uvm_page.c revision 1.33 1 1.33 thorpej /* $NetBSD: uvm_page.c,v 1.33 2000/04/10 00:28:05 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.1 mrg #include <sys/param.h>
74 1.1 mrg #include <sys/systm.h>
75 1.1 mrg #include <sys/malloc.h>
76 1.1 mrg #include <sys/proc.h>
77 1.1 mrg
78 1.1 mrg #include <vm/vm.h>
79 1.1 mrg #include <vm/vm_page.h>
80 1.1 mrg #include <vm/vm_kern.h>
81 1.1 mrg
82 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * physical memory config is stored in vm_physmem.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * local variables
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
102 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
103 1.1 mrg * and pmap_startup here also uses them internally.
104 1.1 mrg */
105 1.1 mrg
106 1.14 eeh static vaddr_t virtual_space_start;
107 1.14 eeh static vaddr_t virtual_space_end;
108 1.1 mrg
109 1.1 mrg /*
110 1.1 mrg * we use a hash table with only one bucket during bootup. we will
111 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
112 1.30 thorpej * we static allocate the one bootstrap bucket below...
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg static struct pglist uvm_bootbucket;
116 1.1 mrg
117 1.1 mrg /*
118 1.1 mrg * local prototypes
119 1.1 mrg */
120 1.1 mrg
121 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
122 1.1 mrg
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * inline functions
126 1.1 mrg */
127 1.1 mrg
128 1.1 mrg /*
129 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
130 1.1 mrg *
131 1.1 mrg * => caller must lock object
132 1.1 mrg * => caller must lock page queues
133 1.1 mrg * => call should have already set pg's object and offset pointers
134 1.1 mrg * and bumped the version counter
135 1.1 mrg */
136 1.1 mrg
137 1.7 mrg __inline static void
138 1.7 mrg uvm_pageinsert(pg)
139 1.7 mrg struct vm_page *pg;
140 1.1 mrg {
141 1.7 mrg struct pglist *buck;
142 1.7 mrg int s;
143 1.1 mrg
144 1.1 mrg #ifdef DIAGNOSTIC
145 1.7 mrg if (pg->flags & PG_TABLED)
146 1.7 mrg panic("uvm_pageinsert: already inserted");
147 1.1 mrg #endif
148 1.1 mrg
149 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150 1.7 mrg s = splimp();
151 1.7 mrg simple_lock(&uvm.hashlock);
152 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
153 1.7 mrg simple_unlock(&uvm.hashlock);
154 1.7 mrg splx(s);
155 1.7 mrg
156 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157 1.7 mrg pg->flags |= PG_TABLED;
158 1.7 mrg pg->uobject->uo_npages++;
159 1.1 mrg
160 1.1 mrg }
161 1.1 mrg
162 1.1 mrg /*
163 1.1 mrg * uvm_page_remove: remove page from object and hash
164 1.1 mrg *
165 1.1 mrg * => caller must lock object
166 1.1 mrg * => caller must lock page queues
167 1.1 mrg */
168 1.1 mrg
169 1.7 mrg void __inline
170 1.7 mrg uvm_pageremove(pg)
171 1.7 mrg struct vm_page *pg;
172 1.1 mrg {
173 1.7 mrg struct pglist *buck;
174 1.7 mrg int s;
175 1.1 mrg
176 1.1 mrg #ifdef DIAGNOSTIC
177 1.7 mrg if ((pg->flags & (PG_FAULTING)) != 0)
178 1.7 mrg panic("uvm_pageremove: page is faulting");
179 1.1 mrg #endif
180 1.1 mrg
181 1.7 mrg if ((pg->flags & PG_TABLED) == 0)
182 1.7 mrg return; /* XXX: log */
183 1.1 mrg
184 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185 1.7 mrg s = splimp();
186 1.7 mrg simple_lock(&uvm.hashlock);
187 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
188 1.7 mrg simple_unlock(&uvm.hashlock);
189 1.7 mrg splx(s);
190 1.7 mrg
191 1.7 mrg /* object should be locked */
192 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193 1.7 mrg
194 1.7 mrg pg->flags &= ~PG_TABLED;
195 1.7 mrg pg->uobject->uo_npages--;
196 1.7 mrg pg->uobject = NULL;
197 1.7 mrg pg->version++;
198 1.1 mrg
199 1.1 mrg }
200 1.1 mrg
201 1.1 mrg /*
202 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
203 1.1 mrg *
204 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205 1.1 mrg */
206 1.1 mrg
207 1.7 mrg void
208 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
209 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
210 1.1 mrg {
211 1.27 thorpej vsize_t freepages, pagecount, n;
212 1.7 mrg vm_page_t pagearray;
213 1.27 thorpej int lcv, i;
214 1.14 eeh paddr_t paddr;
215 1.7 mrg
216 1.7 mrg
217 1.7 mrg /*
218 1.7 mrg * step 1: init the page queues and page queue locks
219 1.7 mrg */
220 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221 1.12 thorpej TAILQ_INIT(&uvm.page_free[lcv]);
222 1.7 mrg TAILQ_INIT(&uvm.page_active);
223 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
224 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
225 1.7 mrg simple_lock_init(&uvm.pageqlock);
226 1.7 mrg simple_lock_init(&uvm.fpageqlock);
227 1.7 mrg
228 1.7 mrg /*
229 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
230 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
231 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
232 1.7 mrg */
233 1.7 mrg
234 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
235 1.7 mrg uvm.page_hashmask = 0; /* mask for hash function */
236 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
237 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
238 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
239 1.7 mrg
240 1.7 mrg /*
241 1.7 mrg * step 3: allocate vm_page structures.
242 1.7 mrg */
243 1.7 mrg
244 1.7 mrg /*
245 1.7 mrg * sanity check:
246 1.7 mrg * before calling this function the MD code is expected to register
247 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
248 1.7 mrg * now is to allocate vm_page structures for this memory.
249 1.7 mrg */
250 1.7 mrg
251 1.7 mrg if (vm_nphysseg == 0)
252 1.7 mrg panic("vm_page_bootstrap: no memory pre-allocated");
253 1.7 mrg
254 1.7 mrg /*
255 1.7 mrg * first calculate the number of free pages...
256 1.7 mrg *
257 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
258 1.7 mrg * this allows us to allocate extra vm_page structures in case we
259 1.7 mrg * want to return some memory to the pool after booting.
260 1.7 mrg */
261 1.7 mrg
262 1.7 mrg freepages = 0;
263 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265 1.7 mrg
266 1.7 mrg /*
267 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
269 1.7 mrg * thus, the total number of pages we can use is the total size of
270 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
271 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
272 1.7 mrg * truncation errors (since we can only allocate in terms of whole
273 1.7 mrg * pages).
274 1.7 mrg */
275 1.7 mrg
276 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
277 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
278 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279 1.7 mrg sizeof(struct vm_page));
280 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
281 1.7 mrg
282 1.7 mrg /*
283 1.7 mrg * step 4: init the vm_page structures and put them in the correct
284 1.7 mrg * place...
285 1.7 mrg */
286 1.7 mrg
287 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288 1.7 mrg
289 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290 1.7 mrg if (n > pagecount) {
291 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
292 1.27 thorpej (long)(n - pagecount));
293 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
294 1.7 mrg /* n = pagecount; */
295 1.7 mrg }
296 1.7 mrg /* set up page array pointers */
297 1.7 mrg vm_physmem[lcv].pgs = pagearray;
298 1.7 mrg pagearray += n;
299 1.7 mrg pagecount -= n;
300 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301 1.7 mrg
302 1.13 perry /* init and free vm_pages (we've already zeroed them) */
303 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
304 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
306 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
308 1.7 mrg uvmexp.npages++;
309 1.7 mrg /* add page to free pool */
310 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311 1.7 mrg }
312 1.7 mrg }
313 1.7 mrg }
314 1.7 mrg /*
315 1.7 mrg * step 5: pass up the values of virtual_space_start and
316 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317 1.7 mrg * layers of the VM.
318 1.7 mrg */
319 1.7 mrg
320 1.7 mrg *kvm_startp = round_page(virtual_space_start);
321 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
322 1.7 mrg
323 1.7 mrg /*
324 1.7 mrg * step 6: init pagedaemon lock
325 1.7 mrg */
326 1.7 mrg
327 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
328 1.7 mrg
329 1.7 mrg /*
330 1.7 mrg * step 7: init reserve thresholds
331 1.7 mrg * XXXCDC - values may need adjusting
332 1.7 mrg */
333 1.7 mrg uvmexp.reserve_pagedaemon = 1;
334 1.7 mrg uvmexp.reserve_kernel = 5;
335 1.7 mrg
336 1.7 mrg /*
337 1.7 mrg * done!
338 1.7 mrg */
339 1.1 mrg
340 1.32 thorpej uvm.page_init_done = TRUE;
341 1.1 mrg }
342 1.1 mrg
343 1.1 mrg /*
344 1.1 mrg * uvm_setpagesize: set the page size
345 1.1 mrg *
346 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
347 1.1 mrg * => XXXCDC: move global vars.
348 1.1 mrg */
349 1.1 mrg
350 1.7 mrg void
351 1.7 mrg uvm_setpagesize()
352 1.1 mrg {
353 1.7 mrg if (uvmexp.pagesize == 0)
354 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
355 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
356 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
357 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
358 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
359 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
360 1.7 mrg break;
361 1.1 mrg }
362 1.1 mrg
363 1.1 mrg /*
364 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
365 1.1 mrg */
366 1.1 mrg
367 1.14 eeh vaddr_t
368 1.7 mrg uvm_pageboot_alloc(size)
369 1.14 eeh vsize_t size;
370 1.1 mrg {
371 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
372 1.14 eeh vaddr_t addr;
373 1.1 mrg
374 1.7 mrg /*
375 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
376 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
377 1.7 mrg * off virtual_space_start/virtual_space_end.
378 1.7 mrg */
379 1.1 mrg
380 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
381 1.7 mrg &virtual_space_end);
382 1.1 mrg
383 1.7 mrg return(addr);
384 1.1 mrg
385 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
386 1.1 mrg
387 1.19 thorpej static boolean_t initialized = FALSE;
388 1.14 eeh vaddr_t addr, vaddr;
389 1.14 eeh paddr_t paddr;
390 1.1 mrg
391 1.7 mrg /* round to page size */
392 1.7 mrg size = round_page(size);
393 1.1 mrg
394 1.7 mrg /*
395 1.19 thorpej * on first call to this function, initialize ourselves.
396 1.7 mrg */
397 1.19 thorpej if (initialized == FALSE) {
398 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
399 1.1 mrg
400 1.7 mrg /* round it the way we like it */
401 1.7 mrg virtual_space_start = round_page(virtual_space_start);
402 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
403 1.19 thorpej
404 1.19 thorpej initialized = TRUE;
405 1.7 mrg }
406 1.1 mrg
407 1.7 mrg /*
408 1.7 mrg * allocate virtual memory for this request
409 1.7 mrg */
410 1.19 thorpej if (virtual_space_start == virtual_space_end ||
411 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
412 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
413 1.20 thorpej
414 1.20 thorpej addr = virtual_space_start;
415 1.20 thorpej
416 1.20 thorpej #ifdef PMAP_GROWKERNEL
417 1.20 thorpej /*
418 1.20 thorpej * If the kernel pmap can't map the requested space,
419 1.20 thorpej * then allocate more resources for it.
420 1.20 thorpej */
421 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
422 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
423 1.20 thorpej if (uvm_maxkaddr < (addr + size))
424 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
425 1.19 thorpej }
426 1.20 thorpej #endif
427 1.1 mrg
428 1.7 mrg virtual_space_start += size;
429 1.1 mrg
430 1.9 thorpej /*
431 1.7 mrg * allocate and mapin physical pages to back new virtual pages
432 1.7 mrg */
433 1.1 mrg
434 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
435 1.7 mrg vaddr += PAGE_SIZE) {
436 1.1 mrg
437 1.7 mrg if (!uvm_page_physget(&paddr))
438 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
439 1.1 mrg
440 1.23 thorpej /*
441 1.23 thorpej * Note this memory is no longer managed, so using
442 1.23 thorpej * pmap_kenter is safe.
443 1.23 thorpej */
444 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
445 1.7 mrg }
446 1.7 mrg return(addr);
447 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
448 1.1 mrg }
449 1.1 mrg
450 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
451 1.1 mrg /*
452 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
453 1.1 mrg *
454 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
455 1.1 mrg * values match the start/end values. if we can't do that, then we
456 1.1 mrg * will advance both values (making them equal, and removing some
457 1.1 mrg * vm_page structures from the non-avail area).
458 1.1 mrg * => return false if out of memory.
459 1.1 mrg */
460 1.1 mrg
461 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
462 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
463 1.28 drochner
464 1.28 drochner static boolean_t
465 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
466 1.14 eeh paddr_t *paddrp;
467 1.28 drochner int freelist;
468 1.1 mrg {
469 1.7 mrg int lcv, x;
470 1.1 mrg
471 1.7 mrg /* pass 1: try allocating from a matching end */
472 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
473 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
474 1.1 mrg #else
475 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
476 1.1 mrg #endif
477 1.7 mrg {
478 1.1 mrg
479 1.32 thorpej if (uvm.page_init_done == TRUE)
480 1.7 mrg panic("vm_page_physget: called _after_ bootstrap");
481 1.1 mrg
482 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
483 1.28 drochner continue;
484 1.28 drochner
485 1.7 mrg /* try from front */
486 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
487 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
488 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
489 1.7 mrg vm_physmem[lcv].avail_start++;
490 1.7 mrg vm_physmem[lcv].start++;
491 1.7 mrg /* nothing left? nuke it */
492 1.7 mrg if (vm_physmem[lcv].avail_start ==
493 1.7 mrg vm_physmem[lcv].end) {
494 1.7 mrg if (vm_nphysseg == 1)
495 1.7 mrg panic("vm_page_physget: out of memory!");
496 1.7 mrg vm_nphysseg--;
497 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
498 1.7 mrg /* structure copy */
499 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
500 1.7 mrg }
501 1.7 mrg return (TRUE);
502 1.7 mrg }
503 1.7 mrg
504 1.7 mrg /* try from rear */
505 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
506 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
507 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
508 1.7 mrg vm_physmem[lcv].avail_end--;
509 1.7 mrg vm_physmem[lcv].end--;
510 1.7 mrg /* nothing left? nuke it */
511 1.7 mrg if (vm_physmem[lcv].avail_end ==
512 1.7 mrg vm_physmem[lcv].start) {
513 1.7 mrg if (vm_nphysseg == 1)
514 1.7 mrg panic("vm_page_physget: out of memory!");
515 1.7 mrg vm_nphysseg--;
516 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
517 1.7 mrg /* structure copy */
518 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
519 1.7 mrg }
520 1.7 mrg return (TRUE);
521 1.7 mrg }
522 1.7 mrg }
523 1.1 mrg
524 1.7 mrg /* pass2: forget about matching ends, just allocate something */
525 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
526 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
527 1.1 mrg #else
528 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
529 1.1 mrg #endif
530 1.7 mrg {
531 1.1 mrg
532 1.7 mrg /* any room in this bank? */
533 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
534 1.7 mrg continue; /* nope */
535 1.7 mrg
536 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
537 1.7 mrg vm_physmem[lcv].avail_start++;
538 1.7 mrg /* truncate! */
539 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
540 1.7 mrg
541 1.7 mrg /* nothing left? nuke it */
542 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
543 1.7 mrg if (vm_nphysseg == 1)
544 1.7 mrg panic("vm_page_physget: out of memory!");
545 1.7 mrg vm_nphysseg--;
546 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
547 1.7 mrg /* structure copy */
548 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
549 1.7 mrg }
550 1.7 mrg return (TRUE);
551 1.7 mrg }
552 1.1 mrg
553 1.7 mrg return (FALSE); /* whoops! */
554 1.28 drochner }
555 1.28 drochner
556 1.28 drochner boolean_t
557 1.28 drochner uvm_page_physget(paddrp)
558 1.28 drochner paddr_t *paddrp;
559 1.28 drochner {
560 1.28 drochner int i;
561 1.28 drochner
562 1.28 drochner /* try in the order of freelist preference */
563 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
564 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
565 1.28 drochner return (TRUE);
566 1.28 drochner return (FALSE);
567 1.1 mrg }
568 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
569 1.1 mrg
570 1.1 mrg /*
571 1.1 mrg * uvm_page_physload: load physical memory into VM system
572 1.1 mrg *
573 1.1 mrg * => all args are PFs
574 1.1 mrg * => all pages in start/end get vm_page structures
575 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
576 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
577 1.1 mrg */
578 1.1 mrg
579 1.7 mrg void
580 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
581 1.29 eeh paddr_t start, end, avail_start, avail_end;
582 1.12 thorpej int free_list;
583 1.1 mrg {
584 1.14 eeh int preload, lcv;
585 1.14 eeh psize_t npages;
586 1.7 mrg struct vm_page *pgs;
587 1.7 mrg struct vm_physseg *ps;
588 1.7 mrg
589 1.7 mrg if (uvmexp.pagesize == 0)
590 1.7 mrg panic("vm_page_physload: page size not set!");
591 1.7 mrg
592 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
593 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
594 1.26 drochner
595 1.26 drochner if (start >= end)
596 1.26 drochner panic("uvm_page_physload: start >= end");
597 1.12 thorpej
598 1.7 mrg /*
599 1.7 mrg * do we have room?
600 1.7 mrg */
601 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
602 1.7 mrg printf("vm_page_physload: unable to load physical memory "
603 1.7 mrg "segment\n");
604 1.7 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
605 1.7 mrg VM_PHYSSEG_MAX, start, end);
606 1.7 mrg return;
607 1.7 mrg }
608 1.7 mrg
609 1.7 mrg /*
610 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
611 1.7 mrg * called yet, so malloc is not available).
612 1.7 mrg */
613 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
614 1.7 mrg if (vm_physmem[lcv].pgs)
615 1.7 mrg break;
616 1.7 mrg }
617 1.7 mrg preload = (lcv == vm_nphysseg);
618 1.7 mrg
619 1.7 mrg /*
620 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
621 1.7 mrg */
622 1.7 mrg if (!preload) {
623 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
624 1.7 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
625 1.1 mrg #else
626 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
627 1.14 eeh paddr_t paddr;
628 1.7 mrg npages = end - start; /* # of pages */
629 1.7 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
630 1.7 mrg M_VMPAGE, M_NOWAIT);
631 1.7 mrg if (pgs == NULL) {
632 1.7 mrg printf("vm_page_physload: can not malloc vm_page "
633 1.7 mrg "structs for segment\n");
634 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
635 1.7 mrg return;
636 1.7 mrg }
637 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
638 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
639 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
640 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
641 1.7 mrg pgs[lcv].phys_addr = paddr;
642 1.12 thorpej pgs[lcv].free_list = free_list;
643 1.7 mrg if (atop(paddr) >= avail_start &&
644 1.7 mrg atop(paddr) <= avail_end)
645 1.8 chuck uvm_pagefree(&pgs[lcv]);
646 1.7 mrg }
647 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
648 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
649 1.1 mrg #endif
650 1.7 mrg } else {
651 1.1 mrg
652 1.7 mrg /* gcc complains if these don't get init'd */
653 1.7 mrg pgs = NULL;
654 1.7 mrg npages = 0;
655 1.1 mrg
656 1.7 mrg }
657 1.1 mrg
658 1.7 mrg /*
659 1.7 mrg * now insert us in the proper place in vm_physmem[]
660 1.7 mrg */
661 1.1 mrg
662 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
663 1.1 mrg
664 1.7 mrg /* random: put it at the end (easy!) */
665 1.7 mrg ps = &vm_physmem[vm_nphysseg];
666 1.1 mrg
667 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
668 1.1 mrg
669 1.7 mrg {
670 1.7 mrg int x;
671 1.7 mrg /* sort by address for binary search */
672 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
673 1.7 mrg if (start < vm_physmem[lcv].start)
674 1.7 mrg break;
675 1.7 mrg ps = &vm_physmem[lcv];
676 1.7 mrg /* move back other entries, if necessary ... */
677 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
678 1.7 mrg /* structure copy */
679 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
680 1.7 mrg }
681 1.1 mrg
682 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
683 1.1 mrg
684 1.7 mrg {
685 1.7 mrg int x;
686 1.7 mrg /* sort by largest segment first */
687 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
688 1.7 mrg if ((end - start) >
689 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
690 1.7 mrg break;
691 1.7 mrg ps = &vm_physmem[lcv];
692 1.7 mrg /* move back other entries, if necessary ... */
693 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
694 1.7 mrg /* structure copy */
695 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
696 1.7 mrg }
697 1.1 mrg
698 1.1 mrg #else
699 1.1 mrg
700 1.7 mrg panic("vm_page_physload: unknown physseg strategy selected!");
701 1.1 mrg
702 1.1 mrg #endif
703 1.1 mrg
704 1.7 mrg ps->start = start;
705 1.7 mrg ps->end = end;
706 1.7 mrg ps->avail_start = avail_start;
707 1.7 mrg ps->avail_end = avail_end;
708 1.7 mrg if (preload) {
709 1.7 mrg ps->pgs = NULL;
710 1.7 mrg } else {
711 1.7 mrg ps->pgs = pgs;
712 1.7 mrg ps->lastpg = pgs + npages - 1;
713 1.7 mrg }
714 1.12 thorpej ps->free_list = free_list;
715 1.7 mrg vm_nphysseg++;
716 1.7 mrg
717 1.7 mrg /*
718 1.7 mrg * done!
719 1.7 mrg */
720 1.1 mrg
721 1.7 mrg if (!preload)
722 1.7 mrg uvm_page_rehash();
723 1.1 mrg
724 1.7 mrg return;
725 1.1 mrg }
726 1.1 mrg
727 1.1 mrg /*
728 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
729 1.1 mrg */
730 1.1 mrg
731 1.7 mrg void
732 1.7 mrg uvm_page_rehash()
733 1.1 mrg {
734 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
735 1.7 mrg struct pglist *newbuckets, *oldbuckets;
736 1.7 mrg struct vm_page *pg;
737 1.30 thorpej size_t newsize, oldsize;
738 1.7 mrg
739 1.7 mrg /*
740 1.7 mrg * compute number of pages that can go in the free pool
741 1.7 mrg */
742 1.7 mrg
743 1.7 mrg freepages = 0;
744 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
745 1.7 mrg freepages +=
746 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
747 1.7 mrg
748 1.7 mrg /*
749 1.7 mrg * compute number of buckets needed for this number of pages
750 1.7 mrg */
751 1.7 mrg
752 1.7 mrg bucketcount = 1;
753 1.7 mrg while (bucketcount < freepages)
754 1.7 mrg bucketcount = bucketcount * 2;
755 1.7 mrg
756 1.7 mrg /*
757 1.30 thorpej * compute the size of the current table and new table.
758 1.7 mrg */
759 1.7 mrg
760 1.30 thorpej oldbuckets = uvm.page_hash;
761 1.30 thorpej oldcount = uvm.page_nhash;
762 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
763 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
764 1.30 thorpej
765 1.30 thorpej /*
766 1.30 thorpej * allocate the new buckets
767 1.30 thorpej */
768 1.30 thorpej
769 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
770 1.7 mrg if (newbuckets == NULL) {
771 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
772 1.7 mrg "hash table\n");
773 1.7 mrg return;
774 1.7 mrg }
775 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
776 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
777 1.7 mrg
778 1.7 mrg /*
779 1.7 mrg * now replace the old buckets with the new ones and rehash everything
780 1.7 mrg */
781 1.7 mrg
782 1.7 mrg s = splimp();
783 1.7 mrg simple_lock(&uvm.hashlock);
784 1.7 mrg uvm.page_hash = newbuckets;
785 1.7 mrg uvm.page_nhash = bucketcount;
786 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
787 1.7 mrg
788 1.7 mrg /* ... and rehash */
789 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
790 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
791 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
792 1.7 mrg TAILQ_INSERT_TAIL(
793 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
794 1.7 mrg pg, hashq);
795 1.7 mrg }
796 1.7 mrg }
797 1.7 mrg simple_unlock(&uvm.hashlock);
798 1.7 mrg splx(s);
799 1.7 mrg
800 1.7 mrg /*
801 1.30 thorpej * free old bucket array if is not the boot-time table
802 1.7 mrg */
803 1.7 mrg
804 1.7 mrg if (oldbuckets != &uvm_bootbucket)
805 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
806 1.7 mrg
807 1.7 mrg /*
808 1.7 mrg * done
809 1.7 mrg */
810 1.7 mrg return;
811 1.1 mrg }
812 1.1 mrg
813 1.1 mrg
814 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
815 1.1 mrg
816 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
817 1.1 mrg
818 1.1 mrg /* call from DDB */
819 1.7 mrg void
820 1.7 mrg uvm_page_physdump()
821 1.7 mrg {
822 1.7 mrg int lcv;
823 1.7 mrg
824 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
825 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
826 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
827 1.7 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
828 1.7 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
829 1.7 mrg vm_physmem[lcv].avail_end);
830 1.7 mrg printf("STRATEGY = ");
831 1.7 mrg switch (VM_PHYSSEG_STRAT) {
832 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
833 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
834 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
835 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
836 1.7 mrg }
837 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
838 1.1 mrg }
839 1.1 mrg #endif
840 1.1 mrg
841 1.1 mrg /*
842 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
843 1.1 mrg *
844 1.1 mrg * => return null if no pages free
845 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
846 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
847 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
848 1.1 mrg * => only one of obj or anon can be non-null
849 1.1 mrg * => caller must activate/deactivate page if it is not wired.
850 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
851 1.1 mrg */
852 1.1 mrg
853 1.7 mrg struct vm_page *
854 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
855 1.7 mrg struct uvm_object *obj;
856 1.31 kleink voff_t off;
857 1.18 chs int flags;
858 1.7 mrg struct vm_anon *anon;
859 1.12 thorpej int strat, free_list;
860 1.1 mrg {
861 1.12 thorpej int lcv, s;
862 1.7 mrg struct vm_page *pg;
863 1.12 thorpej struct pglist *freeq;
864 1.18 chs boolean_t use_reserve;
865 1.1 mrg
866 1.1 mrg #ifdef DIAGNOSTIC
867 1.7 mrg /* sanity check */
868 1.7 mrg if (obj && anon)
869 1.7 mrg panic("uvm_pagealloc: obj and anon != NULL");
870 1.1 mrg #endif
871 1.1 mrg
872 1.21 thorpej s = uvm_lock_fpageq(); /* lock free page queue */
873 1.1 mrg
874 1.7 mrg /*
875 1.7 mrg * check to see if we need to generate some free pages waking
876 1.7 mrg * the pagedaemon.
877 1.7 mrg */
878 1.7 mrg
879 1.7 mrg if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
880 1.7 mrg uvmexp.inactive < uvmexp.inactarg))
881 1.24 thorpej wakeup(&uvm.pagedaemon);
882 1.7 mrg
883 1.7 mrg /*
884 1.7 mrg * fail if any of these conditions is true:
885 1.7 mrg * [1] there really are no free pages, or
886 1.7 mrg * [2] only kernel "reserved" pages remain and
887 1.7 mrg * the page isn't being allocated to a kernel object.
888 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
889 1.7 mrg * the requestor isn't the pagedaemon.
890 1.7 mrg */
891 1.7 mrg
892 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
893 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
894 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
895 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
896 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
897 1.12 thorpej goto fail;
898 1.12 thorpej
899 1.12 thorpej again:
900 1.12 thorpej switch (strat) {
901 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
902 1.12 thorpej /* Check all freelists in descending priority order. */
903 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
904 1.12 thorpej freeq = &uvm.page_free[lcv];
905 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
906 1.12 thorpej goto gotit;
907 1.12 thorpej }
908 1.12 thorpej
909 1.12 thorpej /* No pages free! */
910 1.12 thorpej goto fail;
911 1.12 thorpej
912 1.12 thorpej case UVM_PGA_STRAT_ONLY:
913 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
914 1.12 thorpej /* Attempt to allocate from the specified free list. */
915 1.12 thorpej #ifdef DIAGNOSTIC
916 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < 0)
917 1.12 thorpej panic("uvm_pagealloc_strat: bad free list %d",
918 1.12 thorpej free_list);
919 1.12 thorpej #endif
920 1.12 thorpej freeq = &uvm.page_free[free_list];
921 1.12 thorpej if ((pg = freeq->tqh_first) != NULL)
922 1.12 thorpej goto gotit;
923 1.12 thorpej
924 1.12 thorpej /* Fall back, if possible. */
925 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
926 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
927 1.12 thorpej goto again;
928 1.12 thorpej }
929 1.12 thorpej
930 1.12 thorpej /* No pages free! */
931 1.12 thorpej goto fail;
932 1.12 thorpej
933 1.12 thorpej default:
934 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
935 1.12 thorpej /* NOTREACHED */
936 1.7 mrg }
937 1.7 mrg
938 1.12 thorpej gotit:
939 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
940 1.7 mrg uvmexp.free--;
941 1.7 mrg
942 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
943 1.7 mrg
944 1.7 mrg pg->offset = off;
945 1.7 mrg pg->uobject = obj;
946 1.7 mrg pg->uanon = anon;
947 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
948 1.7 mrg pg->version++;
949 1.7 mrg pg->wire_count = 0;
950 1.7 mrg pg->loan_count = 0;
951 1.7 mrg if (anon) {
952 1.7 mrg anon->u.an_page = pg;
953 1.7 mrg pg->pqflags = PQ_ANON;
954 1.7 mrg } else {
955 1.7 mrg if (obj)
956 1.7 mrg uvm_pageinsert(pg);
957 1.7 mrg pg->pqflags = 0;
958 1.7 mrg }
959 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
960 1.7 mrg pg->owner_tag = NULL;
961 1.1 mrg #endif
962 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
963 1.33 thorpej
964 1.33 thorpej if (flags & UVM_PGA_ZERO) {
965 1.33 thorpej /*
966 1.33 thorpej * This is an inline of uvm_pagezero(); this will change
967 1.33 thorpej * when we have pre-zero'd pages.
968 1.33 thorpej */
969 1.33 thorpej pg->flags &= ~PG_CLEAN;
970 1.33 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
971 1.33 thorpej }
972 1.1 mrg
973 1.7 mrg return(pg);
974 1.12 thorpej
975 1.12 thorpej fail:
976 1.21 thorpej uvm_unlock_fpageq(s);
977 1.12 thorpej return (NULL);
978 1.1 mrg }
979 1.1 mrg
980 1.1 mrg /*
981 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
982 1.1 mrg *
983 1.1 mrg * => both objects must be locked
984 1.1 mrg */
985 1.1 mrg
986 1.7 mrg void
987 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
988 1.7 mrg struct vm_page *pg;
989 1.7 mrg struct uvm_object *newobj;
990 1.31 kleink voff_t newoff;
991 1.1 mrg {
992 1.7 mrg /*
993 1.7 mrg * remove it from the old object
994 1.7 mrg */
995 1.7 mrg
996 1.7 mrg if (pg->uobject) {
997 1.7 mrg uvm_pageremove(pg);
998 1.7 mrg }
999 1.7 mrg
1000 1.7 mrg /*
1001 1.7 mrg * put it in the new object
1002 1.7 mrg */
1003 1.7 mrg
1004 1.7 mrg if (newobj) {
1005 1.7 mrg pg->uobject = newobj;
1006 1.7 mrg pg->offset = newoff;
1007 1.7 mrg pg->version++;
1008 1.7 mrg uvm_pageinsert(pg);
1009 1.7 mrg }
1010 1.1 mrg
1011 1.7 mrg return;
1012 1.1 mrg }
1013 1.1 mrg
1014 1.1 mrg
1015 1.1 mrg /*
1016 1.1 mrg * uvm_pagefree: free page
1017 1.1 mrg *
1018 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1019 1.1 mrg * => put page on free list
1020 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1021 1.1 mrg * => caller must lock page queues
1022 1.1 mrg * => assumes all valid mappings of pg are gone
1023 1.1 mrg */
1024 1.1 mrg
1025 1.1 mrg void uvm_pagefree(pg)
1026 1.1 mrg
1027 1.1 mrg struct vm_page *pg;
1028 1.1 mrg
1029 1.1 mrg {
1030 1.7 mrg int s;
1031 1.7 mrg int saved_loan_count = pg->loan_count;
1032 1.1 mrg
1033 1.7 mrg /*
1034 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1035 1.7 mrg * from the object.
1036 1.7 mrg */
1037 1.7 mrg
1038 1.7 mrg if (pg->flags & PG_TABLED) {
1039 1.7 mrg
1040 1.7 mrg /*
1041 1.7 mrg * if the object page is on loan we are going to drop ownership.
1042 1.7 mrg * it is possible that an anon will take over as owner for this
1043 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1044 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1045 1.7 mrg * page out.
1046 1.7 mrg */
1047 1.7 mrg
1048 1.7 mrg if (saved_loan_count)
1049 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1050 1.7 mrg
1051 1.7 mrg uvm_pageremove(pg);
1052 1.7 mrg
1053 1.7 mrg /*
1054 1.7 mrg * if our page was on loan, then we just lost control over it
1055 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1056 1.7 mrg * already taken over ownership of the page by now and thus
1057 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1058 1.7 mrg * return (when the last loan is dropped, then the page can be
1059 1.7 mrg * freed by whatever was holding the last loan).
1060 1.7 mrg */
1061 1.7 mrg if (saved_loan_count)
1062 1.7 mrg return;
1063 1.7 mrg
1064 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1065 1.7 mrg
1066 1.7 mrg /*
1067 1.7 mrg * if our page is owned by an anon and is loaned out to the
1068 1.7 mrg * kernel then we just want to drop ownership and return.
1069 1.7 mrg * the kernel must free the page when all its loans clear ...
1070 1.7 mrg * note that the kernel can't change the loan status of our
1071 1.7 mrg * page as long as we are holding PQ lock.
1072 1.7 mrg */
1073 1.7 mrg pg->pqflags &= ~PQ_ANON;
1074 1.7 mrg pg->uanon = NULL;
1075 1.7 mrg return;
1076 1.7 mrg }
1077 1.1 mrg
1078 1.1 mrg #ifdef DIAGNOSTIC
1079 1.7 mrg if (saved_loan_count) {
1080 1.7 mrg printf("uvm_pagefree: warning: freeing page with a loan "
1081 1.7 mrg "count of %d\n", saved_loan_count);
1082 1.7 mrg panic("uvm_pagefree: loan count");
1083 1.7 mrg }
1084 1.1 mrg #endif
1085 1.7 mrg
1086 1.1 mrg
1087 1.7 mrg /*
1088 1.7 mrg * now remove the page from the queues
1089 1.7 mrg */
1090 1.7 mrg
1091 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1092 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1093 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1094 1.7 mrg uvmexp.active--;
1095 1.7 mrg }
1096 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1097 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1098 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1099 1.7 mrg else
1100 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1101 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1102 1.7 mrg uvmexp.inactive--;
1103 1.7 mrg }
1104 1.7 mrg
1105 1.7 mrg /*
1106 1.7 mrg * if the page was wired, unwire it now.
1107 1.7 mrg */
1108 1.7 mrg if (pg->wire_count)
1109 1.7 mrg {
1110 1.7 mrg pg->wire_count = 0;
1111 1.7 mrg uvmexp.wired--;
1112 1.7 mrg }
1113 1.7 mrg
1114 1.7 mrg /*
1115 1.7 mrg * and put on free queue
1116 1.7 mrg */
1117 1.7 mrg
1118 1.21 thorpej s = uvm_lock_fpageq();
1119 1.12 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1120 1.12 thorpej pg, pageq);
1121 1.7 mrg pg->pqflags = PQ_FREE;
1122 1.3 chs #ifdef DEBUG
1123 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1124 1.7 mrg pg->offset = 0xdeadbeef;
1125 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1126 1.3 chs #endif
1127 1.7 mrg uvmexp.free++;
1128 1.21 thorpej uvm_unlock_fpageq(s);
1129 1.1 mrg }
1130 1.1 mrg
1131 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1132 1.1 mrg /*
1133 1.1 mrg * uvm_page_own: set or release page ownership
1134 1.1 mrg *
1135 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1136 1.1 mrg * and where they do it. it can be used to track down problems
1137 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1138 1.1 mrg * => page's object [if any] must be locked
1139 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1140 1.1 mrg */
1141 1.7 mrg void
1142 1.7 mrg uvm_page_own(pg, tag)
1143 1.7 mrg struct vm_page *pg;
1144 1.7 mrg char *tag;
1145 1.1 mrg {
1146 1.7 mrg /* gain ownership? */
1147 1.7 mrg if (tag) {
1148 1.7 mrg if (pg->owner_tag) {
1149 1.7 mrg printf("uvm_page_own: page %p already owned "
1150 1.7 mrg "by proc %d [%s]\n", pg,
1151 1.7 mrg pg->owner, pg->owner_tag);
1152 1.7 mrg panic("uvm_page_own");
1153 1.7 mrg }
1154 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1155 1.7 mrg pg->owner_tag = tag;
1156 1.7 mrg return;
1157 1.7 mrg }
1158 1.7 mrg
1159 1.7 mrg /* drop ownership */
1160 1.7 mrg if (pg->owner_tag == NULL) {
1161 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1162 1.7 mrg "page (%p)\n", pg);
1163 1.7 mrg panic("uvm_page_own");
1164 1.7 mrg }
1165 1.7 mrg pg->owner_tag = NULL;
1166 1.7 mrg return;
1167 1.1 mrg }
1168 1.1 mrg #endif
1169