1025 1.7 mrg * if our page was on loan, then we just lost control over it
1026 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1027 1.7 mrg * already taken over ownership of the page by now and thus
1028 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1029 1.7 mrg * return (when the last loan is dropped, then the page can be
1030 1.7 mrg * freed by whatever was holding the last loan).
1031 1.7 mrg */
1032 1.7 mrg if (saved_loan_count)
1033 1.7 mrg return;
1034 1.7 mrg
1035 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1036 1.7 mrg
1037 1.7 mrg /*
1038 1.7 mrg * if our page is owned by an anon and is loaned out to the
1039 1.7 mrg * kernel then we just want to drop ownership and return.
1040 1.7 mrg * the kernel must free the page when all its loans clear ...
1041 1.7 mrg * note that the kernel can't change the loan status of our
1042 1.7 mrg * page as long as we are holding PQ lock.
1043 1.7 mrg */
1044 1.7 mrg pg->pqflags &= ~PQ_ANON;
1045 1.7 mrg pg->uanon = NULL;
1046 1.7 mrg return;
1047 1.7 mrg }
1048 1.1 mrg
1049 1.1 mrg #ifdef DIAGNOSTIC
1050 1.7 mrg if (saved_loan_count) {
1051 1.7 mrg printf("uvm_pagefree: warning: freeing page with a loan "
1052 1.7 mrg "count of %d\n", saved_loan_count);
1053 1.7 mrg panic("uvm_pagefree: loan count");
1054 1.7 mrg }
1055 1.1 mrg #endif
1056 1.7 mrg
1057 1.1 mrg
1058 1.7 mrg /*
1059 1.7 mrg * now remove the page from the queues
1060 1.7 mrg */
1061 1.7 mrg
1062 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1063 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1064 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1065 1.7 mrg uvmexp.active--;
1066 1.7 mrg }
1067 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1068 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1069 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1070 1.7 mrg else
1071 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1072 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1073 1.7 mrg uvmexp.inactive--;
1074 1.7 mrg }
1075 1.7 mrg
1076 1.7 mrg /*
1077 1.7 mrg * if the page was wired, unwire it now.
1078 1.7 mrg */
1079 1.7 mrg if (pg->wire_count)
1080 1.7 mrg {
1081 1.7 mrg pg->wire_count = 0;
1082 1.7 mrg uvmexp.wired--;
1083 1.7 mrg }
1084 1.7 mrg
1085 1.7 mrg /*
1086 1.7 mrg * and put on free queue
1087 1.7 mrg */
1088 1.7 mrg
1089 1.21 thorpej s = uvm_lock_fpageq();
1090 1.12 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1091 1.12 thorpej pg, pageq);
1092 1.7 mrg pg->pqflags = PQ_FREE;
1093 1.3 chs #ifdef DEBUG
1094 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1095 1.7 mrg pg->offset = 0xdeadbeef;
1096 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1097 1.3 chs #endif
1098 1.7 mrg uvmexp.free++;
1099 1.21 thorpej uvm_unlock_fpageq(s);
1100 1.1 mrg }
1101 1.1 mrg
1102 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1103 1.1 mrg /*
1104 1.1 mrg * uvm_page_own: set or release page ownership
1105 1.1 mrg *
1106 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1107 1.1 mrg * and where they do it. it can be used to track down problems
1108 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1109 1.1 mrg * => page's object [if any] must be locked
1110 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1111 1.1 mrg */
1112 1.7 mrg void
1113 1.7 mrg uvm_page_own(pg, tag)
1114 1.7 mrg struct vm_page *pg;
1115 1.7 mrg char *tag;
1116 1.1 mrg {
1117 1.7 mrg /* gain ownership? */
1118 1.7 mrg if (tag) {
1119 1.7 mrg if (pg->owner_tag) {
1120 1.7 mrg printf("uvm_page_own: page %p already owned "
1121 1.7 mrg "by proc %d [%s]\n", pg,
1122 1.7 mrg pg->owner, pg->owner_tag);
1123 1.7 mrg panic("uvm_page_own");
1124 1.7 mrg }
1125 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1126 1.7 mrg pg->owner_tag = tag;
1127 1.7 mrg return;
1128 1.7 mrg }
1129 1.7 mrg
1130 1.7 mrg /* drop ownership */
1131 1.7 mrg if (pg->owner_tag == NULL) {
1132 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1133 1.7 mrg "page (%p)\n", pg);
1134 1.7 mrg panic("uvm_page_own");
1135 1.7 mrg }
1136 1.7 mrg pg->owner_tag = NULL;
1137 1.7 mrg return;
1138 1.1 mrg }
1139 1.1 mrg #endif
1140