uvm_page.c revision 1.3 1 1.3 chs /* $NetBSD: uvm_page.c,v 1.3 1998/02/07 02:34:08 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
46 1.1 mrg *
47 1.1 mrg *
48 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
49 1.1 mrg * All rights reserved.
50 1.1 mrg *
51 1.1 mrg * Permission to use, copy, modify and distribute this software and
52 1.1 mrg * its documentation is hereby granted, provided that both the copyright
53 1.1 mrg * notice and this permission notice appear in all copies of the
54 1.1 mrg * software, derivative works or modified versions, and any portions
55 1.1 mrg * thereof, and that both notices appear in supporting documentation.
56 1.1 mrg *
57 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 1.1 mrg *
61 1.1 mrg * Carnegie Mellon requests users of this software to return to
62 1.1 mrg *
63 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
64 1.1 mrg * School of Computer Science
65 1.1 mrg * Carnegie Mellon University
66 1.1 mrg * Pittsburgh PA 15213-3890
67 1.1 mrg *
68 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
69 1.1 mrg * rights to redistribute these changes.
70 1.1 mrg */
71 1.1 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_page.c: page ops.
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/systm.h>
78 1.1 mrg #include <sys/malloc.h>
79 1.1 mrg #include <sys/mount.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg
82 1.1 mrg #include <vm/vm.h>
83 1.1 mrg #include <vm/vm_page.h>
84 1.1 mrg #include <vm/vm_kern.h>
85 1.1 mrg
86 1.1 mrg #include <sys/syscallargs.h>
87 1.1 mrg
88 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
89 1.1 mrg #include <uvm/uvm.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg /*
96 1.1 mrg * physical memory config is stored in vm_physmem.
97 1.1 mrg */
98 1.1 mrg
99 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
100 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
101 1.1 mrg
102 1.1 mrg /*
103 1.1 mrg * local variables
104 1.1 mrg */
105 1.1 mrg
106 1.1 mrg /*
107 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
108 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
109 1.1 mrg * and pmap_startup here also uses them internally.
110 1.1 mrg */
111 1.1 mrg
112 1.1 mrg static vm_offset_t virtual_space_start;
113 1.1 mrg static vm_offset_t virtual_space_end;
114 1.1 mrg
115 1.1 mrg /*
116 1.1 mrg * we use a hash table with only one bucket during bootup. we will
117 1.1 mrg * later rehash (resize) the hash table once malloc() is ready.
118 1.1 mrg * we static allocate the bootstrap bucket below...
119 1.1 mrg */
120 1.1 mrg
121 1.1 mrg static struct pglist uvm_bootbucket;
122 1.1 mrg
123 1.1 mrg /*
124 1.1 mrg * local prototypes
125 1.1 mrg */
126 1.1 mrg
127 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
128 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
129 1.1 mrg static boolean_t uvm_page_physget __P((vm_offset_t *));
130 1.1 mrg #endif
131 1.1 mrg
132 1.1 mrg
133 1.1 mrg /*
134 1.1 mrg * inline functions
135 1.1 mrg */
136 1.1 mrg
137 1.1 mrg /*
138 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
139 1.1 mrg *
140 1.1 mrg * => caller must lock object
141 1.1 mrg * => caller must lock page queues
142 1.1 mrg * => call should have already set pg's object and offset pointers
143 1.1 mrg * and bumped the version counter
144 1.1 mrg */
145 1.1 mrg
146 1.1 mrg __inline static void uvm_pageinsert(pg)
147 1.1 mrg
148 1.1 mrg struct vm_page *pg;
149 1.1 mrg
150 1.1 mrg {
151 1.1 mrg struct pglist *buck;
152 1.1 mrg int s;
153 1.1 mrg
154 1.1 mrg #ifdef DIAGNOSTIC
155 1.1 mrg if (pg->flags & PG_TABLED)
156 1.1 mrg panic("uvm_pageinsert: already inserted");
157 1.1 mrg #endif
158 1.1 mrg
159 1.1 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
160 1.1 mrg s = splimp();
161 1.1 mrg simple_lock(&uvm.hashlock);
162 1.1 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
163 1.1 mrg simple_unlock(&uvm.hashlock);
164 1.1 mrg splx(s);
165 1.1 mrg
166 1.1 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
167 1.1 mrg pg->flags |= PG_TABLED;
168 1.1 mrg pg->uobject->uo_npages++;
169 1.1 mrg
170 1.1 mrg }
171 1.1 mrg
172 1.1 mrg /*
173 1.1 mrg * uvm_page_remove: remove page from object and hash
174 1.1 mrg *
175 1.1 mrg * => caller must lock object
176 1.1 mrg * => caller must lock page queues
177 1.1 mrg */
178 1.1 mrg
179 1.1 mrg void __inline uvm_pageremove(pg)
180 1.1 mrg
181 1.1 mrg struct vm_page *pg;
182 1.1 mrg
183 1.1 mrg {
184 1.1 mrg struct pglist *buck;
185 1.1 mrg int s;
186 1.1 mrg
187 1.1 mrg #ifdef DIAGNOSTIC
188 1.1 mrg if ((pg->flags & (PG_FAULTING)) != 0)
189 1.1 mrg panic("uvm_pageremove: page is faulting");
190 1.1 mrg #endif
191 1.1 mrg
192 1.1 mrg if ((pg->flags & PG_TABLED) == 0)
193 1.1 mrg return; /* XXX: log */
194 1.1 mrg
195 1.1 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
196 1.1 mrg s = splimp();
197 1.1 mrg simple_lock(&uvm.hashlock);
198 1.1 mrg TAILQ_REMOVE(buck, pg, hashq);
199 1.1 mrg simple_unlock(&uvm.hashlock);
200 1.1 mrg splx(s);
201 1.1 mrg
202 1.1 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);/* object should be locked */
203 1.1 mrg
204 1.1 mrg pg->flags &= ~PG_TABLED;
205 1.1 mrg pg->uobject->uo_npages--;
206 1.1 mrg pg->uobject = NULL;
207 1.1 mrg pg->version++;
208 1.1 mrg
209 1.1 mrg }
210 1.1 mrg
211 1.1 mrg /*
212 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
213 1.1 mrg *
214 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
215 1.1 mrg */
216 1.1 mrg
217 1.1 mrg void uvm_page_init(kvm_startp, kvm_endp)
218 1.1 mrg
219 1.1 mrg vm_offset_t *kvm_startp, *kvm_endp;
220 1.1 mrg
221 1.1 mrg {
222 1.1 mrg int freepages, pagecount;
223 1.1 mrg vm_page_t pagearray;
224 1.1 mrg int lcv, n, i;
225 1.1 mrg vm_offset_t paddr;
226 1.1 mrg
227 1.1 mrg
228 1.1 mrg /*
229 1.1 mrg * step 1: init the page queues and page queue locks
230 1.1 mrg */
231 1.1 mrg
232 1.1 mrg TAILQ_INIT(&uvm.page_free);
233 1.1 mrg TAILQ_INIT(&uvm.page_active);
234 1.1 mrg TAILQ_INIT(&uvm.page_inactive_swp);
235 1.1 mrg TAILQ_INIT(&uvm.page_inactive_obj);
236 1.1 mrg simple_lock_init(&uvm.pageqlock);
237 1.1 mrg simple_lock_init(&uvm.fpageqlock);
238 1.1 mrg
239 1.1 mrg /*
240 1.1 mrg * step 2: init the <obj,offset> => <page> hash table. for now
241 1.1 mrg * we just have one bucket (the bootstrap bucket). later on we
242 1.1 mrg * will malloc() new buckets as we dynamically resize the hash table.
243 1.1 mrg */
244 1.1 mrg
245 1.1 mrg uvm.page_nhash = 1; /* 1 bucket */
246 1.1 mrg uvm.page_hashmask = 0; /* mask for hash function */
247 1.1 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
248 1.1 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
249 1.1 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
250 1.1 mrg
251 1.1 mrg /*
252 1.1 mrg * step 3: allocate vm_page structures.
253 1.1 mrg */
254 1.1 mrg
255 1.1 mrg /*
256 1.1 mrg * sanity check:
257 1.1 mrg * before calling this function the MD code is expected to register
258 1.1 mrg * some free RAM with the uvm_page_physload() function. our job
259 1.1 mrg * now is to allocate vm_page structures for this memory.
260 1.1 mrg */
261 1.1 mrg
262 1.1 mrg if (vm_nphysseg == 0)
263 1.1 mrg panic("vm_page_bootstrap: no memory pre-allocated");
264 1.1 mrg
265 1.1 mrg /*
266 1.1 mrg * first calculate the number of free pages...
267 1.1 mrg *
268 1.1 mrg * note that we use start/end rather than avail_start/avail_end.
269 1.1 mrg * this allows us to allocate extra vm_page structures in case we
270 1.1 mrg * want to return some memory to the pool after booting.
271 1.1 mrg */
272 1.1 mrg
273 1.1 mrg freepages = 0;
274 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
275 1.1 mrg freepages = freepages + (vm_physmem[lcv].end - vm_physmem[lcv].start);
276 1.1 mrg }
277 1.1 mrg
278 1.1 mrg /*
279 1.1 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
280 1.1 mrg * use. for each page of memory we use we need a vm_page structure.
281 1.1 mrg * thus, the total number of pages we can use is the total size of
282 1.1 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
283 1.1 mrg * structure. we add one to freepages as a fudge factor to avoid
284 1.1 mrg * truncation errors (since we can only allocate in terms of whole
285 1.1 mrg * pages).
286 1.1 mrg */
287 1.1 mrg
288 1.1 mrg pagecount = (PAGE_SIZE * (freepages + 1)) /
289 1.1 mrg (PAGE_SIZE + sizeof(struct vm_page));
290 1.1 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * sizeof(struct vm_page));
291 1.1 mrg bzero(pagearray, pagecount * sizeof(struct vm_page));
292 1.1 mrg
293 1.1 mrg /*
294 1.1 mrg * step 4: init the vm_page structures and put them in the correct
295 1.1 mrg * place...
296 1.1 mrg */
297 1.1 mrg
298 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
299 1.1 mrg
300 1.1 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
301 1.1 mrg if (n > pagecount) {
302 1.1 mrg printf("uvm_page_init: lost %d page(s) in init\n", n - pagecount);
303 1.1 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
304 1.1 mrg /* n = pagecount; */
305 1.1 mrg }
306 1.1 mrg /* set up page array pointers */
307 1.1 mrg vm_physmem[lcv].pgs = pagearray;
308 1.1 mrg pagearray += n;
309 1.1 mrg pagecount -= n;
310 1.1 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
311 1.1 mrg
312 1.1 mrg /* init and free vm_pages (we've already bzero'd them) */
313 1.1 mrg paddr = ptoa(vm_physmem[lcv].start);
314 1.1 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
315 1.1 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
316 1.1 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
317 1.1 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
318 1.1 mrg uvmexp.npages++;
319 1.1 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]); /* add page to free pool */
320 1.1 mrg }
321 1.1 mrg }
322 1.1 mrg }
323 1.1 mrg /*
324 1.1 mrg * step 5: pass up the values of virtual_space_start and
325 1.1 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
326 1.1 mrg * layers of the VM.
327 1.1 mrg */
328 1.1 mrg
329 1.1 mrg *kvm_startp = round_page(virtual_space_start);
330 1.1 mrg *kvm_endp = trunc_page(virtual_space_end);
331 1.1 mrg
332 1.1 mrg /*
333 1.1 mrg * step 6: init pagedaemon lock
334 1.1 mrg */
335 1.1 mrg
336 1.1 mrg simple_lock_init(&uvm.pagedaemon_lock);
337 1.1 mrg
338 1.1 mrg /*
339 1.3 chs * step 7: init reserve thresholds
340 1.3 chs * XXXCDC - values may need adjusting
341 1.3 chs */
342 1.3 chs uvmexp.reserve_pagedaemon = 1;
343 1.3 chs uvmexp.reserve_kernel = 5;
344 1.3 chs
345 1.3 chs /*
346 1.1 mrg * done!
347 1.1 mrg */
348 1.1 mrg
349 1.1 mrg }
350 1.1 mrg
351 1.1 mrg /*
352 1.1 mrg * uvm_setpagesize: set the page size
353 1.1 mrg *
354 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
355 1.1 mrg * => XXXCDC: move global vars.
356 1.1 mrg */
357 1.1 mrg
358 1.1 mrg void uvm_setpagesize()
359 1.1 mrg {
360 1.1 mrg if (uvmexp.pagesize == 0)
361 1.1 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
362 1.1 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
363 1.1 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
364 1.1 mrg panic("uvm_setpagesize: page size not a power of two");
365 1.1 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
366 1.1 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
367 1.1 mrg break;
368 1.1 mrg }
369 1.1 mrg
370 1.1 mrg /*
371 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
372 1.1 mrg */
373 1.1 mrg
374 1.1 mrg vm_offset_t uvm_pageboot_alloc(size)
375 1.1 mrg
376 1.1 mrg vm_size_t size;
377 1.1 mrg
378 1.1 mrg {
379 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
380 1.1 mrg vm_offset_t addr;
381 1.1 mrg
382 1.1 mrg /*
383 1.1 mrg * defer bootstrap allocation to MD code (it may want to allocate
384 1.1 mrg * from a direct-mapped segment). pmap_steal_memory should round
385 1.1 mrg * off virtual_space_start/virtual_space_end.
386 1.1 mrg */
387 1.1 mrg
388 1.1 mrg addr = pmap_steal_memory(size, &virtual_space_start, &virtual_space_end);
389 1.1 mrg
390 1.1 mrg return(addr);
391 1.1 mrg
392 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
393 1.1 mrg
394 1.1 mrg vm_offset_t addr, vaddr, paddr;
395 1.1 mrg
396 1.1 mrg /* round the size to an integer multiple */
397 1.1 mrg size = (size + 3) &~ 3; /* XXX */
398 1.1 mrg
399 1.1 mrg /*
400 1.1 mrg * on first call to this function init ourselves. we detect this
401 1.1 mrg * by checking virtual_space_start/end which are in the zero'd BSS area.
402 1.1 mrg */
403 1.1 mrg
404 1.1 mrg if (virtual_space_start == virtual_space_end) {
405 1.1 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
406 1.1 mrg
407 1.1 mrg /* round it the way we like it */
408 1.1 mrg virtual_space_start = round_page(virtual_space_start);
409 1.1 mrg virtual_space_end = trunc_page(virtual_space_end);
410 1.1 mrg }
411 1.1 mrg
412 1.1 mrg /*
413 1.1 mrg * allocate virtual memory for this request
414 1.1 mrg */
415 1.1 mrg
416 1.1 mrg addr = virtual_space_start;
417 1.1 mrg virtual_space_start += size;
418 1.1 mrg
419 1.1 mrg /*
420 1.1 mrg * allocate and mapin physical pages to back new virtual pages
421 1.1 mrg */
422 1.1 mrg
423 1.1 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ; vaddr += PAGE_SIZE) {
424 1.1 mrg
425 1.1 mrg if (!uvm_page_physget(&paddr))
426 1.1 mrg panic("uvm_pageboot_alloc: out of memory");
427 1.1 mrg
428 1.1 mrg /* XXX: should be wired, but some pmaps don't like that ... */
429 1.1 mrg #if defined(PMAP_NEW)
430 1.1 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
431 1.1 mrg #else
432 1.1 mrg pmap_enter(pmap_kernel(), vaddr, paddr,
433 1.1 mrg VM_PROT_READ|VM_PROT_WRITE, FALSE);
434 1.1 mrg #endif
435 1.1 mrg
436 1.1 mrg }
437 1.1 mrg
438 1.1 mrg return(addr);
439 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
440 1.1 mrg }
441 1.1 mrg
442 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
443 1.1 mrg /*
444 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
445 1.1 mrg *
446 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
447 1.1 mrg * values match the start/end values. if we can't do that, then we
448 1.1 mrg * will advance both values (making them equal, and removing some
449 1.1 mrg * vm_page structures from the non-avail area).
450 1.1 mrg * => return false if out of memory.
451 1.1 mrg */
452 1.1 mrg
453 1.1 mrg static boolean_t uvm_page_physget(paddrp)
454 1.1 mrg
455 1.1 mrg vm_offset_t *paddrp;
456 1.1 mrg
457 1.1 mrg {
458 1.1 mrg int lcv, x;
459 1.1 mrg
460 1.1 mrg /* pass 1: try allocating from a matching end */
461 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
462 1.1 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
463 1.1 mrg #else
464 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
465 1.1 mrg #endif
466 1.1 mrg {
467 1.1 mrg
468 1.1 mrg if (vm_physmem[lcv].pgs)
469 1.1 mrg panic("vm_page_physget: called _after_ bootstrap");
470 1.1 mrg
471 1.1 mrg /* try from front */
472 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
473 1.1 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
474 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
475 1.1 mrg vm_physmem[lcv].avail_start++;
476 1.1 mrg vm_physmem[lcv].start++;
477 1.1 mrg /* nothing left? nuke it */
478 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
479 1.1 mrg if (vm_nphysseg == 1)
480 1.1 mrg panic("vm_page_physget: out of memory!");
481 1.1 mrg vm_nphysseg--;
482 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
483 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
484 1.1 mrg }
485 1.1 mrg return(TRUE);
486 1.1 mrg }
487 1.1 mrg
488 1.1 mrg /* try from rear */
489 1.1 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
490 1.1 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
491 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
492 1.1 mrg vm_physmem[lcv].avail_end--;
493 1.1 mrg vm_physmem[lcv].end--;
494 1.1 mrg /* nothing left? nuke it */
495 1.1 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].start) {
496 1.1 mrg if (vm_nphysseg == 1)
497 1.1 mrg panic("vm_page_physget: out of memory!");
498 1.1 mrg vm_nphysseg--;
499 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
500 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
501 1.1 mrg }
502 1.1 mrg return(TRUE);
503 1.1 mrg }
504 1.1 mrg }
505 1.1 mrg
506 1.1 mrg /* pass2: forget about matching ends, just allocate something */
507 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
508 1.1 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
509 1.1 mrg #else
510 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
511 1.1 mrg #endif
512 1.1 mrg {
513 1.1 mrg
514 1.1 mrg /* any room in this bank? */
515 1.1 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
516 1.1 mrg continue; /* nope */
517 1.1 mrg
518 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
519 1.1 mrg vm_physmem[lcv].avail_start++;
520 1.1 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
521 1.1 mrg /* nothing left? nuke it */
522 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
523 1.1 mrg if (vm_nphysseg == 1)
524 1.1 mrg panic("vm_page_physget: out of memory!");
525 1.1 mrg vm_nphysseg--;
526 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
527 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
528 1.1 mrg }
529 1.1 mrg return(TRUE);
530 1.1 mrg }
531 1.1 mrg
532 1.1 mrg return(FALSE); /* whoops! */
533 1.1 mrg }
534 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
535 1.1 mrg
536 1.1 mrg /*
537 1.1 mrg * uvm_page_physload: load physical memory into VM system
538 1.1 mrg *
539 1.1 mrg * => all args are PFs
540 1.1 mrg * => all pages in start/end get vm_page structures
541 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
542 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
543 1.1 mrg */
544 1.1 mrg
545 1.1 mrg void uvm_page_physload(start, end, avail_start, avail_end)
546 1.1 mrg
547 1.1 mrg vm_offset_t start, end, avail_start, avail_end;
548 1.1 mrg
549 1.1 mrg {
550 1.1 mrg int preload, lcv, npages;
551 1.1 mrg struct vm_page *pgs;
552 1.1 mrg struct vm_physseg *ps;
553 1.1 mrg
554 1.1 mrg if (uvmexp.pagesize == 0)
555 1.1 mrg panic("vm_page_physload: page size not set!");
556 1.1 mrg
557 1.1 mrg /*
558 1.1 mrg * do we have room?
559 1.1 mrg */
560 1.1 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
561 1.1 mrg printf("vm_page_physload: unable to load physical memory segment\n");
562 1.1 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
563 1.1 mrg VM_PHYSSEG_MAX, start, end);
564 1.1 mrg return;
565 1.1 mrg }
566 1.1 mrg
567 1.1 mrg /*
568 1.1 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
569 1.1 mrg * called yet, so malloc is not available).
570 1.1 mrg */
571 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
572 1.1 mrg if (vm_physmem[lcv].pgs)
573 1.1 mrg break;
574 1.1 mrg }
575 1.1 mrg preload = (lcv == vm_nphysseg);
576 1.1 mrg
577 1.1 mrg /*
578 1.1 mrg * if VM is already running, attempt to malloc() vm_page structures
579 1.1 mrg */
580 1.1 mrg if (!preload) {
581 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
582 1.1 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
583 1.1 mrg #else
584 1.1 mrg /* XXXCDC: need some sort of lockout for this case */
585 1.1 mrg vm_offset_t paddr;
586 1.1 mrg npages = end - start; /* # of pages */
587 1.1 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
588 1.1 mrg M_VMPAGE, M_NOWAIT);
589 1.1 mrg if (pgs == NULL) {
590 1.1 mrg printf("vm_page_physload: can not malloc vm_page structs for segment\n");
591 1.1 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
592 1.1 mrg return;
593 1.1 mrg }
594 1.1 mrg /* zero data, init phys_addr, and free pages */
595 1.1 mrg bzero(pgs, sizeof(struct vm_page) * npages);
596 1.1 mrg for (lcv = 0, paddr = ptoa(start) ;
597 1.1 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
598 1.1 mrg pgs[lcv].phys_addr = paddr;
599 1.1 mrg if (atop(paddr) >= avail_start && atop(paddr) <= avail_end)
600 1.1 mrg vm_page_free(&pgs[i]);
601 1.1 mrg }
602 1.1 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
603 1.1 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
604 1.1 mrg #endif
605 1.1 mrg } else {
606 1.1 mrg
607 1.1 mrg /* gcc complains if these don't get init'd */
608 1.1 mrg pgs = NULL;
609 1.1 mrg npages = 0;
610 1.1 mrg
611 1.1 mrg }
612 1.1 mrg
613 1.1 mrg /*
614 1.1 mrg * now insert us in the proper place in vm_physmem[]
615 1.1 mrg */
616 1.1 mrg
617 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
618 1.1 mrg
619 1.1 mrg /* random: put it at the end (easy!) */
620 1.1 mrg ps = &vm_physmem[vm_nphysseg];
621 1.1 mrg
622 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
623 1.1 mrg
624 1.1 mrg {
625 1.1 mrg int x;
626 1.1 mrg /* sort by address for binary search */
627 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
628 1.1 mrg if (start < vm_physmem[lcv].start)
629 1.1 mrg break;
630 1.1 mrg ps = &vm_physmem[lcv];
631 1.1 mrg /* move back other entries, if necessary ... */
632 1.1 mrg for (x = vm_nphysseg ; x > lcv ; x--)
633 1.1 mrg vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
634 1.1 mrg }
635 1.1 mrg
636 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
637 1.1 mrg
638 1.1 mrg {
639 1.1 mrg int x;
640 1.1 mrg /* sort by largest segment first */
641 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
642 1.1 mrg if ((end - start) > (vm_physmem[lcv].end - vm_physmem[lcv].start))
643 1.1 mrg break;
644 1.1 mrg ps = &vm_physmem[lcv];
645 1.1 mrg /* move back other entries, if necessary ... */
646 1.1 mrg for (x = vm_nphysseg ; x > lcv ; x--)
647 1.1 mrg vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
648 1.1 mrg }
649 1.1 mrg
650 1.1 mrg #else
651 1.1 mrg
652 1.1 mrg panic("vm_page_physload: unknown physseg strategy selected!");
653 1.1 mrg
654 1.1 mrg #endif
655 1.1 mrg
656 1.1 mrg ps->start = start;
657 1.1 mrg ps->end = end;
658 1.1 mrg ps->avail_start = avail_start;
659 1.1 mrg ps->avail_end = avail_end;
660 1.1 mrg if (preload) {
661 1.1 mrg ps->pgs = NULL;
662 1.1 mrg } else {
663 1.1 mrg ps->pgs = pgs;
664 1.1 mrg ps->lastpg = pgs + npages - 1;
665 1.1 mrg }
666 1.1 mrg vm_nphysseg++;
667 1.1 mrg
668 1.1 mrg /*
669 1.1 mrg * done!
670 1.1 mrg */
671 1.1 mrg
672 1.1 mrg if (!preload)
673 1.1 mrg uvm_page_rehash();
674 1.1 mrg
675 1.1 mrg return;
676 1.1 mrg }
677 1.1 mrg
678 1.1 mrg /*
679 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
680 1.1 mrg */
681 1.1 mrg
682 1.1 mrg void uvm_page_rehash()
683 1.1 mrg
684 1.1 mrg {
685 1.1 mrg int freepages, lcv, bucketcount, s, oldcount;
686 1.1 mrg struct pglist *newbuckets, *oldbuckets;
687 1.1 mrg struct vm_page *pg;
688 1.1 mrg
689 1.1 mrg /*
690 1.1 mrg * compute number of pages that can go in the free pool
691 1.1 mrg */
692 1.1 mrg
693 1.1 mrg freepages = 0;
694 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
695 1.1 mrg freepages = freepages +
696 1.1 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
697 1.1 mrg
698 1.1 mrg /*
699 1.1 mrg * compute number of buckets needed for this number of pages
700 1.1 mrg */
701 1.1 mrg
702 1.1 mrg bucketcount = 1;
703 1.1 mrg while (bucketcount < freepages)
704 1.1 mrg bucketcount = bucketcount * 2;
705 1.1 mrg
706 1.1 mrg /*
707 1.1 mrg * malloc new buckets
708 1.1 mrg */
709 1.1 mrg
710 1.1 mrg MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
711 1.1 mrg M_VMPBUCKET, M_NOWAIT);
712 1.1 mrg if (newbuckets == NULL) {
713 1.1 mrg printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
714 1.1 mrg return;
715 1.1 mrg }
716 1.1 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
717 1.1 mrg TAILQ_INIT(&newbuckets[lcv]);
718 1.1 mrg
719 1.1 mrg /*
720 1.1 mrg * now replace the old buckets with the new ones and rehash everything
721 1.1 mrg */
722 1.1 mrg
723 1.1 mrg s = splimp();
724 1.1 mrg simple_lock(&uvm.hashlock);
725 1.1 mrg /* swap old for new ... */
726 1.1 mrg oldbuckets = uvm.page_hash;
727 1.1 mrg oldcount = uvm.page_nhash;
728 1.1 mrg uvm.page_hash = newbuckets;
729 1.1 mrg uvm.page_nhash = bucketcount;
730 1.1 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
731 1.1 mrg
732 1.1 mrg /* ... and rehash */
733 1.1 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
734 1.1 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
735 1.1 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
736 1.1 mrg TAILQ_INSERT_TAIL(
737 1.1 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], pg, hashq);
738 1.1 mrg }
739 1.1 mrg }
740 1.1 mrg simple_unlock(&uvm.hashlock);
741 1.1 mrg splx(s);
742 1.1 mrg
743 1.1 mrg /*
744 1.1 mrg * free old bucket array if we malloc'd it previously
745 1.1 mrg */
746 1.1 mrg
747 1.1 mrg if (oldbuckets != &uvm_bootbucket)
748 1.1 mrg FREE(oldbuckets, M_VMPBUCKET);
749 1.1 mrg
750 1.1 mrg /*
751 1.1 mrg * done
752 1.1 mrg */
753 1.1 mrg return;
754 1.1 mrg }
755 1.1 mrg
756 1.1 mrg
757 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
758 1.1 mrg
759 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
760 1.1 mrg
761 1.1 mrg /* call from DDB */
762 1.1 mrg void uvm_page_physdump() {
763 1.1 mrg int lcv;
764 1.1 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
765 1.1 mrg vm_nphysseg, VM_PHYSSEG_MAX);
766 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
767 1.1 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
768 1.1 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
769 1.1 mrg vm_physmem[lcv].avail_end);
770 1.1 mrg printf("STRATEGY = ");
771 1.1 mrg switch (VM_PHYSSEG_STRAT) {
772 1.1 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
773 1.1 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
774 1.1 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
775 1.1 mrg default: printf("<<UNKNOWN>>!!!!\n");
776 1.1 mrg }
777 1.1 mrg printf("number of buckets = %d\n", uvm.page_nhash);
778 1.1 mrg }
779 1.1 mrg #endif
780 1.1 mrg
781 1.1 mrg /*
782 1.1 mrg * uvm_pagealloc: allocate vm_page.
783 1.1 mrg *
784 1.1 mrg * => return null if no pages free
785 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
786 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
787 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
788 1.1 mrg * => only one of obj or anon can be non-null
789 1.1 mrg * => caller must activate/deactivate page if it is not wired.
790 1.1 mrg */
791 1.1 mrg
792 1.1 mrg struct vm_page *uvm_pagealloc(obj, off, anon)
793 1.1 mrg
794 1.1 mrg struct uvm_object *obj;
795 1.1 mrg vm_offset_t off;
796 1.1 mrg struct vm_anon *anon;
797 1.1 mrg
798 1.1 mrg {
799 1.3 chs int s;
800 1.1 mrg struct vm_page *pg;
801 1.1 mrg
802 1.1 mrg #ifdef DIAGNOSTIC
803 1.1 mrg /* sanity check */
804 1.1 mrg if (obj && anon)
805 1.1 mrg panic("uvm_pagealloc: obj and anon != NULL");
806 1.1 mrg #endif
807 1.1 mrg
808 1.1 mrg s = splimp();
809 1.1 mrg
810 1.1 mrg uvm_lock_fpageq(); /* lock free page queue */
811 1.1 mrg
812 1.1 mrg /*
813 1.1 mrg * check to see if we need to generate some free pages waking
814 1.1 mrg * the pagedaemon.
815 1.1 mrg */
816 1.1 mrg
817 1.1 mrg if (uvmexp.free < uvmexp.freemin ||
818 1.1 mrg (uvmexp.free < uvmexp.freetarg && uvmexp.inactive < uvmexp.inactarg)) {
819 1.1 mrg
820 1.1 mrg thread_wakeup(&uvm.pagedaemon);
821 1.1 mrg }
822 1.1 mrg
823 1.3 chs /*
824 1.3 chs * fail if any of these conditions is true:
825 1.3 chs * [1] there really are no free pages, or
826 1.3 chs * [2] only kernel "reserved" pages remain and
827 1.3 chs * the page isn't being allocated to a kernel object.
828 1.3 chs * [3] only pagedaemon "reserved" pages remain and
829 1.3 chs * the requestor isn't the pagedaemon.
830 1.3 chs */
831 1.3 chs
832 1.3 chs pg = uvm.page_free.tqh_first;
833 1.3 chs if (pg == NULL ||
834 1.3 chs (uvmexp.free <= uvmexp.reserve_kernel &&
835 1.3 chs !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
836 1.3 chs (uvmexp.free <= uvmexp.reserve_pagedaemon &&
837 1.3 chs !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc))) {
838 1.3 chs uvm_unlock_fpageq();
839 1.3 chs splx(s);
840 1.3 chs return(NULL);
841 1.3 chs }
842 1.3 chs
843 1.3 chs TAILQ_REMOVE(&uvm.page_free, pg, pageq);
844 1.3 chs uvmexp.free--;
845 1.3 chs
846 1.3 chs uvm_unlock_fpageq(); /* unlock free page queue */
847 1.3 chs splx(s);
848 1.3 chs
849 1.1 mrg pg->offset = off;
850 1.1 mrg pg->uobject = obj;
851 1.1 mrg pg->uanon = anon;
852 1.1 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
853 1.1 mrg pg->version++;
854 1.1 mrg pg->wire_count = 0;
855 1.1 mrg pg->loan_count = 0;
856 1.1 mrg if (anon) {
857 1.1 mrg anon->u.an_page = pg;
858 1.1 mrg pg->pqflags = PQ_ANON;
859 1.1 mrg } else {
860 1.1 mrg if (obj)
861 1.1 mrg uvm_pageinsert(pg);
862 1.1 mrg pg->pqflags = 0;
863 1.1 mrg }
864 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
865 1.1 mrg pg->owner_tag = NULL;
866 1.1 mrg #endif
867 1.1 mrg UVM_PAGE_OWN(pg, "new alloc");
868 1.1 mrg
869 1.1 mrg return(pg);
870 1.1 mrg }
871 1.1 mrg
872 1.1 mrg /*
873 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
874 1.1 mrg *
875 1.1 mrg * => both objects must be locked
876 1.1 mrg */
877 1.1 mrg
878 1.1 mrg void uvm_pagerealloc(pg, newobj, newoff)
879 1.1 mrg
880 1.1 mrg struct vm_page *pg;
881 1.1 mrg struct uvm_object *newobj;
882 1.1 mrg vm_offset_t newoff;
883 1.1 mrg
884 1.1 mrg {
885 1.1 mrg /*
886 1.1 mrg * remove it from the old object
887 1.1 mrg */
888 1.1 mrg
889 1.1 mrg if (pg->uobject) {
890 1.1 mrg uvm_pageremove(pg);
891 1.1 mrg }
892 1.1 mrg
893 1.1 mrg /*
894 1.1 mrg * put it in the new object
895 1.1 mrg */
896 1.1 mrg
897 1.1 mrg if (newobj) {
898 1.1 mrg pg->uobject = newobj;
899 1.1 mrg pg->offset = newoff;
900 1.1 mrg pg->version++;
901 1.1 mrg uvm_pageinsert(pg);
902 1.1 mrg }
903 1.1 mrg
904 1.1 mrg return;
905 1.1 mrg }
906 1.1 mrg
907 1.1 mrg
908 1.1 mrg /*
909 1.1 mrg * uvm_pagefree: free page
910 1.1 mrg *
911 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
912 1.1 mrg * => put page on free list
913 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
914 1.1 mrg * => caller must lock page queues
915 1.1 mrg * => assumes all valid mappings of pg are gone
916 1.1 mrg */
917 1.1 mrg
918 1.1 mrg void uvm_pagefree(pg)
919 1.1 mrg
920 1.1 mrg struct vm_page *pg;
921 1.1 mrg
922 1.1 mrg {
923 1.1 mrg int s;
924 1.1 mrg int saved_loan_count = pg->loan_count;
925 1.1 mrg
926 1.1 mrg /*
927 1.1 mrg * if the page was an object page (and thus "TABLED"), remove it
928 1.1 mrg * from the object.
929 1.1 mrg */
930 1.1 mrg
931 1.1 mrg if (pg->flags & PG_TABLED) {
932 1.1 mrg
933 1.1 mrg /*
934 1.1 mrg * if the object page is on loan we are going to drop ownership.
935 1.1 mrg * it is possible that an anon will take over as owner for this
936 1.1 mrg * page later on. the anon will want a !PG_CLEAN page so that
937 1.1 mrg * it knows it needs to allocate swap if it wants to page the
938 1.1 mrg * page out.
939 1.1 mrg */
940 1.1 mrg
941 1.1 mrg if (saved_loan_count)
942 1.1 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
943 1.1 mrg
944 1.1 mrg uvm_pageremove(pg);
945 1.1 mrg
946 1.1 mrg /*
947 1.1 mrg * if our page was on loan, then we just lost control over it
948 1.1 mrg * (in fact, if it was loaned to an anon, the anon may have
949 1.1 mrg * already taken over ownership of the page by now and thus
950 1.1 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
951 1.1 mrg * return (when the last loan is dropped, then the page can be
952 1.1 mrg * freed by whatever was holding the last loan).
953 1.1 mrg */
954 1.1 mrg if (saved_loan_count)
955 1.1 mrg return;
956 1.1 mrg
957 1.1 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
958 1.1 mrg
959 1.1 mrg /*
960 1.1 mrg * if our page is owned by an anon and is loaned out to the kernel
961 1.1 mrg * then we just want to drop ownership and return. the kernel
962 1.1 mrg * must free the page when all its loans clear ... note that the
963 1.1 mrg * kernel can't change the loan status of our page as long as we
964 1.1 mrg * are holding PQ lock.
965 1.1 mrg */
966 1.1 mrg pg->pqflags &= ~PQ_ANON;
967 1.1 mrg pg->uanon = NULL;
968 1.1 mrg return;
969 1.1 mrg
970 1.1 mrg }
971 1.1 mrg
972 1.1 mrg #ifdef DIAGNOSTIC
973 1.1 mrg if (saved_loan_count) {
974 1.1 mrg printf("uvm_pagefree: warning: freeing page with a loan count of %d\n",
975 1.1 mrg saved_loan_count);
976 1.1 mrg panic("uvm_pagefree: loan count");
977 1.1 mrg }
978 1.1 mrg #endif
979 1.1 mrg
980 1.1 mrg
981 1.1 mrg /*
982 1.1 mrg * now remove the page from the queues
983 1.1 mrg */
984 1.1 mrg
985 1.1 mrg if (pg->pqflags & PQ_ACTIVE) {
986 1.1 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
987 1.1 mrg pg->pqflags &= ~PQ_ACTIVE;
988 1.1 mrg uvmexp.active--;
989 1.1 mrg }
990 1.1 mrg if (pg->pqflags & PQ_INACTIVE) {
991 1.1 mrg if (pg->pqflags & PQ_SWAPBACKED)
992 1.1 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
993 1.1 mrg else
994 1.1 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
995 1.1 mrg pg->pqflags &= ~PQ_INACTIVE;
996 1.1 mrg uvmexp.inactive--;
997 1.1 mrg }
998 1.1 mrg
999 1.1 mrg /*
1000 1.3 chs * if the page was wired, unwire it now.
1001 1.3 chs */
1002 1.3 chs if (pg->wire_count)
1003 1.3 chs {
1004 1.3 chs pg->wire_count = 0;
1005 1.3 chs uvmexp.wired--;
1006 1.3 chs }
1007 1.3 chs
1008 1.3 chs /*
1009 1.1 mrg * and put on free queue
1010 1.1 mrg */
1011 1.1 mrg
1012 1.1 mrg s = splimp();
1013 1.1 mrg uvm_lock_fpageq();
1014 1.1 mrg TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
1015 1.1 mrg pg->pqflags = PQ_FREE;
1016 1.3 chs #ifdef DEBUG
1017 1.3 chs pg->uobject = (void *)0xdeadbeef;
1018 1.3 chs pg->offset = 0xdeadbeef;
1019 1.3 chs pg->uanon = (void *)0xdeadbeef;
1020 1.3 chs #endif
1021 1.1 mrg uvmexp.free++;
1022 1.1 mrg uvm_unlock_fpageq();
1023 1.1 mrg splx(s);
1024 1.1 mrg }
1025 1.1 mrg
1026 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1027 1.1 mrg /*
1028 1.1 mrg * uvm_page_own: set or release page ownership
1029 1.1 mrg *
1030 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1031 1.1 mrg * and where they do it. it can be used to track down problems
1032 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1033 1.1 mrg * => page's object [if any] must be locked
1034 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1035 1.1 mrg */
1036 1.1 mrg void uvm_page_own(pg, tag)
1037 1.1 mrg
1038 1.1 mrg struct vm_page *pg;
1039 1.1 mrg char *tag;
1040 1.1 mrg
1041 1.1 mrg {
1042 1.1 mrg /* gain ownership? */
1043 1.1 mrg if (tag) {
1044 1.1 mrg if (pg->owner_tag) {
1045 1.1 mrg printf("uvm_page_own: page %p already owned by proc %d [%s]\n", pg,
1046 1.1 mrg pg->owner, pg->owner_tag);
1047 1.1 mrg panic("uvm_page_own");
1048 1.1 mrg }
1049 1.1 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1050 1.1 mrg pg->owner_tag = tag;
1051 1.1 mrg return;
1052 1.1 mrg }
1053 1.1 mrg
1054 1.1 mrg /* drop ownership */
1055 1.1 mrg if (pg->owner_tag == NULL) {
1056 1.1 mrg printf("uvm_page_own: dropping ownership of an non-owned page (%p)\n", pg);
1057 1.1 mrg panic("uvm_page_own");
1058 1.1 mrg }
1059 1.1 mrg pg->owner_tag = NULL;
1060 1.1 mrg return;
1061 1.1 mrg }
1062 1.1 mrg #endif
1063