uvm_page.c revision 1.236 1 1.235 ad /* $NetBSD: uvm_page.c,v 1.236 2020/05/17 17:12:28 ad Exp $ */
2 1.213 ad
3 1.213 ad /*-
4 1.224 ad * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5 1.213 ad * All rights reserved.
6 1.213 ad *
7 1.213 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.213 ad * by Andrew Doran.
9 1.213 ad *
10 1.213 ad * Redistribution and use in source and binary forms, with or without
11 1.213 ad * modification, are permitted provided that the following conditions
12 1.213 ad * are met:
13 1.213 ad * 1. Redistributions of source code must retain the above copyright
14 1.213 ad * notice, this list of conditions and the following disclaimer.
15 1.213 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.213 ad * notice, this list of conditions and the following disclaimer in the
17 1.213 ad * documentation and/or other materials provided with the distribution.
18 1.213 ad *
19 1.213 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.213 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.213 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.213 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.213 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.213 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.213 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.213 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.213 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.213 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.213 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.213 ad */
31 1.1 mrg
32 1.62 chs /*
33 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
34 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
35 1.1 mrg *
36 1.1 mrg * All rights reserved.
37 1.1 mrg *
38 1.1 mrg * This code is derived from software contributed to Berkeley by
39 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
40 1.1 mrg *
41 1.1 mrg * Redistribution and use in source and binary forms, with or without
42 1.1 mrg * modification, are permitted provided that the following conditions
43 1.1 mrg * are met:
44 1.1 mrg * 1. Redistributions of source code must retain the above copyright
45 1.1 mrg * notice, this list of conditions and the following disclaimer.
46 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 mrg * notice, this list of conditions and the following disclaimer in the
48 1.1 mrg * documentation and/or other materials provided with the distribution.
49 1.170 chuck * 3. Neither the name of the University nor the names of its contributors
50 1.1 mrg * may be used to endorse or promote products derived from this software
51 1.1 mrg * without specific prior written permission.
52 1.1 mrg *
53 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 mrg * SUCH DAMAGE.
64 1.1 mrg *
65 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
66 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67 1.1 mrg *
68 1.1 mrg *
69 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70 1.1 mrg * All rights reserved.
71 1.62 chs *
72 1.1 mrg * Permission to use, copy, modify and distribute this software and
73 1.1 mrg * its documentation is hereby granted, provided that both the copyright
74 1.1 mrg * notice and this permission notice appear in all copies of the
75 1.1 mrg * software, derivative works or modified versions, and any portions
76 1.1 mrg * thereof, and that both notices appear in supporting documentation.
77 1.62 chs *
78 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81 1.62 chs *
82 1.1 mrg * Carnegie Mellon requests users of this software to return to
83 1.1 mrg *
84 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
85 1.1 mrg * School of Computer Science
86 1.1 mrg * Carnegie Mellon University
87 1.1 mrg * Pittsburgh PA 15213-3890
88 1.1 mrg *
89 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
90 1.1 mrg * rights to redistribute these changes.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * uvm_page.c: page ops.
95 1.1 mrg */
96 1.71 lukem
97 1.71 lukem #include <sys/cdefs.h>
98 1.235 ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.236 2020/05/17 17:12:28 ad Exp $");
99 1.6 mrg
100 1.151 thorpej #include "opt_ddb.h"
101 1.187 joerg #include "opt_uvm.h"
102 1.44 chs #include "opt_uvmhist.h"
103 1.113 yamt #include "opt_readahead.h"
104 1.44 chs
105 1.1 mrg #include <sys/param.h>
106 1.1 mrg #include <sys/systm.h>
107 1.35 thorpej #include <sys/sched.h>
108 1.44 chs #include <sys/kernel.h>
109 1.51 chs #include <sys/vnode.h>
110 1.68 chs #include <sys/proc.h>
111 1.202 ad #include <sys/radixtree.h>
112 1.126 ad #include <sys/atomic.h>
113 1.133 ad #include <sys/cpu.h>
114 1.190 cherry #include <sys/extent.h>
115 1.1 mrg
116 1.1 mrg #include <uvm/uvm.h>
117 1.151 thorpej #include <uvm/uvm_ddb.h>
118 1.113 yamt #include <uvm/uvm_pdpolicy.h>
119 1.213 ad #include <uvm/uvm_pgflcache.h>
120 1.1 mrg
121 1.1 mrg /*
122 1.36 thorpej * Some supported CPUs in a given architecture don't support all
123 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
124 1.155 ad * We therefore provide a way to enable it from machdep code here.
125 1.44 chs */
126 1.119 thorpej bool vm_page_zero_enable = false;
127 1.34 thorpej
128 1.34 thorpej /*
129 1.140 ad * number of pages per-CPU to reserve for the kernel.
130 1.140 ad */
131 1.187 joerg #ifndef UVM_RESERVED_PAGES_PER_CPU
132 1.187 joerg #define UVM_RESERVED_PAGES_PER_CPU 5
133 1.187 joerg #endif
134 1.187 joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
135 1.140 ad
136 1.140 ad /*
137 1.148 matt * physical memory size;
138 1.148 matt */
139 1.189 cherry psize_t physmem;
140 1.148 matt
141 1.148 matt /*
142 1.1 mrg * local variables
143 1.1 mrg */
144 1.1 mrg
145 1.1 mrg /*
146 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
147 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
148 1.88 thorpej * and pmap_startup here also uses them internally.
149 1.88 thorpej */
150 1.88 thorpej
151 1.88 thorpej static vaddr_t virtual_space_start;
152 1.88 thorpej static vaddr_t virtual_space_end;
153 1.88 thorpej
154 1.88 thorpej /*
155 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
156 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
157 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
158 1.60 thorpej * free the initial set of buckets, since they are allocated using
159 1.60 thorpej * uvm_pageboot_alloc().
160 1.60 thorpej */
161 1.60 thorpej
162 1.179 para static size_t recolored_pages_memsize /* = 0 */;
163 1.213 ad static char *recolored_pages_mem;
164 1.213 ad
165 1.213 ad /*
166 1.213 ad * freelist locks - one per bucket.
167 1.213 ad */
168 1.213 ad
169 1.213 ad union uvm_freelist_lock uvm_freelist_locks[PGFL_MAX_BUCKETS]
170 1.213 ad __cacheline_aligned;
171 1.213 ad
172 1.213 ad /*
173 1.213 ad * basic NUMA information.
174 1.213 ad */
175 1.213 ad
176 1.213 ad static struct uvm_page_numa_region {
177 1.213 ad struct uvm_page_numa_region *next;
178 1.213 ad paddr_t start;
179 1.213 ad paddr_t size;
180 1.213 ad u_int numa_id;
181 1.213 ad } *uvm_page_numa_region;
182 1.60 thorpej
183 1.91 yamt #ifdef DEBUG
184 1.223 ad kmutex_t uvm_zerochecklock __cacheline_aligned;
185 1.91 yamt vaddr_t uvm_zerocheckkva;
186 1.91 yamt #endif /* DEBUG */
187 1.91 yamt
188 1.60 thorpej /*
189 1.190 cherry * These functions are reserved for uvm(9) internal use and are not
190 1.190 cherry * exported in the header file uvm_physseg.h
191 1.190 cherry *
192 1.190 cherry * Thus they are redefined here.
193 1.190 cherry */
194 1.190 cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
195 1.190 cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
196 1.190 cherry
197 1.190 cherry /* returns a pgs array */
198 1.190 cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
199 1.190 cherry
200 1.190 cherry /*
201 1.1 mrg * inline functions
202 1.1 mrg */
203 1.1 mrg
204 1.1 mrg /*
205 1.134 ad * uvm_pageinsert: insert a page in the object.
206 1.1 mrg *
207 1.1 mrg * => caller must lock object
208 1.1 mrg * => call should have already set pg's object and offset pointers
209 1.1 mrg * and bumped the version counter
210 1.1 mrg */
211 1.1 mrg
212 1.136 yamt static inline void
213 1.203 ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
214 1.1 mrg {
215 1.1 mrg
216 1.136 yamt KASSERT(uobj == pg->uobject);
217 1.226 ad KASSERT(rw_write_held(uobj->vmobjlock));
218 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
219 1.123 ad
220 1.224 ad if ((pg->flags & PG_STAT) != 0) {
221 1.224 ad /* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
222 1.224 ad const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
223 1.224 ad
224 1.236 ad if ((pg->flags & PG_FILE) != 0) {
225 1.224 ad if (uobj->uo_npages == 0) {
226 1.228 ad struct vnode *vp = (struct vnode *)uobj;
227 1.228 ad mutex_enter(vp->v_interlock);
228 1.228 ad KASSERT((vp->v_iflag & VI_PAGES) == 0);
229 1.228 ad vp->v_iflag |= VI_PAGES;
230 1.228 ad vholdl(vp);
231 1.228 ad mutex_exit(vp->v_interlock);
232 1.224 ad }
233 1.224 ad kpreempt_disable();
234 1.224 ad if (UVM_OBJ_IS_VTEXT(uobj)) {
235 1.224 ad CPU_COUNT(CPU_COUNT_EXECPAGES, 1);
236 1.224 ad } else {
237 1.224 ad CPU_COUNT(CPU_COUNT_FILEPAGES, 1);
238 1.224 ad }
239 1.224 ad CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, 1);
240 1.94 yamt } else {
241 1.224 ad kpreempt_disable();
242 1.224 ad CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
243 1.224 ad CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, 1);
244 1.94 yamt }
245 1.224 ad kpreempt_enable();
246 1.78 chs }
247 1.7 mrg pg->flags |= PG_TABLED;
248 1.67 chs uobj->uo_npages++;
249 1.1 mrg }
250 1.1 mrg
251 1.202 ad static inline int
252 1.136 yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
253 1.136 yamt {
254 1.202 ad const uint64_t idx = pg->offset >> PAGE_SHIFT;
255 1.202 ad int error;
256 1.136 yamt
257 1.202 ad error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
258 1.202 ad if (error != 0) {
259 1.202 ad return error;
260 1.202 ad }
261 1.224 ad if ((pg->flags & PG_CLEAN) == 0) {
262 1.224 ad radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
263 1.224 ad }
264 1.224 ad KASSERT(((pg->flags & PG_CLEAN) == 0) ==
265 1.224 ad radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
266 1.202 ad return 0;
267 1.136 yamt }
268 1.136 yamt
269 1.1 mrg /*
270 1.134 ad * uvm_page_remove: remove page from object.
271 1.1 mrg *
272 1.1 mrg * => caller must lock object
273 1.1 mrg */
274 1.1 mrg
275 1.109 perry static inline void
276 1.203 ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
277 1.1 mrg {
278 1.1 mrg
279 1.136 yamt KASSERT(uobj == pg->uobject);
280 1.226 ad KASSERT(rw_write_held(uobj->vmobjlock));
281 1.44 chs KASSERT(pg->flags & PG_TABLED);
282 1.123 ad
283 1.224 ad if ((pg->flags & PG_STAT) != 0) {
284 1.224 ad /* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
285 1.224 ad const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
286 1.224 ad
287 1.236 ad if ((pg->flags & PG_FILE) != 0) {
288 1.224 ad if (uobj->uo_npages == 1) {
289 1.228 ad struct vnode *vp = (struct vnode *)uobj;
290 1.228 ad mutex_enter(vp->v_interlock);
291 1.228 ad KASSERT((vp->v_iflag & VI_PAGES) != 0);
292 1.228 ad vp->v_iflag &= ~VI_PAGES;
293 1.228 ad holdrelel(vp);
294 1.228 ad mutex_exit(vp->v_interlock);
295 1.224 ad }
296 1.224 ad kpreempt_disable();
297 1.224 ad if (UVM_OBJ_IS_VTEXT(uobj)) {
298 1.224 ad CPU_COUNT(CPU_COUNT_EXECPAGES, -1);
299 1.224 ad } else {
300 1.224 ad CPU_COUNT(CPU_COUNT_FILEPAGES, -1);
301 1.224 ad }
302 1.224 ad CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, -1);
303 1.94 yamt } else {
304 1.224 ad kpreempt_disable();
305 1.224 ad CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
306 1.224 ad CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
307 1.94 yamt }
308 1.224 ad kpreempt_enable();
309 1.51 chs }
310 1.67 chs uobj->uo_npages--;
311 1.7 mrg pg->flags &= ~PG_TABLED;
312 1.7 mrg pg->uobject = NULL;
313 1.1 mrg }
314 1.1 mrg
315 1.136 yamt static inline void
316 1.136 yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
317 1.136 yamt {
318 1.202 ad struct vm_page *opg __unused;
319 1.136 yamt
320 1.202 ad opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
321 1.202 ad KASSERT(pg == opg);
322 1.136 yamt }
323 1.136 yamt
324 1.60 thorpej static void
325 1.213 ad uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
326 1.60 thorpej {
327 1.213 ad int i;
328 1.60 thorpej
329 1.213 ad pgb->pgb_nfree = 0;
330 1.213 ad for (i = 0; i < uvmexp.ncolors; i++) {
331 1.213 ad LIST_INIT(&pgb->pgb_colors[i]);
332 1.60 thorpej }
333 1.213 ad pgfl->pgfl_buckets[num] = pgb;
334 1.60 thorpej }
335 1.60 thorpej
336 1.1 mrg /*
337 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
338 1.62 chs *
339 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
340 1.1 mrg */
341 1.1 mrg
342 1.7 mrg void
343 1.105 thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
344 1.1 mrg {
345 1.213 ad static struct uvm_cpu boot_cpu __cacheline_aligned;
346 1.213 ad psize_t freepages, pagecount, bucketsize, n;
347 1.213 ad struct pgflbucket *pgb;
348 1.63 chs struct vm_page *pagearray;
349 1.213 ad char *bucketarray;
350 1.190 cherry uvm_physseg_t bank;
351 1.213 ad int fl, b;
352 1.7 mrg
353 1.133 ad KASSERT(ncpu <= 1);
354 1.133 ad
355 1.7 mrg /*
356 1.213 ad * init the page queues and free page queue locks, except the
357 1.201 ad * free list; we allocate that later (with the initial vm_page
358 1.60 thorpej * structures).
359 1.7 mrg */
360 1.51 chs
361 1.155 ad curcpu()->ci_data.cpu_uvm = &boot_cpu;
362 1.113 yamt uvmpdpol_init();
363 1.213 ad for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
364 1.213 ad mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
365 1.213 ad }
366 1.7 mrg
367 1.7 mrg /*
368 1.51 chs * allocate vm_page structures.
369 1.7 mrg */
370 1.7 mrg
371 1.7 mrg /*
372 1.7 mrg * sanity check:
373 1.7 mrg * before calling this function the MD code is expected to register
374 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
375 1.7 mrg * now is to allocate vm_page structures for this memory.
376 1.7 mrg */
377 1.7 mrg
378 1.190 cherry if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
379 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
380 1.62 chs
381 1.7 mrg /*
382 1.62 chs * first calculate the number of free pages...
383 1.7 mrg *
384 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
385 1.7 mrg * this allows us to allocate extra vm_page structures in case we
386 1.7 mrg * want to return some memory to the pool after booting.
387 1.7 mrg */
388 1.62 chs
389 1.7 mrg freepages = 0;
390 1.190 cherry
391 1.190 cherry for (bank = uvm_physseg_get_first();
392 1.190 cherry uvm_physseg_valid_p(bank) ;
393 1.190 cherry bank = uvm_physseg_get_next(bank)) {
394 1.190 cherry freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
395 1.158 uebayasi }
396 1.7 mrg
397 1.7 mrg /*
398 1.60 thorpej * Let MD code initialize the number of colors, or default
399 1.60 thorpej * to 1 color if MD code doesn't care.
400 1.60 thorpej */
401 1.60 thorpej if (uvmexp.ncolors == 0)
402 1.60 thorpej uvmexp.ncolors = 1;
403 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
404 1.178 uebayasi KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
405 1.60 thorpej
406 1.213 ad /* We always start with only 1 bucket. */
407 1.213 ad uvm.bucketcount = 1;
408 1.213 ad
409 1.60 thorpej /*
410 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
411 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
412 1.7 mrg * thus, the total number of pages we can use is the total size of
413 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
414 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
415 1.7 mrg * truncation errors (since we can only allocate in terms of whole
416 1.7 mrg * pages).
417 1.7 mrg */
418 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
419 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
420 1.213 ad bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
421 1.213 ad bucketsize = roundup2(bucketsize, coherency_unit);
422 1.213 ad bucketarray = (void *)uvm_pageboot_alloc(
423 1.213 ad bucketsize * VM_NFREELIST +
424 1.213 ad pagecount * sizeof(struct vm_page));
425 1.213 ad pagearray = (struct vm_page *)
426 1.213 ad (bucketarray + bucketsize * VM_NFREELIST);
427 1.213 ad
428 1.213 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
429 1.213 ad pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
430 1.213 ad uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
431 1.60 thorpej }
432 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
433 1.62 chs
434 1.7 mrg /*
435 1.213 ad * init the freelist cache in the disabled state.
436 1.213 ad */
437 1.213 ad uvm_pgflcache_init();
438 1.213 ad
439 1.213 ad /*
440 1.51 chs * init the vm_page structures and put them in the correct place.
441 1.7 mrg */
442 1.190 cherry /* First init the extent */
443 1.7 mrg
444 1.190 cherry for (bank = uvm_physseg_get_first(),
445 1.190 cherry uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
446 1.190 cherry uvm_physseg_valid_p(bank);
447 1.190 cherry bank = uvm_physseg_get_next(bank)) {
448 1.190 cherry
449 1.190 cherry n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
450 1.190 cherry uvm_physseg_seg_alloc_from_slab(bank, n);
451 1.190 cherry uvm_physseg_init_seg(bank, pagearray);
452 1.51 chs
453 1.7 mrg /* set up page array pointers */
454 1.7 mrg pagearray += n;
455 1.7 mrg pagecount -= n;
456 1.7 mrg }
457 1.44 chs
458 1.7 mrg /*
459 1.88 thorpej * pass up the values of virtual_space_start and
460 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
461 1.88 thorpej * layers of the VM.
462 1.88 thorpej */
463 1.88 thorpej
464 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
465 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
466 1.91 yamt #ifdef DEBUG
467 1.91 yamt /*
468 1.91 yamt * steal kva for uvm_pagezerocheck().
469 1.91 yamt */
470 1.91 yamt uvm_zerocheckkva = *kvm_startp;
471 1.91 yamt *kvm_startp += PAGE_SIZE;
472 1.223 ad mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
473 1.91 yamt #endif /* DEBUG */
474 1.88 thorpej
475 1.88 thorpej /*
476 1.51 chs * init various thresholds.
477 1.7 mrg */
478 1.51 chs
479 1.7 mrg uvmexp.reserve_pagedaemon = 1;
480 1.140 ad uvmexp.reserve_kernel = vm_page_reserve_kernel;
481 1.7 mrg
482 1.7 mrg /*
483 1.213 ad * done!
484 1.34 thorpej */
485 1.51 chs
486 1.213 ad uvm.page_init_done = true;
487 1.213 ad }
488 1.213 ad
489 1.213 ad /*
490 1.213 ad * uvm_pgfl_lock: lock all freelist buckets
491 1.213 ad */
492 1.213 ad
493 1.213 ad void
494 1.213 ad uvm_pgfl_lock(void)
495 1.213 ad {
496 1.213 ad int i;
497 1.213 ad
498 1.213 ad for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
499 1.213 ad mutex_spin_enter(&uvm_freelist_locks[i].lock);
500 1.213 ad }
501 1.213 ad }
502 1.213 ad
503 1.213 ad /*
504 1.213 ad * uvm_pgfl_unlock: unlock all freelist buckets
505 1.213 ad */
506 1.34 thorpej
507 1.213 ad void
508 1.213 ad uvm_pgfl_unlock(void)
509 1.213 ad {
510 1.213 ad int i;
511 1.1 mrg
512 1.213 ad for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
513 1.213 ad mutex_spin_exit(&uvm_freelist_locks[i].lock);
514 1.213 ad }
515 1.1 mrg }
516 1.1 mrg
517 1.1 mrg /*
518 1.1 mrg * uvm_setpagesize: set the page size
519 1.62 chs *
520 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
521 1.62 chs */
522 1.1 mrg
523 1.7 mrg void
524 1.105 thorpej uvm_setpagesize(void)
525 1.1 mrg {
526 1.85 thorpej
527 1.85 thorpej /*
528 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
529 1.85 thorpej * to be a constant (indicated by being a non-zero value).
530 1.85 thorpej */
531 1.85 thorpej if (uvmexp.pagesize == 0) {
532 1.85 thorpej if (PAGE_SIZE == 0)
533 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
534 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
535 1.85 thorpej }
536 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
537 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
538 1.168 matt panic("uvm_setpagesize: page size %u (%#x) not a power of two",
539 1.168 matt uvmexp.pagesize, uvmexp.pagesize);
540 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
541 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
542 1.7 mrg break;
543 1.1 mrg }
544 1.1 mrg
545 1.1 mrg /*
546 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
547 1.1 mrg */
548 1.1 mrg
549 1.14 eeh vaddr_t
550 1.105 thorpej uvm_pageboot_alloc(vsize_t size)
551 1.1 mrg {
552 1.119 thorpej static bool initialized = false;
553 1.14 eeh vaddr_t addr;
554 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
555 1.52 thorpej vaddr_t vaddr;
556 1.14 eeh paddr_t paddr;
557 1.52 thorpej #endif
558 1.1 mrg
559 1.7 mrg /*
560 1.19 thorpej * on first call to this function, initialize ourselves.
561 1.7 mrg */
562 1.119 thorpej if (initialized == false) {
563 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
564 1.1 mrg
565 1.7 mrg /* round it the way we like it */
566 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
567 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
568 1.19 thorpej
569 1.119 thorpej initialized = true;
570 1.7 mrg }
571 1.52 thorpej
572 1.52 thorpej /* round to page size */
573 1.52 thorpej size = round_page(size);
574 1.195 mrg uvmexp.bootpages += atop(size);
575 1.52 thorpej
576 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
577 1.52 thorpej
578 1.62 chs /*
579 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
580 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
581 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
582 1.52 thorpej */
583 1.52 thorpej
584 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
585 1.88 thorpej &virtual_space_end);
586 1.52 thorpej
587 1.52 thorpej return(addr);
588 1.52 thorpej
589 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
590 1.1 mrg
591 1.7 mrg /*
592 1.7 mrg * allocate virtual memory for this request
593 1.7 mrg */
594 1.88 thorpej if (virtual_space_start == virtual_space_end ||
595 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
596 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
597 1.20 thorpej
598 1.88 thorpej addr = virtual_space_start;
599 1.20 thorpej
600 1.20 thorpej #ifdef PMAP_GROWKERNEL
601 1.20 thorpej /*
602 1.20 thorpej * If the kernel pmap can't map the requested space,
603 1.20 thorpej * then allocate more resources for it.
604 1.20 thorpej */
605 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
606 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
607 1.20 thorpej if (uvm_maxkaddr < (addr + size))
608 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
609 1.19 thorpej }
610 1.20 thorpej #endif
611 1.1 mrg
612 1.88 thorpej virtual_space_start += size;
613 1.1 mrg
614 1.9 thorpej /*
615 1.7 mrg * allocate and mapin physical pages to back new virtual pages
616 1.7 mrg */
617 1.1 mrg
618 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
619 1.7 mrg vaddr += PAGE_SIZE) {
620 1.1 mrg
621 1.7 mrg if (!uvm_page_physget(&paddr))
622 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
623 1.1 mrg
624 1.23 thorpej /*
625 1.23 thorpej * Note this memory is no longer managed, so using
626 1.23 thorpej * pmap_kenter is safe.
627 1.23 thorpej */
628 1.152 cegger pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
629 1.7 mrg }
630 1.66 chris pmap_update(pmap_kernel());
631 1.7 mrg return(addr);
632 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
633 1.1 mrg }
634 1.1 mrg
635 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
636 1.1 mrg /*
637 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
638 1.1 mrg *
639 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
640 1.1 mrg * values match the start/end values. if we can't do that, then we
641 1.1 mrg * will advance both values (making them equal, and removing some
642 1.1 mrg * vm_page structures from the non-avail area).
643 1.1 mrg * => return false if out of memory.
644 1.1 mrg */
645 1.1 mrg
646 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
647 1.118 thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
648 1.28 drochner
649 1.118 thorpej static bool
650 1.105 thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
651 1.1 mrg {
652 1.190 cherry uvm_physseg_t lcv;
653 1.1 mrg
654 1.7 mrg /* pass 1: try allocating from a matching end */
655 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
656 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
657 1.1 mrg #else
658 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
659 1.1 mrg #endif
660 1.7 mrg {
661 1.119 thorpej if (uvm.page_init_done == true)
662 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
663 1.1 mrg
664 1.190 cherry /* Try to match at front or back on unused segment */
665 1.200 maxv if (uvm_page_physunload(lcv, freelist, paddrp))
666 1.190 cherry return true;
667 1.191 skrll }
668 1.1 mrg
669 1.7 mrg /* pass2: forget about matching ends, just allocate something */
670 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
671 1.191 skrll for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
672 1.1 mrg #else
673 1.191 skrll for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
674 1.1 mrg #endif
675 1.7 mrg {
676 1.190 cherry /* Try the front regardless. */
677 1.200 maxv if (uvm_page_physunload_force(lcv, freelist, paddrp))
678 1.190 cherry return true;
679 1.190 cherry }
680 1.190 cherry return false;
681 1.28 drochner }
682 1.28 drochner
683 1.118 thorpej bool
684 1.105 thorpej uvm_page_physget(paddr_t *paddrp)
685 1.28 drochner {
686 1.28 drochner int i;
687 1.28 drochner
688 1.28 drochner /* try in the order of freelist preference */
689 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
690 1.119 thorpej if (uvm_page_physget_freelist(paddrp, i) == true)
691 1.119 thorpej return (true);
692 1.119 thorpej return (false);
693 1.1 mrg }
694 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
695 1.1 mrg
696 1.1 mrg /*
697 1.163 uebayasi * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
698 1.163 uebayasi * back from an I/O mapping (ugh!). used in some MD code as well.
699 1.163 uebayasi */
700 1.163 uebayasi struct vm_page *
701 1.163 uebayasi uvm_phys_to_vm_page(paddr_t pa)
702 1.163 uebayasi {
703 1.163 uebayasi paddr_t pf = atop(pa);
704 1.190 cherry paddr_t off;
705 1.190 cherry uvm_physseg_t upm;
706 1.163 uebayasi
707 1.190 cherry upm = uvm_physseg_find(pf, &off);
708 1.190 cherry if (upm != UVM_PHYSSEG_TYPE_INVALID)
709 1.190 cherry return uvm_physseg_get_pg(upm, off);
710 1.163 uebayasi return(NULL);
711 1.163 uebayasi }
712 1.163 uebayasi
713 1.163 uebayasi paddr_t
714 1.163 uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
715 1.163 uebayasi {
716 1.163 uebayasi
717 1.211 ad return pg->phys_addr & ~(PAGE_SIZE - 1);
718 1.163 uebayasi }
719 1.163 uebayasi
720 1.163 uebayasi /*
721 1.213 ad * uvm_page_numa_load: load NUMA range description.
722 1.213 ad */
723 1.213 ad void
724 1.213 ad uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
725 1.213 ad {
726 1.213 ad struct uvm_page_numa_region *d;
727 1.213 ad
728 1.213 ad KASSERT(numa_id < PGFL_MAX_BUCKETS);
729 1.213 ad
730 1.213 ad d = kmem_alloc(sizeof(*d), KM_SLEEP);
731 1.213 ad d->start = start;
732 1.213 ad d->size = size;
733 1.213 ad d->numa_id = numa_id;
734 1.213 ad d->next = uvm_page_numa_region;
735 1.213 ad uvm_page_numa_region = d;
736 1.213 ad }
737 1.213 ad
738 1.213 ad /*
739 1.213 ad * uvm_page_numa_lookup: lookup NUMA node for the given page.
740 1.213 ad */
741 1.213 ad static u_int
742 1.213 ad uvm_page_numa_lookup(struct vm_page *pg)
743 1.213 ad {
744 1.213 ad struct uvm_page_numa_region *d;
745 1.213 ad static bool warned;
746 1.213 ad paddr_t pa;
747 1.213 ad
748 1.213 ad KASSERT(uvm_page_numa_region != NULL);
749 1.213 ad
750 1.213 ad pa = VM_PAGE_TO_PHYS(pg);
751 1.213 ad for (d = uvm_page_numa_region; d != NULL; d = d->next) {
752 1.213 ad if (pa >= d->start && pa < d->start + d->size) {
753 1.213 ad return d->numa_id;
754 1.213 ad }
755 1.213 ad }
756 1.213 ad
757 1.213 ad if (!warned) {
758 1.215 martin printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
759 1.215 martin PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
760 1.213 ad warned = true;
761 1.213 ad }
762 1.213 ad
763 1.213 ad return 0;
764 1.213 ad }
765 1.213 ad
766 1.213 ad /*
767 1.213 ad * uvm_page_redim: adjust freelist dimensions if they have changed.
768 1.60 thorpej */
769 1.60 thorpej
770 1.213 ad static void
771 1.213 ad uvm_page_redim(int newncolors, int newnbuckets)
772 1.60 thorpej {
773 1.213 ad struct pgfreelist npgfl;
774 1.213 ad struct pgflbucket *opgb, *npgb;
775 1.213 ad struct pgflist *ohead, *nhead;
776 1.230 skrll struct vm_page *pg;
777 1.213 ad size_t bucketsize, bucketmemsize, oldbucketmemsize;
778 1.213 ad int fl, ob, oc, nb, nc, obuckets, ocolors;
779 1.213 ad char *bucketarray, *oldbucketmem, *bucketmem;
780 1.60 thorpej
781 1.178 uebayasi KASSERT(((newncolors - 1) & newncolors) == 0);
782 1.178 uebayasi
783 1.213 ad /* Anything to do? */
784 1.213 ad if (newncolors <= uvmexp.ncolors &&
785 1.213 ad newnbuckets == uvm.bucketcount) {
786 1.60 thorpej return;
787 1.213 ad }
788 1.119 thorpej if (uvm.page_init_done == false) {
789 1.77 wrstuden uvmexp.ncolors = newncolors;
790 1.77 wrstuden return;
791 1.77 wrstuden }
792 1.60 thorpej
793 1.213 ad bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
794 1.213 ad bucketsize = roundup2(bucketsize, coherency_unit);
795 1.213 ad bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
796 1.213 ad coherency_unit - 1;
797 1.213 ad bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
798 1.213 ad bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
799 1.213 ad
800 1.213 ad ocolors = uvmexp.ncolors;
801 1.213 ad obuckets = uvm.bucketcount;
802 1.60 thorpej
803 1.213 ad /* Freelist cache musn't be enabled. */
804 1.213 ad uvm_pgflcache_pause();
805 1.60 thorpej
806 1.60 thorpej /* Make sure we should still do this. */
807 1.213 ad uvm_pgfl_lock();
808 1.213 ad if (newncolors <= uvmexp.ncolors &&
809 1.213 ad newnbuckets == uvm.bucketcount) {
810 1.213 ad uvm_pgfl_unlock();
811 1.216 ad uvm_pgflcache_resume();
812 1.213 ad kmem_free(bucketmem, bucketmemsize);
813 1.60 thorpej return;
814 1.60 thorpej }
815 1.60 thorpej
816 1.60 thorpej uvmexp.ncolors = newncolors;
817 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
818 1.213 ad uvm.bucketcount = newnbuckets;
819 1.60 thorpej
820 1.213 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
821 1.213 ad /* Init new buckets in new freelist. */
822 1.213 ad memset(&npgfl, 0, sizeof(npgfl));
823 1.213 ad for (nb = 0; nb < newnbuckets; nb++) {
824 1.213 ad npgb = (struct pgflbucket *)bucketarray;
825 1.213 ad uvm_page_init_bucket(&npgfl, npgb, nb);
826 1.213 ad bucketarray += bucketsize;
827 1.213 ad }
828 1.213 ad /* Now transfer pages from the old freelist. */
829 1.213 ad for (nb = ob = 0; ob < obuckets; ob++) {
830 1.213 ad opgb = uvm.page_free[fl].pgfl_buckets[ob];
831 1.213 ad for (oc = 0; oc < ocolors; oc++) {
832 1.213 ad ohead = &opgb->pgb_colors[oc];
833 1.213 ad while ((pg = LIST_FIRST(ohead)) != NULL) {
834 1.213 ad LIST_REMOVE(pg, pageq.list);
835 1.213 ad /*
836 1.213 ad * Here we decide on the NEW color &
837 1.213 ad * bucket for the page. For NUMA
838 1.213 ad * we'll use the info that the
839 1.221 ad * hardware gave us. For non-NUMA
840 1.221 ad * assign take physical page frame
841 1.221 ad * number and cache color into
842 1.221 ad * account. We do this to try and
843 1.221 ad * avoid defeating any memory
844 1.221 ad * interleaving in the hardware.
845 1.213 ad */
846 1.213 ad KASSERT(
847 1.213 ad uvm_page_get_bucket(pg) == ob);
848 1.213 ad KASSERT(fl ==
849 1.213 ad uvm_page_get_freelist(pg));
850 1.235 ad if (uvm_page_numa_region != NULL) {
851 1.213 ad nb = uvm_page_numa_lookup(pg);
852 1.213 ad } else {
853 1.221 ad nb = atop(VM_PAGE_TO_PHYS(pg))
854 1.221 ad / uvmexp.ncolors / 8
855 1.221 ad % newnbuckets;
856 1.213 ad }
857 1.213 ad uvm_page_set_bucket(pg, nb);
858 1.213 ad npgb = npgfl.pgfl_buckets[nb];
859 1.213 ad npgb->pgb_nfree++;
860 1.213 ad nc = VM_PGCOLOR(pg);
861 1.213 ad nhead = &npgb->pgb_colors[nc];
862 1.213 ad LIST_INSERT_HEAD(nhead, pg, pageq.list);
863 1.60 thorpej }
864 1.60 thorpej }
865 1.60 thorpej }
866 1.213 ad /* Install the new freelist. */
867 1.213 ad memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
868 1.60 thorpej }
869 1.60 thorpej
870 1.213 ad /* Unlock and free the old memory. */
871 1.179 para oldbucketmemsize = recolored_pages_memsize;
872 1.213 ad oldbucketmem = recolored_pages_mem;
873 1.179 para recolored_pages_memsize = bucketmemsize;
874 1.213 ad recolored_pages_mem = bucketmem;
875 1.216 ad
876 1.213 ad uvm_pgfl_unlock();
877 1.216 ad uvm_pgflcache_resume();
878 1.176 matt
879 1.179 para if (oldbucketmemsize) {
880 1.213 ad kmem_free(oldbucketmem, oldbucketmemsize);
881 1.179 para }
882 1.60 thorpej
883 1.177 mrg /*
884 1.177 mrg * this calls uvm_km_alloc() which may want to hold
885 1.213 ad * uvm_freelist_lock.
886 1.177 mrg */
887 1.177 mrg uvm_pager_realloc_emerg();
888 1.60 thorpej }
889 1.1 mrg
890 1.1 mrg /*
891 1.213 ad * uvm_page_recolor: Recolor the pages if the new color count is
892 1.213 ad * larger than the old one.
893 1.213 ad */
894 1.213 ad
895 1.213 ad void
896 1.213 ad uvm_page_recolor(int newncolors)
897 1.213 ad {
898 1.213 ad
899 1.213 ad uvm_page_redim(newncolors, uvm.bucketcount);
900 1.213 ad }
901 1.213 ad
902 1.213 ad /*
903 1.213 ad * uvm_page_rebucket: Determine a bucket structure and redim the free
904 1.213 ad * lists to match.
905 1.213 ad */
906 1.213 ad
907 1.213 ad void
908 1.213 ad uvm_page_rebucket(void)
909 1.213 ad {
910 1.213 ad u_int min_numa, max_numa, npackage, shift;
911 1.213 ad struct cpu_info *ci, *ci2, *ci3;
912 1.213 ad CPU_INFO_ITERATOR cii;
913 1.213 ad
914 1.213 ad /*
915 1.213 ad * If we have more than one NUMA node, and the maximum NUMA node ID
916 1.213 ad * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
917 1.235 ad * for free pages.
918 1.213 ad */
919 1.213 ad min_numa = (u_int)-1;
920 1.213 ad max_numa = 0;
921 1.213 ad for (CPU_INFO_FOREACH(cii, ci)) {
922 1.213 ad if (ci->ci_numa_id < min_numa) {
923 1.213 ad min_numa = ci->ci_numa_id;
924 1.213 ad }
925 1.213 ad if (ci->ci_numa_id > max_numa) {
926 1.213 ad max_numa = ci->ci_numa_id;
927 1.213 ad }
928 1.213 ad }
929 1.213 ad if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
930 1.213 ad aprint_debug("UVM: using NUMA allocation scheme\n");
931 1.230 skrll for (CPU_INFO_FOREACH(cii, ci)) {
932 1.213 ad ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
933 1.213 ad }
934 1.213 ad uvm_page_redim(uvmexp.ncolors, max_numa + 1);
935 1.213 ad return;
936 1.213 ad }
937 1.213 ad
938 1.213 ad /*
939 1.213 ad * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
940 1.213 ad * and minimise lock contention. Count the total number of CPU
941 1.213 ad * packages, and then try to distribute the buckets among CPU
942 1.235 ad * packages evenly.
943 1.213 ad */
944 1.222 ad npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
945 1.230 skrll
946 1.213 ad /*
947 1.213 ad * Figure out how to arrange the packages & buckets, and the total
948 1.213 ad * number of buckets we need. XXX 2 may not be the best factor.
949 1.213 ad */
950 1.213 ad for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
951 1.213 ad npackage >>= 1;
952 1.213 ad }
953 1.213 ad uvm_page_redim(uvmexp.ncolors, npackage);
954 1.213 ad
955 1.213 ad /*
956 1.213 ad * Now tell each CPU which bucket to use. In the outer loop, scroll
957 1.213 ad * through all CPU packages.
958 1.213 ad */
959 1.213 ad npackage = 0;
960 1.213 ad ci = curcpu();
961 1.222 ad ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
962 1.213 ad do {
963 1.213 ad /*
964 1.213 ad * In the inner loop, scroll through all CPUs in the package
965 1.213 ad * and assign the same bucket ID.
966 1.213 ad */
967 1.213 ad ci3 = ci2;
968 1.213 ad do {
969 1.213 ad ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
970 1.213 ad ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
971 1.213 ad } while (ci3 != ci2);
972 1.213 ad npackage++;
973 1.222 ad ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
974 1.222 ad } while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
975 1.213 ad
976 1.213 ad aprint_debug("UVM: using package allocation scheme, "
977 1.213 ad "%d package(s) per bucket\n", 1 << shift);
978 1.213 ad }
979 1.213 ad
980 1.213 ad /*
981 1.133 ad * uvm_cpu_attach: initialize per-CPU data structures.
982 1.133 ad */
983 1.133 ad
984 1.133 ad void
985 1.133 ad uvm_cpu_attach(struct cpu_info *ci)
986 1.133 ad {
987 1.133 ad struct uvm_cpu *ucpu;
988 1.133 ad
989 1.213 ad /* Already done in uvm_page_init(). */
990 1.213 ad if (!CPU_IS_PRIMARY(ci)) {
991 1.213 ad /* Add more reserve pages for this CPU. */
992 1.213 ad uvmexp.reserve_kernel += vm_page_reserve_kernel;
993 1.213 ad
994 1.213 ad /* Allocate per-CPU data structures. */
995 1.213 ad ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
996 1.213 ad KM_SLEEP);
997 1.213 ad ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
998 1.213 ad coherency_unit);
999 1.213 ad ci->ci_data.cpu_uvm = ucpu;
1000 1.214 ad } else {
1001 1.214 ad ucpu = ci->ci_data.cpu_uvm;
1002 1.133 ad }
1003 1.181 tls
1004 1.220 ad uvmpdpol_init_cpu(ucpu);
1005 1.220 ad
1006 1.181 tls /*
1007 1.181 tls * Attach RNG source for this CPU's VM events
1008 1.181 tls */
1009 1.214 ad rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
1010 1.214 ad RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
1011 1.214 ad RND_FLAG_ESTIMATE_VALUE);
1012 1.133 ad }
1013 1.133 ad
1014 1.133 ad /*
1015 1.219 ad * uvm_availmem: fetch the total amount of free memory in pages. this can
1016 1.219 ad * have a detrimental effect on performance due to false sharing; don't call
1017 1.219 ad * unless needed.
1018 1.207 ad */
1019 1.207 ad
1020 1.207 ad int
1021 1.219 ad uvm_availmem(void)
1022 1.207 ad {
1023 1.213 ad struct pgfreelist *pgfl;
1024 1.213 ad int fl, b, fpages;
1025 1.207 ad
1026 1.213 ad fpages = 0;
1027 1.213 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
1028 1.213 ad pgfl = &uvm.page_free[fl];
1029 1.213 ad for (b = 0; b < uvm.bucketcount; b++) {
1030 1.213 ad fpages += pgfl->pgfl_buckets[b]->pgb_nfree;
1031 1.213 ad }
1032 1.213 ad }
1033 1.213 ad return fpages;
1034 1.207 ad }
1035 1.207 ad
1036 1.207 ad /*
1037 1.213 ad * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
1038 1.213 ad * specific freelist and specific bucket only.
1039 1.213 ad *
1040 1.213 ad * => must be at IPL_VM or higher to protect per-CPU data structures.
1041 1.54 thorpej */
1042 1.54 thorpej
1043 1.114 thorpej static struct vm_page *
1044 1.213 ad uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1045 1.54 thorpej {
1046 1.213 ad int c, trycolor, colormask;
1047 1.213 ad struct pgflbucket *pgb;
1048 1.54 thorpej struct vm_page *pg;
1049 1.213 ad kmutex_t *lock;
1050 1.217 ad bool fill;
1051 1.213 ad
1052 1.213 ad /*
1053 1.213 ad * Skip the bucket if empty, no lock needed. There could be many
1054 1.213 ad * empty freelists/buckets.
1055 1.213 ad */
1056 1.213 ad pgb = uvm.page_free[f].pgfl_buckets[b];
1057 1.213 ad if (pgb->pgb_nfree == 0) {
1058 1.213 ad return NULL;
1059 1.213 ad }
1060 1.54 thorpej
1061 1.213 ad /* Skip bucket if low on memory. */
1062 1.213 ad lock = &uvm_freelist_locks[b].lock;
1063 1.213 ad mutex_spin_enter(lock);
1064 1.213 ad if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1065 1.213 ad if ((flags & UVM_PGA_USERESERVE) == 0 ||
1066 1.213 ad (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1067 1.213 ad curlwp != uvm.pagedaemon_lwp)) {
1068 1.213 ad mutex_spin_exit(lock);
1069 1.213 ad return NULL;
1070 1.213 ad }
1071 1.217 ad fill = false;
1072 1.217 ad } else {
1073 1.217 ad fill = true;
1074 1.213 ad }
1075 1.130 ad
1076 1.213 ad /* Try all page colors as needed. */
1077 1.213 ad c = trycolor = *trycolorp;
1078 1.213 ad colormask = uvmexp.colormask;
1079 1.58 enami do {
1080 1.213 ad pg = LIST_FIRST(&pgb->pgb_colors[c]);
1081 1.213 ad if (__predict_true(pg != NULL)) {
1082 1.213 ad /*
1083 1.213 ad * Got a free page! PG_FREE must be cleared under
1084 1.213 ad * lock because of uvm_pglistalloc().
1085 1.213 ad */
1086 1.213 ad LIST_REMOVE(pg, pageq.list);
1087 1.201 ad KASSERT(pg->flags & PG_FREE);
1088 1.213 ad pg->flags &= PG_ZERO;
1089 1.213 ad pgb->pgb_nfree--;
1090 1.230 skrll
1091 1.213 ad /*
1092 1.213 ad * While we have the bucket locked and our data
1093 1.213 ad * structures fresh in L1 cache, we have an ideal
1094 1.213 ad * opportunity to grab some pages for the freelist
1095 1.213 ad * cache without causing extra contention. Only do
1096 1.213 ad * so if we found pages in this CPU's preferred
1097 1.213 ad * bucket.
1098 1.213 ad */
1099 1.217 ad if (__predict_true(b == ucpu->pgflbucket && fill)) {
1100 1.213 ad uvm_pgflcache_fill(ucpu, f, b, c);
1101 1.213 ad }
1102 1.213 ad mutex_spin_exit(lock);
1103 1.213 ad KASSERT(uvm_page_get_bucket(pg) == b);
1104 1.213 ad CPU_COUNT(c == trycolor ?
1105 1.213 ad CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1106 1.213 ad CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1107 1.213 ad *trycolorp = c;
1108 1.213 ad return pg;
1109 1.133 ad }
1110 1.213 ad c = (c + 1) & colormask;
1111 1.213 ad } while (c != trycolor);
1112 1.213 ad mutex_spin_exit(lock);
1113 1.213 ad
1114 1.213 ad return NULL;
1115 1.213 ad }
1116 1.213 ad
1117 1.213 ad /*
1118 1.213 ad * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1119 1.213 ad * any color from any bucket, in a specific freelist.
1120 1.213 ad *
1121 1.213 ad * => must be at IPL_VM or higher to protect per-CPU data structures.
1122 1.213 ad */
1123 1.54 thorpej
1124 1.213 ad static struct vm_page *
1125 1.213 ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1126 1.213 ad {
1127 1.213 ad int b, trybucket, bucketcount;
1128 1.213 ad struct vm_page *pg;
1129 1.54 thorpej
1130 1.213 ad /* Try for the exact thing in the per-CPU cache. */
1131 1.213 ad if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1132 1.213 ad CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1133 1.213 ad CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1134 1.213 ad return pg;
1135 1.54 thorpej }
1136 1.54 thorpej
1137 1.213 ad /* Walk through all buckets, trying our preferred bucket first. */
1138 1.213 ad trybucket = ucpu->pgflbucket;
1139 1.213 ad b = trybucket;
1140 1.213 ad bucketcount = uvm.bucketcount;
1141 1.213 ad do {
1142 1.213 ad pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1143 1.213 ad if (pg != NULL) {
1144 1.213 ad return pg;
1145 1.213 ad }
1146 1.213 ad b = (b + 1 == bucketcount ? 0 : b + 1);
1147 1.213 ad } while (b != trybucket);
1148 1.213 ad
1149 1.213 ad return NULL;
1150 1.54 thorpej }
1151 1.54 thorpej
1152 1.54 thorpej /*
1153 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1154 1.1 mrg *
1155 1.1 mrg * => return null if no pages free
1156 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1157 1.133 ad * => if obj != NULL, obj must be locked (to put in obj's tree)
1158 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1159 1.1 mrg * => only one of obj or anon can be non-null
1160 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1161 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1162 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1163 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1164 1.34 thorpej * unknown contents page. This is because we live with the
1165 1.34 thorpej * consequences of a bad free list decision for the entire
1166 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1167 1.34 thorpej * is slower to access.
1168 1.1 mrg */
1169 1.1 mrg
1170 1.7 mrg struct vm_page *
1171 1.105 thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1172 1.105 thorpej int flags, int strat, int free_list)
1173 1.1 mrg {
1174 1.213 ad int zeroit = 0, color;
1175 1.213 ad int lcv, error, s;
1176 1.133 ad struct uvm_cpu *ucpu;
1177 1.7 mrg struct vm_page *pg;
1178 1.141 ad lwp_t *l;
1179 1.1 mrg
1180 1.44 chs KASSERT(obj == NULL || anon == NULL);
1181 1.169 matt KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1182 1.44 chs KASSERT(off == trunc_page(off));
1183 1.226 ad KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1184 1.175 rmind KASSERT(anon == NULL || anon->an_lock == NULL ||
1185 1.226 ad rw_write_held(anon->an_lock));
1186 1.48 thorpej
1187 1.7 mrg /*
1188 1.54 thorpej * This implements a global round-robin page coloring
1189 1.54 thorpej * algorithm.
1190 1.54 thorpej */
1191 1.67 chs
1192 1.213 ad s = splvm();
1193 1.133 ad ucpu = curcpu()->ci_data.cpu_uvm;
1194 1.169 matt if (flags & UVM_FLAG_COLORMATCH) {
1195 1.169 matt color = atop(off) & uvmexp.colormask;
1196 1.169 matt } else {
1197 1.213 ad color = ucpu->pgflcolor;
1198 1.169 matt }
1199 1.54 thorpej
1200 1.54 thorpej /*
1201 1.7 mrg * fail if any of these conditions is true:
1202 1.7 mrg * [1] there really are no free pages, or
1203 1.7 mrg * [2] only kernel "reserved" pages remain and
1204 1.141 ad * reserved pages have not been requested.
1205 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1206 1.7 mrg * the requestor isn't the pagedaemon.
1207 1.141 ad * we make kernel reserve pages available if called by a
1208 1.235 ad * kernel thread.
1209 1.7 mrg */
1210 1.141 ad l = curlwp;
1211 1.235 ad if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
1212 1.141 ad flags |= UVM_PGA_USERESERVE;
1213 1.141 ad }
1214 1.34 thorpej
1215 1.12 thorpej again:
1216 1.12 thorpej switch (strat) {
1217 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1218 1.213 ad /* Check freelists: descending priority (ascending id) order. */
1219 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1220 1.213 ad pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1221 1.213 ad if (pg != NULL) {
1222 1.12 thorpej goto gotit;
1223 1.213 ad }
1224 1.12 thorpej }
1225 1.12 thorpej
1226 1.213 ad /* No pages free! Have pagedaemon free some memory. */
1227 1.213 ad splx(s);
1228 1.213 ad uvm_kick_pdaemon();
1229 1.213 ad return NULL;
1230 1.12 thorpej
1231 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1232 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1233 1.12 thorpej /* Attempt to allocate from the specified free list. */
1234 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1235 1.213 ad pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1236 1.213 ad if (pg != NULL) {
1237 1.12 thorpej goto gotit;
1238 1.213 ad }
1239 1.12 thorpej
1240 1.12 thorpej /* Fall back, if possible. */
1241 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1242 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1243 1.12 thorpej goto again;
1244 1.12 thorpej }
1245 1.12 thorpej
1246 1.213 ad /* No pages free! Have pagedaemon free some memory. */
1247 1.213 ad splx(s);
1248 1.213 ad uvm_kick_pdaemon();
1249 1.213 ad return NULL;
1250 1.213 ad
1251 1.213 ad case UVM_PGA_STRAT_NUMA:
1252 1.213 ad /*
1253 1.235 ad * NUMA strategy (experimental): allocating from the correct
1254 1.235 ad * bucket is more important than observing freelist
1255 1.235 ad * priority. Look only to the current NUMA node; if that
1256 1.235 ad * fails, we need to look to other NUMA nodes, so retry with
1257 1.235 ad * the normal strategy.
1258 1.213 ad */
1259 1.213 ad for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1260 1.213 ad pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1261 1.213 ad if (pg != NULL) {
1262 1.213 ad CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1263 1.213 ad CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1264 1.213 ad goto gotit;
1265 1.213 ad }
1266 1.213 ad pg = uvm_pagealloc_pgb(ucpu, lcv,
1267 1.213 ad ucpu->pgflbucket, &color, flags);
1268 1.213 ad if (pg != NULL) {
1269 1.213 ad goto gotit;
1270 1.213 ad }
1271 1.213 ad }
1272 1.213 ad strat = UVM_PGA_STRAT_NORMAL;
1273 1.213 ad goto again;
1274 1.12 thorpej
1275 1.12 thorpej default:
1276 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1277 1.12 thorpej /* NOTREACHED */
1278 1.7 mrg }
1279 1.7 mrg
1280 1.12 thorpej gotit:
1281 1.54 thorpej /*
1282 1.54 thorpej * We now know which color we actually allocated from; set
1283 1.54 thorpej * the next color accordingly.
1284 1.54 thorpej */
1285 1.67 chs
1286 1.213 ad ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1287 1.34 thorpej
1288 1.34 thorpej /*
1289 1.213 ad * while still at IPL_VM, update allocation statistics and remember
1290 1.213 ad * if we have to zero the page
1291 1.34 thorpej */
1292 1.67 chs
1293 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1294 1.34 thorpej if (pg->flags & PG_ZERO) {
1295 1.205 ad CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
1296 1.34 thorpej zeroit = 0;
1297 1.34 thorpej } else {
1298 1.205 ad CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
1299 1.34 thorpej zeroit = 1;
1300 1.34 thorpej }
1301 1.34 thorpej }
1302 1.212 ad if (pg->flags & PG_ZERO) {
1303 1.212 ad CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
1304 1.212 ad }
1305 1.212 ad if (anon) {
1306 1.212 ad CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
1307 1.224 ad CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1308 1.212 ad }
1309 1.213 ad splx(s);
1310 1.201 ad KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1311 1.7 mrg
1312 1.201 ad /*
1313 1.212 ad * assign the page to the object. as the page was free, we know
1314 1.212 ad * that pg->uobject and pg->uanon are NULL. we only need to take
1315 1.212 ad * the page's interlock if we are changing the values.
1316 1.201 ad */
1317 1.212 ad if (anon != NULL || obj != NULL) {
1318 1.212 ad mutex_enter(&pg->interlock);
1319 1.212 ad }
1320 1.7 mrg pg->offset = off;
1321 1.7 mrg pg->uobject = obj;
1322 1.7 mrg pg->uanon = anon;
1323 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1324 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1325 1.7 mrg if (anon) {
1326 1.103 yamt anon->an_page = pg;
1327 1.201 ad pg->flags |= PG_ANON;
1328 1.212 ad mutex_exit(&pg->interlock);
1329 1.201 ad } else if (obj) {
1330 1.224 ad /*
1331 1.224 ad * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1332 1.224 ad */
1333 1.224 ad if (UVM_OBJ_IS_VNODE(obj)) {
1334 1.224 ad pg->flags |= PG_FILE;
1335 1.236 ad } else if (UVM_OBJ_IS_AOBJ(obj)) {
1336 1.224 ad pg->flags |= PG_AOBJ;
1337 1.224 ad }
1338 1.206 ad uvm_pageinsert_object(obj, pg);
1339 1.212 ad mutex_exit(&pg->interlock);
1340 1.206 ad error = uvm_pageinsert_tree(obj, pg);
1341 1.202 ad if (error != 0) {
1342 1.212 ad mutex_enter(&pg->interlock);
1343 1.206 ad uvm_pageremove_object(obj, pg);
1344 1.212 ad mutex_exit(&pg->interlock);
1345 1.202 ad uvm_pagefree(pg);
1346 1.202 ad return NULL;
1347 1.202 ad }
1348 1.7 mrg }
1349 1.143 drochner
1350 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1351 1.7 mrg pg->owner_tag = NULL;
1352 1.1 mrg #endif
1353 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1354 1.33 thorpej
1355 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1356 1.33 thorpej /*
1357 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1358 1.34 thorpej * zero'd, then we have to zero it ourselves.
1359 1.33 thorpej */
1360 1.224 ad if (obj != NULL || anon != NULL) {
1361 1.224 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1362 1.224 ad }
1363 1.224 ad if (zeroit) {
1364 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1365 1.224 ad }
1366 1.33 thorpej }
1367 1.1 mrg
1368 1.7 mrg return(pg);
1369 1.1 mrg }
1370 1.1 mrg
1371 1.1 mrg /*
1372 1.96 yamt * uvm_pagereplace: replace a page with another
1373 1.96 yamt *
1374 1.96 yamt * => object must be locked
1375 1.220 ad * => page interlocks must be held
1376 1.96 yamt */
1377 1.96 yamt
1378 1.96 yamt void
1379 1.105 thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1380 1.96 yamt {
1381 1.136 yamt struct uvm_object *uobj = oldpg->uobject;
1382 1.217 ad struct vm_page *pg __diagused;
1383 1.224 ad uint64_t idx;
1384 1.97 junyoung
1385 1.96 yamt KASSERT((oldpg->flags & PG_TABLED) != 0);
1386 1.136 yamt KASSERT(uobj != NULL);
1387 1.96 yamt KASSERT((newpg->flags & PG_TABLED) == 0);
1388 1.96 yamt KASSERT(newpg->uobject == NULL);
1389 1.226 ad KASSERT(rw_write_held(uobj->vmobjlock));
1390 1.220 ad KASSERT(mutex_owned(&oldpg->interlock));
1391 1.220 ad KASSERT(mutex_owned(&newpg->interlock));
1392 1.96 yamt
1393 1.224 ad newpg->uobject = uobj;
1394 1.96 yamt newpg->offset = oldpg->offset;
1395 1.224 ad idx = newpg->offset >> PAGE_SHIFT;
1396 1.224 ad pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1397 1.217 ad KASSERT(pg == oldpg);
1398 1.224 ad if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1399 1.224 ad if ((newpg->flags & PG_CLEAN) != 0) {
1400 1.224 ad radix_tree_clear_tag(&uobj->uo_pages, idx,
1401 1.224 ad UVM_PAGE_DIRTY_TAG);
1402 1.224 ad } else {
1403 1.224 ad radix_tree_set_tag(&uobj->uo_pages, idx,
1404 1.224 ad UVM_PAGE_DIRTY_TAG);
1405 1.224 ad }
1406 1.224 ad }
1407 1.224 ad /*
1408 1.224 ad * oldpg's PG_STAT is stable. newpg is not reachable by others yet.
1409 1.224 ad */
1410 1.224 ad newpg->flags |=
1411 1.224 ad (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1412 1.203 ad uvm_pageinsert_object(uobj, newpg);
1413 1.203 ad uvm_pageremove_object(uobj, oldpg);
1414 1.96 yamt }
1415 1.96 yamt
1416 1.96 yamt /*
1417 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1418 1.1 mrg *
1419 1.1 mrg * => both objects must be locked
1420 1.201 ad * => both interlocks must be held
1421 1.1 mrg */
1422 1.1 mrg
1423 1.7 mrg void
1424 1.105 thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1425 1.1 mrg {
1426 1.7 mrg /*
1427 1.7 mrg * remove it from the old object
1428 1.7 mrg */
1429 1.7 mrg
1430 1.7 mrg if (pg->uobject) {
1431 1.206 ad uvm_pageremove_tree(pg->uobject, pg);
1432 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1433 1.7 mrg }
1434 1.7 mrg
1435 1.7 mrg /*
1436 1.7 mrg * put it in the new object
1437 1.7 mrg */
1438 1.7 mrg
1439 1.7 mrg if (newobj) {
1440 1.204 ad /*
1441 1.204 ad * XXX we have no in-tree users of this functionality
1442 1.204 ad */
1443 1.204 ad panic("uvm_pagerealloc: no impl");
1444 1.7 mrg }
1445 1.1 mrg }
1446 1.1 mrg
1447 1.91 yamt #ifdef DEBUG
1448 1.91 yamt /*
1449 1.91 yamt * check if page is zero-filled
1450 1.91 yamt */
1451 1.91 yamt void
1452 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1453 1.91 yamt {
1454 1.91 yamt int *p, *ep;
1455 1.91 yamt
1456 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1457 1.91 yamt
1458 1.91 yamt /*
1459 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1460 1.91 yamt * uvm page allocator.
1461 1.91 yamt *
1462 1.95 wiz * it might be better to have "CPU-local temporary map" pmap interface.
1463 1.91 yamt */
1464 1.223 ad mutex_spin_enter(&uvm_zerochecklock);
1465 1.152 cegger pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1466 1.91 yamt p = (int *)uvm_zerocheckkva;
1467 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1468 1.92 yamt pmap_update(pmap_kernel());
1469 1.91 yamt while (p < ep) {
1470 1.91 yamt if (*p != 0)
1471 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1472 1.91 yamt p++;
1473 1.91 yamt }
1474 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1475 1.223 ad mutex_spin_exit(&uvm_zerochecklock);
1476 1.131 yamt /*
1477 1.131 yamt * pmap_update() is not necessary here because no one except us
1478 1.131 yamt * uses this VA.
1479 1.131 yamt */
1480 1.91 yamt }
1481 1.91 yamt #endif /* DEBUG */
1482 1.91 yamt
1483 1.1 mrg /*
1484 1.1 mrg * uvm_pagefree: free page
1485 1.1 mrg *
1486 1.133 ad * => erase page's identity (i.e. remove from object)
1487 1.1 mrg * => put page on free list
1488 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1489 1.1 mrg * => assumes all valid mappings of pg are gone
1490 1.1 mrg */
1491 1.1 mrg
1492 1.44 chs void
1493 1.105 thorpej uvm_pagefree(struct vm_page *pg)
1494 1.1 mrg {
1495 1.213 ad struct pgfreelist *pgfl;
1496 1.213 ad struct pgflbucket *pgb;
1497 1.133 ad struct uvm_cpu *ucpu;
1498 1.213 ad kmutex_t *lock;
1499 1.213 ad int bucket, s;
1500 1.213 ad bool locked;
1501 1.67 chs
1502 1.44 chs #ifdef DEBUG
1503 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1504 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1505 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1506 1.44 chs }
1507 1.91 yamt #endif /* DEBUG */
1508 1.44 chs
1509 1.123 ad KASSERT((pg->flags & PG_PAGEOUT) == 0);
1510 1.201 ad KASSERT(!(pg->flags & PG_FREE));
1511 1.226 ad KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1512 1.127 ad KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1513 1.226 ad rw_write_held(pg->uanon->an_lock));
1514 1.123 ad
1515 1.7 mrg /*
1516 1.229 skrll * remove the page from the object's tree before acquiring any page
1517 1.206 ad * interlocks: this can acquire locks to free radixtree nodes.
1518 1.206 ad */
1519 1.206 ad if (pg->uobject != NULL) {
1520 1.206 ad uvm_pageremove_tree(pg->uobject, pg);
1521 1.206 ad }
1522 1.206 ad
1523 1.206 ad /*
1524 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1525 1.7 mrg */
1526 1.7 mrg
1527 1.67 chs if (pg->loan_count) {
1528 1.70 chs KASSERT(pg->wire_count == 0);
1529 1.7 mrg
1530 1.7 mrg /*
1531 1.67 chs * if the page is owned by an anon then we just want to
1532 1.70 chs * drop anon ownership. the kernel will free the page when
1533 1.70 chs * it is done with it. if the page is owned by an object,
1534 1.70 chs * remove it from the object and mark it dirty for the benefit
1535 1.70 chs * of possible anon owners.
1536 1.70 chs *
1537 1.70 chs * regardless of previous ownership, wakeup any waiters,
1538 1.70 chs * unbusy the page, and we're done.
1539 1.7 mrg */
1540 1.7 mrg
1541 1.220 ad uvm_pagelock(pg);
1542 1.201 ad locked = true;
1543 1.73 chs if (pg->uobject != NULL) {
1544 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1545 1.224 ad pg->flags &= ~(PG_FILE|PG_AOBJ);
1546 1.73 chs } else if (pg->uanon != NULL) {
1547 1.201 ad if ((pg->flags & PG_ANON) == 0) {
1548 1.73 chs pg->loan_count--;
1549 1.73 chs } else {
1550 1.201 ad pg->flags &= ~PG_ANON;
1551 1.205 ad cpu_count(CPU_COUNT_ANONPAGES, -1);
1552 1.73 chs }
1553 1.103 yamt pg->uanon->an_page = NULL;
1554 1.73 chs pg->uanon = NULL;
1555 1.67 chs }
1556 1.231 ad if (pg->pqflags & PQ_WANTED) {
1557 1.70 chs wakeup(pg);
1558 1.70 chs }
1559 1.231 ad pg->pqflags &= ~PQ_WANTED;
1560 1.231 ad pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1561 1.70 chs #ifdef UVM_PAGE_TRKOWN
1562 1.70 chs pg->owner_tag = NULL;
1563 1.70 chs #endif
1564 1.224 ad KASSERT((pg->flags & PG_STAT) == 0);
1565 1.73 chs if (pg->loan_count) {
1566 1.115 yamt KASSERT(pg->uobject == NULL);
1567 1.115 yamt if (pg->uanon == NULL) {
1568 1.115 yamt uvm_pagedequeue(pg);
1569 1.115 yamt }
1570 1.220 ad uvm_pageunlock(pg);
1571 1.73 chs return;
1572 1.73 chs }
1573 1.201 ad } else if (pg->uobject != NULL || pg->uanon != NULL ||
1574 1.201 ad pg->wire_count != 0) {
1575 1.220 ad uvm_pagelock(pg);
1576 1.201 ad locked = true;
1577 1.201 ad } else {
1578 1.201 ad locked = false;
1579 1.67 chs }
1580 1.62 chs
1581 1.67 chs /*
1582 1.67 chs * remove page from its object or anon.
1583 1.67 chs */
1584 1.73 chs if (pg->uobject != NULL) {
1585 1.206 ad uvm_pageremove_object(pg->uobject, pg);
1586 1.73 chs } else if (pg->uanon != NULL) {
1587 1.224 ad const unsigned int status = uvm_pagegetdirty(pg);
1588 1.103 yamt pg->uanon->an_page = NULL;
1589 1.201 ad pg->uanon = NULL;
1590 1.224 ad kpreempt_disable();
1591 1.224 ad CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
1592 1.224 ad CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
1593 1.224 ad kpreempt_enable();
1594 1.7 mrg }
1595 1.1 mrg
1596 1.7 mrg /*
1597 1.7 mrg * if the page was wired, unwire it now.
1598 1.7 mrg */
1599 1.44 chs
1600 1.34 thorpej if (pg->wire_count) {
1601 1.7 mrg pg->wire_count = 0;
1602 1.201 ad atomic_dec_uint(&uvmexp.wired);
1603 1.201 ad }
1604 1.201 ad if (locked) {
1605 1.220 ad /*
1606 1.231 ad * wake anyone waiting on the page.
1607 1.231 ad */
1608 1.231 ad if ((pg->pqflags & PQ_WANTED) != 0) {
1609 1.231 ad pg->pqflags &= ~PQ_WANTED;
1610 1.231 ad wakeup(pg);
1611 1.231 ad }
1612 1.231 ad
1613 1.231 ad /*
1614 1.220 ad * now remove the page from the queues.
1615 1.220 ad */
1616 1.220 ad uvm_pagedequeue(pg);
1617 1.220 ad uvm_pageunlock(pg);
1618 1.220 ad } else {
1619 1.220 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1620 1.44 chs }
1621 1.7 mrg
1622 1.7 mrg /*
1623 1.44 chs * and put on free queue
1624 1.7 mrg */
1625 1.7 mrg
1626 1.3 chs #ifdef DEBUG
1627 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1628 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1629 1.213 ad if (pg->flags & PG_ZERO)
1630 1.91 yamt uvm_pagezerocheck(pg);
1631 1.91 yamt #endif /* DEBUG */
1632 1.91 yamt
1633 1.221 ad /* Try to send the page to the per-CPU cache. */
1634 1.213 ad s = splvm();
1635 1.223 ad if (pg->flags & PG_ZERO) {
1636 1.223 ad CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
1637 1.223 ad }
1638 1.213 ad ucpu = curcpu()->ci_data.cpu_uvm;
1639 1.221 ad bucket = uvm_page_get_bucket(pg);
1640 1.213 ad if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1641 1.213 ad splx(s);
1642 1.213 ad return;
1643 1.133 ad }
1644 1.34 thorpej
1645 1.213 ad /* Didn't work. Never mind, send it to a global bucket. */
1646 1.213 ad pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1647 1.213 ad pgb = pgfl->pgfl_buckets[bucket];
1648 1.213 ad lock = &uvm_freelist_locks[bucket].lock;
1649 1.213 ad
1650 1.213 ad mutex_spin_enter(lock);
1651 1.213 ad /* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1652 1.213 ad pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
1653 1.213 ad LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1654 1.213 ad pgb->pgb_nfree++;
1655 1.213 ad mutex_spin_exit(lock);
1656 1.213 ad splx(s);
1657 1.44 chs }
1658 1.44 chs
1659 1.44 chs /*
1660 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1661 1.44 chs *
1662 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1663 1.44 chs * => if pages are object-owned, object must be locked.
1664 1.67 chs * => if pages are anon-owned, anons must be locked.
1665 1.98 yamt * => caller must make sure that anon-owned pages are not PG_RELEASED.
1666 1.44 chs */
1667 1.44 chs
1668 1.44 chs void
1669 1.105 thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
1670 1.44 chs {
1671 1.44 chs struct vm_page *pg;
1672 1.44 chs int i;
1673 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1674 1.44 chs
1675 1.44 chs for (i = 0; i < npgs; i++) {
1676 1.44 chs pg = pgs[i];
1677 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1678 1.44 chs continue;
1679 1.44 chs }
1680 1.98 yamt
1681 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1682 1.98 yamt KASSERT(pg->flags & PG_BUSY);
1683 1.98 yamt KASSERT((pg->flags & PG_PAGEOUT) == 0);
1684 1.44 chs if (pg->flags & PG_RELEASED) {
1685 1.194 pgoyette UVMHIST_LOG(ubchist, "releasing pg %#jx",
1686 1.194 pgoyette (uintptr_t)pg, 0, 0, 0);
1687 1.98 yamt KASSERT(pg->uobject != NULL ||
1688 1.98 yamt (pg->uanon != NULL && pg->uanon->an_ref > 0));
1689 1.67 chs pg->flags &= ~PG_RELEASED;
1690 1.67 chs uvm_pagefree(pg);
1691 1.44 chs } else {
1692 1.234 ad UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1693 1.234 ad (uintptr_t)pg, 0, 0, 0);
1694 1.142 yamt KASSERT((pg->flags & PG_FAKE) == 0);
1695 1.234 ad pg->flags &= ~PG_BUSY;
1696 1.231 ad uvm_pagelock(pg);
1697 1.234 ad uvm_pagewakeup(pg);
1698 1.231 ad uvm_pageunlock(pg);
1699 1.234 ad UVM_PAGE_OWN(pg, NULL);
1700 1.44 chs }
1701 1.44 chs }
1702 1.1 mrg }
1703 1.1 mrg
1704 1.231 ad /*
1705 1.231 ad * uvm_pagewait: wait for a busy page
1706 1.231 ad *
1707 1.231 ad * => page must be known PG_BUSY
1708 1.231 ad * => object must be read or write locked
1709 1.231 ad * => object will be unlocked on return
1710 1.231 ad */
1711 1.231 ad
1712 1.231 ad void
1713 1.231 ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1714 1.231 ad {
1715 1.231 ad
1716 1.231 ad KASSERT(rw_lock_held(lock));
1717 1.231 ad KASSERT((pg->flags & PG_BUSY) != 0);
1718 1.231 ad KASSERT(uvm_page_owner_locked_p(pg, false));
1719 1.231 ad
1720 1.231 ad mutex_enter(&pg->interlock);
1721 1.234 ad rw_exit(lock);
1722 1.231 ad pg->pqflags |= PQ_WANTED;
1723 1.231 ad UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1724 1.231 ad }
1725 1.231 ad
1726 1.231 ad /*
1727 1.234 ad * uvm_pagewakeup: wake anyone waiting on a page
1728 1.231 ad *
1729 1.231 ad * => page interlock must be held
1730 1.231 ad */
1731 1.231 ad
1732 1.231 ad void
1733 1.234 ad uvm_pagewakeup(struct vm_page *pg)
1734 1.231 ad {
1735 1.234 ad UVMHIST_FUNC("uvm_pagewakeup"); UVMHIST_CALLED(ubchist);
1736 1.231 ad
1737 1.231 ad KASSERT(mutex_owned(&pg->interlock));
1738 1.231 ad
1739 1.234 ad UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1740 1.231 ad
1741 1.231 ad if ((pg->pqflags & PQ_WANTED) != 0) {
1742 1.231 ad wakeup(pg);
1743 1.231 ad pg->pqflags &= ~PQ_WANTED;
1744 1.231 ad }
1745 1.231 ad }
1746 1.231 ad
1747 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1748 1.1 mrg /*
1749 1.1 mrg * uvm_page_own: set or release page ownership
1750 1.1 mrg *
1751 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1752 1.1 mrg * and where they do it. it can be used to track down problems
1753 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1754 1.1 mrg * => page's object [if any] must be locked
1755 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1756 1.1 mrg */
1757 1.7 mrg void
1758 1.105 thorpej uvm_page_own(struct vm_page *pg, const char *tag)
1759 1.1 mrg {
1760 1.112 yamt
1761 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1762 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1763 1.112 yamt
1764 1.7 mrg /* gain ownership? */
1765 1.7 mrg if (tag) {
1766 1.112 yamt KASSERT((pg->flags & PG_BUSY) != 0);
1767 1.7 mrg if (pg->owner_tag) {
1768 1.7 mrg printf("uvm_page_own: page %p already owned "
1769 1.7 mrg "by proc %d [%s]\n", pg,
1770 1.74 enami pg->owner, pg->owner_tag);
1771 1.7 mrg panic("uvm_page_own");
1772 1.7 mrg }
1773 1.184 chs pg->owner = curproc->p_pid;
1774 1.184 chs pg->lowner = curlwp->l_lid;
1775 1.7 mrg pg->owner_tag = tag;
1776 1.7 mrg return;
1777 1.7 mrg }
1778 1.7 mrg
1779 1.7 mrg /* drop ownership */
1780 1.112 yamt KASSERT((pg->flags & PG_BUSY) == 0);
1781 1.7 mrg if (pg->owner_tag == NULL) {
1782 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1783 1.7 mrg "page (%p)\n", pg);
1784 1.7 mrg panic("uvm_page_own");
1785 1.7 mrg }
1786 1.7 mrg pg->owner_tag = NULL;
1787 1.1 mrg }
1788 1.1 mrg #endif
1789 1.34 thorpej
1790 1.34 thorpej /*
1791 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1792 1.34 thorpej */
1793 1.34 thorpej void
1794 1.105 thorpej uvm_pageidlezero(void)
1795 1.34 thorpej {
1796 1.133 ad
1797 1.213 ad /*
1798 1.213 ad * Disabled for the moment. Previous strategy too cache heavy. In
1799 1.213 ad * the future we may experiment with zeroing the pages held in the
1800 1.213 ad * per-CPU cache (uvm_pgflcache).
1801 1.213 ad */
1802 1.34 thorpej }
1803 1.110 yamt
1804 1.110 yamt /*
1805 1.110 yamt * uvm_pagelookup: look up a page
1806 1.110 yamt *
1807 1.110 yamt * => caller should lock object to keep someone from pulling the page
1808 1.110 yamt * out from under it
1809 1.110 yamt */
1810 1.110 yamt
1811 1.110 yamt struct vm_page *
1812 1.110 yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
1813 1.110 yamt {
1814 1.110 yamt struct vm_page *pg;
1815 1.110 yamt
1816 1.227 ad /* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
1817 1.123 ad
1818 1.202 ad pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1819 1.134 ad
1820 1.110 yamt KASSERT(pg == NULL || obj->uo_npages != 0);
1821 1.110 yamt KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1822 1.110 yamt (pg->flags & PG_BUSY) != 0);
1823 1.156 rmind return pg;
1824 1.110 yamt }
1825 1.110 yamt
1826 1.110 yamt /*
1827 1.110 yamt * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1828 1.110 yamt *
1829 1.201 ad * => caller must lock objects
1830 1.220 ad * => caller must hold pg->interlock
1831 1.110 yamt */
1832 1.110 yamt
1833 1.110 yamt void
1834 1.110 yamt uvm_pagewire(struct vm_page *pg)
1835 1.110 yamt {
1836 1.201 ad
1837 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1838 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1839 1.113 yamt #if defined(READAHEAD_STATS)
1840 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1841 1.113 yamt uvm_ra_hit.ev_count++;
1842 1.201 ad pg->flags &= ~PG_READAHEAD;
1843 1.113 yamt }
1844 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1845 1.110 yamt if (pg->wire_count == 0) {
1846 1.110 yamt uvm_pagedequeue(pg);
1847 1.201 ad atomic_inc_uint(&uvmexp.wired);
1848 1.110 yamt }
1849 1.110 yamt pg->wire_count++;
1850 1.197 jdolecek KASSERT(pg->wire_count > 0); /* detect wraparound */
1851 1.110 yamt }
1852 1.110 yamt
1853 1.110 yamt /*
1854 1.110 yamt * uvm_pageunwire: unwire the page.
1855 1.110 yamt *
1856 1.110 yamt * => activate if wire count goes to zero.
1857 1.201 ad * => caller must lock objects
1858 1.220 ad * => caller must hold pg->interlock
1859 1.110 yamt */
1860 1.110 yamt
1861 1.110 yamt void
1862 1.110 yamt uvm_pageunwire(struct vm_page *pg)
1863 1.110 yamt {
1864 1.201 ad
1865 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1866 1.199 kre KASSERT(pg->wire_count != 0);
1867 1.201 ad KASSERT(!uvmpdpol_pageisqueued_p(pg));
1868 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1869 1.110 yamt pg->wire_count--;
1870 1.110 yamt if (pg->wire_count == 0) {
1871 1.111 yamt uvm_pageactivate(pg);
1872 1.199 kre KASSERT(uvmexp.wired != 0);
1873 1.201 ad atomic_dec_uint(&uvmexp.wired);
1874 1.110 yamt }
1875 1.110 yamt }
1876 1.110 yamt
1877 1.110 yamt /*
1878 1.110 yamt * uvm_pagedeactivate: deactivate page
1879 1.110 yamt *
1880 1.201 ad * => caller must lock objects
1881 1.110 yamt * => caller must check to make sure page is not wired
1882 1.110 yamt * => object that page belongs to must be locked (so we can adjust pg->flags)
1883 1.110 yamt * => caller must clear the reference on the page before calling
1884 1.220 ad * => caller must hold pg->interlock
1885 1.110 yamt */
1886 1.110 yamt
1887 1.110 yamt void
1888 1.110 yamt uvm_pagedeactivate(struct vm_page *pg)
1889 1.110 yamt {
1890 1.113 yamt
1891 1.232 ad KASSERT(uvm_page_owner_locked_p(pg, false));
1892 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1893 1.201 ad if (pg->wire_count == 0) {
1894 1.201 ad KASSERT(uvmpdpol_pageisqueued_p(pg));
1895 1.201 ad uvmpdpol_pagedeactivate(pg);
1896 1.201 ad }
1897 1.110 yamt }
1898 1.110 yamt
1899 1.110 yamt /*
1900 1.110 yamt * uvm_pageactivate: activate page
1901 1.110 yamt *
1902 1.201 ad * => caller must lock objects
1903 1.220 ad * => caller must hold pg->interlock
1904 1.110 yamt */
1905 1.110 yamt
1906 1.110 yamt void
1907 1.110 yamt uvm_pageactivate(struct vm_page *pg)
1908 1.110 yamt {
1909 1.113 yamt
1910 1.232 ad KASSERT(uvm_page_owner_locked_p(pg, false));
1911 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1912 1.113 yamt #if defined(READAHEAD_STATS)
1913 1.201 ad if ((pg->flags & PG_READAHEAD) != 0) {
1914 1.113 yamt uvm_ra_hit.ev_count++;
1915 1.201 ad pg->flags &= ~PG_READAHEAD;
1916 1.113 yamt }
1917 1.113 yamt #endif /* defined(READAHEAD_STATS) */
1918 1.201 ad if (pg->wire_count == 0) {
1919 1.201 ad uvmpdpol_pageactivate(pg);
1920 1.110 yamt }
1921 1.110 yamt }
1922 1.110 yamt
1923 1.110 yamt /*
1924 1.110 yamt * uvm_pagedequeue: remove a page from any paging queue
1925 1.230 skrll *
1926 1.201 ad * => caller must lock objects
1927 1.220 ad * => caller must hold pg->interlock
1928 1.110 yamt */
1929 1.110 yamt void
1930 1.110 yamt uvm_pagedequeue(struct vm_page *pg)
1931 1.110 yamt {
1932 1.113 yamt
1933 1.226 ad KASSERT(uvm_page_owner_locked_p(pg, true));
1934 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1935 1.113 yamt if (uvmpdpol_pageisqueued_p(pg)) {
1936 1.201 ad uvmpdpol_pagedequeue(pg);
1937 1.110 yamt }
1938 1.113 yamt }
1939 1.113 yamt
1940 1.113 yamt /*
1941 1.113 yamt * uvm_pageenqueue: add a page to a paging queue without activating.
1942 1.113 yamt * used where a page is not really demanded (yet). eg. read-ahead
1943 1.201 ad *
1944 1.201 ad * => caller must lock objects
1945 1.220 ad * => caller must hold pg->interlock
1946 1.113 yamt */
1947 1.113 yamt void
1948 1.113 yamt uvm_pageenqueue(struct vm_page *pg)
1949 1.113 yamt {
1950 1.113 yamt
1951 1.232 ad KASSERT(uvm_page_owner_locked_p(pg, false));
1952 1.220 ad KASSERT(mutex_owned(&pg->interlock));
1953 1.201 ad if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1954 1.201 ad uvmpdpol_pageenqueue(pg);
1955 1.113 yamt }
1956 1.110 yamt }
1957 1.110 yamt
1958 1.110 yamt /*
1959 1.220 ad * uvm_pagelock: acquire page interlock
1960 1.220 ad */
1961 1.220 ad void
1962 1.220 ad uvm_pagelock(struct vm_page *pg)
1963 1.220 ad {
1964 1.220 ad
1965 1.220 ad mutex_enter(&pg->interlock);
1966 1.220 ad }
1967 1.220 ad
1968 1.220 ad /*
1969 1.220 ad * uvm_pagelock2: acquire two page interlocks
1970 1.220 ad */
1971 1.220 ad void
1972 1.220 ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1973 1.220 ad {
1974 1.220 ad
1975 1.220 ad if (pg1 < pg2) {
1976 1.220 ad mutex_enter(&pg1->interlock);
1977 1.220 ad mutex_enter(&pg2->interlock);
1978 1.220 ad } else {
1979 1.220 ad mutex_enter(&pg2->interlock);
1980 1.220 ad mutex_enter(&pg1->interlock);
1981 1.220 ad }
1982 1.220 ad }
1983 1.220 ad
1984 1.220 ad /*
1985 1.220 ad * uvm_pageunlock: release page interlock, and if a page replacement intent
1986 1.220 ad * is set on the page, pass it to uvmpdpol to make real.
1987 1.230 skrll *
1988 1.220 ad * => caller must hold pg->interlock
1989 1.220 ad */
1990 1.220 ad void
1991 1.220 ad uvm_pageunlock(struct vm_page *pg)
1992 1.220 ad {
1993 1.220 ad
1994 1.220 ad if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
1995 1.220 ad (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
1996 1.220 ad mutex_exit(&pg->interlock);
1997 1.220 ad return;
1998 1.220 ad }
1999 1.220 ad pg->pqflags |= PQ_INTENT_QUEUED;
2000 1.220 ad mutex_exit(&pg->interlock);
2001 1.220 ad uvmpdpol_pagerealize(pg);
2002 1.220 ad }
2003 1.220 ad
2004 1.220 ad /*
2005 1.220 ad * uvm_pageunlock2: release two page interlocks, and for both pages if a
2006 1.220 ad * page replacement intent is set on the page, pass it to uvmpdpol to make
2007 1.220 ad * real.
2008 1.230 skrll *
2009 1.220 ad * => caller must hold pg->interlock
2010 1.220 ad */
2011 1.220 ad void
2012 1.220 ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
2013 1.220 ad {
2014 1.220 ad
2015 1.220 ad if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
2016 1.220 ad (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
2017 1.220 ad mutex_exit(&pg1->interlock);
2018 1.220 ad pg1 = NULL;
2019 1.220 ad } else {
2020 1.220 ad pg1->pqflags |= PQ_INTENT_QUEUED;
2021 1.220 ad mutex_exit(&pg1->interlock);
2022 1.220 ad }
2023 1.220 ad
2024 1.220 ad if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
2025 1.220 ad (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
2026 1.220 ad mutex_exit(&pg2->interlock);
2027 1.220 ad pg2 = NULL;
2028 1.220 ad } else {
2029 1.220 ad pg2->pqflags |= PQ_INTENT_QUEUED;
2030 1.220 ad mutex_exit(&pg2->interlock);
2031 1.220 ad }
2032 1.220 ad
2033 1.220 ad if (pg1 != NULL) {
2034 1.220 ad uvmpdpol_pagerealize(pg1);
2035 1.220 ad }
2036 1.220 ad if (pg2 != NULL) {
2037 1.220 ad uvmpdpol_pagerealize(pg2);
2038 1.220 ad }
2039 1.220 ad }
2040 1.220 ad
2041 1.220 ad /*
2042 1.110 yamt * uvm_pagezero: zero fill a page
2043 1.110 yamt *
2044 1.110 yamt * => if page is part of an object then the object should be locked
2045 1.110 yamt * to protect pg->flags.
2046 1.110 yamt */
2047 1.110 yamt
2048 1.110 yamt void
2049 1.110 yamt uvm_pagezero(struct vm_page *pg)
2050 1.110 yamt {
2051 1.224 ad
2052 1.224 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2053 1.110 yamt pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2054 1.110 yamt }
2055 1.110 yamt
2056 1.110 yamt /*
2057 1.110 yamt * uvm_pagecopy: copy a page
2058 1.110 yamt *
2059 1.110 yamt * => if page is part of an object then the object should be locked
2060 1.110 yamt * to protect pg->flags.
2061 1.110 yamt */
2062 1.110 yamt
2063 1.110 yamt void
2064 1.110 yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2065 1.110 yamt {
2066 1.110 yamt
2067 1.224 ad uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
2068 1.110 yamt pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2069 1.110 yamt }
2070 1.110 yamt
2071 1.110 yamt /*
2072 1.150 thorpej * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2073 1.150 thorpej */
2074 1.150 thorpej
2075 1.150 thorpej bool
2076 1.150 thorpej uvm_pageismanaged(paddr_t pa)
2077 1.150 thorpej {
2078 1.150 thorpej
2079 1.190 cherry return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2080 1.150 thorpej }
2081 1.150 thorpej
2082 1.150 thorpej /*
2083 1.110 yamt * uvm_page_lookup_freelist: look up the free list for the specified page
2084 1.110 yamt */
2085 1.110 yamt
2086 1.110 yamt int
2087 1.110 yamt uvm_page_lookup_freelist(struct vm_page *pg)
2088 1.110 yamt {
2089 1.190 cherry uvm_physseg_t upm;
2090 1.110 yamt
2091 1.190 cherry upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2092 1.190 cherry KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2093 1.190 cherry return uvm_physseg_get_free_list(upm);
2094 1.110 yamt }
2095 1.151 thorpej
2096 1.174 rmind /*
2097 1.218 ad * uvm_page_owner_locked_p: return true if object associated with page is
2098 1.174 rmind * locked. this is a weak check for runtime assertions only.
2099 1.174 rmind */
2100 1.174 rmind
2101 1.174 rmind bool
2102 1.226 ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2103 1.174 rmind {
2104 1.174 rmind
2105 1.174 rmind if (pg->uobject != NULL) {
2106 1.226 ad return exclusive
2107 1.226 ad ? rw_write_held(pg->uobject->vmobjlock)
2108 1.226 ad : rw_lock_held(pg->uobject->vmobjlock);
2109 1.174 rmind }
2110 1.174 rmind if (pg->uanon != NULL) {
2111 1.226 ad return exclusive
2112 1.226 ad ? rw_write_held(pg->uanon->an_lock)
2113 1.226 ad : rw_lock_held(pg->uanon->an_lock);
2114 1.174 rmind }
2115 1.174 rmind return true;
2116 1.174 rmind }
2117 1.174 rmind
2118 1.224 ad /*
2119 1.224 ad * uvm_pagereadonly_p: return if the page should be mapped read-only
2120 1.224 ad */
2121 1.224 ad
2122 1.224 ad bool
2123 1.224 ad uvm_pagereadonly_p(struct vm_page *pg)
2124 1.224 ad {
2125 1.224 ad struct uvm_object * const uobj = pg->uobject;
2126 1.224 ad
2127 1.226 ad KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2128 1.226 ad KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2129 1.224 ad if ((pg->flags & PG_RDONLY) != 0) {
2130 1.224 ad return true;
2131 1.224 ad }
2132 1.224 ad if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2133 1.224 ad return true;
2134 1.224 ad }
2135 1.224 ad if (uobj == NULL) {
2136 1.224 ad return false;
2137 1.224 ad }
2138 1.224 ad return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2139 1.224 ad }
2140 1.224 ad
2141 1.198 jdolecek #ifdef PMAP_DIRECT
2142 1.198 jdolecek /*
2143 1.198 jdolecek * Call pmap to translate physical address into a virtual and to run a callback
2144 1.198 jdolecek * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2145 1.198 jdolecek * or equivalent.
2146 1.198 jdolecek */
2147 1.198 jdolecek int
2148 1.198 jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2149 1.198 jdolecek int (*process)(void *, size_t, void *), void *arg)
2150 1.198 jdolecek {
2151 1.198 jdolecek int error = 0;
2152 1.198 jdolecek paddr_t pa;
2153 1.198 jdolecek size_t todo;
2154 1.198 jdolecek voff_t pgoff = (off & PAGE_MASK);
2155 1.198 jdolecek struct vm_page *pg;
2156 1.198 jdolecek
2157 1.198 jdolecek KASSERT(npages > 0 && len > 0);
2158 1.198 jdolecek
2159 1.198 jdolecek for (int i = 0; i < npages; i++) {
2160 1.198 jdolecek pg = pgs[i];
2161 1.198 jdolecek
2162 1.198 jdolecek KASSERT(len > 0);
2163 1.198 jdolecek
2164 1.198 jdolecek /*
2165 1.198 jdolecek * Caller is responsible for ensuring all the pages are
2166 1.198 jdolecek * available.
2167 1.198 jdolecek */
2168 1.198 jdolecek KASSERT(pg != NULL && pg != PGO_DONTCARE);
2169 1.198 jdolecek
2170 1.198 jdolecek pa = VM_PAGE_TO_PHYS(pg);
2171 1.198 jdolecek todo = MIN(len, PAGE_SIZE - pgoff);
2172 1.198 jdolecek
2173 1.198 jdolecek error = pmap_direct_process(pa, pgoff, todo, process, arg);
2174 1.198 jdolecek if (error)
2175 1.198 jdolecek break;
2176 1.198 jdolecek
2177 1.198 jdolecek pgoff = 0;
2178 1.198 jdolecek len -= todo;
2179 1.198 jdolecek }
2180 1.198 jdolecek
2181 1.198 jdolecek KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2182 1.198 jdolecek return error;
2183 1.198 jdolecek }
2184 1.198 jdolecek #endif /* PMAP_DIRECT */
2185 1.198 jdolecek
2186 1.151 thorpej #if defined(DDB) || defined(DEBUGPRINT)
2187 1.151 thorpej
2188 1.151 thorpej /*
2189 1.151 thorpej * uvm_page_printit: actually print the page
2190 1.151 thorpej */
2191 1.151 thorpej
2192 1.151 thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
2193 1.225 ad static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2194 1.151 thorpej
2195 1.151 thorpej void
2196 1.151 thorpej uvm_page_printit(struct vm_page *pg, bool full,
2197 1.151 thorpej void (*pr)(const char *, ...))
2198 1.151 thorpej {
2199 1.151 thorpej struct vm_page *tpg;
2200 1.151 thorpej struct uvm_object *uobj;
2201 1.213 ad struct pgflbucket *pgb;
2202 1.151 thorpej struct pgflist *pgl;
2203 1.151 thorpej char pgbuf[128];
2204 1.151 thorpej
2205 1.151 thorpej (*pr)("PAGE %p:\n", pg);
2206 1.151 thorpej snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2207 1.225 ad (*pr)(" flags=%s\n", pgbuf);
2208 1.225 ad snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2209 1.225 ad (*pr)(" pqflags=%s\n", pgbuf);
2210 1.225 ad (*pr)(" uobject=%p, uanon=%p, offset=0x%llx\n",
2211 1.225 ad pg->uobject, pg->uanon, (long long)pg->offset);
2212 1.225 ad (*pr)(" loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2213 1.225 ad pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2214 1.225 ad uvm_page_get_freelist(pg));
2215 1.225 ad (*pr)(" pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2216 1.151 thorpej #if defined(UVM_PAGE_TRKOWN)
2217 1.151 thorpej if (pg->flags & PG_BUSY)
2218 1.151 thorpej (*pr)(" owning process = %d, tag=%s\n",
2219 1.151 thorpej pg->owner, pg->owner_tag);
2220 1.151 thorpej else
2221 1.151 thorpej (*pr)(" page not busy, no owner\n");
2222 1.151 thorpej #else
2223 1.151 thorpej (*pr)(" [page ownership tracking disabled]\n");
2224 1.151 thorpej #endif
2225 1.151 thorpej
2226 1.151 thorpej if (!full)
2227 1.151 thorpej return;
2228 1.151 thorpej
2229 1.151 thorpej /* cross-verify object/anon */
2230 1.201 ad if ((pg->flags & PG_FREE) == 0) {
2231 1.201 ad if (pg->flags & PG_ANON) {
2232 1.151 thorpej if (pg->uanon == NULL || pg->uanon->an_page != pg)
2233 1.151 thorpej (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2234 1.151 thorpej (pg->uanon) ? pg->uanon->an_page : NULL);
2235 1.151 thorpej else
2236 1.151 thorpej (*pr)(" anon backpointer is OK\n");
2237 1.151 thorpej } else {
2238 1.151 thorpej uobj = pg->uobject;
2239 1.151 thorpej if (uobj) {
2240 1.151 thorpej (*pr)(" checking object list\n");
2241 1.203 ad tpg = uvm_pagelookup(uobj, pg->offset);
2242 1.151 thorpej if (tpg)
2243 1.151 thorpej (*pr)(" page found on object list\n");
2244 1.151 thorpej else
2245 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2246 1.151 thorpej }
2247 1.151 thorpej }
2248 1.151 thorpej }
2249 1.151 thorpej
2250 1.151 thorpej /* cross-verify page queue */
2251 1.201 ad if (pg->flags & PG_FREE) {
2252 1.209 ad int fl = uvm_page_get_freelist(pg);
2253 1.213 ad int b = uvm_page_get_bucket(pg);
2254 1.213 ad pgb = uvm.page_free[fl].pgfl_buckets[b];
2255 1.213 ad pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2256 1.151 thorpej (*pr)(" checking pageq list\n");
2257 1.151 thorpej LIST_FOREACH(tpg, pgl, pageq.list) {
2258 1.151 thorpej if (tpg == pg) {
2259 1.151 thorpej break;
2260 1.151 thorpej }
2261 1.151 thorpej }
2262 1.151 thorpej if (tpg)
2263 1.151 thorpej (*pr)(" page found on pageq list\n");
2264 1.151 thorpej else
2265 1.151 thorpej (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2266 1.151 thorpej }
2267 1.151 thorpej }
2268 1.151 thorpej
2269 1.151 thorpej /*
2270 1.201 ad * uvm_page_printall - print a summary of all managed pages
2271 1.151 thorpej */
2272 1.151 thorpej
2273 1.151 thorpej void
2274 1.151 thorpej uvm_page_printall(void (*pr)(const char *, ...))
2275 1.151 thorpej {
2276 1.190 cherry uvm_physseg_t i;
2277 1.190 cherry paddr_t pfn;
2278 1.151 thorpej struct vm_page *pg;
2279 1.151 thorpej
2280 1.151 thorpej (*pr)("%18s %4s %4s %18s %18s"
2281 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2282 1.151 thorpej " OWNER"
2283 1.151 thorpej #endif
2284 1.151 thorpej "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2285 1.190 cherry for (i = uvm_physseg_get_first();
2286 1.190 cherry uvm_physseg_valid_p(i);
2287 1.190 cherry i = uvm_physseg_get_next(i)) {
2288 1.190 cherry for (pfn = uvm_physseg_get_start(i);
2289 1.192 maya pfn < uvm_physseg_get_end(i);
2290 1.190 cherry pfn++) {
2291 1.190 cherry pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2292 1.190 cherry
2293 1.201 ad (*pr)("%18p %04x %08x %18p %18p",
2294 1.151 thorpej pg, pg->flags, pg->pqflags, pg->uobject,
2295 1.151 thorpej pg->uanon);
2296 1.151 thorpej #ifdef UVM_PAGE_TRKOWN
2297 1.151 thorpej if (pg->flags & PG_BUSY)
2298 1.151 thorpej (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2299 1.151 thorpej #endif
2300 1.151 thorpej (*pr)("\n");
2301 1.151 thorpej }
2302 1.151 thorpej }
2303 1.151 thorpej }
2304 1.151 thorpej
2305 1.213 ad /*
2306 1.213 ad * uvm_page_print_freelists - print a summary freelists
2307 1.213 ad */
2308 1.213 ad
2309 1.213 ad void
2310 1.213 ad uvm_page_print_freelists(void (*pr)(const char *, ...))
2311 1.213 ad {
2312 1.213 ad struct pgfreelist *pgfl;
2313 1.213 ad struct pgflbucket *pgb;
2314 1.213 ad int fl, b, c;
2315 1.213 ad
2316 1.213 ad (*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2317 1.213 ad VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2318 1.230 skrll
2319 1.213 ad for (fl = 0; fl < VM_NFREELIST; fl++) {
2320 1.213 ad pgfl = &uvm.page_free[fl];
2321 1.213 ad (*pr)("freelist(%d) @ %p\n", fl, pgfl);
2322 1.213 ad for (b = 0; b < uvm.bucketcount; b++) {
2323 1.213 ad pgb = uvm.page_free[fl].pgfl_buckets[b];
2324 1.213 ad (*pr)(" bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2325 1.213 ad b, pgb, pgb->pgb_nfree,
2326 1.213 ad &uvm_freelist_locks[b].lock);
2327 1.213 ad for (c = 0; c < uvmexp.ncolors; c++) {
2328 1.213 ad (*pr)(" color(%d) @ %p, ", c,
2329 1.213 ad &pgb->pgb_colors[c]);
2330 1.213 ad (*pr)("first page = %p\n",
2331 1.213 ad LIST_FIRST(&pgb->pgb_colors[c]));
2332 1.213 ad }
2333 1.213 ad }
2334 1.213 ad }
2335 1.213 ad }
2336 1.213 ad
2337 1.151 thorpej #endif /* DDB || DEBUGPRINT */
2338