uvm_page.c revision 1.28 1 1.28 drochner /* $NetBSD: uvm_page.c,v 1.28 1999/12/01 16:08:32 drochner Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.1 mrg #include <sys/param.h>
74 1.1 mrg #include <sys/systm.h>
75 1.1 mrg #include <sys/malloc.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg
78 1.1 mrg #include <vm/vm.h>
79 1.1 mrg #include <vm/vm_page.h>
80 1.1 mrg #include <vm/vm_kern.h>
81 1.1 mrg
82 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * physical memory config is stored in vm_physmem.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * local variables
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
102 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
103 1.1 mrg * and pmap_startup here also uses them internally.
104 1.1 mrg */
105 1.1 mrg
106 1.14 eeh static vaddr_t virtual_space_start;
107 1.14 eeh static vaddr_t virtual_space_end;
108 1.1 mrg
109 1.1 mrg /*
110 1.1 mrg * we use a hash table with only one bucket during bootup. we will
111 1.1 mrg * later rehash (resize) the hash table once malloc() is ready.
112 1.1 mrg * we static allocate the bootstrap bucket below...
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg static struct pglist uvm_bootbucket;
116 1.1 mrg
117 1.1 mrg /*
118 1.1 mrg * local prototypes
119 1.1 mrg */
120 1.1 mrg
121 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
122 1.1 mrg
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * inline functions
126 1.1 mrg */
127 1.1 mrg
128 1.1 mrg /*
129 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
130 1.1 mrg *
131 1.1 mrg * => caller must lock object
132 1.1 mrg * => caller must lock page queues
133 1.1 mrg * => call should have already set pg's object and offset pointers
134 1.1 mrg * and bumped the version counter
135 1.1 mrg */
136 1.1 mrg
137 1.7 mrg __inline static void
138 1.7 mrg uvm_pageinsert(pg)
139 1.7 mrg struct vm_page *pg;
140 1.1 mrg {
141 1.7 mrg struct pglist *buck;
142 1.7 mrg int s;
143 1.1 mrg
144 1.1 mrg #ifdef DIAGNOSTIC
145 1.7 mrg if (pg->flags & PG_TABLED)
146 1.7 mrg panic("uvm_pageinsert: already inserted");
147 1.1 mrg #endif
148 1.1 mrg
149 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150 1.7 mrg s = splimp();
151 1.7 mrg simple_lock(&uvm.hashlock);
152 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
153 1.7 mrg simple_unlock(&uvm.hashlock);
154 1.7 mrg splx(s);
155 1.7 mrg
156 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157 1.7 mrg pg->flags |= PG_TABLED;
158 1.7 mrg pg->uobject->uo_npages++;
159 1.1 mrg
160 1.1 mrg }
161 1.1 mrg
162 1.1 mrg /*
163 1.1 mrg * uvm_page_remove: remove page from object and hash
164 1.1 mrg *
165 1.1 mrg * => caller must lock object
166 1.1 mrg * => caller must lock page queues
167 1.1 mrg */
168 1.1 mrg
169 1.7 mrg void __inline
170 1.7 mrg uvm_pageremove(pg)
171 1.7 mrg struct vm_page *pg;
172 1.1 mrg {
173 1.7 mrg struct pglist *buck;
174 1.7 mrg int s;
175 1.1 mrg
176 1.1 mrg #ifdef DIAGNOSTIC
177 1.7 mrg if ((pg->flags & (PG_FAULTING)) != 0)
178 1.7 mrg panic("uvm_pageremove: page is faulting");
179 1.1 mrg #endif
180 1.1 mrg
181 1.7 mrg if ((pg->flags & PG_TABLED) == 0)
182 1.7 mrg return; /* XXX: log */
183 1.1 mrg
184 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185 1.7 mrg s = splimp();
186 1.7 mrg simple_lock(&uvm.hashlock);
187 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
188 1.7 mrg simple_unlock(&uvm.hashlock);
189 1.7 mrg splx(s);
190 1.7 mrg
191 1.7 mrg /* object should be locked */
192 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193 1.7 mrg
194 1.7 mrg pg->flags &= ~PG_TABLED;
195 1.7 mrg pg->uobject->uo_npages--;
196 1.7 mrg pg->uobject = NULL;
197 1.7 mrg pg->version++;
198 1.1 mrg
199 1.1 mrg }
200 1.1 mrg
201 1.1 mrg /*
202 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
203 1.1 mrg *
204 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205 1.1 mrg */
206 1.1 mrg
207 1.7 mrg void
208 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
209 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
210 1.1 mrg {
211 1.27 thorpej vsize_t freepages, pagecount, n;
212 1.7 mrg vm_page_t pagearray;
213 1.27 thorpej int lcv, i;
214 1.14 eeh paddr_t paddr;
215 1.7 mrg
216 1.7 mrg
217 1.7 mrg /*
218 1.7 mrg * step 1: init the page queues and page queue locks
219 1.7 mrg */
220 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221 1.12 thorpej TAILQ_INIT(&uvm.page_free[lcv]);
222 1.7 mrg TAILQ_INIT(&uvm.page_active);
223 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
224 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
225 1.7 mrg simple_lock_init(&uvm.pageqlock);
226 1.7 mrg simple_lock_init(&uvm.fpageqlock);
227 1.7 mrg
228 1.7 mrg /*
229 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
230 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
231 1.7 mrg * will malloc() new buckets as we dynamically resize the hash table.
232 1.7 mrg */
233 1.7 mrg
234 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
235 1.7 mrg uvm.page_hashmask = 0; /* mask for hash function */
236 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
237 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
238 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
239 1.7 mrg
240 1.7 mrg /*
241 1.7 mrg * step 3: allocate vm_page structures.
242 1.7 mrg */
243 1.7 mrg
244 1.7 mrg /*
245 1.7 mrg * sanity check:
246 1.7 mrg * before calling this function the MD code is expected to register
247 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
248 1.7 mrg * now is to allocate vm_page structures for this memory.
249 1.7 mrg */
250 1.7 mrg
251 1.7 mrg if (vm_nphysseg == 0)
252 1.7 mrg panic("vm_page_bootstrap: no memory pre-allocated");
253 1.7 mrg
254 1.7 mrg /*
255 1.7 mrg * first calculate the number of free pages...
256 1.7 mrg *
257 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
258 1.7 mrg * this allows us to allocate extra vm_page structures in case we
259 1.7 mrg * want to return some memory to the pool after booting.
260 1.7 mrg */
261 1.7 mrg
262 1.7 mrg freepages = 0;
263 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265 1.7 mrg
266 1.7 mrg /*
267 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
269 1.7 mrg * thus, the total number of pages we can use is the total size of
270 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
271 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
272 1.7 mrg * truncation errors (since we can only allocate in terms of whole
273 1.7 mrg * pages).
274 1.7 mrg */
275 1.7 mrg
276 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
277 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
278 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279 1.7 mrg sizeof(struct vm_page));
280 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
281 1.7 mrg
282 1.7 mrg /*
283 1.7 mrg * step 4: init the vm_page structures and put them in the correct
284 1.7 mrg * place...
285 1.7 mrg */
286 1.7 mrg
287 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288 1.7 mrg
289 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290 1.7 mrg if (n > pagecount) {
291 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
292 1.27 thorpej (long)(n - pagecount));
293 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
294 1.7 mrg /* n = pagecount; */
295 1.7 mrg }
296 1.7 mrg /* set up page array pointers */
297 1.7 mrg vm_physmem[lcv].pgs = pagearray;
298 1.7 mrg pagearray += n;
299 1.7 mrg pagecount -= n;
300 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301 1.7 mrg
302 1.13 perry /* init and free vm_pages (we've already zeroed them) */
303 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
304 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
306 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
308 1.7 mrg uvmexp.npages++;
309 1.7 mrg /* add page to free pool */
310 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311 1.7 mrg }
312 1.7 mrg }
313 1.7 mrg }
314 1.7 mrg /*
315 1.7 mrg * step 5: pass up the values of virtual_space_start and
316 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317 1.7 mrg * layers of the VM.
318 1.7 mrg */
319 1.7 mrg
320 1.7 mrg *kvm_startp = round_page(virtual_space_start);
321 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
322 1.7 mrg
323 1.7 mrg /*
324 1.7 mrg * step 6: init pagedaemon lock
325 1.7 mrg */
326 1.7 mrg
327 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
328 1.7 mrg
329 1.7 mrg /*
330 1.7 mrg * step 7: init reserve thresholds
331 1.7 mrg * XXXCDC - values may need adjusting
332 1.7 mrg */
333 1.7 mrg uvmexp.reserve_pagedaemon = 1;
334 1.7 mrg uvmexp.reserve_kernel = 5;
335 1.7 mrg
336 1.7 mrg /*
337 1.7 mrg * done!
338 1.7 mrg */
339 1.1 mrg
340 1.1 mrg }
341 1.1 mrg
342 1.1 mrg /*
343 1.1 mrg * uvm_setpagesize: set the page size
344 1.1 mrg *
345 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
346 1.1 mrg * => XXXCDC: move global vars.
347 1.1 mrg */
348 1.1 mrg
349 1.7 mrg void
350 1.7 mrg uvm_setpagesize()
351 1.1 mrg {
352 1.7 mrg if (uvmexp.pagesize == 0)
353 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
354 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
355 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
356 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
357 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
358 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
359 1.7 mrg break;
360 1.1 mrg }
361 1.1 mrg
362 1.1 mrg /*
363 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
364 1.1 mrg */
365 1.1 mrg
366 1.14 eeh vaddr_t
367 1.7 mrg uvm_pageboot_alloc(size)
368 1.14 eeh vsize_t size;
369 1.1 mrg {
370 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
371 1.14 eeh vaddr_t addr;
372 1.1 mrg
373 1.7 mrg /*
374 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
375 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
376 1.7 mrg * off virtual_space_start/virtual_space_end.
377 1.7 mrg */
378 1.1 mrg
379 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
380 1.7 mrg &virtual_space_end);
381 1.1 mrg
382 1.7 mrg return(addr);
383 1.1 mrg
384 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
385 1.1 mrg
386 1.19 thorpej static boolean_t initialized = FALSE;
387 1.14 eeh vaddr_t addr, vaddr;
388 1.14 eeh paddr_t paddr;
389 1.1 mrg
390 1.7 mrg /* round to page size */
391 1.7 mrg size = round_page(size);
392 1.1 mrg
393 1.7 mrg /*
394 1.19 thorpej * on first call to this function, initialize ourselves.
395 1.7 mrg */
396 1.19 thorpej if (initialized == FALSE) {
397 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
398 1.1 mrg
399 1.7 mrg /* round it the way we like it */
400 1.7 mrg virtual_space_start = round_page(virtual_space_start);
401 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
402 1.19 thorpej
403 1.19 thorpej initialized = TRUE;
404 1.7 mrg }
405 1.1 mrg
406 1.7 mrg /*
407 1.7 mrg * allocate virtual memory for this request
408 1.7 mrg */
409 1.19 thorpej if (virtual_space_start == virtual_space_end ||
410 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
411 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
412 1.20 thorpej
413 1.20 thorpej addr = virtual_space_start;
414 1.20 thorpej
415 1.20 thorpej #ifdef PMAP_GROWKERNEL
416 1.20 thorpej /*
417 1.20 thorpej * If the kernel pmap can't map the requested space,
418 1.20 thorpej * then allocate more resources for it.
419 1.20 thorpej */
420 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
421 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
422 1.20 thorpej if (uvm_maxkaddr < (addr + size))
423 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
424 1.19 thorpej }
425 1.20 thorpej #endif
426 1.1 mrg
427 1.7 mrg virtual_space_start += size;
428 1.1 mrg
429 1.9 thorpej /*
430 1.7 mrg * allocate and mapin physical pages to back new virtual pages
431 1.7 mrg */
432 1.1 mrg
433 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
434 1.7 mrg vaddr += PAGE_SIZE) {
435 1.1 mrg
436 1.7 mrg if (!uvm_page_physget(&paddr))
437 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
438 1.1 mrg
439 1.23 thorpej /*
440 1.23 thorpej * Note this memory is no longer managed, so using
441 1.23 thorpej * pmap_kenter is safe.
442 1.23 thorpej */
443 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
444 1.7 mrg }
445 1.7 mrg return(addr);
446 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
447 1.1 mrg }
448 1.1 mrg
449 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
450 1.1 mrg /*
451 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
452 1.1 mrg *
453 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
454 1.1 mrg * values match the start/end values. if we can't do that, then we
455 1.1 mrg * will advance both values (making them equal, and removing some
456 1.1 mrg * vm_page structures from the non-avail area).
457 1.1 mrg * => return false if out of memory.
458 1.1 mrg */
459 1.1 mrg
460 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
461 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
462 1.28 drochner
463 1.28 drochner static boolean_t
464 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
465 1.14 eeh paddr_t *paddrp;
466 1.28 drochner int freelist;
467 1.1 mrg {
468 1.7 mrg int lcv, x;
469 1.1 mrg
470 1.7 mrg /* pass 1: try allocating from a matching end */
471 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
472 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
473 1.1 mrg #else
474 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
475 1.1 mrg #endif
476 1.7 mrg {
477 1.1 mrg
478 1.7 mrg if (vm_physmem[lcv].pgs)
479 1.7 mrg panic("vm_page_physget: called _after_ bootstrap");
480 1.1 mrg
481 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
482 1.28 drochner continue;
483 1.28 drochner
484 1.7 mrg /* try from front */
485 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
486 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
487 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
488 1.7 mrg vm_physmem[lcv].avail_start++;
489 1.7 mrg vm_physmem[lcv].start++;
490 1.7 mrg /* nothing left? nuke it */
491 1.7 mrg if (vm_physmem[lcv].avail_start ==
492 1.7 mrg vm_physmem[lcv].end) {
493 1.7 mrg if (vm_nphysseg == 1)
494 1.7 mrg panic("vm_page_physget: out of memory!");
495 1.7 mrg vm_nphysseg--;
496 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
497 1.7 mrg /* structure copy */
498 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
499 1.7 mrg }
500 1.7 mrg return (TRUE);
501 1.7 mrg }
502 1.7 mrg
503 1.7 mrg /* try from rear */
504 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
505 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
506 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
507 1.7 mrg vm_physmem[lcv].avail_end--;
508 1.7 mrg vm_physmem[lcv].end--;
509 1.7 mrg /* nothing left? nuke it */
510 1.7 mrg if (vm_physmem[lcv].avail_end ==
511 1.7 mrg vm_physmem[lcv].start) {
512 1.7 mrg if (vm_nphysseg == 1)
513 1.7 mrg panic("vm_page_physget: out of memory!");
514 1.7 mrg vm_nphysseg--;
515 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
516 1.7 mrg /* structure copy */
517 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
518 1.7 mrg }
519 1.7 mrg return (TRUE);
520 1.7 mrg }
521 1.7 mrg }
522 1.1 mrg
523 1.7 mrg /* pass2: forget about matching ends, just allocate something */
524 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
525 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
526 1.1 mrg #else
527 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
528 1.1 mrg #endif
529 1.7 mrg {
530 1.1 mrg
531 1.7 mrg /* any room in this bank? */
532 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
533 1.7 mrg continue; /* nope */
534 1.7 mrg
535 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
536 1.7 mrg vm_physmem[lcv].avail_start++;
537 1.7 mrg /* truncate! */
538 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
539 1.7 mrg
540 1.7 mrg /* nothing left? nuke it */
541 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
542 1.7 mrg if (vm_nphysseg == 1)
543 1.7 mrg panic("vm_page_physget: out of memory!");
544 1.7 mrg vm_nphysseg--;
545 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
546 1.7 mrg /* structure copy */
547 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
548 1.7 mrg }
549 1.7 mrg return (TRUE);
550 1.7 mrg }
551 1.1 mrg
552 1.7 mrg return (FALSE); /* whoops! */
553 1.28 drochner }
554 1.28 drochner
555 1.28 drochner boolean_t
556 1.28 drochner uvm_page_physget(paddrp)
557 1.28 drochner paddr_t *paddrp;
558 1.28 drochner {
559 1.28 drochner int i;
560 1.28 drochner
561 1.28 drochner /* try in the order of freelist preference */
562 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
563 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
564 1.28 drochner return (TRUE);
565 1.28 drochner return (FALSE);
566 1.1 mrg }
567 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
568 1.1 mrg
569 1.1 mrg /*
570 1.1 mrg * uvm_page_physload: load physical memory into VM system
571 1.1 mrg *
572 1.1 mrg * => all args are PFs
573 1.1 mrg * => all pages in start/end get vm_page structures
574 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
575 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
576 1.1 mrg */
577 1.1 mrg
578 1.7 mrg void
579 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
580 1.14 eeh vaddr_t start, end, avail_start, avail_end;
581 1.12 thorpej int free_list;
582 1.1 mrg {
583 1.14 eeh int preload, lcv;
584 1.14 eeh psize_t npages;
585 1.7 mrg struct vm_page *pgs;
586 1.7 mrg struct vm_physseg *ps;
587 1.7 mrg
588 1.7 mrg if (uvmexp.pagesize == 0)
589 1.7 mrg panic("vm_page_physload: page size not set!");
590 1.7 mrg
591 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
592 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
593 1.26 drochner
594 1.26 drochner if (start >= end)
595 1.26 drochner panic("uvm_page_physload: start >= end");
596 1.12 thorpej
597 1.7 mrg /*
598 1.7 mrg * do we have room?
599 1.7 mrg */
600 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
601 1.7 mrg printf("vm_page_physload: unable to load physical memory "
602 1.7 mrg "segment\n");
603 1.7 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
604 1.7 mrg VM_PHYSSEG_MAX, start, end);
605 1.7 mrg return;
606 1.7 mrg }
607 1.7 mrg
608 1.7 mrg /*
609 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
610 1.7 mrg * called yet, so malloc is not available).
611 1.7 mrg */
612 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
613 1.7 mrg if (vm_physmem[lcv].pgs)
614 1.7 mrg break;
615 1.7 mrg }
616 1.7 mrg preload = (lcv == vm_nphysseg);
617 1.7 mrg
618 1.7 mrg /*
619 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
620 1.7 mrg */
621 1.7 mrg if (!preload) {
622 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
623 1.7 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
624 1.1 mrg #else
625 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
626 1.14 eeh paddr_t paddr;
627 1.7 mrg npages = end - start; /* # of pages */
628 1.7 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
629 1.7 mrg M_VMPAGE, M_NOWAIT);
630 1.7 mrg if (pgs == NULL) {
631 1.7 mrg printf("vm_page_physload: can not malloc vm_page "
632 1.7 mrg "structs for segment\n");
633 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
634 1.7 mrg return;
635 1.7 mrg }
636 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
637 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
638 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
639 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
640 1.7 mrg pgs[lcv].phys_addr = paddr;
641 1.12 thorpej pgs[lcv].free_list = free_list;
642 1.7 mrg if (atop(paddr) >= avail_start &&
643 1.7 mrg atop(paddr) <= avail_end)
644 1.8 chuck uvm_pagefree(&pgs[lcv]);
645 1.7 mrg }
646 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
647 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
648 1.1 mrg #endif
649 1.7 mrg } else {
650 1.1 mrg
651 1.7 mrg /* gcc complains if these don't get init'd */
652 1.7 mrg pgs = NULL;
653 1.7 mrg npages = 0;
654 1.1 mrg
655 1.7 mrg }
656 1.1 mrg
657 1.7 mrg /*
658 1.7 mrg * now insert us in the proper place in vm_physmem[]
659 1.7 mrg */
660 1.1 mrg
661 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
662 1.1 mrg
663 1.7 mrg /* random: put it at the end (easy!) */
664 1.7 mrg ps = &vm_physmem[vm_nphysseg];
665 1.1 mrg
666 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
667 1.1 mrg
668 1.7 mrg {
669 1.7 mrg int x;
670 1.7 mrg /* sort by address for binary search */
671 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
672 1.7 mrg if (start < vm_physmem[lcv].start)
673 1.7 mrg break;
674 1.7 mrg ps = &vm_physmem[lcv];
675 1.7 mrg /* move back other entries, if necessary ... */
676 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
677 1.7 mrg /* structure copy */
678 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
679 1.7 mrg }
680 1.1 mrg
681 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
682 1.1 mrg
683 1.7 mrg {
684 1.7 mrg int x;
685 1.7 mrg /* sort by largest segment first */
686 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
687 1.7 mrg if ((end - start) >
688 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
689 1.7 mrg break;
690 1.7 mrg ps = &vm_physmem[lcv];
691 1.7 mrg /* move back other entries, if necessary ... */
692 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
693 1.7 mrg /* structure copy */
694 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
695 1.7 mrg }
696 1.1 mrg
697 1.1 mrg #else
698 1.1 mrg
699 1.7 mrg panic("vm_page_physload: unknown physseg strategy selected!");
700 1.1 mrg
701 1.1 mrg #endif
702 1.1 mrg
703 1.7 mrg ps->start = start;
704 1.7 mrg ps->end = end;
705 1.7 mrg ps->avail_start = avail_start;
706 1.7 mrg ps->avail_end = avail_end;
707 1.7 mrg if (preload) {
708 1.7 mrg ps->pgs = NULL;
709 1.7 mrg } else {
710 1.7 mrg ps->pgs = pgs;
711 1.7 mrg ps->lastpg = pgs + npages - 1;
712 1.7 mrg }
713 1.12 thorpej ps->free_list = free_list;
714 1.7 mrg vm_nphysseg++;
715 1.7 mrg
716 1.7 mrg /*
717 1.7 mrg * done!
718 1.7 mrg */
719 1.1 mrg
720 1.7 mrg if (!preload)
721 1.7 mrg uvm_page_rehash();
722 1.1 mrg
723 1.7 mrg return;
724 1.1 mrg }
725 1.1 mrg
726 1.1 mrg /*
727 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
728 1.1 mrg */
729 1.1 mrg
730 1.7 mrg void
731 1.7 mrg uvm_page_rehash()
732 1.1 mrg {
733 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
734 1.7 mrg struct pglist *newbuckets, *oldbuckets;
735 1.7 mrg struct vm_page *pg;
736 1.7 mrg
737 1.7 mrg /*
738 1.7 mrg * compute number of pages that can go in the free pool
739 1.7 mrg */
740 1.7 mrg
741 1.7 mrg freepages = 0;
742 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
743 1.7 mrg freepages +=
744 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
745 1.7 mrg
746 1.7 mrg /*
747 1.7 mrg * compute number of buckets needed for this number of pages
748 1.7 mrg */
749 1.7 mrg
750 1.7 mrg bucketcount = 1;
751 1.7 mrg while (bucketcount < freepages)
752 1.7 mrg bucketcount = bucketcount * 2;
753 1.7 mrg
754 1.7 mrg /*
755 1.7 mrg * malloc new buckets
756 1.7 mrg */
757 1.7 mrg
758 1.7 mrg MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
759 1.7 mrg M_VMPBUCKET, M_NOWAIT);
760 1.7 mrg if (newbuckets == NULL) {
761 1.7 mrg printf("vm_page_physrehash: WARNING: could not grow page "
762 1.7 mrg "hash table\n");
763 1.7 mrg return;
764 1.7 mrg }
765 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
766 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
767 1.7 mrg
768 1.7 mrg /*
769 1.7 mrg * now replace the old buckets with the new ones and rehash everything
770 1.7 mrg */
771 1.7 mrg
772 1.7 mrg s = splimp();
773 1.7 mrg simple_lock(&uvm.hashlock);
774 1.7 mrg /* swap old for new ... */
775 1.7 mrg oldbuckets = uvm.page_hash;
776 1.7 mrg oldcount = uvm.page_nhash;
777 1.7 mrg uvm.page_hash = newbuckets;
778 1.7 mrg uvm.page_nhash = bucketcount;
779 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
780 1.7 mrg
781 1.7 mrg /* ... and rehash */
782 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
783 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
784 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
785 1.7 mrg TAILQ_INSERT_TAIL(
786 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
787 1.7 mrg pg, hashq);
788 1.7 mrg }
789 1.7 mrg }
790 1.7 mrg simple_unlock(&uvm.hashlock);
791 1.7 mrg splx(s);
792 1.7 mrg
793 1.7 mrg /*
794 1.7 mrg * free old bucket array if we malloc'd it previously
795 1.7 mrg */
796 1.7 mrg
797 1.7 mrg if (oldbuckets != &uvm_bootbucket)
798 1.7 mrg FREE(oldbuckets, M_VMPBUCKET);
799 1.7 mrg
800 1.7 mrg /*
801 1.7 mrg * done
802 1.7 mrg */
803 1.7 mrg return;
804 1.1 mrg }
805 1.1 mrg
806 1.1 mrg
807 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
808 1.1 mrg
809 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
810 1.1 mrg
811 1.1 mrg /* call from DDB */
812 1.7 mrg void
813 1.7 mrg uvm_page_physdump()
814 1.7 mrg {
815 1.7 mrg int lcv;
816 1.7 mrg
817 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
818 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
819 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
820 1.7 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
821 1.7 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
822 1.7 mrg vm_physmem[lcv].avail_end);
823 1.7 mrg printf("STRATEGY = ");
824 1.7 mrg switch (VM_PHYSSEG_STRAT) {
825 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
826 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
827 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
828 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
829 1.7 mrg }
830 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
831 1.1 mrg }
832 1.1 mrg #endif
833 1.1 mrg
834 1.1 mrg /*
835 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
836 1.1 mrg *
837 1.1 mrg * => return null if no pages free
838 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
839 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
840 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
841 1.1 mrg * => only one of obj or anon can be non-null
842 1.1 mrg * => caller must activate/deactivate page if it is not wired.
843 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
844 1.1 mrg */
845 1.1 mrg
846 1.7 mrg struct vm_page *
847 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
848 1.7 mrg struct uvm_object *obj;
849 1.14 eeh vaddr_t off;
850 1.18 chs int flags;
851 1.7 mrg struct vm_anon *anon;
852 1.12 thorpej int strat, free_list;
853 1.1 mrg {
854 1.12 thorpej int lcv, s;
855 1.7 mrg struct vm_page *pg;
856 1.12 thorpej struct pglist *freeq;
857 1.18 chs boolean_t use_reserve;
858 1.1 mrg
859 1.1 mrg #ifdef DIAGNOSTIC
860 1.7 mrg /* sanity check */
861 1.7 mrg if (obj && anon)
862 1.7 mrg panic("uvm_pagealloc: obj and anon != NULL");
863 1.1 mrg #endif
864 1.1 mrg
865 1.21 thorpej s = uvm_lock_fpageq(); /* lock free page queue */
866 1.1 mrg
867 1.7 mrg /*
868 1.7 mrg * check to see if we need to generate some free pages waking
869 1.7 mrg * the pagedaemon.
870 1.7 mrg */
871 1.7 mrg
872 1.7 mrg if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
873 1.7 mrg uvmexp.inactive < uvmexp.inactarg))
874 1.24 thorpej wakeup(&uvm.pagedaemon);
875 1.7 mrg
876 1.7 mrg /*
877 1.7 mrg * fail if any of these conditions is true:
878 1.7 mrg * [1] there really are no free pages, or
879 1.7 mrg * [2] only kernel "reserved" pages remain and
880 1.7 mrg * the page isn't being allocated to a kernel object.
881 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
882 1.7 mrg * the requestor isn't the pagedaemon.
883 1.7 mrg */
884 1.7 mrg
885 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
886 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
887 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
888 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
889 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
890 1.12 thorpej goto fail;
891 1.12 thorpej
892 1.12 thorpej again:
893 1.12 thorpej switch (strat) {
894 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
895 1.12 thorpej /* Check all freelists in descending priority order. */
896 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
897 1.12 thorpej freeq = &uvm.page_free[lcv];
898 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
899 1.12 thorpej goto gotit;
900 1.12 thorpej }
901 1.12 thorpej
902 1.12 thorpej /* No pages free! */
903 1.12 thorpej goto fail;
904 1.12 thorpej
905 1.12 thorpej case UVM_PGA_STRAT_ONLY:
906 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
907 1.12 thorpej /* Attempt to allocate from the specified free list. */
908 1.12 thorpej #ifdef DIAGNOSTIC
909 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < 0)
910 1.12 thorpej panic("uvm_pagealloc_strat: bad free list %d",
911 1.12 thorpej free_list);
912 1.12 thorpej #endif
913 1.12 thorpej freeq = &uvm.page_free[free_list];
914 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
915 1.12 thorpej goto gotit;
916 1.12 thorpej
917 1.12 thorpej /* Fall back, if possible. */
918 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
919 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
920 1.12 thorpej goto again;
921 1.12 thorpej }
922 1.12 thorpej
923 1.12 thorpej /* No pages free! */
924 1.12 thorpej goto fail;
925 1.12 thorpej
926 1.12 thorpej default:
927 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
928 1.12 thorpej /* NOTREACHED */
929 1.7 mrg }
930 1.7 mrg
931 1.12 thorpej gotit:
932 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
933 1.7 mrg uvmexp.free--;
934 1.7 mrg
935 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
936 1.7 mrg
937 1.7 mrg pg->offset = off;
938 1.7 mrg pg->uobject = obj;
939 1.7 mrg pg->uanon = anon;
940 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
941 1.7 mrg pg->version++;
942 1.7 mrg pg->wire_count = 0;
943 1.7 mrg pg->loan_count = 0;
944 1.7 mrg if (anon) {
945 1.7 mrg anon->u.an_page = pg;
946 1.7 mrg pg->pqflags = PQ_ANON;
947 1.7 mrg } else {
948 1.7 mrg if (obj)
949 1.7 mrg uvm_pageinsert(pg);
950 1.7 mrg pg->pqflags = 0;
951 1.7 mrg }
952 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
953 1.7 mrg pg->owner_tag = NULL;
954 1.1 mrg #endif
955 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
956 1.1 mrg
957 1.7 mrg return(pg);
958 1.12 thorpej
959 1.12 thorpej fail:
960 1.21 thorpej uvm_unlock_fpageq(s);
961 1.12 thorpej return (NULL);
962 1.1 mrg }
963 1.1 mrg
964 1.1 mrg /*
965 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
966 1.1 mrg *
967 1.1 mrg * => both objects must be locked
968 1.1 mrg */
969 1.1 mrg
970 1.7 mrg void
971 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
972 1.7 mrg struct vm_page *pg;
973 1.7 mrg struct uvm_object *newobj;
974 1.14 eeh vaddr_t newoff;
975 1.1 mrg {
976 1.7 mrg /*
977 1.7 mrg * remove it from the old object
978 1.7 mrg */
979 1.7 mrg
980 1.7 mrg if (pg->uobject) {
981 1.7 mrg uvm_pageremove(pg);
982 1.7 mrg }
983 1.7 mrg
984 1.7 mrg /*
985 1.7 mrg * put it in the new object
986 1.7 mrg */
987 1.7 mrg
988 1.7 mrg if (newobj) {
989 1.7 mrg pg->uobject = newobj;
990 1.7 mrg pg->offset = newoff;
991 1.7 mrg pg->version++;
992 1.7 mrg uvm_pageinsert(pg);
993 1.7 mrg }
994 1.1 mrg
995 1.7 mrg return;
996 1.1 mrg }
997 1.1 mrg
998 1.1 mrg
999 1.1 mrg /*
1000 1.1 mrg * uvm_pagefree: free page
1001 1.1 mrg *
1002 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1003 1.1 mrg * => put page on free list
1004 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1005 1.1 mrg * => caller must lock page queues
1006 1.1 mrg * => assumes all valid mappings of pg are gone
1007 1.1 mrg */
1008 1.1 mrg
1009 1.1 mrg void uvm_pagefree(pg)
1010 1.1 mrg
1011 1.1 mrg struct vm_page *pg;
1012 1.1 mrg
1013 1.1 mrg {
1014 1.7 mrg int s;
1015 1.7 mrg int saved_loan_count = pg->loan_count;
1016 1.1 mrg
1017 1.7 mrg /*
1018 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1019 1.7 mrg * from the object.
1020 1.7 mrg */
1021 1.7 mrg
1022 1.7 mrg if (pg->flags & PG_TABLED) {
1023 1.7 mrg
1024 1.7 mrg /*
1025 1.7 mrg * if the object page is on loan we are going to drop ownership.
1026 1.7 mrg * it is possible that an anon will take over as owner for this
1027 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1028 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1029 1.7 mrg * page out.
1030 1.7 mrg */
1031 1.7 mrg
1032 1.7 mrg if (saved_loan_count)
1033 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1034 1.7 mrg
1035 1.7 mrg uvm_pageremove(pg);
1036 1.7 mrg
1037 1.7 mrg /*
1038 1.7 mrg * if our page was on loan, then we just lost control over it
1039 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1040 1.7 mrg * already taken over ownership of the page by now and thus
1041 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1042 1.7 mrg * return (when the last loan is dropped, then the page can be
1043 1.7 mrg * freed by whatever was holding the last loan).
1044 1.7 mrg */
1045 1.7 mrg if (saved_loan_count)
1046 1.7 mrg return;
1047 1.7 mrg
1048 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1049 1.7 mrg
1050 1.7 mrg /*
1051 1.7 mrg * if our page is owned by an anon and is loaned out to the
1052 1.7 mrg * kernel then we just want to drop ownership and return.
1053 1.7 mrg * the kernel must free the page when all its loans clear ...
1054 1.7 mrg * note that the kernel can't change the loan status of our
1055 1.7 mrg * page as long as we are holding PQ lock.
1056 1.7 mrg */
1057 1.7 mrg pg->pqflags &= ~PQ_ANON;
1058 1.7 mrg pg->uanon = NULL;
1059 1.7 mrg return;
1060 1.7 mrg }
1061 1.1 mrg
1062 1.1 mrg #ifdef DIAGNOSTIC
1063 1.7 mrg if (saved_loan_count) {
1064 1.7 mrg printf("uvm_pagefree: warning: freeing page with a loan "
1065 1.7 mrg "count of %d\n", saved_loan_count);
1066 1.7 mrg panic("uvm_pagefree: loan count");
1067 1.7 mrg }
1068 1.1 mrg #endif
1069 1.7 mrg
1070 1.1 mrg
1071 1.7 mrg /*
1072 1.7 mrg * now remove the page from the queues
1073 1.7 mrg */
1074 1.7 mrg
1075 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1076 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1077 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1078 1.7 mrg uvmexp.active--;
1079 1.7 mrg }
1080 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1081 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1082 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1083 1.7 mrg else
1084 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1085 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1086 1.7 mrg uvmexp.inactive--;
1087 1.7 mrg }
1088 1.7 mrg
1089 1.7 mrg /*
1090 1.7 mrg * if the page was wired, unwire it now.
1091 1.7 mrg */
1092 1.7 mrg if (pg->wire_count)
1093 1.7 mrg {
1094 1.7 mrg pg->wire_count = 0;
1095 1.7 mrg uvmexp.wired--;
1096 1.7 mrg }
1097 1.7 mrg
1098 1.7 mrg /*
1099 1.7 mrg * and put on free queue
1100 1.7 mrg */
1101 1.7 mrg
1102 1.21 thorpej s = uvm_lock_fpageq();
1103 1.12 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1104 1.12 thorpej pg, pageq);
1105 1.7 mrg pg->pqflags = PQ_FREE;
1106 1.3 chs #ifdef DEBUG
1107 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1108 1.7 mrg pg->offset = 0xdeadbeef;
1109 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1110 1.3 chs #endif
1111 1.7 mrg uvmexp.free++;
1112 1.21 thorpej uvm_unlock_fpageq(s);
1113 1.1 mrg }
1114 1.1 mrg
1115 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1116 1.1 mrg /*
1117 1.1 mrg * uvm_page_own: set or release page ownership
1118 1.1 mrg *
1119 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1120 1.1 mrg * and where they do it. it can be used to track down problems
1121 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1122 1.1 mrg * => page's object [if any] must be locked
1123 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1124 1.1 mrg */
1125 1.7 mrg void
1126 1.7 mrg uvm_page_own(pg, tag)
1127 1.7 mrg struct vm_page *pg;
1128 1.7 mrg char *tag;
1129 1.1 mrg {
1130 1.7 mrg /* gain ownership? */
1131 1.7 mrg if (tag) {
1132 1.7 mrg if (pg->owner_tag) {
1133 1.7 mrg printf("uvm_page_own: page %p already owned "
1134 1.7 mrg "by proc %d [%s]\n", pg,
1135 1.7 mrg pg->owner, pg->owner_tag);
1136 1.7 mrg panic("uvm_page_own");
1137 1.7 mrg }
1138 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1139 1.7 mrg pg->owner_tag = tag;
1140 1.7 mrg return;
1141 1.7 mrg }
1142 1.7 mrg
1143 1.7 mrg /* drop ownership */
1144 1.7 mrg if (pg->owner_tag == NULL) {
1145 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1146 1.7 mrg "page (%p)\n", pg);
1147 1.7 mrg panic("uvm_page_own");
1148 1.7 mrg }
1149 1.7 mrg pg->owner_tag = NULL;
1150 1.7 mrg return;
1151 1.1 mrg }
1152 1.1 mrg #endif
1153