uvm_page.c revision 1.35 1 1.35 thorpej /* $NetBSD: uvm_page.c,v 1.35 2000/05/26 21:20:34 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.1 mrg #include <sys/param.h>
74 1.1 mrg #include <sys/systm.h>
75 1.1 mrg #include <sys/malloc.h>
76 1.35 thorpej #include <sys/sched.h>
77 1.1 mrg
78 1.1 mrg #include <vm/vm.h>
79 1.1 mrg #include <vm/vm_page.h>
80 1.1 mrg #include <vm/vm_kern.h>
81 1.1 mrg
82 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * physical memory config is stored in vm_physmem.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95 1.1 mrg
96 1.1 mrg /*
97 1.34 thorpej * for testing the idle page zero loop.
98 1.34 thorpej */
99 1.34 thorpej
100 1.34 thorpej boolean_t vm_page_zero_enable = TRUE;
101 1.34 thorpej
102 1.34 thorpej /*
103 1.1 mrg * local variables
104 1.1 mrg */
105 1.1 mrg
106 1.1 mrg /*
107 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
108 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
109 1.1 mrg * and pmap_startup here also uses them internally.
110 1.1 mrg */
111 1.1 mrg
112 1.14 eeh static vaddr_t virtual_space_start;
113 1.14 eeh static vaddr_t virtual_space_end;
114 1.1 mrg
115 1.1 mrg /*
116 1.1 mrg * we use a hash table with only one bucket during bootup. we will
117 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
118 1.30 thorpej * we static allocate the one bootstrap bucket below...
119 1.1 mrg */
120 1.1 mrg
121 1.1 mrg static struct pglist uvm_bootbucket;
122 1.1 mrg
123 1.1 mrg /*
124 1.1 mrg * local prototypes
125 1.1 mrg */
126 1.1 mrg
127 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
128 1.1 mrg
129 1.1 mrg
130 1.1 mrg /*
131 1.1 mrg * inline functions
132 1.1 mrg */
133 1.1 mrg
134 1.1 mrg /*
135 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
136 1.1 mrg *
137 1.1 mrg * => caller must lock object
138 1.1 mrg * => caller must lock page queues
139 1.1 mrg * => call should have already set pg's object and offset pointers
140 1.1 mrg * and bumped the version counter
141 1.1 mrg */
142 1.1 mrg
143 1.7 mrg __inline static void
144 1.7 mrg uvm_pageinsert(pg)
145 1.7 mrg struct vm_page *pg;
146 1.1 mrg {
147 1.7 mrg struct pglist *buck;
148 1.7 mrg int s;
149 1.1 mrg
150 1.1 mrg #ifdef DIAGNOSTIC
151 1.7 mrg if (pg->flags & PG_TABLED)
152 1.7 mrg panic("uvm_pageinsert: already inserted");
153 1.1 mrg #endif
154 1.1 mrg
155 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
156 1.7 mrg s = splimp();
157 1.7 mrg simple_lock(&uvm.hashlock);
158 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
159 1.7 mrg simple_unlock(&uvm.hashlock);
160 1.7 mrg splx(s);
161 1.7 mrg
162 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
163 1.7 mrg pg->flags |= PG_TABLED;
164 1.7 mrg pg->uobject->uo_npages++;
165 1.1 mrg
166 1.1 mrg }
167 1.1 mrg
168 1.1 mrg /*
169 1.1 mrg * uvm_page_remove: remove page from object and hash
170 1.1 mrg *
171 1.1 mrg * => caller must lock object
172 1.1 mrg * => caller must lock page queues
173 1.1 mrg */
174 1.1 mrg
175 1.7 mrg void __inline
176 1.7 mrg uvm_pageremove(pg)
177 1.7 mrg struct vm_page *pg;
178 1.1 mrg {
179 1.7 mrg struct pglist *buck;
180 1.7 mrg int s;
181 1.1 mrg
182 1.1 mrg #ifdef DIAGNOSTIC
183 1.7 mrg if ((pg->flags & (PG_FAULTING)) != 0)
184 1.7 mrg panic("uvm_pageremove: page is faulting");
185 1.1 mrg #endif
186 1.1 mrg
187 1.7 mrg if ((pg->flags & PG_TABLED) == 0)
188 1.7 mrg return; /* XXX: log */
189 1.1 mrg
190 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
191 1.7 mrg s = splimp();
192 1.7 mrg simple_lock(&uvm.hashlock);
193 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
194 1.7 mrg simple_unlock(&uvm.hashlock);
195 1.7 mrg splx(s);
196 1.7 mrg
197 1.7 mrg /* object should be locked */
198 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
199 1.7 mrg
200 1.7 mrg pg->flags &= ~PG_TABLED;
201 1.7 mrg pg->uobject->uo_npages--;
202 1.7 mrg pg->uobject = NULL;
203 1.7 mrg pg->version++;
204 1.1 mrg
205 1.1 mrg }
206 1.1 mrg
207 1.1 mrg /*
208 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
209 1.1 mrg *
210 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
211 1.1 mrg */
212 1.1 mrg
213 1.7 mrg void
214 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
215 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
216 1.1 mrg {
217 1.27 thorpej vsize_t freepages, pagecount, n;
218 1.7 mrg vm_page_t pagearray;
219 1.27 thorpej int lcv, i;
220 1.14 eeh paddr_t paddr;
221 1.7 mrg
222 1.7 mrg
223 1.7 mrg /*
224 1.7 mrg * step 1: init the page queues and page queue locks
225 1.7 mrg */
226 1.34 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
227 1.34 thorpej for (i = 0; i < PGFL_NQUEUES; i++)
228 1.34 thorpej TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
229 1.34 thorpej }
230 1.7 mrg TAILQ_INIT(&uvm.page_active);
231 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
232 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
233 1.7 mrg simple_lock_init(&uvm.pageqlock);
234 1.7 mrg simple_lock_init(&uvm.fpageqlock);
235 1.7 mrg
236 1.7 mrg /*
237 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
238 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
239 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
240 1.7 mrg */
241 1.7 mrg
242 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
243 1.7 mrg uvm.page_hashmask = 0; /* mask for hash function */
244 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
245 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
246 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
247 1.7 mrg
248 1.7 mrg /*
249 1.7 mrg * step 3: allocate vm_page structures.
250 1.7 mrg */
251 1.7 mrg
252 1.7 mrg /*
253 1.7 mrg * sanity check:
254 1.7 mrg * before calling this function the MD code is expected to register
255 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
256 1.7 mrg * now is to allocate vm_page structures for this memory.
257 1.7 mrg */
258 1.7 mrg
259 1.7 mrg if (vm_nphysseg == 0)
260 1.7 mrg panic("vm_page_bootstrap: no memory pre-allocated");
261 1.7 mrg
262 1.7 mrg /*
263 1.7 mrg * first calculate the number of free pages...
264 1.7 mrg *
265 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
266 1.7 mrg * this allows us to allocate extra vm_page structures in case we
267 1.7 mrg * want to return some memory to the pool after booting.
268 1.7 mrg */
269 1.7 mrg
270 1.7 mrg freepages = 0;
271 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
272 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
273 1.7 mrg
274 1.7 mrg /*
275 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
276 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
277 1.7 mrg * thus, the total number of pages we can use is the total size of
278 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
279 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
280 1.7 mrg * truncation errors (since we can only allocate in terms of whole
281 1.7 mrg * pages).
282 1.7 mrg */
283 1.7 mrg
284 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
285 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
286 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
287 1.7 mrg sizeof(struct vm_page));
288 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
289 1.7 mrg
290 1.7 mrg /*
291 1.7 mrg * step 4: init the vm_page structures and put them in the correct
292 1.7 mrg * place...
293 1.7 mrg */
294 1.7 mrg
295 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
296 1.7 mrg
297 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
298 1.7 mrg if (n > pagecount) {
299 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
300 1.27 thorpej (long)(n - pagecount));
301 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
302 1.7 mrg /* n = pagecount; */
303 1.7 mrg }
304 1.7 mrg /* set up page array pointers */
305 1.7 mrg vm_physmem[lcv].pgs = pagearray;
306 1.7 mrg pagearray += n;
307 1.7 mrg pagecount -= n;
308 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
309 1.7 mrg
310 1.13 perry /* init and free vm_pages (we've already zeroed them) */
311 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
312 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
313 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
314 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
315 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
316 1.7 mrg uvmexp.npages++;
317 1.7 mrg /* add page to free pool */
318 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
319 1.7 mrg }
320 1.7 mrg }
321 1.7 mrg }
322 1.7 mrg /*
323 1.7 mrg * step 5: pass up the values of virtual_space_start and
324 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
325 1.7 mrg * layers of the VM.
326 1.7 mrg */
327 1.7 mrg
328 1.7 mrg *kvm_startp = round_page(virtual_space_start);
329 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
330 1.7 mrg
331 1.7 mrg /*
332 1.7 mrg * step 6: init pagedaemon lock
333 1.7 mrg */
334 1.7 mrg
335 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
336 1.7 mrg
337 1.7 mrg /*
338 1.7 mrg * step 7: init reserve thresholds
339 1.7 mrg * XXXCDC - values may need adjusting
340 1.7 mrg */
341 1.7 mrg uvmexp.reserve_pagedaemon = 1;
342 1.7 mrg uvmexp.reserve_kernel = 5;
343 1.7 mrg
344 1.7 mrg /*
345 1.34 thorpej * step 8: determine if we should zero pages in the idle
346 1.34 thorpej * loop.
347 1.34 thorpej *
348 1.34 thorpej * XXXJRT - might consider zero'ing up to the target *now*,
349 1.34 thorpej * but that could take an awfully long time if you
350 1.34 thorpej * have a lot of memory.
351 1.34 thorpej */
352 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
353 1.34 thorpej
354 1.34 thorpej /*
355 1.7 mrg * done!
356 1.7 mrg */
357 1.1 mrg
358 1.32 thorpej uvm.page_init_done = TRUE;
359 1.1 mrg }
360 1.1 mrg
361 1.1 mrg /*
362 1.1 mrg * uvm_setpagesize: set the page size
363 1.1 mrg *
364 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
365 1.1 mrg * => XXXCDC: move global vars.
366 1.1 mrg */
367 1.1 mrg
368 1.7 mrg void
369 1.7 mrg uvm_setpagesize()
370 1.1 mrg {
371 1.7 mrg if (uvmexp.pagesize == 0)
372 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
373 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
374 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
375 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
376 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
377 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
378 1.7 mrg break;
379 1.1 mrg }
380 1.1 mrg
381 1.1 mrg /*
382 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
383 1.1 mrg */
384 1.1 mrg
385 1.14 eeh vaddr_t
386 1.7 mrg uvm_pageboot_alloc(size)
387 1.14 eeh vsize_t size;
388 1.1 mrg {
389 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
390 1.14 eeh vaddr_t addr;
391 1.1 mrg
392 1.7 mrg /*
393 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
394 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
395 1.7 mrg * off virtual_space_start/virtual_space_end.
396 1.7 mrg */
397 1.1 mrg
398 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
399 1.7 mrg &virtual_space_end);
400 1.1 mrg
401 1.7 mrg return(addr);
402 1.1 mrg
403 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
404 1.1 mrg
405 1.19 thorpej static boolean_t initialized = FALSE;
406 1.14 eeh vaddr_t addr, vaddr;
407 1.14 eeh paddr_t paddr;
408 1.1 mrg
409 1.7 mrg /* round to page size */
410 1.7 mrg size = round_page(size);
411 1.1 mrg
412 1.7 mrg /*
413 1.19 thorpej * on first call to this function, initialize ourselves.
414 1.7 mrg */
415 1.19 thorpej if (initialized == FALSE) {
416 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
417 1.1 mrg
418 1.7 mrg /* round it the way we like it */
419 1.7 mrg virtual_space_start = round_page(virtual_space_start);
420 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
421 1.19 thorpej
422 1.19 thorpej initialized = TRUE;
423 1.7 mrg }
424 1.1 mrg
425 1.7 mrg /*
426 1.7 mrg * allocate virtual memory for this request
427 1.7 mrg */
428 1.19 thorpej if (virtual_space_start == virtual_space_end ||
429 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
430 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
431 1.20 thorpej
432 1.20 thorpej addr = virtual_space_start;
433 1.20 thorpej
434 1.20 thorpej #ifdef PMAP_GROWKERNEL
435 1.20 thorpej /*
436 1.20 thorpej * If the kernel pmap can't map the requested space,
437 1.20 thorpej * then allocate more resources for it.
438 1.20 thorpej */
439 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
440 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
441 1.20 thorpej if (uvm_maxkaddr < (addr + size))
442 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
443 1.19 thorpej }
444 1.20 thorpej #endif
445 1.1 mrg
446 1.7 mrg virtual_space_start += size;
447 1.1 mrg
448 1.9 thorpej /*
449 1.7 mrg * allocate and mapin physical pages to back new virtual pages
450 1.7 mrg */
451 1.1 mrg
452 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
453 1.7 mrg vaddr += PAGE_SIZE) {
454 1.1 mrg
455 1.7 mrg if (!uvm_page_physget(&paddr))
456 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
457 1.1 mrg
458 1.23 thorpej /*
459 1.23 thorpej * Note this memory is no longer managed, so using
460 1.23 thorpej * pmap_kenter is safe.
461 1.23 thorpej */
462 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
463 1.7 mrg }
464 1.7 mrg return(addr);
465 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
466 1.1 mrg }
467 1.1 mrg
468 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
469 1.1 mrg /*
470 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
471 1.1 mrg *
472 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
473 1.1 mrg * values match the start/end values. if we can't do that, then we
474 1.1 mrg * will advance both values (making them equal, and removing some
475 1.1 mrg * vm_page structures from the non-avail area).
476 1.1 mrg * => return false if out of memory.
477 1.1 mrg */
478 1.1 mrg
479 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
480 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
481 1.28 drochner
482 1.28 drochner static boolean_t
483 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
484 1.14 eeh paddr_t *paddrp;
485 1.28 drochner int freelist;
486 1.1 mrg {
487 1.7 mrg int lcv, x;
488 1.1 mrg
489 1.7 mrg /* pass 1: try allocating from a matching end */
490 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
491 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
492 1.1 mrg #else
493 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
494 1.1 mrg #endif
495 1.7 mrg {
496 1.1 mrg
497 1.32 thorpej if (uvm.page_init_done == TRUE)
498 1.7 mrg panic("vm_page_physget: called _after_ bootstrap");
499 1.1 mrg
500 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
501 1.28 drochner continue;
502 1.28 drochner
503 1.7 mrg /* try from front */
504 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
505 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
506 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
507 1.7 mrg vm_physmem[lcv].avail_start++;
508 1.7 mrg vm_physmem[lcv].start++;
509 1.7 mrg /* nothing left? nuke it */
510 1.7 mrg if (vm_physmem[lcv].avail_start ==
511 1.7 mrg vm_physmem[lcv].end) {
512 1.7 mrg if (vm_nphysseg == 1)
513 1.7 mrg panic("vm_page_physget: out of memory!");
514 1.7 mrg vm_nphysseg--;
515 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
516 1.7 mrg /* structure copy */
517 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
518 1.7 mrg }
519 1.7 mrg return (TRUE);
520 1.7 mrg }
521 1.7 mrg
522 1.7 mrg /* try from rear */
523 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
524 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
525 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
526 1.7 mrg vm_physmem[lcv].avail_end--;
527 1.7 mrg vm_physmem[lcv].end--;
528 1.7 mrg /* nothing left? nuke it */
529 1.7 mrg if (vm_physmem[lcv].avail_end ==
530 1.7 mrg vm_physmem[lcv].start) {
531 1.7 mrg if (vm_nphysseg == 1)
532 1.7 mrg panic("vm_page_physget: out of memory!");
533 1.7 mrg vm_nphysseg--;
534 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
535 1.7 mrg /* structure copy */
536 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
537 1.7 mrg }
538 1.7 mrg return (TRUE);
539 1.7 mrg }
540 1.7 mrg }
541 1.1 mrg
542 1.7 mrg /* pass2: forget about matching ends, just allocate something */
543 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
544 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
545 1.1 mrg #else
546 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
547 1.1 mrg #endif
548 1.7 mrg {
549 1.1 mrg
550 1.7 mrg /* any room in this bank? */
551 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
552 1.7 mrg continue; /* nope */
553 1.7 mrg
554 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
555 1.7 mrg vm_physmem[lcv].avail_start++;
556 1.7 mrg /* truncate! */
557 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
558 1.7 mrg
559 1.7 mrg /* nothing left? nuke it */
560 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
561 1.7 mrg if (vm_nphysseg == 1)
562 1.7 mrg panic("vm_page_physget: out of memory!");
563 1.7 mrg vm_nphysseg--;
564 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
565 1.7 mrg /* structure copy */
566 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
567 1.7 mrg }
568 1.7 mrg return (TRUE);
569 1.7 mrg }
570 1.1 mrg
571 1.7 mrg return (FALSE); /* whoops! */
572 1.28 drochner }
573 1.28 drochner
574 1.28 drochner boolean_t
575 1.28 drochner uvm_page_physget(paddrp)
576 1.28 drochner paddr_t *paddrp;
577 1.28 drochner {
578 1.28 drochner int i;
579 1.28 drochner
580 1.28 drochner /* try in the order of freelist preference */
581 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
582 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
583 1.28 drochner return (TRUE);
584 1.28 drochner return (FALSE);
585 1.1 mrg }
586 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
587 1.1 mrg
588 1.1 mrg /*
589 1.1 mrg * uvm_page_physload: load physical memory into VM system
590 1.1 mrg *
591 1.1 mrg * => all args are PFs
592 1.1 mrg * => all pages in start/end get vm_page structures
593 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
594 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
595 1.1 mrg */
596 1.1 mrg
597 1.7 mrg void
598 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
599 1.29 eeh paddr_t start, end, avail_start, avail_end;
600 1.12 thorpej int free_list;
601 1.1 mrg {
602 1.14 eeh int preload, lcv;
603 1.14 eeh psize_t npages;
604 1.7 mrg struct vm_page *pgs;
605 1.7 mrg struct vm_physseg *ps;
606 1.7 mrg
607 1.7 mrg if (uvmexp.pagesize == 0)
608 1.7 mrg panic("vm_page_physload: page size not set!");
609 1.7 mrg
610 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
611 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
612 1.26 drochner
613 1.26 drochner if (start >= end)
614 1.26 drochner panic("uvm_page_physload: start >= end");
615 1.12 thorpej
616 1.7 mrg /*
617 1.7 mrg * do we have room?
618 1.7 mrg */
619 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
620 1.7 mrg printf("vm_page_physload: unable to load physical memory "
621 1.7 mrg "segment\n");
622 1.7 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
623 1.7 mrg VM_PHYSSEG_MAX, start, end);
624 1.7 mrg return;
625 1.7 mrg }
626 1.7 mrg
627 1.7 mrg /*
628 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
629 1.7 mrg * called yet, so malloc is not available).
630 1.7 mrg */
631 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
632 1.7 mrg if (vm_physmem[lcv].pgs)
633 1.7 mrg break;
634 1.7 mrg }
635 1.7 mrg preload = (lcv == vm_nphysseg);
636 1.7 mrg
637 1.7 mrg /*
638 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
639 1.7 mrg */
640 1.7 mrg if (!preload) {
641 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
642 1.7 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
643 1.1 mrg #else
644 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
645 1.14 eeh paddr_t paddr;
646 1.7 mrg npages = end - start; /* # of pages */
647 1.7 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
648 1.7 mrg M_VMPAGE, M_NOWAIT);
649 1.7 mrg if (pgs == NULL) {
650 1.7 mrg printf("vm_page_physload: can not malloc vm_page "
651 1.7 mrg "structs for segment\n");
652 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
653 1.7 mrg return;
654 1.7 mrg }
655 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
656 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
657 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
658 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
659 1.7 mrg pgs[lcv].phys_addr = paddr;
660 1.12 thorpej pgs[lcv].free_list = free_list;
661 1.7 mrg if (atop(paddr) >= avail_start &&
662 1.7 mrg atop(paddr) <= avail_end)
663 1.8 chuck uvm_pagefree(&pgs[lcv]);
664 1.7 mrg }
665 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
666 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
667 1.1 mrg #endif
668 1.7 mrg } else {
669 1.1 mrg
670 1.7 mrg /* gcc complains if these don't get init'd */
671 1.7 mrg pgs = NULL;
672 1.7 mrg npages = 0;
673 1.1 mrg
674 1.7 mrg }
675 1.1 mrg
676 1.7 mrg /*
677 1.7 mrg * now insert us in the proper place in vm_physmem[]
678 1.7 mrg */
679 1.1 mrg
680 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
681 1.1 mrg
682 1.7 mrg /* random: put it at the end (easy!) */
683 1.7 mrg ps = &vm_physmem[vm_nphysseg];
684 1.1 mrg
685 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
686 1.1 mrg
687 1.7 mrg {
688 1.7 mrg int x;
689 1.7 mrg /* sort by address for binary search */
690 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
691 1.7 mrg if (start < vm_physmem[lcv].start)
692 1.7 mrg break;
693 1.7 mrg ps = &vm_physmem[lcv];
694 1.7 mrg /* move back other entries, if necessary ... */
695 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
696 1.7 mrg /* structure copy */
697 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
698 1.7 mrg }
699 1.1 mrg
700 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
701 1.1 mrg
702 1.7 mrg {
703 1.7 mrg int x;
704 1.7 mrg /* sort by largest segment first */
705 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
706 1.7 mrg if ((end - start) >
707 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
708 1.7 mrg break;
709 1.7 mrg ps = &vm_physmem[lcv];
710 1.7 mrg /* move back other entries, if necessary ... */
711 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
712 1.7 mrg /* structure copy */
713 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
714 1.7 mrg }
715 1.1 mrg
716 1.1 mrg #else
717 1.1 mrg
718 1.7 mrg panic("vm_page_physload: unknown physseg strategy selected!");
719 1.1 mrg
720 1.1 mrg #endif
721 1.1 mrg
722 1.7 mrg ps->start = start;
723 1.7 mrg ps->end = end;
724 1.7 mrg ps->avail_start = avail_start;
725 1.7 mrg ps->avail_end = avail_end;
726 1.7 mrg if (preload) {
727 1.7 mrg ps->pgs = NULL;
728 1.7 mrg } else {
729 1.7 mrg ps->pgs = pgs;
730 1.7 mrg ps->lastpg = pgs + npages - 1;
731 1.7 mrg }
732 1.12 thorpej ps->free_list = free_list;
733 1.7 mrg vm_nphysseg++;
734 1.7 mrg
735 1.7 mrg /*
736 1.7 mrg * done!
737 1.7 mrg */
738 1.1 mrg
739 1.7 mrg if (!preload)
740 1.7 mrg uvm_page_rehash();
741 1.1 mrg
742 1.7 mrg return;
743 1.1 mrg }
744 1.1 mrg
745 1.1 mrg /*
746 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
747 1.1 mrg */
748 1.1 mrg
749 1.7 mrg void
750 1.7 mrg uvm_page_rehash()
751 1.1 mrg {
752 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
753 1.7 mrg struct pglist *newbuckets, *oldbuckets;
754 1.7 mrg struct vm_page *pg;
755 1.30 thorpej size_t newsize, oldsize;
756 1.7 mrg
757 1.7 mrg /*
758 1.7 mrg * compute number of pages that can go in the free pool
759 1.7 mrg */
760 1.7 mrg
761 1.7 mrg freepages = 0;
762 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
763 1.7 mrg freepages +=
764 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
765 1.7 mrg
766 1.7 mrg /*
767 1.7 mrg * compute number of buckets needed for this number of pages
768 1.7 mrg */
769 1.7 mrg
770 1.7 mrg bucketcount = 1;
771 1.7 mrg while (bucketcount < freepages)
772 1.7 mrg bucketcount = bucketcount * 2;
773 1.7 mrg
774 1.7 mrg /*
775 1.30 thorpej * compute the size of the current table and new table.
776 1.7 mrg */
777 1.7 mrg
778 1.30 thorpej oldbuckets = uvm.page_hash;
779 1.30 thorpej oldcount = uvm.page_nhash;
780 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
781 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
782 1.30 thorpej
783 1.30 thorpej /*
784 1.30 thorpej * allocate the new buckets
785 1.30 thorpej */
786 1.30 thorpej
787 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
788 1.7 mrg if (newbuckets == NULL) {
789 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
790 1.7 mrg "hash table\n");
791 1.7 mrg return;
792 1.7 mrg }
793 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
794 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
795 1.7 mrg
796 1.7 mrg /*
797 1.7 mrg * now replace the old buckets with the new ones and rehash everything
798 1.7 mrg */
799 1.7 mrg
800 1.7 mrg s = splimp();
801 1.7 mrg simple_lock(&uvm.hashlock);
802 1.7 mrg uvm.page_hash = newbuckets;
803 1.7 mrg uvm.page_nhash = bucketcount;
804 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
805 1.7 mrg
806 1.7 mrg /* ... and rehash */
807 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
808 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
809 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
810 1.7 mrg TAILQ_INSERT_TAIL(
811 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
812 1.7 mrg pg, hashq);
813 1.7 mrg }
814 1.7 mrg }
815 1.7 mrg simple_unlock(&uvm.hashlock);
816 1.7 mrg splx(s);
817 1.7 mrg
818 1.7 mrg /*
819 1.30 thorpej * free old bucket array if is not the boot-time table
820 1.7 mrg */
821 1.7 mrg
822 1.7 mrg if (oldbuckets != &uvm_bootbucket)
823 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
824 1.7 mrg
825 1.7 mrg /*
826 1.7 mrg * done
827 1.7 mrg */
828 1.7 mrg return;
829 1.1 mrg }
830 1.1 mrg
831 1.1 mrg
832 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
833 1.1 mrg
834 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
835 1.1 mrg
836 1.1 mrg /* call from DDB */
837 1.7 mrg void
838 1.7 mrg uvm_page_physdump()
839 1.7 mrg {
840 1.7 mrg int lcv;
841 1.7 mrg
842 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
843 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
844 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
845 1.7 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
846 1.7 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
847 1.7 mrg vm_physmem[lcv].avail_end);
848 1.7 mrg printf("STRATEGY = ");
849 1.7 mrg switch (VM_PHYSSEG_STRAT) {
850 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
851 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
852 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
853 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
854 1.7 mrg }
855 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
856 1.1 mrg }
857 1.1 mrg #endif
858 1.1 mrg
859 1.1 mrg /*
860 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
861 1.1 mrg *
862 1.1 mrg * => return null if no pages free
863 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
864 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
865 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
866 1.1 mrg * => only one of obj or anon can be non-null
867 1.1 mrg * => caller must activate/deactivate page if it is not wired.
868 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
869 1.34 thorpej * => policy decision: it is more important to pull a page off of the
870 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
871 1.34 thorpej * unknown contents page. This is because we live with the
872 1.34 thorpej * consequences of a bad free list decision for the entire
873 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
874 1.34 thorpej * is slower to access.
875 1.1 mrg */
876 1.1 mrg
877 1.7 mrg struct vm_page *
878 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
879 1.7 mrg struct uvm_object *obj;
880 1.31 kleink voff_t off;
881 1.18 chs int flags;
882 1.7 mrg struct vm_anon *anon;
883 1.12 thorpej int strat, free_list;
884 1.1 mrg {
885 1.34 thorpej int lcv, try1, try2, s, zeroit = 0;
886 1.7 mrg struct vm_page *pg;
887 1.12 thorpej struct pglist *freeq;
888 1.34 thorpej struct pgfreelist *pgfl;
889 1.18 chs boolean_t use_reserve;
890 1.1 mrg
891 1.1 mrg #ifdef DIAGNOSTIC
892 1.7 mrg /* sanity check */
893 1.7 mrg if (obj && anon)
894 1.7 mrg panic("uvm_pagealloc: obj and anon != NULL");
895 1.1 mrg #endif
896 1.1 mrg
897 1.21 thorpej s = uvm_lock_fpageq(); /* lock free page queue */
898 1.1 mrg
899 1.7 mrg /*
900 1.7 mrg * check to see if we need to generate some free pages waking
901 1.7 mrg * the pagedaemon.
902 1.7 mrg */
903 1.7 mrg
904 1.7 mrg if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
905 1.7 mrg uvmexp.inactive < uvmexp.inactarg))
906 1.24 thorpej wakeup(&uvm.pagedaemon);
907 1.7 mrg
908 1.7 mrg /*
909 1.7 mrg * fail if any of these conditions is true:
910 1.7 mrg * [1] there really are no free pages, or
911 1.7 mrg * [2] only kernel "reserved" pages remain and
912 1.7 mrg * the page isn't being allocated to a kernel object.
913 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
914 1.7 mrg * the requestor isn't the pagedaemon.
915 1.7 mrg */
916 1.7 mrg
917 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
918 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
919 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
920 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
921 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
922 1.12 thorpej goto fail;
923 1.12 thorpej
924 1.34 thorpej #if PGFL_NQUEUES != 2
925 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
926 1.34 thorpej #endif
927 1.34 thorpej
928 1.34 thorpej /*
929 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
930 1.34 thorpej * we try the UNKNOWN queue first.
931 1.34 thorpej */
932 1.34 thorpej if (flags & UVM_PGA_ZERO) {
933 1.34 thorpej try1 = PGFL_ZEROS;
934 1.34 thorpej try2 = PGFL_UNKNOWN;
935 1.34 thorpej } else {
936 1.34 thorpej try1 = PGFL_UNKNOWN;
937 1.34 thorpej try2 = PGFL_ZEROS;
938 1.34 thorpej }
939 1.34 thorpej
940 1.12 thorpej again:
941 1.12 thorpej switch (strat) {
942 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
943 1.12 thorpej /* Check all freelists in descending priority order. */
944 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
945 1.34 thorpej pgfl = &uvm.page_free[lcv];
946 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
947 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
948 1.34 thorpej (pg = TAILQ_FIRST((freeq =
949 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
950 1.12 thorpej goto gotit;
951 1.12 thorpej }
952 1.12 thorpej
953 1.12 thorpej /* No pages free! */
954 1.12 thorpej goto fail;
955 1.12 thorpej
956 1.12 thorpej case UVM_PGA_STRAT_ONLY:
957 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
958 1.12 thorpej /* Attempt to allocate from the specified free list. */
959 1.12 thorpej #ifdef DIAGNOSTIC
960 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < 0)
961 1.12 thorpej panic("uvm_pagealloc_strat: bad free list %d",
962 1.12 thorpej free_list);
963 1.12 thorpej #endif
964 1.34 thorpej pgfl = &uvm.page_free[free_list];
965 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
966 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
967 1.34 thorpej (pg = TAILQ_FIRST((freeq =
968 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
969 1.12 thorpej goto gotit;
970 1.12 thorpej
971 1.12 thorpej /* Fall back, if possible. */
972 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
973 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
974 1.12 thorpej goto again;
975 1.12 thorpej }
976 1.12 thorpej
977 1.12 thorpej /* No pages free! */
978 1.12 thorpej goto fail;
979 1.12 thorpej
980 1.12 thorpej default:
981 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
982 1.12 thorpej /* NOTREACHED */
983 1.7 mrg }
984 1.7 mrg
985 1.12 thorpej gotit:
986 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
987 1.7 mrg uvmexp.free--;
988 1.7 mrg
989 1.34 thorpej /* update zero'd page count */
990 1.34 thorpej if (pg->flags & PG_ZERO)
991 1.34 thorpej uvmexp.zeropages--;
992 1.34 thorpej
993 1.34 thorpej /*
994 1.34 thorpej * update allocation statistics and remember if we have to
995 1.34 thorpej * zero the page
996 1.34 thorpej */
997 1.34 thorpej if (flags & UVM_PGA_ZERO) {
998 1.34 thorpej if (pg->flags & PG_ZERO) {
999 1.34 thorpej uvmexp.pga_zerohit++;
1000 1.34 thorpej zeroit = 0;
1001 1.34 thorpej } else {
1002 1.34 thorpej uvmexp.pga_zeromiss++;
1003 1.34 thorpej zeroit = 1;
1004 1.34 thorpej }
1005 1.34 thorpej }
1006 1.34 thorpej
1007 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
1008 1.7 mrg
1009 1.7 mrg pg->offset = off;
1010 1.7 mrg pg->uobject = obj;
1011 1.7 mrg pg->uanon = anon;
1012 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1013 1.7 mrg pg->version++;
1014 1.7 mrg pg->wire_count = 0;
1015 1.7 mrg pg->loan_count = 0;
1016 1.7 mrg if (anon) {
1017 1.7 mrg anon->u.an_page = pg;
1018 1.7 mrg pg->pqflags = PQ_ANON;
1019 1.7 mrg } else {
1020 1.7 mrg if (obj)
1021 1.7 mrg uvm_pageinsert(pg);
1022 1.7 mrg pg->pqflags = 0;
1023 1.7 mrg }
1024 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1025 1.7 mrg pg->owner_tag = NULL;
1026 1.1 mrg #endif
1027 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1028 1.33 thorpej
1029 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1030 1.33 thorpej /*
1031 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1032 1.34 thorpej * zero'd, then we have to zero it ourselves.
1033 1.33 thorpej */
1034 1.33 thorpej pg->flags &= ~PG_CLEAN;
1035 1.34 thorpej if (zeroit)
1036 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1037 1.33 thorpej }
1038 1.1 mrg
1039 1.7 mrg return(pg);
1040 1.12 thorpej
1041 1.12 thorpej fail:
1042 1.21 thorpej uvm_unlock_fpageq(s);
1043 1.12 thorpej return (NULL);
1044 1.1 mrg }
1045 1.1 mrg
1046 1.1 mrg /*
1047 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1048 1.1 mrg *
1049 1.1 mrg * => both objects must be locked
1050 1.1 mrg */
1051 1.1 mrg
1052 1.7 mrg void
1053 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1054 1.7 mrg struct vm_page *pg;
1055 1.7 mrg struct uvm_object *newobj;
1056 1.31 kleink voff_t newoff;
1057 1.1 mrg {
1058 1.7 mrg /*
1059 1.7 mrg * remove it from the old object
1060 1.7 mrg */
1061 1.7 mrg
1062 1.7 mrg if (pg->uobject) {
1063 1.7 mrg uvm_pageremove(pg);
1064 1.7 mrg }
1065 1.7 mrg
1066 1.7 mrg /*
1067 1.7 mrg * put it in the new object
1068 1.7 mrg */
1069 1.7 mrg
1070 1.7 mrg if (newobj) {
1071 1.7 mrg pg->uobject = newobj;
1072 1.7 mrg pg->offset = newoff;
1073 1.7 mrg pg->version++;
1074 1.7 mrg uvm_pageinsert(pg);
1075 1.7 mrg }
1076 1.1 mrg
1077 1.7 mrg return;
1078 1.1 mrg }
1079 1.1 mrg
1080 1.1 mrg
1081 1.1 mrg /*
1082 1.1 mrg * uvm_pagefree: free page
1083 1.1 mrg *
1084 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1085 1.1 mrg * => put page on free list
1086 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1087 1.1 mrg * => caller must lock page queues
1088 1.1 mrg * => assumes all valid mappings of pg are gone
1089 1.1 mrg */
1090 1.1 mrg
1091 1.1 mrg void uvm_pagefree(pg)
1092 1.1 mrg
1093 1.1 mrg struct vm_page *pg;
1094 1.1 mrg
1095 1.1 mrg {
1096 1.7 mrg int s;
1097 1.7 mrg int saved_loan_count = pg->loan_count;
1098 1.1 mrg
1099 1.7 mrg /*
1100 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1101 1.7 mrg * from the object.
1102 1.7 mrg */
1103 1.7 mrg
1104 1.7 mrg if (pg->flags & PG_TABLED) {
1105 1.7 mrg
1106 1.7 mrg /*
1107 1.7 mrg * if the object page is on loan we are going to drop ownership.
1108 1.7 mrg * it is possible that an anon will take over as owner for this
1109 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1110 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1111 1.7 mrg * page out.
1112 1.7 mrg */
1113 1.7 mrg
1114 1.7 mrg if (saved_loan_count)
1115 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1116 1.7 mrg
1117 1.7 mrg uvm_pageremove(pg);
1118 1.7 mrg
1119 1.7 mrg /*
1120 1.7 mrg * if our page was on loan, then we just lost control over it
1121 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1122 1.7 mrg * already taken over ownership of the page by now and thus
1123 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1124 1.7 mrg * return (when the last loan is dropped, then the page can be
1125 1.7 mrg * freed by whatever was holding the last loan).
1126 1.7 mrg */
1127 1.7 mrg if (saved_loan_count)
1128 1.7 mrg return;
1129 1.7 mrg
1130 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1131 1.7 mrg
1132 1.7 mrg /*
1133 1.7 mrg * if our page is owned by an anon and is loaned out to the
1134 1.7 mrg * kernel then we just want to drop ownership and return.
1135 1.7 mrg * the kernel must free the page when all its loans clear ...
1136 1.7 mrg * note that the kernel can't change the loan status of our
1137 1.7 mrg * page as long as we are holding PQ lock.
1138 1.7 mrg */
1139 1.7 mrg pg->pqflags &= ~PQ_ANON;
1140 1.7 mrg pg->uanon = NULL;
1141 1.7 mrg return;
1142 1.7 mrg }
1143 1.1 mrg
1144 1.1 mrg #ifdef DIAGNOSTIC
1145 1.7 mrg if (saved_loan_count) {
1146 1.7 mrg printf("uvm_pagefree: warning: freeing page with a loan "
1147 1.7 mrg "count of %d\n", saved_loan_count);
1148 1.7 mrg panic("uvm_pagefree: loan count");
1149 1.7 mrg }
1150 1.1 mrg #endif
1151 1.7 mrg
1152 1.1 mrg
1153 1.7 mrg /*
1154 1.7 mrg * now remove the page from the queues
1155 1.7 mrg */
1156 1.7 mrg
1157 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1158 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1159 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1160 1.7 mrg uvmexp.active--;
1161 1.7 mrg }
1162 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1163 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1164 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1165 1.7 mrg else
1166 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1167 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1168 1.7 mrg uvmexp.inactive--;
1169 1.7 mrg }
1170 1.7 mrg
1171 1.7 mrg /*
1172 1.7 mrg * if the page was wired, unwire it now.
1173 1.7 mrg */
1174 1.34 thorpej if (pg->wire_count) {
1175 1.7 mrg pg->wire_count = 0;
1176 1.7 mrg uvmexp.wired--;
1177 1.7 mrg }
1178 1.7 mrg
1179 1.7 mrg /*
1180 1.7 mrg * and put on free queue
1181 1.7 mrg */
1182 1.7 mrg
1183 1.34 thorpej pg->flags &= ~PG_ZERO;
1184 1.34 thorpej
1185 1.21 thorpej s = uvm_lock_fpageq();
1186 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1187 1.34 thorpej uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1188 1.7 mrg pg->pqflags = PQ_FREE;
1189 1.3 chs #ifdef DEBUG
1190 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1191 1.7 mrg pg->offset = 0xdeadbeef;
1192 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1193 1.3 chs #endif
1194 1.7 mrg uvmexp.free++;
1195 1.34 thorpej
1196 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1197 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1198 1.34 thorpej
1199 1.21 thorpej uvm_unlock_fpageq(s);
1200 1.1 mrg }
1201 1.1 mrg
1202 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1203 1.1 mrg /*
1204 1.1 mrg * uvm_page_own: set or release page ownership
1205 1.1 mrg *
1206 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1207 1.1 mrg * and where they do it. it can be used to track down problems
1208 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1209 1.1 mrg * => page's object [if any] must be locked
1210 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1211 1.1 mrg */
1212 1.7 mrg void
1213 1.7 mrg uvm_page_own(pg, tag)
1214 1.7 mrg struct vm_page *pg;
1215 1.7 mrg char *tag;
1216 1.1 mrg {
1217 1.7 mrg /* gain ownership? */
1218 1.7 mrg if (tag) {
1219 1.7 mrg if (pg->owner_tag) {
1220 1.7 mrg printf("uvm_page_own: page %p already owned "
1221 1.7 mrg "by proc %d [%s]\n", pg,
1222 1.7 mrg pg->owner, pg->owner_tag);
1223 1.7 mrg panic("uvm_page_own");
1224 1.7 mrg }
1225 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1226 1.7 mrg pg->owner_tag = tag;
1227 1.7 mrg return;
1228 1.7 mrg }
1229 1.7 mrg
1230 1.7 mrg /* drop ownership */
1231 1.7 mrg if (pg->owner_tag == NULL) {
1232 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1233 1.7 mrg "page (%p)\n", pg);
1234 1.7 mrg panic("uvm_page_own");
1235 1.7 mrg }
1236 1.7 mrg pg->owner_tag = NULL;
1237 1.7 mrg return;
1238 1.1 mrg }
1239 1.1 mrg #endif
1240 1.34 thorpej
1241 1.34 thorpej /*
1242 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1243 1.34 thorpej *
1244 1.34 thorpej * => we do at least one iteration per call, if we are below the target.
1245 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1246 1.34 thorpej * there is a process ready to run.
1247 1.34 thorpej */
1248 1.34 thorpej void
1249 1.34 thorpej uvm_pageidlezero()
1250 1.34 thorpej {
1251 1.34 thorpej struct vm_page *pg;
1252 1.34 thorpej struct pgfreelist *pgfl;
1253 1.34 thorpej int free_list, s;
1254 1.34 thorpej
1255 1.34 thorpej do {
1256 1.34 thorpej s = uvm_lock_fpageq();
1257 1.34 thorpej
1258 1.34 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1259 1.34 thorpej uvm.page_idle_zero = FALSE;
1260 1.34 thorpej uvm_unlock_fpageq(s);
1261 1.34 thorpej return;
1262 1.34 thorpej }
1263 1.34 thorpej
1264 1.34 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1265 1.34 thorpej pgfl = &uvm.page_free[free_list];
1266 1.34 thorpej if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1267 1.34 thorpej PGFL_UNKNOWN])) != NULL)
1268 1.34 thorpej break;
1269 1.34 thorpej }
1270 1.34 thorpej
1271 1.34 thorpej if (pg == NULL) {
1272 1.34 thorpej /*
1273 1.34 thorpej * No non-zero'd pages; don't bother trying again
1274 1.34 thorpej * until we know we have non-zero'd pages free.
1275 1.34 thorpej */
1276 1.34 thorpej uvm.page_idle_zero = FALSE;
1277 1.34 thorpej uvm_unlock_fpageq(s);
1278 1.34 thorpej return;
1279 1.34 thorpej }
1280 1.34 thorpej
1281 1.34 thorpej TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1282 1.34 thorpej uvmexp.free--;
1283 1.34 thorpej uvm_unlock_fpageq(s);
1284 1.34 thorpej
1285 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1286 1.34 thorpej PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg));
1287 1.34 thorpej #else
1288 1.34 thorpej /*
1289 1.34 thorpej * XXX This will toast the cache unless the pmap_zero_page()
1290 1.34 thorpej * XXX implementation does uncached access.
1291 1.34 thorpej */
1292 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1293 1.34 thorpej #endif
1294 1.34 thorpej pg->flags |= PG_ZERO;
1295 1.34 thorpej
1296 1.34 thorpej s = uvm_lock_fpageq();
1297 1.34 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1298 1.34 thorpej uvmexp.free++;
1299 1.34 thorpej uvmexp.zeropages++;
1300 1.34 thorpej uvm_unlock_fpageq(s);
1301 1.35 thorpej } while (sched_whichqs == 0);
1302 1.34 thorpej }
1303