Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.240
      1  1.240        ad /*	$NetBSD: uvm_page.c,v 1.240 2020/06/11 22:21:05 ad Exp $	*/
      2  1.213        ad 
      3  1.213        ad /*-
      4  1.224        ad  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
      5  1.213        ad  * All rights reserved.
      6  1.213        ad  *
      7  1.213        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.213        ad  * by Andrew Doran.
      9  1.213        ad  *
     10  1.213        ad  * Redistribution and use in source and binary forms, with or without
     11  1.213        ad  * modification, are permitted provided that the following conditions
     12  1.213        ad  * are met:
     13  1.213        ad  * 1. Redistributions of source code must retain the above copyright
     14  1.213        ad  *    notice, this list of conditions and the following disclaimer.
     15  1.213        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.213        ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.213        ad  *    documentation and/or other materials provided with the distribution.
     18  1.213        ad  *
     19  1.213        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.213        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.213        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.213        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.213        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.213        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.213        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.213        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.213        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.213        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.213        ad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.213        ad  */
     31    1.1       mrg 
     32   1.62       chs /*
     33    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     34   1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
     35    1.1       mrg  *
     36    1.1       mrg  * All rights reserved.
     37    1.1       mrg  *
     38    1.1       mrg  * This code is derived from software contributed to Berkeley by
     39    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     40    1.1       mrg  *
     41    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     42    1.1       mrg  * modification, are permitted provided that the following conditions
     43    1.1       mrg  * are met:
     44    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     45    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     46    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     47    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     48    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     49  1.170     chuck  * 3. Neither the name of the University nor the names of its contributors
     50    1.1       mrg  *    may be used to endorse or promote products derived from this software
     51    1.1       mrg  *    without specific prior written permission.
     52    1.1       mrg  *
     53    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63    1.1       mrg  * SUCH DAMAGE.
     64    1.1       mrg  *
     65    1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     66    1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     67    1.1       mrg  *
     68    1.1       mrg  *
     69    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     70    1.1       mrg  * All rights reserved.
     71   1.62       chs  *
     72    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     73    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     74    1.1       mrg  * notice and this permission notice appear in all copies of the
     75    1.1       mrg  * software, derivative works or modified versions, and any portions
     76    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     77   1.62       chs  *
     78   1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     79   1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     80    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     81   1.62       chs  *
     82    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     83    1.1       mrg  *
     84    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     85    1.1       mrg  *  School of Computer Science
     86    1.1       mrg  *  Carnegie Mellon University
     87    1.1       mrg  *  Pittsburgh PA 15213-3890
     88    1.1       mrg  *
     89    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     90    1.1       mrg  * rights to redistribute these changes.
     91    1.1       mrg  */
     92    1.1       mrg 
     93    1.1       mrg /*
     94    1.1       mrg  * uvm_page.c: page ops.
     95    1.1       mrg  */
     96   1.71     lukem 
     97   1.71     lukem #include <sys/cdefs.h>
     98  1.240        ad __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.240 2020/06/11 22:21:05 ad Exp $");
     99    1.6       mrg 
    100  1.151   thorpej #include "opt_ddb.h"
    101  1.187     joerg #include "opt_uvm.h"
    102   1.44       chs #include "opt_uvmhist.h"
    103  1.113      yamt #include "opt_readahead.h"
    104   1.44       chs 
    105    1.1       mrg #include <sys/param.h>
    106    1.1       mrg #include <sys/systm.h>
    107   1.35   thorpej #include <sys/sched.h>
    108   1.44       chs #include <sys/kernel.h>
    109   1.51       chs #include <sys/vnode.h>
    110   1.68       chs #include <sys/proc.h>
    111  1.202        ad #include <sys/radixtree.h>
    112  1.126        ad #include <sys/atomic.h>
    113  1.133        ad #include <sys/cpu.h>
    114  1.190    cherry #include <sys/extent.h>
    115    1.1       mrg 
    116    1.1       mrg #include <uvm/uvm.h>
    117  1.151   thorpej #include <uvm/uvm_ddb.h>
    118  1.113      yamt #include <uvm/uvm_pdpolicy.h>
    119  1.213        ad #include <uvm/uvm_pgflcache.h>
    120    1.1       mrg 
    121    1.1       mrg /*
    122   1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    123   1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    124  1.155        ad  * We therefore provide a way to enable it from machdep code here.
    125   1.44       chs  */
    126  1.119   thorpej bool vm_page_zero_enable = false;
    127   1.34   thorpej 
    128   1.34   thorpej /*
    129  1.140        ad  * number of pages per-CPU to reserve for the kernel.
    130  1.140        ad  */
    131  1.187     joerg #ifndef	UVM_RESERVED_PAGES_PER_CPU
    132  1.187     joerg #define	UVM_RESERVED_PAGES_PER_CPU	5
    133  1.187     joerg #endif
    134  1.187     joerg int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    135  1.140        ad 
    136  1.140        ad /*
    137  1.148      matt  * physical memory size;
    138  1.148      matt  */
    139  1.189    cherry psize_t physmem;
    140  1.148      matt 
    141  1.148      matt /*
    142    1.1       mrg  * local variables
    143    1.1       mrg  */
    144    1.1       mrg 
    145    1.1       mrg /*
    146   1.88   thorpej  * these variables record the values returned by vm_page_bootstrap,
    147   1.88   thorpej  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    148   1.88   thorpej  * and pmap_startup here also uses them internally.
    149   1.88   thorpej  */
    150   1.88   thorpej 
    151   1.88   thorpej static vaddr_t      virtual_space_start;
    152   1.88   thorpej static vaddr_t      virtual_space_end;
    153   1.88   thorpej 
    154   1.88   thorpej /*
    155   1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    156   1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    157   1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    158   1.60   thorpej  * free the initial set of buckets, since they are allocated using
    159   1.60   thorpej  * uvm_pageboot_alloc().
    160   1.60   thorpej  */
    161   1.60   thorpej 
    162  1.179      para static size_t recolored_pages_memsize /* = 0 */;
    163  1.213        ad static char *recolored_pages_mem;
    164  1.213        ad 
    165  1.213        ad /*
    166  1.213        ad  * freelist locks - one per bucket.
    167  1.213        ad  */
    168  1.213        ad 
    169  1.213        ad union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
    170  1.213        ad     __cacheline_aligned;
    171  1.213        ad 
    172  1.213        ad /*
    173  1.213        ad  * basic NUMA information.
    174  1.213        ad  */
    175  1.213        ad 
    176  1.213        ad static struct uvm_page_numa_region {
    177  1.213        ad 	struct uvm_page_numa_region	*next;
    178  1.213        ad 	paddr_t				start;
    179  1.213        ad 	paddr_t				size;
    180  1.213        ad 	u_int				numa_id;
    181  1.213        ad } *uvm_page_numa_region;
    182   1.60   thorpej 
    183   1.91      yamt #ifdef DEBUG
    184  1.223        ad kmutex_t uvm_zerochecklock __cacheline_aligned;
    185   1.91      yamt vaddr_t uvm_zerocheckkva;
    186   1.91      yamt #endif /* DEBUG */
    187   1.91      yamt 
    188   1.60   thorpej /*
    189  1.190    cherry  * These functions are reserved for uvm(9) internal use and are not
    190  1.190    cherry  * exported in the header file uvm_physseg.h
    191  1.190    cherry  *
    192  1.190    cherry  * Thus they are redefined here.
    193  1.190    cherry  */
    194  1.190    cherry void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    195  1.190    cherry void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    196  1.190    cherry 
    197  1.190    cherry /* returns a pgs array */
    198  1.190    cherry struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    199  1.190    cherry 
    200  1.190    cherry /*
    201    1.1       mrg  * inline functions
    202    1.1       mrg  */
    203    1.1       mrg 
    204    1.1       mrg /*
    205  1.134        ad  * uvm_pageinsert: insert a page in the object.
    206    1.1       mrg  *
    207    1.1       mrg  * => caller must lock object
    208    1.1       mrg  * => call should have already set pg's object and offset pointers
    209    1.1       mrg  *    and bumped the version counter
    210    1.1       mrg  */
    211    1.1       mrg 
    212  1.136      yamt static inline void
    213  1.203        ad uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    214    1.1       mrg {
    215    1.1       mrg 
    216  1.136      yamt 	KASSERT(uobj == pg->uobject);
    217  1.226        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    218   1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    219  1.123        ad 
    220  1.224        ad 	if ((pg->flags & PG_STAT) != 0) {
    221  1.224        ad 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
    222  1.224        ad 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    223  1.224        ad 
    224  1.236        ad 		if ((pg->flags & PG_FILE) != 0) {
    225  1.224        ad 			if (uobj->uo_npages == 0) {
    226  1.228        ad 				struct vnode *vp = (struct vnode *)uobj;
    227  1.228        ad 				mutex_enter(vp->v_interlock);
    228  1.228        ad 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
    229  1.228        ad 				vp->v_iflag |= VI_PAGES;
    230  1.228        ad 				vholdl(vp);
    231  1.228        ad 				mutex_exit(vp->v_interlock);
    232  1.224        ad 			}
    233  1.224        ad 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    234  1.240        ad 				cpu_count(CPU_COUNT_EXECPAGES, 1);
    235  1.224        ad 			}
    236  1.240        ad 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
    237   1.94      yamt 		} else {
    238  1.240        ad 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
    239   1.94      yamt 		}
    240   1.78       chs 	}
    241    1.7       mrg 	pg->flags |= PG_TABLED;
    242   1.67       chs 	uobj->uo_npages++;
    243    1.1       mrg }
    244    1.1       mrg 
    245  1.202        ad static inline int
    246  1.136      yamt uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    247  1.136      yamt {
    248  1.202        ad 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    249  1.202        ad 	int error;
    250  1.136      yamt 
    251  1.202        ad 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    252  1.202        ad 	if (error != 0) {
    253  1.202        ad 		return error;
    254  1.202        ad 	}
    255  1.224        ad 	if ((pg->flags & PG_CLEAN) == 0) {
    256  1.224        ad 		radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
    257  1.224        ad 	}
    258  1.224        ad 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
    259  1.224        ad 	    radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
    260  1.202        ad 	return 0;
    261  1.136      yamt }
    262  1.136      yamt 
    263    1.1       mrg /*
    264  1.134        ad  * uvm_page_remove: remove page from object.
    265    1.1       mrg  *
    266    1.1       mrg  * => caller must lock object
    267    1.1       mrg  */
    268    1.1       mrg 
    269  1.109     perry static inline void
    270  1.203        ad uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    271    1.1       mrg {
    272    1.1       mrg 
    273  1.136      yamt 	KASSERT(uobj == pg->uobject);
    274  1.226        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
    275   1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    276  1.123        ad 
    277  1.224        ad 	if ((pg->flags & PG_STAT) != 0) {
    278  1.224        ad 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
    279  1.224        ad 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    280  1.224        ad 
    281  1.236        ad 		if ((pg->flags & PG_FILE) != 0) {
    282  1.224        ad 			if (uobj->uo_npages == 1) {
    283  1.228        ad 				struct vnode *vp = (struct vnode *)uobj;
    284  1.228        ad 				mutex_enter(vp->v_interlock);
    285  1.228        ad 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
    286  1.228        ad 				vp->v_iflag &= ~VI_PAGES;
    287  1.228        ad 				holdrelel(vp);
    288  1.228        ad 				mutex_exit(vp->v_interlock);
    289  1.224        ad 			}
    290  1.224        ad 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    291  1.240        ad 				cpu_count(CPU_COUNT_EXECPAGES, -1);
    292  1.224        ad 			}
    293  1.240        ad 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
    294   1.94      yamt 		} else {
    295  1.240        ad 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
    296   1.94      yamt 		}
    297   1.51       chs 	}
    298   1.67       chs 	uobj->uo_npages--;
    299    1.7       mrg 	pg->flags &= ~PG_TABLED;
    300    1.7       mrg 	pg->uobject = NULL;
    301    1.1       mrg }
    302    1.1       mrg 
    303  1.136      yamt static inline void
    304  1.136      yamt uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    305  1.136      yamt {
    306  1.202        ad 	struct vm_page *opg __unused;
    307  1.136      yamt 
    308  1.202        ad 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    309  1.202        ad 	KASSERT(pg == opg);
    310  1.136      yamt }
    311  1.136      yamt 
    312   1.60   thorpej static void
    313  1.213        ad uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
    314   1.60   thorpej {
    315  1.213        ad 	int i;
    316   1.60   thorpej 
    317  1.213        ad 	pgb->pgb_nfree = 0;
    318  1.213        ad 	for (i = 0; i < uvmexp.ncolors; i++) {
    319  1.213        ad 		LIST_INIT(&pgb->pgb_colors[i]);
    320   1.60   thorpej 	}
    321  1.213        ad 	pgfl->pgfl_buckets[num] = pgb;
    322   1.60   thorpej }
    323   1.60   thorpej 
    324    1.1       mrg /*
    325    1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    326   1.62       chs  *
    327    1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    328    1.1       mrg  */
    329    1.1       mrg 
    330    1.7       mrg void
    331  1.105   thorpej uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    332    1.1       mrg {
    333  1.213        ad 	static struct uvm_cpu boot_cpu __cacheline_aligned;
    334  1.213        ad 	psize_t freepages, pagecount, bucketsize, n;
    335  1.213        ad 	struct pgflbucket *pgb;
    336   1.63       chs 	struct vm_page *pagearray;
    337  1.213        ad 	char *bucketarray;
    338  1.190    cherry 	uvm_physseg_t bank;
    339  1.213        ad 	int fl, b;
    340    1.7       mrg 
    341  1.133        ad 	KASSERT(ncpu <= 1);
    342  1.133        ad 
    343    1.7       mrg 	/*
    344  1.213        ad 	 * init the page queues and free page queue locks, except the
    345  1.201        ad 	 * free list; we allocate that later (with the initial vm_page
    346   1.60   thorpej 	 * structures).
    347    1.7       mrg 	 */
    348   1.51       chs 
    349  1.155        ad 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    350  1.113      yamt 	uvmpdpol_init();
    351  1.213        ad 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
    352  1.213        ad 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
    353  1.213        ad 	}
    354    1.7       mrg 
    355    1.7       mrg 	/*
    356   1.51       chs 	 * allocate vm_page structures.
    357    1.7       mrg 	 */
    358    1.7       mrg 
    359    1.7       mrg 	/*
    360    1.7       mrg 	 * sanity check:
    361    1.7       mrg 	 * before calling this function the MD code is expected to register
    362    1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    363    1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    364    1.7       mrg 	 */
    365    1.7       mrg 
    366  1.190    cherry 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    367   1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    368   1.62       chs 
    369    1.7       mrg 	/*
    370   1.62       chs 	 * first calculate the number of free pages...
    371    1.7       mrg 	 *
    372    1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    373    1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    374    1.7       mrg 	 * want to return some memory to the pool after booting.
    375    1.7       mrg 	 */
    376   1.62       chs 
    377    1.7       mrg 	freepages = 0;
    378  1.190    cherry 
    379  1.190    cherry 	for (bank = uvm_physseg_get_first();
    380  1.190    cherry 	     uvm_physseg_valid_p(bank) ;
    381  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    382  1.190    cherry 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    383  1.158  uebayasi 	}
    384    1.7       mrg 
    385    1.7       mrg 	/*
    386   1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    387   1.60   thorpej 	 * to 1 color if MD code doesn't care.
    388   1.60   thorpej 	 */
    389   1.60   thorpej 	if (uvmexp.ncolors == 0)
    390   1.60   thorpej 		uvmexp.ncolors = 1;
    391   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    392  1.178  uebayasi 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    393   1.60   thorpej 
    394  1.213        ad 	/* We always start with only 1 bucket. */
    395  1.213        ad 	uvm.bucketcount = 1;
    396  1.213        ad 
    397   1.60   thorpej 	/*
    398    1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    399    1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    400    1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    401    1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    402    1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    403    1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    404    1.7       mrg 	 * pages).
    405    1.7       mrg 	 */
    406   1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    407    1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    408  1.213        ad 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
    409  1.213        ad 	bucketsize = roundup2(bucketsize, coherency_unit);
    410  1.213        ad 	bucketarray = (void *)uvm_pageboot_alloc(
    411  1.213        ad 	    bucketsize * VM_NFREELIST +
    412  1.213        ad 	    pagecount * sizeof(struct vm_page));
    413  1.213        ad 	pagearray = (struct vm_page *)
    414  1.213        ad 	    (bucketarray + bucketsize * VM_NFREELIST);
    415  1.213        ad 
    416  1.213        ad 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    417  1.213        ad 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
    418  1.213        ad 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
    419   1.60   thorpej 	}
    420   1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    421   1.62       chs 
    422    1.7       mrg 	/*
    423  1.213        ad 	 * init the freelist cache in the disabled state.
    424  1.213        ad 	 */
    425  1.213        ad 	uvm_pgflcache_init();
    426  1.213        ad 
    427  1.213        ad 	/*
    428   1.51       chs 	 * init the vm_page structures and put them in the correct place.
    429    1.7       mrg 	 */
    430  1.190    cherry 	/* First init the extent */
    431    1.7       mrg 
    432  1.190    cherry 	for (bank = uvm_physseg_get_first(),
    433  1.190    cherry 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    434  1.190    cherry 	     uvm_physseg_valid_p(bank);
    435  1.190    cherry 	     bank = uvm_physseg_get_next(bank)) {
    436  1.190    cherry 
    437  1.190    cherry 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    438  1.190    cherry 		uvm_physseg_seg_alloc_from_slab(bank, n);
    439  1.190    cherry 		uvm_physseg_init_seg(bank, pagearray);
    440   1.51       chs 
    441    1.7       mrg 		/* set up page array pointers */
    442    1.7       mrg 		pagearray += n;
    443    1.7       mrg 		pagecount -= n;
    444    1.7       mrg 	}
    445   1.44       chs 
    446    1.7       mrg 	/*
    447   1.88   thorpej 	 * pass up the values of virtual_space_start and
    448   1.88   thorpej 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    449   1.88   thorpej 	 * layers of the VM.
    450   1.88   thorpej 	 */
    451   1.88   thorpej 
    452   1.88   thorpej 	*kvm_startp = round_page(virtual_space_start);
    453   1.88   thorpej 	*kvm_endp = trunc_page(virtual_space_end);
    454   1.91      yamt #ifdef DEBUG
    455   1.91      yamt 	/*
    456   1.91      yamt 	 * steal kva for uvm_pagezerocheck().
    457   1.91      yamt 	 */
    458   1.91      yamt 	uvm_zerocheckkva = *kvm_startp;
    459   1.91      yamt 	*kvm_startp += PAGE_SIZE;
    460  1.223        ad 	mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
    461   1.91      yamt #endif /* DEBUG */
    462   1.88   thorpej 
    463   1.88   thorpej 	/*
    464   1.51       chs 	 * init various thresholds.
    465    1.7       mrg 	 */
    466   1.51       chs 
    467    1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    468  1.140        ad 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    469    1.7       mrg 
    470    1.7       mrg 	/*
    471  1.213        ad 	 * done!
    472   1.34   thorpej 	 */
    473   1.51       chs 
    474  1.213        ad 	uvm.page_init_done = true;
    475  1.213        ad }
    476  1.213        ad 
    477  1.213        ad /*
    478  1.213        ad  * uvm_pgfl_lock: lock all freelist buckets
    479  1.213        ad  */
    480  1.213        ad 
    481  1.213        ad void
    482  1.213        ad uvm_pgfl_lock(void)
    483  1.213        ad {
    484  1.213        ad 	int i;
    485  1.213        ad 
    486  1.213        ad 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    487  1.213        ad 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
    488  1.213        ad 	}
    489  1.213        ad }
    490  1.213        ad 
    491  1.213        ad /*
    492  1.213        ad  * uvm_pgfl_unlock: unlock all freelist buckets
    493  1.213        ad  */
    494   1.34   thorpej 
    495  1.213        ad void
    496  1.213        ad uvm_pgfl_unlock(void)
    497  1.213        ad {
    498  1.213        ad 	int i;
    499    1.1       mrg 
    500  1.213        ad 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    501  1.213        ad 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
    502  1.213        ad 	}
    503    1.1       mrg }
    504    1.1       mrg 
    505    1.1       mrg /*
    506    1.1       mrg  * uvm_setpagesize: set the page size
    507   1.62       chs  *
    508    1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    509   1.62       chs  */
    510    1.1       mrg 
    511    1.7       mrg void
    512  1.105   thorpej uvm_setpagesize(void)
    513    1.1       mrg {
    514   1.85   thorpej 
    515   1.85   thorpej 	/*
    516   1.85   thorpej 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    517   1.85   thorpej 	 * to be a constant (indicated by being a non-zero value).
    518   1.85   thorpej 	 */
    519   1.85   thorpej 	if (uvmexp.pagesize == 0) {
    520   1.85   thorpej 		if (PAGE_SIZE == 0)
    521   1.85   thorpej 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    522   1.85   thorpej 		uvmexp.pagesize = PAGE_SIZE;
    523   1.85   thorpej 	}
    524    1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    525    1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    526  1.168      matt 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    527  1.168      matt 		    uvmexp.pagesize, uvmexp.pagesize);
    528    1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    529    1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    530    1.7       mrg 			break;
    531    1.1       mrg }
    532    1.1       mrg 
    533    1.1       mrg /*
    534    1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    535    1.1       mrg  */
    536    1.1       mrg 
    537   1.14       eeh vaddr_t
    538  1.105   thorpej uvm_pageboot_alloc(vsize_t size)
    539    1.1       mrg {
    540  1.119   thorpej 	static bool initialized = false;
    541   1.14       eeh 	vaddr_t addr;
    542   1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    543   1.52   thorpej 	vaddr_t vaddr;
    544   1.14       eeh 	paddr_t paddr;
    545   1.52   thorpej #endif
    546    1.1       mrg 
    547    1.7       mrg 	/*
    548   1.19   thorpej 	 * on first call to this function, initialize ourselves.
    549    1.7       mrg 	 */
    550  1.119   thorpej 	if (initialized == false) {
    551   1.88   thorpej 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    552    1.1       mrg 
    553    1.7       mrg 		/* round it the way we like it */
    554   1.88   thorpej 		virtual_space_start = round_page(virtual_space_start);
    555   1.88   thorpej 		virtual_space_end = trunc_page(virtual_space_end);
    556   1.19   thorpej 
    557  1.119   thorpej 		initialized = true;
    558    1.7       mrg 	}
    559   1.52   thorpej 
    560   1.52   thorpej 	/* round to page size */
    561   1.52   thorpej 	size = round_page(size);
    562  1.195       mrg 	uvmexp.bootpages += atop(size);
    563   1.52   thorpej 
    564   1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    565   1.52   thorpej 
    566   1.62       chs 	/*
    567   1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    568   1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    569   1.88   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    570   1.52   thorpej 	 */
    571   1.52   thorpej 
    572   1.88   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    573   1.88   thorpej 	    &virtual_space_end);
    574   1.52   thorpej 
    575   1.52   thorpej 	return(addr);
    576   1.52   thorpej 
    577   1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    578    1.1       mrg 
    579    1.7       mrg 	/*
    580    1.7       mrg 	 * allocate virtual memory for this request
    581    1.7       mrg 	 */
    582   1.88   thorpej 	if (virtual_space_start == virtual_space_end ||
    583   1.88   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    584   1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    585   1.20   thorpej 
    586   1.88   thorpej 	addr = virtual_space_start;
    587   1.20   thorpej 
    588   1.20   thorpej #ifdef PMAP_GROWKERNEL
    589   1.20   thorpej 	/*
    590   1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    591   1.20   thorpej 	 * then allocate more resources for it.
    592   1.20   thorpej 	 */
    593   1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    594   1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    595   1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    596   1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    597   1.19   thorpej 	}
    598   1.20   thorpej #endif
    599    1.1       mrg 
    600   1.88   thorpej 	virtual_space_start += size;
    601    1.1       mrg 
    602    1.9   thorpej 	/*
    603    1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    604    1.7       mrg 	 */
    605    1.1       mrg 
    606    1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    607    1.7       mrg 	    vaddr += PAGE_SIZE) {
    608    1.1       mrg 
    609    1.7       mrg 		if (!uvm_page_physget(&paddr))
    610    1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    611    1.1       mrg 
    612   1.23   thorpej 		/*
    613   1.23   thorpej 		 * Note this memory is no longer managed, so using
    614   1.23   thorpej 		 * pmap_kenter is safe.
    615   1.23   thorpej 		 */
    616  1.152    cegger 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    617    1.7       mrg 	}
    618   1.66     chris 	pmap_update(pmap_kernel());
    619    1.7       mrg 	return(addr);
    620    1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    621    1.1       mrg }
    622    1.1       mrg 
    623    1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    624    1.1       mrg /*
    625    1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    626    1.1       mrg  *
    627    1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    628    1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    629    1.1       mrg  *    will advance both values (making them equal, and removing some
    630    1.1       mrg  *    vm_page structures from the non-avail area).
    631    1.1       mrg  * => return false if out of memory.
    632    1.1       mrg  */
    633    1.1       mrg 
    634   1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    635  1.118   thorpej static bool uvm_page_physget_freelist(paddr_t *, int);
    636   1.28  drochner 
    637  1.118   thorpej static bool
    638  1.105   thorpej uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    639    1.1       mrg {
    640  1.190    cherry 	uvm_physseg_t lcv;
    641    1.1       mrg 
    642    1.7       mrg 	/* pass 1: try allocating from a matching end */
    643    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    644  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    645    1.1       mrg #else
    646  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    647    1.1       mrg #endif
    648    1.7       mrg 	{
    649  1.119   thorpej 		if (uvm.page_init_done == true)
    650   1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    651    1.1       mrg 
    652  1.190    cherry 		/* Try to match at front or back on unused segment */
    653  1.200      maxv 		if (uvm_page_physunload(lcv, freelist, paddrp))
    654  1.190    cherry 			return true;
    655  1.191     skrll 	}
    656    1.1       mrg 
    657    1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    658    1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    659  1.191     skrll 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    660    1.1       mrg #else
    661  1.191     skrll 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    662    1.1       mrg #endif
    663    1.7       mrg 	{
    664  1.190    cherry 		/* Try the front regardless. */
    665  1.200      maxv 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    666  1.190    cherry 			return true;
    667  1.190    cherry 	}
    668  1.190    cherry 	return false;
    669   1.28  drochner }
    670   1.28  drochner 
    671  1.118   thorpej bool
    672  1.105   thorpej uvm_page_physget(paddr_t *paddrp)
    673   1.28  drochner {
    674   1.28  drochner 	int i;
    675   1.28  drochner 
    676   1.28  drochner 	/* try in the order of freelist preference */
    677   1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    678  1.119   thorpej 		if (uvm_page_physget_freelist(paddrp, i) == true)
    679  1.119   thorpej 			return (true);
    680  1.119   thorpej 	return (false);
    681    1.1       mrg }
    682    1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    683    1.1       mrg 
    684    1.1       mrg /*
    685  1.163  uebayasi  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    686  1.163  uebayasi  * back from an I/O mapping (ugh!).   used in some MD code as well.
    687  1.163  uebayasi  */
    688  1.163  uebayasi struct vm_page *
    689  1.163  uebayasi uvm_phys_to_vm_page(paddr_t pa)
    690  1.163  uebayasi {
    691  1.163  uebayasi 	paddr_t pf = atop(pa);
    692  1.190    cherry 	paddr_t	off;
    693  1.190    cherry 	uvm_physseg_t	upm;
    694  1.163  uebayasi 
    695  1.190    cherry 	upm = uvm_physseg_find(pf, &off);
    696  1.190    cherry 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    697  1.190    cherry 		return uvm_physseg_get_pg(upm, off);
    698  1.163  uebayasi 	return(NULL);
    699  1.163  uebayasi }
    700  1.163  uebayasi 
    701  1.163  uebayasi paddr_t
    702  1.163  uebayasi uvm_vm_page_to_phys(const struct vm_page *pg)
    703  1.163  uebayasi {
    704  1.163  uebayasi 
    705  1.211        ad 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    706  1.163  uebayasi }
    707  1.163  uebayasi 
    708  1.163  uebayasi /*
    709  1.213        ad  * uvm_page_numa_load: load NUMA range description.
    710  1.213        ad  */
    711  1.213        ad void
    712  1.213        ad uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
    713  1.213        ad {
    714  1.213        ad 	struct uvm_page_numa_region *d;
    715  1.213        ad 
    716  1.213        ad 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
    717  1.213        ad 
    718  1.213        ad 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
    719  1.213        ad 	d->start = start;
    720  1.213        ad 	d->size = size;
    721  1.213        ad 	d->numa_id = numa_id;
    722  1.213        ad 	d->next = uvm_page_numa_region;
    723  1.213        ad 	uvm_page_numa_region = d;
    724  1.213        ad }
    725  1.213        ad 
    726  1.213        ad /*
    727  1.213        ad  * uvm_page_numa_lookup: lookup NUMA node for the given page.
    728  1.213        ad  */
    729  1.213        ad static u_int
    730  1.213        ad uvm_page_numa_lookup(struct vm_page *pg)
    731  1.213        ad {
    732  1.213        ad 	struct uvm_page_numa_region *d;
    733  1.213        ad 	static bool warned;
    734  1.213        ad 	paddr_t pa;
    735  1.213        ad 
    736  1.213        ad 	KASSERT(uvm_page_numa_region != NULL);
    737  1.213        ad 
    738  1.213        ad 	pa = VM_PAGE_TO_PHYS(pg);
    739  1.213        ad 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
    740  1.213        ad 		if (pa >= d->start && pa < d->start + d->size) {
    741  1.213        ad 			return d->numa_id;
    742  1.213        ad 		}
    743  1.213        ad 	}
    744  1.213        ad 
    745  1.213        ad 	if (!warned) {
    746  1.215    martin 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
    747  1.215    martin 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
    748  1.213        ad 		warned = true;
    749  1.213        ad 	}
    750  1.213        ad 
    751  1.213        ad 	return 0;
    752  1.213        ad }
    753  1.213        ad 
    754  1.213        ad /*
    755  1.213        ad  * uvm_page_redim: adjust freelist dimensions if they have changed.
    756   1.60   thorpej  */
    757   1.60   thorpej 
    758  1.213        ad static void
    759  1.213        ad uvm_page_redim(int newncolors, int newnbuckets)
    760   1.60   thorpej {
    761  1.213        ad 	struct pgfreelist npgfl;
    762  1.213        ad 	struct pgflbucket *opgb, *npgb;
    763  1.213        ad 	struct pgflist *ohead, *nhead;
    764  1.230     skrll 	struct vm_page *pg;
    765  1.213        ad 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
    766  1.213        ad 	int fl, ob, oc, nb, nc, obuckets, ocolors;
    767  1.213        ad 	char *bucketarray, *oldbucketmem, *bucketmem;
    768   1.60   thorpej 
    769  1.178  uebayasi 	KASSERT(((newncolors - 1) & newncolors) == 0);
    770  1.178  uebayasi 
    771  1.213        ad 	/* Anything to do? */
    772  1.213        ad 	if (newncolors <= uvmexp.ncolors &&
    773  1.213        ad 	    newnbuckets == uvm.bucketcount) {
    774   1.60   thorpej 		return;
    775  1.213        ad 	}
    776  1.119   thorpej 	if (uvm.page_init_done == false) {
    777   1.77  wrstuden 		uvmexp.ncolors = newncolors;
    778   1.77  wrstuden 		return;
    779   1.77  wrstuden 	}
    780   1.60   thorpej 
    781  1.213        ad 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
    782  1.213        ad 	bucketsize = roundup2(bucketsize, coherency_unit);
    783  1.213        ad 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
    784  1.213        ad 	    coherency_unit - 1;
    785  1.213        ad 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
    786  1.213        ad 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
    787  1.213        ad 
    788  1.213        ad 	ocolors = uvmexp.ncolors;
    789  1.213        ad 	obuckets = uvm.bucketcount;
    790   1.60   thorpej 
    791  1.213        ad 	/* Freelist cache musn't be enabled. */
    792  1.213        ad 	uvm_pgflcache_pause();
    793   1.60   thorpej 
    794   1.60   thorpej 	/* Make sure we should still do this. */
    795  1.213        ad 	uvm_pgfl_lock();
    796  1.213        ad 	if (newncolors <= uvmexp.ncolors &&
    797  1.213        ad 	    newnbuckets == uvm.bucketcount) {
    798  1.213        ad 		uvm_pgfl_unlock();
    799  1.216        ad 		uvm_pgflcache_resume();
    800  1.213        ad 		kmem_free(bucketmem, bucketmemsize);
    801   1.60   thorpej 		return;
    802   1.60   thorpej 	}
    803   1.60   thorpej 
    804   1.60   thorpej 	uvmexp.ncolors = newncolors;
    805   1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    806  1.213        ad 	uvm.bucketcount = newnbuckets;
    807   1.60   thorpej 
    808  1.213        ad 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    809  1.213        ad 		/* Init new buckets in new freelist. */
    810  1.213        ad 		memset(&npgfl, 0, sizeof(npgfl));
    811  1.213        ad 		for (nb = 0; nb < newnbuckets; nb++) {
    812  1.213        ad 			npgb = (struct pgflbucket *)bucketarray;
    813  1.213        ad 			uvm_page_init_bucket(&npgfl, npgb, nb);
    814  1.213        ad 			bucketarray += bucketsize;
    815  1.213        ad 		}
    816  1.213        ad 		/* Now transfer pages from the old freelist. */
    817  1.213        ad 		for (nb = ob = 0; ob < obuckets; ob++) {
    818  1.213        ad 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
    819  1.213        ad 			for (oc = 0; oc < ocolors; oc++) {
    820  1.213        ad 				ohead = &opgb->pgb_colors[oc];
    821  1.213        ad 				while ((pg = LIST_FIRST(ohead)) != NULL) {
    822  1.213        ad 					LIST_REMOVE(pg, pageq.list);
    823  1.213        ad 					/*
    824  1.213        ad 					 * Here we decide on the NEW color &
    825  1.213        ad 					 * bucket for the page.  For NUMA
    826  1.213        ad 					 * we'll use the info that the
    827  1.221        ad 					 * hardware gave us.  For non-NUMA
    828  1.221        ad 					 * assign take physical page frame
    829  1.221        ad 					 * number and cache color into
    830  1.221        ad 					 * account.  We do this to try and
    831  1.221        ad 					 * avoid defeating any memory
    832  1.221        ad 					 * interleaving in the hardware.
    833  1.213        ad 					 */
    834  1.213        ad 					KASSERT(
    835  1.213        ad 					    uvm_page_get_bucket(pg) == ob);
    836  1.213        ad 					KASSERT(fl ==
    837  1.213        ad 					    uvm_page_get_freelist(pg));
    838  1.235        ad 					if (uvm_page_numa_region != NULL) {
    839  1.213        ad 						nb = uvm_page_numa_lookup(pg);
    840  1.213        ad 					} else {
    841  1.221        ad 						nb = atop(VM_PAGE_TO_PHYS(pg))
    842  1.221        ad 						    / uvmexp.ncolors / 8
    843  1.221        ad 						    % newnbuckets;
    844  1.213        ad 					}
    845  1.213        ad 					uvm_page_set_bucket(pg, nb);
    846  1.213        ad 					npgb = npgfl.pgfl_buckets[nb];
    847  1.213        ad 					npgb->pgb_nfree++;
    848  1.213        ad 					nc = VM_PGCOLOR(pg);
    849  1.213        ad 					nhead = &npgb->pgb_colors[nc];
    850  1.213        ad 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
    851   1.60   thorpej 				}
    852   1.60   thorpej 			}
    853   1.60   thorpej 		}
    854  1.213        ad 		/* Install the new freelist. */
    855  1.213        ad 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
    856   1.60   thorpej 	}
    857   1.60   thorpej 
    858  1.213        ad 	/* Unlock and free the old memory. */
    859  1.179      para 	oldbucketmemsize = recolored_pages_memsize;
    860  1.213        ad 	oldbucketmem = recolored_pages_mem;
    861  1.179      para 	recolored_pages_memsize = bucketmemsize;
    862  1.213        ad 	recolored_pages_mem = bucketmem;
    863  1.216        ad 
    864  1.213        ad 	uvm_pgfl_unlock();
    865  1.216        ad 	uvm_pgflcache_resume();
    866  1.176      matt 
    867  1.179      para 	if (oldbucketmemsize) {
    868  1.213        ad 		kmem_free(oldbucketmem, oldbucketmemsize);
    869  1.179      para 	}
    870   1.60   thorpej 
    871  1.177       mrg 	/*
    872  1.177       mrg 	 * this calls uvm_km_alloc() which may want to hold
    873  1.213        ad 	 * uvm_freelist_lock.
    874  1.177       mrg 	 */
    875  1.177       mrg 	uvm_pager_realloc_emerg();
    876   1.60   thorpej }
    877    1.1       mrg 
    878    1.1       mrg /*
    879  1.213        ad  * uvm_page_recolor: Recolor the pages if the new color count is
    880  1.213        ad  * larger than the old one.
    881  1.213        ad  */
    882  1.213        ad 
    883  1.213        ad void
    884  1.213        ad uvm_page_recolor(int newncolors)
    885  1.213        ad {
    886  1.213        ad 
    887  1.213        ad 	uvm_page_redim(newncolors, uvm.bucketcount);
    888  1.213        ad }
    889  1.213        ad 
    890  1.213        ad /*
    891  1.213        ad  * uvm_page_rebucket: Determine a bucket structure and redim the free
    892  1.213        ad  * lists to match.
    893  1.213        ad  */
    894  1.213        ad 
    895  1.213        ad void
    896  1.213        ad uvm_page_rebucket(void)
    897  1.213        ad {
    898  1.213        ad 	u_int min_numa, max_numa, npackage, shift;
    899  1.213        ad 	struct cpu_info *ci, *ci2, *ci3;
    900  1.213        ad 	CPU_INFO_ITERATOR cii;
    901  1.213        ad 
    902  1.213        ad 	/*
    903  1.213        ad 	 * If we have more than one NUMA node, and the maximum NUMA node ID
    904  1.213        ad 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
    905  1.235        ad 	 * for free pages.
    906  1.213        ad 	 */
    907  1.213        ad 	min_numa = (u_int)-1;
    908  1.213        ad 	max_numa = 0;
    909  1.213        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    910  1.213        ad 		if (ci->ci_numa_id < min_numa) {
    911  1.213        ad 			min_numa = ci->ci_numa_id;
    912  1.213        ad 		}
    913  1.213        ad 		if (ci->ci_numa_id > max_numa) {
    914  1.213        ad 			max_numa = ci->ci_numa_id;
    915  1.213        ad 		}
    916  1.213        ad 	}
    917  1.213        ad 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
    918  1.213        ad 		aprint_debug("UVM: using NUMA allocation scheme\n");
    919  1.230     skrll 		for (CPU_INFO_FOREACH(cii, ci)) {
    920  1.213        ad 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
    921  1.213        ad 		}
    922  1.213        ad 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
    923  1.213        ad 	 	return;
    924  1.213        ad 	}
    925  1.213        ad 
    926  1.213        ad 	/*
    927  1.213        ad 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
    928  1.213        ad 	 * and minimise lock contention.  Count the total number of CPU
    929  1.213        ad 	 * packages, and then try to distribute the buckets among CPU
    930  1.235        ad 	 * packages evenly.
    931  1.213        ad 	 */
    932  1.222        ad 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
    933  1.230     skrll 
    934  1.213        ad 	/*
    935  1.213        ad 	 * Figure out how to arrange the packages & buckets, and the total
    936  1.213        ad 	 * number of buckets we need.  XXX 2 may not be the best factor.
    937  1.213        ad 	 */
    938  1.213        ad 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
    939  1.213        ad 		npackage >>= 1;
    940  1.213        ad 	}
    941  1.213        ad  	uvm_page_redim(uvmexp.ncolors, npackage);
    942  1.213        ad 
    943  1.213        ad  	/*
    944  1.213        ad  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
    945  1.213        ad  	 * through all CPU packages.
    946  1.213        ad  	 */
    947  1.213        ad  	npackage = 0;
    948  1.213        ad 	ci = curcpu();
    949  1.222        ad 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
    950  1.213        ad 	do {
    951  1.213        ad 		/*
    952  1.213        ad 		 * In the inner loop, scroll through all CPUs in the package
    953  1.213        ad 		 * and assign the same bucket ID.
    954  1.213        ad 		 */
    955  1.213        ad 		ci3 = ci2;
    956  1.213        ad 		do {
    957  1.213        ad 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
    958  1.213        ad 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
    959  1.213        ad 		} while (ci3 != ci2);
    960  1.213        ad 		npackage++;
    961  1.222        ad 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
    962  1.222        ad 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
    963  1.213        ad 
    964  1.213        ad 	aprint_debug("UVM: using package allocation scheme, "
    965  1.213        ad 	    "%d package(s) per bucket\n", 1 << shift);
    966  1.213        ad }
    967  1.213        ad 
    968  1.213        ad /*
    969  1.133        ad  * uvm_cpu_attach: initialize per-CPU data structures.
    970  1.133        ad  */
    971  1.133        ad 
    972  1.133        ad void
    973  1.133        ad uvm_cpu_attach(struct cpu_info *ci)
    974  1.133        ad {
    975  1.133        ad 	struct uvm_cpu *ucpu;
    976  1.133        ad 
    977  1.213        ad 	/* Already done in uvm_page_init(). */
    978  1.213        ad 	if (!CPU_IS_PRIMARY(ci)) {
    979  1.213        ad 		/* Add more reserve pages for this CPU. */
    980  1.213        ad 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
    981  1.213        ad 
    982  1.213        ad 		/* Allocate per-CPU data structures. */
    983  1.213        ad 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
    984  1.213        ad 		    KM_SLEEP);
    985  1.213        ad 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
    986  1.213        ad 		    coherency_unit);
    987  1.213        ad 		ci->ci_data.cpu_uvm = ucpu;
    988  1.214        ad 	} else {
    989  1.214        ad 		ucpu = ci->ci_data.cpu_uvm;
    990  1.133        ad 	}
    991  1.181       tls 
    992  1.220        ad 	uvmpdpol_init_cpu(ucpu);
    993  1.220        ad 
    994  1.181       tls 	/*
    995  1.181       tls 	 * Attach RNG source for this CPU's VM events
    996  1.181       tls 	 */
    997  1.214        ad         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
    998  1.214        ad 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    999  1.214        ad 	    RND_FLAG_ESTIMATE_VALUE);
   1000  1.133        ad }
   1001  1.133        ad 
   1002  1.133        ad /*
   1003  1.219        ad  * uvm_availmem: fetch the total amount of free memory in pages.  this can
   1004  1.219        ad  * have a detrimental effect on performance due to false sharing; don't call
   1005  1.219        ad  * unless needed.
   1006  1.240        ad  *
   1007  1.240        ad  * some users can request the amount of free memory so often that it begins
   1008  1.240        ad  * to impact upon performance.  if calling frequently and an inexact value
   1009  1.240        ad  * is okay, call with cached = true.
   1010  1.207        ad  */
   1011  1.207        ad 
   1012  1.207        ad int
   1013  1.239        ad uvm_availmem(bool cached)
   1014  1.207        ad {
   1015  1.240        ad 	int64_t fp;
   1016  1.207        ad 
   1017  1.240        ad 	cpu_count_sync(cached);
   1018  1.240        ad 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
   1019  1.240        ad 		/*
   1020  1.240        ad 		 * XXXAD could briefly go negative because it's impossible
   1021  1.240        ad 		 * to get a clean snapshot.  address this for other counters
   1022  1.240        ad 		 * used as running totals before NetBSD 10 although less
   1023  1.240        ad 		 * important for those.
   1024  1.240        ad 		 */
   1025  1.240        ad 		fp = 0;
   1026  1.213        ad 	}
   1027  1.240        ad 	return (int)fp;
   1028  1.207        ad }
   1029  1.207        ad 
   1030  1.207        ad /*
   1031  1.213        ad  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
   1032  1.213        ad  * specific freelist and specific bucket only.
   1033  1.213        ad  *
   1034  1.213        ad  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1035   1.54   thorpej  */
   1036   1.54   thorpej 
   1037  1.114   thorpej static struct vm_page *
   1038  1.213        ad uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
   1039   1.54   thorpej {
   1040  1.213        ad 	int c, trycolor, colormask;
   1041  1.213        ad 	struct pgflbucket *pgb;
   1042   1.54   thorpej 	struct vm_page *pg;
   1043  1.213        ad 	kmutex_t *lock;
   1044  1.217        ad 	bool fill;
   1045  1.213        ad 
   1046  1.213        ad 	/*
   1047  1.213        ad 	 * Skip the bucket if empty, no lock needed.  There could be many
   1048  1.213        ad 	 * empty freelists/buckets.
   1049  1.213        ad 	 */
   1050  1.213        ad 	pgb = uvm.page_free[f].pgfl_buckets[b];
   1051  1.213        ad 	if (pgb->pgb_nfree == 0) {
   1052  1.213        ad 		return NULL;
   1053  1.213        ad 	}
   1054   1.54   thorpej 
   1055  1.213        ad 	/* Skip bucket if low on memory. */
   1056  1.213        ad 	lock = &uvm_freelist_locks[b].lock;
   1057  1.213        ad 	mutex_spin_enter(lock);
   1058  1.213        ad 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
   1059  1.213        ad 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
   1060  1.213        ad 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
   1061  1.213        ad 		     curlwp != uvm.pagedaemon_lwp)) {
   1062  1.213        ad 			mutex_spin_exit(lock);
   1063  1.213        ad 		     	return NULL;
   1064  1.213        ad 		}
   1065  1.217        ad 		fill = false;
   1066  1.217        ad 	} else {
   1067  1.217        ad 		fill = true;
   1068  1.213        ad 	}
   1069  1.130        ad 
   1070  1.213        ad 	/* Try all page colors as needed. */
   1071  1.213        ad 	c = trycolor = *trycolorp;
   1072  1.213        ad 	colormask = uvmexp.colormask;
   1073   1.58     enami 	do {
   1074  1.213        ad 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
   1075  1.213        ad 		if (__predict_true(pg != NULL)) {
   1076  1.213        ad 			/*
   1077  1.213        ad 			 * Got a free page!  PG_FREE must be cleared under
   1078  1.213        ad 			 * lock because of uvm_pglistalloc().
   1079  1.213        ad 			 */
   1080  1.213        ad 			LIST_REMOVE(pg, pageq.list);
   1081  1.201        ad 			KASSERT(pg->flags & PG_FREE);
   1082  1.213        ad 			pg->flags &= PG_ZERO;
   1083  1.213        ad 			pgb->pgb_nfree--;
   1084  1.230     skrll 
   1085  1.213        ad 			/*
   1086  1.213        ad 			 * While we have the bucket locked and our data
   1087  1.213        ad 			 * structures fresh in L1 cache, we have an ideal
   1088  1.213        ad 			 * opportunity to grab some pages for the freelist
   1089  1.213        ad 			 * cache without causing extra contention.  Only do
   1090  1.213        ad 			 * so if we found pages in this CPU's preferred
   1091  1.213        ad 			 * bucket.
   1092  1.213        ad 			 */
   1093  1.217        ad 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
   1094  1.213        ad 				uvm_pgflcache_fill(ucpu, f, b, c);
   1095  1.213        ad 			}
   1096  1.213        ad 			mutex_spin_exit(lock);
   1097  1.213        ad 			KASSERT(uvm_page_get_bucket(pg) == b);
   1098  1.213        ad 			CPU_COUNT(c == trycolor ?
   1099  1.213        ad 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
   1100  1.213        ad 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
   1101  1.213        ad 			*trycolorp = c;
   1102  1.213        ad 			return pg;
   1103  1.133        ad 		}
   1104  1.213        ad 		c = (c + 1) & colormask;
   1105  1.213        ad 	} while (c != trycolor);
   1106  1.213        ad 	mutex_spin_exit(lock);
   1107  1.213        ad 
   1108  1.213        ad 	return NULL;
   1109  1.213        ad }
   1110  1.213        ad 
   1111  1.213        ad /*
   1112  1.213        ad  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
   1113  1.213        ad  * any color from any bucket, in a specific freelist.
   1114  1.213        ad  *
   1115  1.213        ad  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1116  1.213        ad  */
   1117   1.54   thorpej 
   1118  1.213        ad static struct vm_page *
   1119  1.213        ad uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
   1120  1.213        ad {
   1121  1.213        ad 	int b, trybucket, bucketcount;
   1122  1.213        ad 	struct vm_page *pg;
   1123   1.54   thorpej 
   1124  1.213        ad 	/* Try for the exact thing in the per-CPU cache. */
   1125  1.213        ad 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
   1126  1.213        ad 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1127  1.213        ad 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1128  1.213        ad 		return pg;
   1129   1.54   thorpej 	}
   1130   1.54   thorpej 
   1131  1.213        ad 	/* Walk through all buckets, trying our preferred bucket first. */
   1132  1.213        ad 	trybucket = ucpu->pgflbucket;
   1133  1.213        ad 	b = trybucket;
   1134  1.213        ad 	bucketcount = uvm.bucketcount;
   1135  1.213        ad 	do {
   1136  1.213        ad 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
   1137  1.213        ad 		if (pg != NULL) {
   1138  1.213        ad 			return pg;
   1139  1.213        ad 		}
   1140  1.213        ad 		b = (b + 1 == bucketcount ? 0 : b + 1);
   1141  1.213        ad 	} while (b != trybucket);
   1142  1.213        ad 
   1143  1.213        ad 	return NULL;
   1144   1.54   thorpej }
   1145   1.54   thorpej 
   1146   1.54   thorpej /*
   1147   1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1148    1.1       mrg  *
   1149    1.1       mrg  * => return null if no pages free
   1150    1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
   1151  1.133        ad  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1152    1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
   1153    1.1       mrg  * => only one of obj or anon can be non-null
   1154    1.1       mrg  * => caller must activate/deactivate page if it is not wired.
   1155   1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1156   1.34   thorpej  * => policy decision: it is more important to pull a page off of the
   1157   1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
   1158   1.34   thorpej  *	unknown contents page.  This is because we live with the
   1159   1.34   thorpej  *	consequences of a bad free list decision for the entire
   1160   1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
   1161   1.34   thorpej  *	is slower to access.
   1162    1.1       mrg  */
   1163    1.1       mrg 
   1164    1.7       mrg struct vm_page *
   1165  1.105   thorpej uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1166  1.105   thorpej     int flags, int strat, int free_list)
   1167    1.1       mrg {
   1168  1.213        ad 	int zeroit = 0, color;
   1169  1.213        ad 	int lcv, error, s;
   1170  1.133        ad 	struct uvm_cpu *ucpu;
   1171    1.7       mrg 	struct vm_page *pg;
   1172  1.141        ad 	lwp_t *l;
   1173    1.1       mrg 
   1174   1.44       chs 	KASSERT(obj == NULL || anon == NULL);
   1175  1.169      matt 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1176   1.44       chs 	KASSERT(off == trunc_page(off));
   1177  1.226        ad 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
   1178  1.175     rmind 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1179  1.226        ad 	    rw_write_held(anon->an_lock));
   1180   1.48   thorpej 
   1181    1.7       mrg 	/*
   1182   1.54   thorpej 	 * This implements a global round-robin page coloring
   1183   1.54   thorpej 	 * algorithm.
   1184   1.54   thorpej 	 */
   1185   1.67       chs 
   1186  1.213        ad 	s = splvm();
   1187  1.133        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1188  1.169      matt 	if (flags & UVM_FLAG_COLORMATCH) {
   1189  1.169      matt 		color = atop(off) & uvmexp.colormask;
   1190  1.169      matt 	} else {
   1191  1.213        ad 		color = ucpu->pgflcolor;
   1192  1.169      matt 	}
   1193   1.54   thorpej 
   1194   1.54   thorpej 	/*
   1195    1.7       mrg 	 * fail if any of these conditions is true:
   1196    1.7       mrg 	 * [1]  there really are no free pages, or
   1197    1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1198  1.141        ad 	 *        reserved pages have not been requested.
   1199    1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1200    1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1201  1.141        ad 	 * we make kernel reserve pages available if called by a
   1202  1.235        ad 	 * kernel thread.
   1203    1.7       mrg 	 */
   1204  1.141        ad 	l = curlwp;
   1205  1.235        ad 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
   1206  1.141        ad 		flags |= UVM_PGA_USERESERVE;
   1207  1.141        ad 	}
   1208   1.34   thorpej 
   1209   1.12   thorpej  again:
   1210   1.12   thorpej 	switch (strat) {
   1211   1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1212  1.213        ad 		/* Check freelists: descending priority (ascending id) order. */
   1213   1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1214  1.213        ad 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
   1215  1.213        ad 			if (pg != NULL) {
   1216   1.12   thorpej 				goto gotit;
   1217  1.213        ad 			}
   1218   1.12   thorpej 		}
   1219   1.12   thorpej 
   1220  1.213        ad 		/* No pages free!  Have pagedaemon free some memory. */
   1221  1.213        ad 		splx(s);
   1222  1.213        ad 		uvm_kick_pdaemon();
   1223  1.213        ad 		return NULL;
   1224   1.12   thorpej 
   1225   1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1226   1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1227   1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1228   1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1229  1.213        ad 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
   1230  1.213        ad 		if (pg != NULL) {
   1231   1.12   thorpej 			goto gotit;
   1232  1.213        ad 		}
   1233   1.12   thorpej 
   1234   1.12   thorpej 		/* Fall back, if possible. */
   1235   1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1236   1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1237   1.12   thorpej 			goto again;
   1238   1.12   thorpej 		}
   1239   1.12   thorpej 
   1240  1.213        ad 		/* No pages free!  Have pagedaemon free some memory. */
   1241  1.213        ad 		splx(s);
   1242  1.213        ad 		uvm_kick_pdaemon();
   1243  1.213        ad 		return NULL;
   1244  1.213        ad 
   1245  1.213        ad 	case UVM_PGA_STRAT_NUMA:
   1246  1.213        ad 		/*
   1247  1.235        ad 		 * NUMA strategy (experimental): allocating from the correct
   1248  1.235        ad 		 * bucket is more important than observing freelist
   1249  1.235        ad 		 * priority.  Look only to the current NUMA node; if that
   1250  1.235        ad 		 * fails, we need to look to other NUMA nodes, so retry with
   1251  1.235        ad 		 * the normal strategy.
   1252  1.213        ad 		 */
   1253  1.213        ad 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1254  1.213        ad 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
   1255  1.213        ad 			if (pg != NULL) {
   1256  1.213        ad 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1257  1.213        ad 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1258  1.213        ad 				goto gotit;
   1259  1.213        ad 			}
   1260  1.213        ad 			pg = uvm_pagealloc_pgb(ucpu, lcv,
   1261  1.213        ad 			    ucpu->pgflbucket, &color, flags);
   1262  1.213        ad 			if (pg != NULL) {
   1263  1.213        ad 				goto gotit;
   1264  1.213        ad 			}
   1265  1.213        ad 		}
   1266  1.213        ad 		strat = UVM_PGA_STRAT_NORMAL;
   1267  1.213        ad 		goto again;
   1268   1.12   thorpej 
   1269   1.12   thorpej 	default:
   1270   1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1271   1.12   thorpej 		/* NOTREACHED */
   1272    1.7       mrg 	}
   1273    1.7       mrg 
   1274   1.12   thorpej  gotit:
   1275   1.54   thorpej 	/*
   1276   1.54   thorpej 	 * We now know which color we actually allocated from; set
   1277   1.54   thorpej 	 * the next color accordingly.
   1278   1.54   thorpej 	 */
   1279   1.67       chs 
   1280  1.213        ad 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
   1281   1.34   thorpej 
   1282   1.34   thorpej 	/*
   1283  1.213        ad 	 * while still at IPL_VM, update allocation statistics and remember
   1284  1.213        ad 	 * if we have to zero the page
   1285   1.34   thorpej 	 */
   1286   1.67       chs 
   1287  1.240        ad     	CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
   1288   1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1289   1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1290  1.205        ad 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
   1291   1.34   thorpej 			zeroit = 0;
   1292   1.34   thorpej 		} else {
   1293  1.205        ad 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
   1294   1.34   thorpej 			zeroit = 1;
   1295   1.34   thorpej 		}
   1296   1.34   thorpej 	}
   1297  1.212        ad 	if (pg->flags & PG_ZERO) {
   1298  1.212        ad 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
   1299  1.212        ad 	}
   1300  1.212        ad 	if (anon) {
   1301  1.224        ad 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
   1302  1.212        ad 	}
   1303  1.213        ad 	splx(s);
   1304  1.201        ad 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1305    1.7       mrg 
   1306  1.201        ad 	/*
   1307  1.212        ad 	 * assign the page to the object.  as the page was free, we know
   1308  1.212        ad 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
   1309  1.212        ad 	 * the page's interlock if we are changing the values.
   1310  1.201        ad 	 */
   1311  1.212        ad 	if (anon != NULL || obj != NULL) {
   1312  1.212        ad 		mutex_enter(&pg->interlock);
   1313  1.212        ad 	}
   1314    1.7       mrg 	pg->offset = off;
   1315    1.7       mrg 	pg->uobject = obj;
   1316    1.7       mrg 	pg->uanon = anon;
   1317  1.226        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1318    1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1319    1.7       mrg 	if (anon) {
   1320  1.103      yamt 		anon->an_page = pg;
   1321  1.201        ad 		pg->flags |= PG_ANON;
   1322  1.212        ad 		mutex_exit(&pg->interlock);
   1323  1.201        ad 	} else if (obj) {
   1324  1.224        ad 		/*
   1325  1.224        ad 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
   1326  1.224        ad 		 */
   1327  1.224        ad 		if (UVM_OBJ_IS_VNODE(obj)) {
   1328  1.224        ad 			pg->flags |= PG_FILE;
   1329  1.236        ad 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
   1330  1.224        ad 			pg->flags |= PG_AOBJ;
   1331  1.224        ad 		}
   1332  1.206        ad 		uvm_pageinsert_object(obj, pg);
   1333  1.212        ad 		mutex_exit(&pg->interlock);
   1334  1.206        ad 		error = uvm_pageinsert_tree(obj, pg);
   1335  1.202        ad 		if (error != 0) {
   1336  1.212        ad 			mutex_enter(&pg->interlock);
   1337  1.206        ad 			uvm_pageremove_object(obj, pg);
   1338  1.212        ad 			mutex_exit(&pg->interlock);
   1339  1.202        ad 			uvm_pagefree(pg);
   1340  1.202        ad 			return NULL;
   1341  1.202        ad 		}
   1342    1.7       mrg 	}
   1343  1.143  drochner 
   1344    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1345    1.7       mrg 	pg->owner_tag = NULL;
   1346    1.1       mrg #endif
   1347    1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1348   1.33   thorpej 
   1349   1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1350   1.33   thorpej 		/*
   1351   1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1352   1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1353   1.33   thorpej 		 */
   1354  1.224        ad 		if (obj != NULL || anon != NULL) {
   1355  1.224        ad 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1356  1.224        ad 		}
   1357  1.224        ad 		if (zeroit) {
   1358   1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1359  1.224        ad 		}
   1360   1.33   thorpej 	}
   1361    1.1       mrg 
   1362    1.7       mrg 	return(pg);
   1363    1.1       mrg }
   1364    1.1       mrg 
   1365    1.1       mrg /*
   1366   1.96      yamt  * uvm_pagereplace: replace a page with another
   1367   1.96      yamt  *
   1368   1.96      yamt  * => object must be locked
   1369  1.220        ad  * => page interlocks must be held
   1370   1.96      yamt  */
   1371   1.96      yamt 
   1372   1.96      yamt void
   1373  1.105   thorpej uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1374   1.96      yamt {
   1375  1.136      yamt 	struct uvm_object *uobj = oldpg->uobject;
   1376  1.217        ad 	struct vm_page *pg __diagused;
   1377  1.224        ad 	uint64_t idx;
   1378   1.97  junyoung 
   1379   1.96      yamt 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1380  1.136      yamt 	KASSERT(uobj != NULL);
   1381   1.96      yamt 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1382   1.96      yamt 	KASSERT(newpg->uobject == NULL);
   1383  1.226        ad 	KASSERT(rw_write_held(uobj->vmobjlock));
   1384  1.220        ad 	KASSERT(mutex_owned(&oldpg->interlock));
   1385  1.220        ad 	KASSERT(mutex_owned(&newpg->interlock));
   1386   1.96      yamt 
   1387  1.224        ad 	newpg->uobject = uobj;
   1388   1.96      yamt 	newpg->offset = oldpg->offset;
   1389  1.224        ad 	idx = newpg->offset >> PAGE_SHIFT;
   1390  1.224        ad 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
   1391  1.217        ad 	KASSERT(pg == oldpg);
   1392  1.224        ad 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
   1393  1.224        ad 		if ((newpg->flags & PG_CLEAN) != 0) {
   1394  1.224        ad 			radix_tree_clear_tag(&uobj->uo_pages, idx,
   1395  1.224        ad 			    UVM_PAGE_DIRTY_TAG);
   1396  1.224        ad 		} else {
   1397  1.224        ad 			radix_tree_set_tag(&uobj->uo_pages, idx,
   1398  1.224        ad 			    UVM_PAGE_DIRTY_TAG);
   1399  1.224        ad 		}
   1400  1.224        ad 	}
   1401  1.224        ad 	/*
   1402  1.224        ad 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
   1403  1.224        ad 	 */
   1404  1.224        ad 	newpg->flags |=
   1405  1.224        ad 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
   1406  1.203        ad 	uvm_pageinsert_object(uobj, newpg);
   1407  1.203        ad 	uvm_pageremove_object(uobj, oldpg);
   1408   1.96      yamt }
   1409   1.96      yamt 
   1410   1.96      yamt /*
   1411    1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1412    1.1       mrg  *
   1413    1.1       mrg  * => both objects must be locked
   1414  1.201        ad  * => both interlocks must be held
   1415    1.1       mrg  */
   1416    1.1       mrg 
   1417    1.7       mrg void
   1418  1.105   thorpej uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1419    1.1       mrg {
   1420    1.7       mrg 	/*
   1421    1.7       mrg 	 * remove it from the old object
   1422    1.7       mrg 	 */
   1423    1.7       mrg 
   1424    1.7       mrg 	if (pg->uobject) {
   1425  1.206        ad 		uvm_pageremove_tree(pg->uobject, pg);
   1426  1.206        ad 		uvm_pageremove_object(pg->uobject, pg);
   1427    1.7       mrg 	}
   1428    1.7       mrg 
   1429    1.7       mrg 	/*
   1430    1.7       mrg 	 * put it in the new object
   1431    1.7       mrg 	 */
   1432    1.7       mrg 
   1433    1.7       mrg 	if (newobj) {
   1434  1.204        ad 		/*
   1435  1.204        ad 		 * XXX we have no in-tree users of this functionality
   1436  1.204        ad 		 */
   1437  1.204        ad 		panic("uvm_pagerealloc: no impl");
   1438    1.7       mrg 	}
   1439    1.1       mrg }
   1440    1.1       mrg 
   1441   1.91      yamt #ifdef DEBUG
   1442   1.91      yamt /*
   1443   1.91      yamt  * check if page is zero-filled
   1444   1.91      yamt  */
   1445   1.91      yamt void
   1446   1.91      yamt uvm_pagezerocheck(struct vm_page *pg)
   1447   1.91      yamt {
   1448   1.91      yamt 	int *p, *ep;
   1449   1.91      yamt 
   1450   1.91      yamt 	KASSERT(uvm_zerocheckkva != 0);
   1451   1.91      yamt 
   1452   1.91      yamt 	/*
   1453   1.91      yamt 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1454   1.91      yamt 	 * uvm page allocator.
   1455   1.91      yamt 	 *
   1456   1.95       wiz 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1457   1.91      yamt 	 */
   1458  1.223        ad 	mutex_spin_enter(&uvm_zerochecklock);
   1459  1.152    cegger 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1460   1.91      yamt 	p = (int *)uvm_zerocheckkva;
   1461   1.91      yamt 	ep = (int *)((char *)p + PAGE_SIZE);
   1462   1.92      yamt 	pmap_update(pmap_kernel());
   1463   1.91      yamt 	while (p < ep) {
   1464   1.91      yamt 		if (*p != 0)
   1465   1.91      yamt 			panic("PG_ZERO page isn't zero-filled");
   1466   1.91      yamt 		p++;
   1467   1.91      yamt 	}
   1468   1.91      yamt 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1469  1.223        ad 	mutex_spin_exit(&uvm_zerochecklock);
   1470  1.131      yamt 	/*
   1471  1.131      yamt 	 * pmap_update() is not necessary here because no one except us
   1472  1.131      yamt 	 * uses this VA.
   1473  1.131      yamt 	 */
   1474   1.91      yamt }
   1475   1.91      yamt #endif /* DEBUG */
   1476   1.91      yamt 
   1477    1.1       mrg /*
   1478    1.1       mrg  * uvm_pagefree: free page
   1479    1.1       mrg  *
   1480  1.133        ad  * => erase page's identity (i.e. remove from object)
   1481    1.1       mrg  * => put page on free list
   1482    1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1483    1.1       mrg  * => assumes all valid mappings of pg are gone
   1484    1.1       mrg  */
   1485    1.1       mrg 
   1486   1.44       chs void
   1487  1.105   thorpej uvm_pagefree(struct vm_page *pg)
   1488    1.1       mrg {
   1489  1.213        ad 	struct pgfreelist *pgfl;
   1490  1.213        ad 	struct pgflbucket *pgb;
   1491  1.133        ad 	struct uvm_cpu *ucpu;
   1492  1.213        ad 	kmutex_t *lock;
   1493  1.213        ad 	int bucket, s;
   1494  1.213        ad 	bool locked;
   1495   1.67       chs 
   1496   1.44       chs #ifdef DEBUG
   1497   1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1498   1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1499   1.79    provos 		panic("uvm_pagefree: freeing free page %p", pg);
   1500   1.44       chs 	}
   1501   1.91      yamt #endif /* DEBUG */
   1502   1.44       chs 
   1503  1.123        ad 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1504  1.201        ad 	KASSERT(!(pg->flags & PG_FREE));
   1505  1.226        ad 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
   1506  1.127        ad 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1507  1.226        ad 		rw_write_held(pg->uanon->an_lock));
   1508  1.123        ad 
   1509    1.7       mrg 	/*
   1510  1.229     skrll 	 * remove the page from the object's tree before acquiring any page
   1511  1.206        ad 	 * interlocks: this can acquire locks to free radixtree nodes.
   1512  1.206        ad 	 */
   1513  1.206        ad 	if (pg->uobject != NULL) {
   1514  1.206        ad 		uvm_pageremove_tree(pg->uobject, pg);
   1515  1.206        ad 	}
   1516  1.206        ad 
   1517  1.206        ad 	/*
   1518   1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1519    1.7       mrg 	 */
   1520    1.7       mrg 
   1521   1.67       chs 	if (pg->loan_count) {
   1522   1.70       chs 		KASSERT(pg->wire_count == 0);
   1523    1.7       mrg 
   1524    1.7       mrg 		/*
   1525   1.67       chs 		 * if the page is owned by an anon then we just want to
   1526   1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1527   1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1528   1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1529   1.70       chs 		 * of possible anon owners.
   1530   1.70       chs 		 *
   1531   1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1532   1.70       chs 		 * unbusy the page, and we're done.
   1533    1.7       mrg 		 */
   1534    1.7       mrg 
   1535  1.220        ad 		uvm_pagelock(pg);
   1536  1.201        ad 		locked = true;
   1537   1.73       chs 		if (pg->uobject != NULL) {
   1538  1.206        ad 			uvm_pageremove_object(pg->uobject, pg);
   1539  1.224        ad 			pg->flags &= ~(PG_FILE|PG_AOBJ);
   1540   1.73       chs 		} else if (pg->uanon != NULL) {
   1541  1.201        ad 			if ((pg->flags & PG_ANON) == 0) {
   1542   1.73       chs 				pg->loan_count--;
   1543   1.73       chs 			} else {
   1544  1.240        ad 				const unsigned status = uvm_pagegetdirty(pg);
   1545  1.201        ad 				pg->flags &= ~PG_ANON;
   1546  1.240        ad 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1547   1.73       chs 			}
   1548  1.103      yamt 			pg->uanon->an_page = NULL;
   1549   1.73       chs 			pg->uanon = NULL;
   1550   1.67       chs 		}
   1551  1.231        ad 		if (pg->pqflags & PQ_WANTED) {
   1552   1.70       chs 			wakeup(pg);
   1553   1.70       chs 		}
   1554  1.231        ad 		pg->pqflags &= ~PQ_WANTED;
   1555  1.231        ad 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
   1556   1.70       chs #ifdef UVM_PAGE_TRKOWN
   1557   1.70       chs 		pg->owner_tag = NULL;
   1558   1.70       chs #endif
   1559  1.224        ad 		KASSERT((pg->flags & PG_STAT) == 0);
   1560   1.73       chs 		if (pg->loan_count) {
   1561  1.115      yamt 			KASSERT(pg->uobject == NULL);
   1562  1.115      yamt 			if (pg->uanon == NULL) {
   1563  1.115      yamt 				uvm_pagedequeue(pg);
   1564  1.115      yamt 			}
   1565  1.220        ad 			uvm_pageunlock(pg);
   1566   1.73       chs 			return;
   1567   1.73       chs 		}
   1568  1.201        ad 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1569  1.201        ad 	           pg->wire_count != 0) {
   1570  1.220        ad 		uvm_pagelock(pg);
   1571  1.201        ad 		locked = true;
   1572  1.201        ad 	} else {
   1573  1.201        ad 		locked = false;
   1574   1.67       chs 	}
   1575   1.62       chs 
   1576   1.67       chs 	/*
   1577   1.67       chs 	 * remove page from its object or anon.
   1578   1.67       chs 	 */
   1579   1.73       chs 	if (pg->uobject != NULL) {
   1580  1.206        ad 		uvm_pageremove_object(pg->uobject, pg);
   1581   1.73       chs 	} else if (pg->uanon != NULL) {
   1582  1.224        ad 		const unsigned int status = uvm_pagegetdirty(pg);
   1583  1.103      yamt 		pg->uanon->an_page = NULL;
   1584  1.201        ad 		pg->uanon = NULL;
   1585  1.240        ad 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1586    1.7       mrg 	}
   1587    1.1       mrg 
   1588    1.7       mrg 	/*
   1589    1.7       mrg 	 * if the page was wired, unwire it now.
   1590    1.7       mrg 	 */
   1591   1.44       chs 
   1592   1.34   thorpej 	if (pg->wire_count) {
   1593    1.7       mrg 		pg->wire_count = 0;
   1594  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1595  1.201        ad 	}
   1596  1.201        ad 	if (locked) {
   1597  1.220        ad 		/*
   1598  1.231        ad 		 * wake anyone waiting on the page.
   1599  1.231        ad 		 */
   1600  1.231        ad 		if ((pg->pqflags & PQ_WANTED) != 0) {
   1601  1.231        ad 			pg->pqflags &= ~PQ_WANTED;
   1602  1.231        ad 			wakeup(pg);
   1603  1.231        ad 		}
   1604  1.231        ad 
   1605  1.231        ad 		/*
   1606  1.220        ad 		 * now remove the page from the queues.
   1607  1.220        ad 		 */
   1608  1.220        ad 		uvm_pagedequeue(pg);
   1609  1.220        ad 		uvm_pageunlock(pg);
   1610  1.220        ad 	} else {
   1611  1.220        ad 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1612   1.44       chs 	}
   1613    1.7       mrg 
   1614    1.7       mrg 	/*
   1615   1.44       chs 	 * and put on free queue
   1616    1.7       mrg 	 */
   1617    1.7       mrg 
   1618    1.3       chs #ifdef DEBUG
   1619    1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1620    1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1621  1.213        ad 	if (pg->flags & PG_ZERO)
   1622   1.91      yamt 		uvm_pagezerocheck(pg);
   1623   1.91      yamt #endif /* DEBUG */
   1624   1.91      yamt 
   1625  1.221        ad 	/* Try to send the page to the per-CPU cache. */
   1626  1.213        ad 	s = splvm();
   1627  1.240        ad     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
   1628  1.223        ad 	if (pg->flags & PG_ZERO) {
   1629  1.223        ad 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
   1630  1.223        ad 	}
   1631  1.213        ad 	ucpu = curcpu()->ci_data.cpu_uvm;
   1632  1.221        ad 	bucket = uvm_page_get_bucket(pg);
   1633  1.213        ad 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
   1634  1.213        ad 		splx(s);
   1635  1.213        ad 		return;
   1636  1.133        ad 	}
   1637   1.34   thorpej 
   1638  1.213        ad 	/* Didn't work.  Never mind, send it to a global bucket. */
   1639  1.213        ad 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
   1640  1.213        ad 	pgb = pgfl->pgfl_buckets[bucket];
   1641  1.213        ad 	lock = &uvm_freelist_locks[bucket].lock;
   1642  1.213        ad 
   1643  1.213        ad 	mutex_spin_enter(lock);
   1644  1.213        ad 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
   1645  1.213        ad 	pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
   1646  1.213        ad 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
   1647  1.213        ad 	pgb->pgb_nfree++;
   1648  1.213        ad 	mutex_spin_exit(lock);
   1649  1.213        ad 	splx(s);
   1650   1.44       chs }
   1651   1.44       chs 
   1652   1.44       chs /*
   1653   1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1654   1.44       chs  *
   1655   1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1656   1.44       chs  * => if pages are object-owned, object must be locked.
   1657   1.67       chs  * => if pages are anon-owned, anons must be locked.
   1658   1.98      yamt  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1659   1.44       chs  */
   1660   1.44       chs 
   1661   1.44       chs void
   1662  1.105   thorpej uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1663   1.44       chs {
   1664   1.44       chs 	struct vm_page *pg;
   1665   1.44       chs 	int i;
   1666   1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1667   1.44       chs 
   1668   1.44       chs 	for (i = 0; i < npgs; i++) {
   1669   1.44       chs 		pg = pgs[i];
   1670   1.82     enami 		if (pg == NULL || pg == PGO_DONTCARE) {
   1671   1.44       chs 			continue;
   1672   1.44       chs 		}
   1673   1.98      yamt 
   1674  1.226        ad 		KASSERT(uvm_page_owner_locked_p(pg, true));
   1675   1.98      yamt 		KASSERT(pg->flags & PG_BUSY);
   1676   1.98      yamt 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1677   1.44       chs 		if (pg->flags & PG_RELEASED) {
   1678  1.194  pgoyette 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1679  1.194  pgoyette 			    (uintptr_t)pg, 0, 0, 0);
   1680   1.98      yamt 			KASSERT(pg->uobject != NULL ||
   1681   1.98      yamt 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1682   1.67       chs 			pg->flags &= ~PG_RELEASED;
   1683   1.67       chs 			uvm_pagefree(pg);
   1684   1.44       chs 		} else {
   1685  1.234        ad 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1686  1.234        ad 			    (uintptr_t)pg, 0, 0, 0);
   1687  1.142      yamt 			KASSERT((pg->flags & PG_FAKE) == 0);
   1688  1.234        ad 			pg->flags &= ~PG_BUSY;
   1689  1.231        ad 			uvm_pagelock(pg);
   1690  1.234        ad 			uvm_pagewakeup(pg);
   1691  1.231        ad 			uvm_pageunlock(pg);
   1692  1.234        ad 			UVM_PAGE_OWN(pg, NULL);
   1693   1.44       chs 		}
   1694   1.44       chs 	}
   1695    1.1       mrg }
   1696    1.1       mrg 
   1697  1.231        ad /*
   1698  1.231        ad  * uvm_pagewait: wait for a busy page
   1699  1.231        ad  *
   1700  1.231        ad  * => page must be known PG_BUSY
   1701  1.231        ad  * => object must be read or write locked
   1702  1.231        ad  * => object will be unlocked on return
   1703  1.231        ad  */
   1704  1.231        ad 
   1705  1.231        ad void
   1706  1.231        ad uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
   1707  1.231        ad {
   1708  1.231        ad 
   1709  1.231        ad 	KASSERT(rw_lock_held(lock));
   1710  1.231        ad 	KASSERT((pg->flags & PG_BUSY) != 0);
   1711  1.231        ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1712  1.231        ad 
   1713  1.231        ad 	mutex_enter(&pg->interlock);
   1714  1.238        ad 	pg->pqflags |= PQ_WANTED;
   1715  1.234        ad 	rw_exit(lock);
   1716  1.231        ad 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
   1717  1.231        ad }
   1718  1.231        ad 
   1719  1.231        ad /*
   1720  1.234        ad  * uvm_pagewakeup: wake anyone waiting on a page
   1721  1.231        ad  *
   1722  1.231        ad  * => page interlock must be held
   1723  1.231        ad  */
   1724  1.231        ad 
   1725  1.231        ad void
   1726  1.234        ad uvm_pagewakeup(struct vm_page *pg)
   1727  1.231        ad {
   1728  1.234        ad 	UVMHIST_FUNC("uvm_pagewakeup"); UVMHIST_CALLED(ubchist);
   1729  1.231        ad 
   1730  1.231        ad 	KASSERT(mutex_owned(&pg->interlock));
   1731  1.231        ad 
   1732  1.234        ad 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
   1733  1.231        ad 
   1734  1.231        ad 	if ((pg->pqflags & PQ_WANTED) != 0) {
   1735  1.231        ad 		wakeup(pg);
   1736  1.231        ad 		pg->pqflags &= ~PQ_WANTED;
   1737  1.231        ad 	}
   1738  1.231        ad }
   1739  1.231        ad 
   1740  1.238        ad /*
   1741  1.238        ad  * uvm_pagewanted_p: return true if someone is waiting on the page
   1742  1.238        ad  *
   1743  1.238        ad  * => object must be write locked (lock out all concurrent access)
   1744  1.238        ad  */
   1745  1.238        ad 
   1746  1.238        ad bool
   1747  1.238        ad uvm_pagewanted_p(struct vm_page *pg)
   1748  1.238        ad {
   1749  1.238        ad 
   1750  1.238        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1751  1.238        ad 
   1752  1.238        ad 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
   1753  1.238        ad }
   1754  1.238        ad 
   1755    1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1756    1.1       mrg /*
   1757    1.1       mrg  * uvm_page_own: set or release page ownership
   1758    1.1       mrg  *
   1759    1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1760    1.1       mrg  *	and where they do it.   it can be used to track down problems
   1761    1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1762    1.1       mrg  * => page's object [if any] must be locked
   1763    1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1764    1.1       mrg  */
   1765    1.7       mrg void
   1766  1.105   thorpej uvm_page_own(struct vm_page *pg, const char *tag)
   1767    1.1       mrg {
   1768  1.112      yamt 
   1769   1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1770  1.226        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1771  1.112      yamt 
   1772    1.7       mrg 	/* gain ownership? */
   1773    1.7       mrg 	if (tag) {
   1774  1.112      yamt 		KASSERT((pg->flags & PG_BUSY) != 0);
   1775    1.7       mrg 		if (pg->owner_tag) {
   1776    1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1777  1.237        ad 			    "by proc %d.%d [%s]\n", pg,
   1778  1.237        ad 			    pg->owner, pg->lowner, pg->owner_tag);
   1779    1.7       mrg 			panic("uvm_page_own");
   1780    1.7       mrg 		}
   1781  1.184       chs 		pg->owner = curproc->p_pid;
   1782  1.184       chs 		pg->lowner = curlwp->l_lid;
   1783    1.7       mrg 		pg->owner_tag = tag;
   1784    1.7       mrg 		return;
   1785    1.7       mrg 	}
   1786    1.7       mrg 
   1787    1.7       mrg 	/* drop ownership */
   1788  1.112      yamt 	KASSERT((pg->flags & PG_BUSY) == 0);
   1789    1.7       mrg 	if (pg->owner_tag == NULL) {
   1790    1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1791    1.7       mrg 		    "page (%p)\n", pg);
   1792    1.7       mrg 		panic("uvm_page_own");
   1793    1.7       mrg 	}
   1794    1.7       mrg 	pg->owner_tag = NULL;
   1795    1.1       mrg }
   1796    1.1       mrg #endif
   1797   1.34   thorpej 
   1798   1.34   thorpej /*
   1799   1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1800   1.34   thorpej  */
   1801   1.34   thorpej void
   1802  1.105   thorpej uvm_pageidlezero(void)
   1803   1.34   thorpej {
   1804  1.133        ad 
   1805  1.213        ad 	/*
   1806  1.213        ad 	 * Disabled for the moment.  Previous strategy too cache heavy.  In
   1807  1.213        ad 	 * the future we may experiment with zeroing the pages held in the
   1808  1.213        ad 	 * per-CPU cache (uvm_pgflcache).
   1809  1.213        ad 	 */
   1810   1.34   thorpej }
   1811  1.110      yamt 
   1812  1.110      yamt /*
   1813  1.110      yamt  * uvm_pagelookup: look up a page
   1814  1.110      yamt  *
   1815  1.110      yamt  * => caller should lock object to keep someone from pulling the page
   1816  1.110      yamt  *	out from under it
   1817  1.110      yamt  */
   1818  1.110      yamt 
   1819  1.110      yamt struct vm_page *
   1820  1.110      yamt uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1821  1.110      yamt {
   1822  1.110      yamt 	struct vm_page *pg;
   1823  1.110      yamt 
   1824  1.227        ad 	/* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
   1825  1.123        ad 
   1826  1.202        ad 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1827  1.134        ad 
   1828  1.110      yamt 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1829  1.110      yamt 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1830  1.110      yamt 		(pg->flags & PG_BUSY) != 0);
   1831  1.156     rmind 	return pg;
   1832  1.110      yamt }
   1833  1.110      yamt 
   1834  1.110      yamt /*
   1835  1.110      yamt  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1836  1.110      yamt  *
   1837  1.201        ad  * => caller must lock objects
   1838  1.220        ad  * => caller must hold pg->interlock
   1839  1.110      yamt  */
   1840  1.110      yamt 
   1841  1.110      yamt void
   1842  1.110      yamt uvm_pagewire(struct vm_page *pg)
   1843  1.110      yamt {
   1844  1.201        ad 
   1845  1.226        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1846  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1847  1.113      yamt #if defined(READAHEAD_STATS)
   1848  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1849  1.113      yamt 		uvm_ra_hit.ev_count++;
   1850  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1851  1.113      yamt 	}
   1852  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1853  1.110      yamt 	if (pg->wire_count == 0) {
   1854  1.110      yamt 		uvm_pagedequeue(pg);
   1855  1.201        ad 		atomic_inc_uint(&uvmexp.wired);
   1856  1.110      yamt 	}
   1857  1.110      yamt 	pg->wire_count++;
   1858  1.197  jdolecek 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1859  1.110      yamt }
   1860  1.110      yamt 
   1861  1.110      yamt /*
   1862  1.110      yamt  * uvm_pageunwire: unwire the page.
   1863  1.110      yamt  *
   1864  1.110      yamt  * => activate if wire count goes to zero.
   1865  1.201        ad  * => caller must lock objects
   1866  1.220        ad  * => caller must hold pg->interlock
   1867  1.110      yamt  */
   1868  1.110      yamt 
   1869  1.110      yamt void
   1870  1.110      yamt uvm_pageunwire(struct vm_page *pg)
   1871  1.110      yamt {
   1872  1.201        ad 
   1873  1.226        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1874  1.199       kre 	KASSERT(pg->wire_count != 0);
   1875  1.201        ad 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1876  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1877  1.110      yamt 	pg->wire_count--;
   1878  1.110      yamt 	if (pg->wire_count == 0) {
   1879  1.111      yamt 		uvm_pageactivate(pg);
   1880  1.199       kre 		KASSERT(uvmexp.wired != 0);
   1881  1.201        ad 		atomic_dec_uint(&uvmexp.wired);
   1882  1.110      yamt 	}
   1883  1.110      yamt }
   1884  1.110      yamt 
   1885  1.110      yamt /*
   1886  1.110      yamt  * uvm_pagedeactivate: deactivate page
   1887  1.110      yamt  *
   1888  1.201        ad  * => caller must lock objects
   1889  1.110      yamt  * => caller must check to make sure page is not wired
   1890  1.110      yamt  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1891  1.110      yamt  * => caller must clear the reference on the page before calling
   1892  1.220        ad  * => caller must hold pg->interlock
   1893  1.110      yamt  */
   1894  1.110      yamt 
   1895  1.110      yamt void
   1896  1.110      yamt uvm_pagedeactivate(struct vm_page *pg)
   1897  1.110      yamt {
   1898  1.113      yamt 
   1899  1.232        ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1900  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1901  1.201        ad 	if (pg->wire_count == 0) {
   1902  1.201        ad 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1903  1.201        ad 		uvmpdpol_pagedeactivate(pg);
   1904  1.201        ad 	}
   1905  1.110      yamt }
   1906  1.110      yamt 
   1907  1.110      yamt /*
   1908  1.110      yamt  * uvm_pageactivate: activate page
   1909  1.110      yamt  *
   1910  1.201        ad  * => caller must lock objects
   1911  1.220        ad  * => caller must hold pg->interlock
   1912  1.110      yamt  */
   1913  1.110      yamt 
   1914  1.110      yamt void
   1915  1.110      yamt uvm_pageactivate(struct vm_page *pg)
   1916  1.110      yamt {
   1917  1.113      yamt 
   1918  1.232        ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1919  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1920  1.113      yamt #if defined(READAHEAD_STATS)
   1921  1.201        ad 	if ((pg->flags & PG_READAHEAD) != 0) {
   1922  1.113      yamt 		uvm_ra_hit.ev_count++;
   1923  1.201        ad 		pg->flags &= ~PG_READAHEAD;
   1924  1.113      yamt 	}
   1925  1.113      yamt #endif /* defined(READAHEAD_STATS) */
   1926  1.201        ad 	if (pg->wire_count == 0) {
   1927  1.201        ad 		uvmpdpol_pageactivate(pg);
   1928  1.110      yamt 	}
   1929  1.110      yamt }
   1930  1.110      yamt 
   1931  1.110      yamt /*
   1932  1.110      yamt  * uvm_pagedequeue: remove a page from any paging queue
   1933  1.230     skrll  *
   1934  1.201        ad  * => caller must lock objects
   1935  1.220        ad  * => caller must hold pg->interlock
   1936  1.110      yamt  */
   1937  1.110      yamt void
   1938  1.110      yamt uvm_pagedequeue(struct vm_page *pg)
   1939  1.110      yamt {
   1940  1.113      yamt 
   1941  1.226        ad 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1942  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1943  1.113      yamt 	if (uvmpdpol_pageisqueued_p(pg)) {
   1944  1.201        ad 		uvmpdpol_pagedequeue(pg);
   1945  1.110      yamt 	}
   1946  1.113      yamt }
   1947  1.113      yamt 
   1948  1.113      yamt /*
   1949  1.113      yamt  * uvm_pageenqueue: add a page to a paging queue without activating.
   1950  1.113      yamt  * used where a page is not really demanded (yet).  eg. read-ahead
   1951  1.201        ad  *
   1952  1.201        ad  * => caller must lock objects
   1953  1.220        ad  * => caller must hold pg->interlock
   1954  1.113      yamt  */
   1955  1.113      yamt void
   1956  1.113      yamt uvm_pageenqueue(struct vm_page *pg)
   1957  1.113      yamt {
   1958  1.113      yamt 
   1959  1.232        ad 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1960  1.220        ad 	KASSERT(mutex_owned(&pg->interlock));
   1961  1.201        ad 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1962  1.201        ad 		uvmpdpol_pageenqueue(pg);
   1963  1.113      yamt 	}
   1964  1.110      yamt }
   1965  1.110      yamt 
   1966  1.110      yamt /*
   1967  1.220        ad  * uvm_pagelock: acquire page interlock
   1968  1.220        ad  */
   1969  1.220        ad void
   1970  1.220        ad uvm_pagelock(struct vm_page *pg)
   1971  1.220        ad {
   1972  1.220        ad 
   1973  1.220        ad 	mutex_enter(&pg->interlock);
   1974  1.220        ad }
   1975  1.220        ad 
   1976  1.220        ad /*
   1977  1.220        ad  * uvm_pagelock2: acquire two page interlocks
   1978  1.220        ad  */
   1979  1.220        ad void
   1980  1.220        ad uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
   1981  1.220        ad {
   1982  1.220        ad 
   1983  1.220        ad 	if (pg1 < pg2) {
   1984  1.220        ad 		mutex_enter(&pg1->interlock);
   1985  1.220        ad 		mutex_enter(&pg2->interlock);
   1986  1.220        ad 	} else {
   1987  1.220        ad 		mutex_enter(&pg2->interlock);
   1988  1.220        ad 		mutex_enter(&pg1->interlock);
   1989  1.220        ad 	}
   1990  1.220        ad }
   1991  1.220        ad 
   1992  1.220        ad /*
   1993  1.220        ad  * uvm_pageunlock: release page interlock, and if a page replacement intent
   1994  1.220        ad  * is set on the page, pass it to uvmpdpol to make real.
   1995  1.230     skrll  *
   1996  1.220        ad  * => caller must hold pg->interlock
   1997  1.220        ad  */
   1998  1.220        ad void
   1999  1.220        ad uvm_pageunlock(struct vm_page *pg)
   2000  1.220        ad {
   2001  1.220        ad 
   2002  1.220        ad 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
   2003  1.220        ad 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
   2004  1.220        ad 	    	mutex_exit(&pg->interlock);
   2005  1.220        ad 	    	return;
   2006  1.220        ad 	}
   2007  1.220        ad 	pg->pqflags |= PQ_INTENT_QUEUED;
   2008  1.220        ad 	mutex_exit(&pg->interlock);
   2009  1.220        ad 	uvmpdpol_pagerealize(pg);
   2010  1.220        ad }
   2011  1.220        ad 
   2012  1.220        ad /*
   2013  1.220        ad  * uvm_pageunlock2: release two page interlocks, and for both pages if a
   2014  1.220        ad  * page replacement intent is set on the page, pass it to uvmpdpol to make
   2015  1.220        ad  * real.
   2016  1.230     skrll  *
   2017  1.220        ad  * => caller must hold pg->interlock
   2018  1.220        ad  */
   2019  1.220        ad void
   2020  1.220        ad uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
   2021  1.220        ad {
   2022  1.220        ad 
   2023  1.220        ad 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
   2024  1.220        ad 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
   2025  1.220        ad 	    	mutex_exit(&pg1->interlock);
   2026  1.220        ad 	    	pg1 = NULL;
   2027  1.220        ad 	} else {
   2028  1.220        ad 		pg1->pqflags |= PQ_INTENT_QUEUED;
   2029  1.220        ad 		mutex_exit(&pg1->interlock);
   2030  1.220        ad 	}
   2031  1.220        ad 
   2032  1.220        ad 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
   2033  1.220        ad 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
   2034  1.220        ad 	    	mutex_exit(&pg2->interlock);
   2035  1.220        ad 	    	pg2 = NULL;
   2036  1.220        ad 	} else {
   2037  1.220        ad 		pg2->pqflags |= PQ_INTENT_QUEUED;
   2038  1.220        ad 		mutex_exit(&pg2->interlock);
   2039  1.220        ad 	}
   2040  1.220        ad 
   2041  1.220        ad 	if (pg1 != NULL) {
   2042  1.220        ad 		uvmpdpol_pagerealize(pg1);
   2043  1.220        ad 	}
   2044  1.220        ad 	if (pg2 != NULL) {
   2045  1.220        ad 		uvmpdpol_pagerealize(pg2);
   2046  1.220        ad 	}
   2047  1.220        ad }
   2048  1.220        ad 
   2049  1.220        ad /*
   2050  1.110      yamt  * uvm_pagezero: zero fill a page
   2051  1.110      yamt  *
   2052  1.110      yamt  * => if page is part of an object then the object should be locked
   2053  1.110      yamt  *	to protect pg->flags.
   2054  1.110      yamt  */
   2055  1.110      yamt 
   2056  1.110      yamt void
   2057  1.110      yamt uvm_pagezero(struct vm_page *pg)
   2058  1.110      yamt {
   2059  1.224        ad 
   2060  1.224        ad 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2061  1.110      yamt 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   2062  1.110      yamt }
   2063  1.110      yamt 
   2064  1.110      yamt /*
   2065  1.110      yamt  * uvm_pagecopy: copy a page
   2066  1.110      yamt  *
   2067  1.110      yamt  * => if page is part of an object then the object should be locked
   2068  1.110      yamt  *	to protect pg->flags.
   2069  1.110      yamt  */
   2070  1.110      yamt 
   2071  1.110      yamt void
   2072  1.110      yamt uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   2073  1.110      yamt {
   2074  1.110      yamt 
   2075  1.224        ad 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
   2076  1.110      yamt 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   2077  1.110      yamt }
   2078  1.110      yamt 
   2079  1.110      yamt /*
   2080  1.150   thorpej  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   2081  1.150   thorpej  */
   2082  1.150   thorpej 
   2083  1.150   thorpej bool
   2084  1.150   thorpej uvm_pageismanaged(paddr_t pa)
   2085  1.150   thorpej {
   2086  1.150   thorpej 
   2087  1.190    cherry 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   2088  1.150   thorpej }
   2089  1.150   thorpej 
   2090  1.150   thorpej /*
   2091  1.110      yamt  * uvm_page_lookup_freelist: look up the free list for the specified page
   2092  1.110      yamt  */
   2093  1.110      yamt 
   2094  1.110      yamt int
   2095  1.110      yamt uvm_page_lookup_freelist(struct vm_page *pg)
   2096  1.110      yamt {
   2097  1.190    cherry 	uvm_physseg_t upm;
   2098  1.110      yamt 
   2099  1.190    cherry 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2100  1.190    cherry 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   2101  1.190    cherry 	return uvm_physseg_get_free_list(upm);
   2102  1.110      yamt }
   2103  1.151   thorpej 
   2104  1.174     rmind /*
   2105  1.218        ad  * uvm_page_owner_locked_p: return true if object associated with page is
   2106  1.174     rmind  * locked.  this is a weak check for runtime assertions only.
   2107  1.174     rmind  */
   2108  1.174     rmind 
   2109  1.174     rmind bool
   2110  1.226        ad uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
   2111  1.174     rmind {
   2112  1.174     rmind 
   2113  1.174     rmind 	if (pg->uobject != NULL) {
   2114  1.226        ad 		return exclusive
   2115  1.226        ad 		    ? rw_write_held(pg->uobject->vmobjlock)
   2116  1.226        ad 		    : rw_lock_held(pg->uobject->vmobjlock);
   2117  1.174     rmind 	}
   2118  1.174     rmind 	if (pg->uanon != NULL) {
   2119  1.226        ad 		return exclusive
   2120  1.226        ad 		    ? rw_write_held(pg->uanon->an_lock)
   2121  1.226        ad 		    : rw_lock_held(pg->uanon->an_lock);
   2122  1.174     rmind 	}
   2123  1.174     rmind 	return true;
   2124  1.174     rmind }
   2125  1.174     rmind 
   2126  1.224        ad /*
   2127  1.224        ad  * uvm_pagereadonly_p: return if the page should be mapped read-only
   2128  1.224        ad  */
   2129  1.224        ad 
   2130  1.224        ad bool
   2131  1.224        ad uvm_pagereadonly_p(struct vm_page *pg)
   2132  1.224        ad {
   2133  1.224        ad 	struct uvm_object * const uobj = pg->uobject;
   2134  1.224        ad 
   2135  1.226        ad 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
   2136  1.226        ad 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
   2137  1.224        ad 	if ((pg->flags & PG_RDONLY) != 0) {
   2138  1.224        ad 		return true;
   2139  1.224        ad 	}
   2140  1.224        ad 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
   2141  1.224        ad 		return true;
   2142  1.224        ad 	}
   2143  1.224        ad 	if (uobj == NULL) {
   2144  1.224        ad 		return false;
   2145  1.224        ad 	}
   2146  1.224        ad 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
   2147  1.224        ad }
   2148  1.224        ad 
   2149  1.198  jdolecek #ifdef PMAP_DIRECT
   2150  1.198  jdolecek /*
   2151  1.198  jdolecek  * Call pmap to translate physical address into a virtual and to run a callback
   2152  1.198  jdolecek  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   2153  1.198  jdolecek  * or equivalent.
   2154  1.198  jdolecek  */
   2155  1.198  jdolecek int
   2156  1.198  jdolecek uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   2157  1.198  jdolecek             int (*process)(void *, size_t, void *), void *arg)
   2158  1.198  jdolecek {
   2159  1.198  jdolecek 	int error = 0;
   2160  1.198  jdolecek 	paddr_t pa;
   2161  1.198  jdolecek 	size_t todo;
   2162  1.198  jdolecek 	voff_t pgoff = (off & PAGE_MASK);
   2163  1.198  jdolecek 	struct vm_page *pg;
   2164  1.198  jdolecek 
   2165  1.198  jdolecek 	KASSERT(npages > 0 && len > 0);
   2166  1.198  jdolecek 
   2167  1.198  jdolecek 	for (int i = 0; i < npages; i++) {
   2168  1.198  jdolecek 		pg = pgs[i];
   2169  1.198  jdolecek 
   2170  1.198  jdolecek 		KASSERT(len > 0);
   2171  1.198  jdolecek 
   2172  1.198  jdolecek 		/*
   2173  1.198  jdolecek 		 * Caller is responsible for ensuring all the pages are
   2174  1.198  jdolecek 		 * available.
   2175  1.198  jdolecek 		 */
   2176  1.198  jdolecek 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   2177  1.198  jdolecek 
   2178  1.198  jdolecek 		pa = VM_PAGE_TO_PHYS(pg);
   2179  1.198  jdolecek 		todo = MIN(len, PAGE_SIZE - pgoff);
   2180  1.198  jdolecek 
   2181  1.198  jdolecek 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   2182  1.198  jdolecek 		if (error)
   2183  1.198  jdolecek 			break;
   2184  1.198  jdolecek 
   2185  1.198  jdolecek 		pgoff = 0;
   2186  1.198  jdolecek 		len -= todo;
   2187  1.198  jdolecek 	}
   2188  1.198  jdolecek 
   2189  1.198  jdolecek 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   2190  1.198  jdolecek 	return error;
   2191  1.198  jdolecek }
   2192  1.198  jdolecek #endif /* PMAP_DIRECT */
   2193  1.198  jdolecek 
   2194  1.151   thorpej #if defined(DDB) || defined(DEBUGPRINT)
   2195  1.151   thorpej 
   2196  1.151   thorpej /*
   2197  1.151   thorpej  * uvm_page_printit: actually print the page
   2198  1.151   thorpej  */
   2199  1.151   thorpej 
   2200  1.151   thorpej static const char page_flagbits[] = UVM_PGFLAGBITS;
   2201  1.225        ad static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2202  1.151   thorpej 
   2203  1.151   thorpej void
   2204  1.151   thorpej uvm_page_printit(struct vm_page *pg, bool full,
   2205  1.151   thorpej     void (*pr)(const char *, ...))
   2206  1.151   thorpej {
   2207  1.151   thorpej 	struct vm_page *tpg;
   2208  1.151   thorpej 	struct uvm_object *uobj;
   2209  1.213        ad 	struct pgflbucket *pgb;
   2210  1.151   thorpej 	struct pgflist *pgl;
   2211  1.151   thorpej 	char pgbuf[128];
   2212  1.151   thorpej 
   2213  1.151   thorpej 	(*pr)("PAGE %p:\n", pg);
   2214  1.151   thorpej 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2215  1.225        ad 	(*pr)("  flags=%s\n", pgbuf);
   2216  1.225        ad 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
   2217  1.225        ad 	(*pr)("  pqflags=%s\n", pgbuf);
   2218  1.225        ad 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
   2219  1.225        ad 	    pg->uobject, pg->uanon, (long long)pg->offset);
   2220  1.225        ad 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
   2221  1.225        ad 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
   2222  1.225        ad 	    uvm_page_get_freelist(pg));
   2223  1.225        ad 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
   2224  1.151   thorpej #if defined(UVM_PAGE_TRKOWN)
   2225  1.151   thorpej 	if (pg->flags & PG_BUSY)
   2226  1.237        ad 		(*pr)("  owning process = %d.%d, tag=%s\n",
   2227  1.237        ad 		    pg->owner, pg->lowner, pg->owner_tag);
   2228  1.151   thorpej 	else
   2229  1.151   thorpej 		(*pr)("  page not busy, no owner\n");
   2230  1.151   thorpej #else
   2231  1.151   thorpej 	(*pr)("  [page ownership tracking disabled]\n");
   2232  1.151   thorpej #endif
   2233  1.151   thorpej 
   2234  1.151   thorpej 	if (!full)
   2235  1.151   thorpej 		return;
   2236  1.151   thorpej 
   2237  1.151   thorpej 	/* cross-verify object/anon */
   2238  1.201        ad 	if ((pg->flags & PG_FREE) == 0) {
   2239  1.201        ad 		if (pg->flags & PG_ANON) {
   2240  1.151   thorpej 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2241  1.151   thorpej 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2242  1.151   thorpej 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2243  1.151   thorpej 			else
   2244  1.151   thorpej 				(*pr)("  anon backpointer is OK\n");
   2245  1.151   thorpej 		} else {
   2246  1.151   thorpej 			uobj = pg->uobject;
   2247  1.151   thorpej 			if (uobj) {
   2248  1.151   thorpej 				(*pr)("  checking object list\n");
   2249  1.203        ad 				tpg = uvm_pagelookup(uobj, pg->offset);
   2250  1.151   thorpej 				if (tpg)
   2251  1.151   thorpej 					(*pr)("  page found on object list\n");
   2252  1.151   thorpej 				else
   2253  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2254  1.151   thorpej 			}
   2255  1.151   thorpej 		}
   2256  1.151   thorpej 	}
   2257  1.151   thorpej 
   2258  1.151   thorpej 	/* cross-verify page queue */
   2259  1.201        ad 	if (pg->flags & PG_FREE) {
   2260  1.209        ad 		int fl = uvm_page_get_freelist(pg);
   2261  1.213        ad 		int b = uvm_page_get_bucket(pg);
   2262  1.213        ad 		pgb = uvm.page_free[fl].pgfl_buckets[b];
   2263  1.213        ad 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
   2264  1.151   thorpej 		(*pr)("  checking pageq list\n");
   2265  1.151   thorpej 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2266  1.151   thorpej 			if (tpg == pg) {
   2267  1.151   thorpej 				break;
   2268  1.151   thorpej 			}
   2269  1.151   thorpej 		}
   2270  1.151   thorpej 		if (tpg)
   2271  1.151   thorpej 			(*pr)("  page found on pageq list\n");
   2272  1.151   thorpej 		else
   2273  1.151   thorpej 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2274  1.151   thorpej 	}
   2275  1.151   thorpej }
   2276  1.151   thorpej 
   2277  1.151   thorpej /*
   2278  1.201        ad  * uvm_page_printall - print a summary of all managed pages
   2279  1.151   thorpej  */
   2280  1.151   thorpej 
   2281  1.151   thorpej void
   2282  1.151   thorpej uvm_page_printall(void (*pr)(const char *, ...))
   2283  1.151   thorpej {
   2284  1.190    cherry 	uvm_physseg_t i;
   2285  1.190    cherry 	paddr_t pfn;
   2286  1.151   thorpej 	struct vm_page *pg;
   2287  1.151   thorpej 
   2288  1.151   thorpej 	(*pr)("%18s %4s %4s %18s %18s"
   2289  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2290  1.151   thorpej 	    " OWNER"
   2291  1.151   thorpej #endif
   2292  1.151   thorpej 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2293  1.190    cherry 	for (i = uvm_physseg_get_first();
   2294  1.190    cherry 	     uvm_physseg_valid_p(i);
   2295  1.190    cherry 	     i = uvm_physseg_get_next(i)) {
   2296  1.190    cherry 		for (pfn = uvm_physseg_get_start(i);
   2297  1.192      maya 		     pfn < uvm_physseg_get_end(i);
   2298  1.190    cherry 		     pfn++) {
   2299  1.190    cherry 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   2300  1.190    cherry 
   2301  1.201        ad 			(*pr)("%18p %04x %08x %18p %18p",
   2302  1.151   thorpej 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2303  1.151   thorpej 			    pg->uanon);
   2304  1.151   thorpej #ifdef UVM_PAGE_TRKOWN
   2305  1.151   thorpej 			if (pg->flags & PG_BUSY)
   2306  1.151   thorpej 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2307  1.151   thorpej #endif
   2308  1.151   thorpej 			(*pr)("\n");
   2309  1.151   thorpej 		}
   2310  1.151   thorpej 	}
   2311  1.151   thorpej }
   2312  1.151   thorpej 
   2313  1.213        ad /*
   2314  1.213        ad  * uvm_page_print_freelists - print a summary freelists
   2315  1.213        ad  */
   2316  1.213        ad 
   2317  1.213        ad void
   2318  1.213        ad uvm_page_print_freelists(void (*pr)(const char *, ...))
   2319  1.213        ad {
   2320  1.213        ad 	struct pgfreelist *pgfl;
   2321  1.213        ad 	struct pgflbucket *pgb;
   2322  1.213        ad 	int fl, b, c;
   2323  1.213        ad 
   2324  1.213        ad 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
   2325  1.213        ad 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
   2326  1.230     skrll 
   2327  1.213        ad 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   2328  1.213        ad 		pgfl = &uvm.page_free[fl];
   2329  1.213        ad 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
   2330  1.213        ad 		for (b = 0; b < uvm.bucketcount; b++) {
   2331  1.213        ad 			pgb = uvm.page_free[fl].pgfl_buckets[b];
   2332  1.213        ad 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
   2333  1.213        ad 			    b, pgb, pgb->pgb_nfree,
   2334  1.213        ad 			    &uvm_freelist_locks[b].lock);
   2335  1.213        ad 			for (c = 0; c < uvmexp.ncolors; c++) {
   2336  1.213        ad 				(*pr)("        color(%d) @ %p, ", c,
   2337  1.213        ad 				    &pgb->pgb_colors[c]);
   2338  1.213        ad 				(*pr)("first page = %p\n",
   2339  1.213        ad 				    LIST_FIRST(&pgb->pgb_colors[c]));
   2340  1.213        ad 			}
   2341  1.213        ad 		}
   2342  1.213        ad 	}
   2343  1.213        ad }
   2344  1.213        ad 
   2345  1.151   thorpej #endif /* DDB || DEBUGPRINT */
   2346