uvm_page.c revision 1.4 1 1.4 mrg /* $NetBSD: uvm_page.c,v 1.4 1998/02/07 11:09:19 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
46 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
47 1.1 mrg *
48 1.1 mrg *
49 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 1.1 mrg * All rights reserved.
51 1.1 mrg *
52 1.1 mrg * Permission to use, copy, modify and distribute this software and
53 1.1 mrg * its documentation is hereby granted, provided that both the copyright
54 1.1 mrg * notice and this permission notice appear in all copies of the
55 1.1 mrg * software, derivative works or modified versions, and any portions
56 1.1 mrg * thereof, and that both notices appear in supporting documentation.
57 1.1 mrg *
58 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 1.1 mrg *
62 1.1 mrg * Carnegie Mellon requests users of this software to return to
63 1.1 mrg *
64 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 1.1 mrg * School of Computer Science
66 1.1 mrg * Carnegie Mellon University
67 1.1 mrg * Pittsburgh PA 15213-3890
68 1.1 mrg *
69 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
70 1.1 mrg * rights to redistribute these changes.
71 1.1 mrg */
72 1.1 mrg
73 1.1 mrg /*
74 1.1 mrg * uvm_page.c: page ops.
75 1.1 mrg */
76 1.1 mrg
77 1.1 mrg #include <sys/param.h>
78 1.1 mrg #include <sys/systm.h>
79 1.1 mrg #include <sys/malloc.h>
80 1.1 mrg #include <sys/mount.h>
81 1.1 mrg #include <sys/proc.h>
82 1.1 mrg
83 1.1 mrg #include <vm/vm.h>
84 1.1 mrg #include <vm/vm_page.h>
85 1.1 mrg #include <vm/vm_kern.h>
86 1.1 mrg
87 1.1 mrg #include <sys/syscallargs.h>
88 1.1 mrg
89 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
90 1.1 mrg #include <uvm/uvm.h>
91 1.1 mrg
92 1.1 mrg /*
93 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
94 1.1 mrg */
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * physical memory config is stored in vm_physmem.
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102 1.1 mrg
103 1.1 mrg /*
104 1.1 mrg * local variables
105 1.1 mrg */
106 1.1 mrg
107 1.1 mrg /*
108 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
109 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
110 1.1 mrg * and pmap_startup here also uses them internally.
111 1.1 mrg */
112 1.1 mrg
113 1.1 mrg static vm_offset_t virtual_space_start;
114 1.1 mrg static vm_offset_t virtual_space_end;
115 1.1 mrg
116 1.1 mrg /*
117 1.1 mrg * we use a hash table with only one bucket during bootup. we will
118 1.1 mrg * later rehash (resize) the hash table once malloc() is ready.
119 1.1 mrg * we static allocate the bootstrap bucket below...
120 1.1 mrg */
121 1.1 mrg
122 1.1 mrg static struct pglist uvm_bootbucket;
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * local prototypes
126 1.1 mrg */
127 1.1 mrg
128 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
129 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
130 1.1 mrg static boolean_t uvm_page_physget __P((vm_offset_t *));
131 1.1 mrg #endif
132 1.1 mrg
133 1.1 mrg
134 1.1 mrg /*
135 1.1 mrg * inline functions
136 1.1 mrg */
137 1.1 mrg
138 1.1 mrg /*
139 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
140 1.1 mrg *
141 1.1 mrg * => caller must lock object
142 1.1 mrg * => caller must lock page queues
143 1.1 mrg * => call should have already set pg's object and offset pointers
144 1.1 mrg * and bumped the version counter
145 1.1 mrg */
146 1.1 mrg
147 1.1 mrg __inline static void uvm_pageinsert(pg)
148 1.1 mrg
149 1.1 mrg struct vm_page *pg;
150 1.1 mrg
151 1.1 mrg {
152 1.1 mrg struct pglist *buck;
153 1.1 mrg int s;
154 1.1 mrg
155 1.1 mrg #ifdef DIAGNOSTIC
156 1.1 mrg if (pg->flags & PG_TABLED)
157 1.1 mrg panic("uvm_pageinsert: already inserted");
158 1.1 mrg #endif
159 1.1 mrg
160 1.1 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
161 1.1 mrg s = splimp();
162 1.1 mrg simple_lock(&uvm.hashlock);
163 1.1 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
164 1.1 mrg simple_unlock(&uvm.hashlock);
165 1.1 mrg splx(s);
166 1.1 mrg
167 1.1 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
168 1.1 mrg pg->flags |= PG_TABLED;
169 1.1 mrg pg->uobject->uo_npages++;
170 1.1 mrg
171 1.1 mrg }
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * uvm_page_remove: remove page from object and hash
175 1.1 mrg *
176 1.1 mrg * => caller must lock object
177 1.1 mrg * => caller must lock page queues
178 1.1 mrg */
179 1.1 mrg
180 1.1 mrg void __inline uvm_pageremove(pg)
181 1.1 mrg
182 1.1 mrg struct vm_page *pg;
183 1.1 mrg
184 1.1 mrg {
185 1.1 mrg struct pglist *buck;
186 1.1 mrg int s;
187 1.1 mrg
188 1.1 mrg #ifdef DIAGNOSTIC
189 1.1 mrg if ((pg->flags & (PG_FAULTING)) != 0)
190 1.1 mrg panic("uvm_pageremove: page is faulting");
191 1.1 mrg #endif
192 1.1 mrg
193 1.1 mrg if ((pg->flags & PG_TABLED) == 0)
194 1.1 mrg return; /* XXX: log */
195 1.1 mrg
196 1.1 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
197 1.1 mrg s = splimp();
198 1.1 mrg simple_lock(&uvm.hashlock);
199 1.1 mrg TAILQ_REMOVE(buck, pg, hashq);
200 1.1 mrg simple_unlock(&uvm.hashlock);
201 1.1 mrg splx(s);
202 1.1 mrg
203 1.1 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);/* object should be locked */
204 1.1 mrg
205 1.1 mrg pg->flags &= ~PG_TABLED;
206 1.1 mrg pg->uobject->uo_npages--;
207 1.1 mrg pg->uobject = NULL;
208 1.1 mrg pg->version++;
209 1.1 mrg
210 1.1 mrg }
211 1.1 mrg
212 1.1 mrg /*
213 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
214 1.1 mrg *
215 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
216 1.1 mrg */
217 1.1 mrg
218 1.1 mrg void uvm_page_init(kvm_startp, kvm_endp)
219 1.1 mrg
220 1.1 mrg vm_offset_t *kvm_startp, *kvm_endp;
221 1.1 mrg
222 1.1 mrg {
223 1.1 mrg int freepages, pagecount;
224 1.1 mrg vm_page_t pagearray;
225 1.1 mrg int lcv, n, i;
226 1.1 mrg vm_offset_t paddr;
227 1.1 mrg
228 1.1 mrg
229 1.1 mrg /*
230 1.1 mrg * step 1: init the page queues and page queue locks
231 1.1 mrg */
232 1.1 mrg
233 1.1 mrg TAILQ_INIT(&uvm.page_free);
234 1.1 mrg TAILQ_INIT(&uvm.page_active);
235 1.1 mrg TAILQ_INIT(&uvm.page_inactive_swp);
236 1.1 mrg TAILQ_INIT(&uvm.page_inactive_obj);
237 1.1 mrg simple_lock_init(&uvm.pageqlock);
238 1.1 mrg simple_lock_init(&uvm.fpageqlock);
239 1.1 mrg
240 1.1 mrg /*
241 1.1 mrg * step 2: init the <obj,offset> => <page> hash table. for now
242 1.1 mrg * we just have one bucket (the bootstrap bucket). later on we
243 1.1 mrg * will malloc() new buckets as we dynamically resize the hash table.
244 1.1 mrg */
245 1.1 mrg
246 1.1 mrg uvm.page_nhash = 1; /* 1 bucket */
247 1.1 mrg uvm.page_hashmask = 0; /* mask for hash function */
248 1.1 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
249 1.1 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
250 1.1 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
251 1.1 mrg
252 1.1 mrg /*
253 1.1 mrg * step 3: allocate vm_page structures.
254 1.1 mrg */
255 1.1 mrg
256 1.1 mrg /*
257 1.1 mrg * sanity check:
258 1.1 mrg * before calling this function the MD code is expected to register
259 1.1 mrg * some free RAM with the uvm_page_physload() function. our job
260 1.1 mrg * now is to allocate vm_page structures for this memory.
261 1.1 mrg */
262 1.1 mrg
263 1.1 mrg if (vm_nphysseg == 0)
264 1.1 mrg panic("vm_page_bootstrap: no memory pre-allocated");
265 1.1 mrg
266 1.1 mrg /*
267 1.1 mrg * first calculate the number of free pages...
268 1.1 mrg *
269 1.1 mrg * note that we use start/end rather than avail_start/avail_end.
270 1.1 mrg * this allows us to allocate extra vm_page structures in case we
271 1.1 mrg * want to return some memory to the pool after booting.
272 1.1 mrg */
273 1.1 mrg
274 1.1 mrg freepages = 0;
275 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
276 1.1 mrg freepages = freepages + (vm_physmem[lcv].end - vm_physmem[lcv].start);
277 1.1 mrg }
278 1.1 mrg
279 1.1 mrg /*
280 1.1 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
281 1.1 mrg * use. for each page of memory we use we need a vm_page structure.
282 1.1 mrg * thus, the total number of pages we can use is the total size of
283 1.1 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
284 1.1 mrg * structure. we add one to freepages as a fudge factor to avoid
285 1.1 mrg * truncation errors (since we can only allocate in terms of whole
286 1.1 mrg * pages).
287 1.1 mrg */
288 1.1 mrg
289 1.1 mrg pagecount = (PAGE_SIZE * (freepages + 1)) /
290 1.1 mrg (PAGE_SIZE + sizeof(struct vm_page));
291 1.1 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * sizeof(struct vm_page));
292 1.1 mrg bzero(pagearray, pagecount * sizeof(struct vm_page));
293 1.1 mrg
294 1.1 mrg /*
295 1.1 mrg * step 4: init the vm_page structures and put them in the correct
296 1.1 mrg * place...
297 1.1 mrg */
298 1.1 mrg
299 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
300 1.1 mrg
301 1.1 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
302 1.1 mrg if (n > pagecount) {
303 1.1 mrg printf("uvm_page_init: lost %d page(s) in init\n", n - pagecount);
304 1.1 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
305 1.1 mrg /* n = pagecount; */
306 1.1 mrg }
307 1.1 mrg /* set up page array pointers */
308 1.1 mrg vm_physmem[lcv].pgs = pagearray;
309 1.1 mrg pagearray += n;
310 1.1 mrg pagecount -= n;
311 1.1 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
312 1.1 mrg
313 1.1 mrg /* init and free vm_pages (we've already bzero'd them) */
314 1.1 mrg paddr = ptoa(vm_physmem[lcv].start);
315 1.1 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
316 1.1 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
317 1.1 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
318 1.1 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
319 1.1 mrg uvmexp.npages++;
320 1.1 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]); /* add page to free pool */
321 1.1 mrg }
322 1.1 mrg }
323 1.1 mrg }
324 1.1 mrg /*
325 1.1 mrg * step 5: pass up the values of virtual_space_start and
326 1.1 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
327 1.1 mrg * layers of the VM.
328 1.1 mrg */
329 1.1 mrg
330 1.1 mrg *kvm_startp = round_page(virtual_space_start);
331 1.1 mrg *kvm_endp = trunc_page(virtual_space_end);
332 1.1 mrg
333 1.1 mrg /*
334 1.1 mrg * step 6: init pagedaemon lock
335 1.1 mrg */
336 1.1 mrg
337 1.1 mrg simple_lock_init(&uvm.pagedaemon_lock);
338 1.1 mrg
339 1.1 mrg /*
340 1.3 chs * step 7: init reserve thresholds
341 1.3 chs * XXXCDC - values may need adjusting
342 1.3 chs */
343 1.3 chs uvmexp.reserve_pagedaemon = 1;
344 1.3 chs uvmexp.reserve_kernel = 5;
345 1.3 chs
346 1.3 chs /*
347 1.1 mrg * done!
348 1.1 mrg */
349 1.1 mrg
350 1.1 mrg }
351 1.1 mrg
352 1.1 mrg /*
353 1.1 mrg * uvm_setpagesize: set the page size
354 1.1 mrg *
355 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
356 1.1 mrg * => XXXCDC: move global vars.
357 1.1 mrg */
358 1.1 mrg
359 1.1 mrg void uvm_setpagesize()
360 1.1 mrg {
361 1.1 mrg if (uvmexp.pagesize == 0)
362 1.1 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
363 1.1 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
364 1.1 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
365 1.1 mrg panic("uvm_setpagesize: page size not a power of two");
366 1.1 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
367 1.1 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
368 1.1 mrg break;
369 1.1 mrg }
370 1.1 mrg
371 1.1 mrg /*
372 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
373 1.1 mrg */
374 1.1 mrg
375 1.1 mrg vm_offset_t uvm_pageboot_alloc(size)
376 1.1 mrg
377 1.1 mrg vm_size_t size;
378 1.1 mrg
379 1.1 mrg {
380 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
381 1.1 mrg vm_offset_t addr;
382 1.1 mrg
383 1.1 mrg /*
384 1.1 mrg * defer bootstrap allocation to MD code (it may want to allocate
385 1.1 mrg * from a direct-mapped segment). pmap_steal_memory should round
386 1.1 mrg * off virtual_space_start/virtual_space_end.
387 1.1 mrg */
388 1.1 mrg
389 1.1 mrg addr = pmap_steal_memory(size, &virtual_space_start, &virtual_space_end);
390 1.1 mrg
391 1.1 mrg return(addr);
392 1.1 mrg
393 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
394 1.1 mrg
395 1.1 mrg vm_offset_t addr, vaddr, paddr;
396 1.1 mrg
397 1.1 mrg /* round the size to an integer multiple */
398 1.1 mrg size = (size + 3) &~ 3; /* XXX */
399 1.1 mrg
400 1.1 mrg /*
401 1.1 mrg * on first call to this function init ourselves. we detect this
402 1.1 mrg * by checking virtual_space_start/end which are in the zero'd BSS area.
403 1.1 mrg */
404 1.1 mrg
405 1.1 mrg if (virtual_space_start == virtual_space_end) {
406 1.1 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
407 1.1 mrg
408 1.1 mrg /* round it the way we like it */
409 1.1 mrg virtual_space_start = round_page(virtual_space_start);
410 1.1 mrg virtual_space_end = trunc_page(virtual_space_end);
411 1.1 mrg }
412 1.1 mrg
413 1.1 mrg /*
414 1.1 mrg * allocate virtual memory for this request
415 1.1 mrg */
416 1.1 mrg
417 1.1 mrg addr = virtual_space_start;
418 1.1 mrg virtual_space_start += size;
419 1.1 mrg
420 1.1 mrg /*
421 1.1 mrg * allocate and mapin physical pages to back new virtual pages
422 1.1 mrg */
423 1.1 mrg
424 1.1 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ; vaddr += PAGE_SIZE) {
425 1.1 mrg
426 1.1 mrg if (!uvm_page_physget(&paddr))
427 1.1 mrg panic("uvm_pageboot_alloc: out of memory");
428 1.1 mrg
429 1.1 mrg /* XXX: should be wired, but some pmaps don't like that ... */
430 1.1 mrg #if defined(PMAP_NEW)
431 1.1 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
432 1.1 mrg #else
433 1.1 mrg pmap_enter(pmap_kernel(), vaddr, paddr,
434 1.1 mrg VM_PROT_READ|VM_PROT_WRITE, FALSE);
435 1.1 mrg #endif
436 1.1 mrg
437 1.1 mrg }
438 1.1 mrg
439 1.1 mrg return(addr);
440 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
441 1.1 mrg }
442 1.1 mrg
443 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
444 1.1 mrg /*
445 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
446 1.1 mrg *
447 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
448 1.1 mrg * values match the start/end values. if we can't do that, then we
449 1.1 mrg * will advance both values (making them equal, and removing some
450 1.1 mrg * vm_page structures from the non-avail area).
451 1.1 mrg * => return false if out of memory.
452 1.1 mrg */
453 1.1 mrg
454 1.1 mrg static boolean_t uvm_page_physget(paddrp)
455 1.1 mrg
456 1.1 mrg vm_offset_t *paddrp;
457 1.1 mrg
458 1.1 mrg {
459 1.1 mrg int lcv, x;
460 1.1 mrg
461 1.1 mrg /* pass 1: try allocating from a matching end */
462 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
463 1.1 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
464 1.1 mrg #else
465 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
466 1.1 mrg #endif
467 1.1 mrg {
468 1.1 mrg
469 1.1 mrg if (vm_physmem[lcv].pgs)
470 1.1 mrg panic("vm_page_physget: called _after_ bootstrap");
471 1.1 mrg
472 1.1 mrg /* try from front */
473 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
474 1.1 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
475 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
476 1.1 mrg vm_physmem[lcv].avail_start++;
477 1.1 mrg vm_physmem[lcv].start++;
478 1.1 mrg /* nothing left? nuke it */
479 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
480 1.1 mrg if (vm_nphysseg == 1)
481 1.1 mrg panic("vm_page_physget: out of memory!");
482 1.1 mrg vm_nphysseg--;
483 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
484 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
485 1.1 mrg }
486 1.1 mrg return(TRUE);
487 1.1 mrg }
488 1.1 mrg
489 1.1 mrg /* try from rear */
490 1.1 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
491 1.1 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
492 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
493 1.1 mrg vm_physmem[lcv].avail_end--;
494 1.1 mrg vm_physmem[lcv].end--;
495 1.1 mrg /* nothing left? nuke it */
496 1.1 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].start) {
497 1.1 mrg if (vm_nphysseg == 1)
498 1.1 mrg panic("vm_page_physget: out of memory!");
499 1.1 mrg vm_nphysseg--;
500 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
501 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
502 1.1 mrg }
503 1.1 mrg return(TRUE);
504 1.1 mrg }
505 1.1 mrg }
506 1.1 mrg
507 1.1 mrg /* pass2: forget about matching ends, just allocate something */
508 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
509 1.1 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
510 1.1 mrg #else
511 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
512 1.1 mrg #endif
513 1.1 mrg {
514 1.1 mrg
515 1.1 mrg /* any room in this bank? */
516 1.1 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
517 1.1 mrg continue; /* nope */
518 1.1 mrg
519 1.1 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
520 1.1 mrg vm_physmem[lcv].avail_start++;
521 1.1 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
522 1.1 mrg /* nothing left? nuke it */
523 1.1 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
524 1.1 mrg if (vm_nphysseg == 1)
525 1.1 mrg panic("vm_page_physget: out of memory!");
526 1.1 mrg vm_nphysseg--;
527 1.1 mrg for (x = lcv ; x < vm_nphysseg ; x++)
528 1.1 mrg vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
529 1.1 mrg }
530 1.1 mrg return(TRUE);
531 1.1 mrg }
532 1.1 mrg
533 1.1 mrg return(FALSE); /* whoops! */
534 1.1 mrg }
535 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
536 1.1 mrg
537 1.1 mrg /*
538 1.1 mrg * uvm_page_physload: load physical memory into VM system
539 1.1 mrg *
540 1.1 mrg * => all args are PFs
541 1.1 mrg * => all pages in start/end get vm_page structures
542 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
543 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
544 1.1 mrg */
545 1.1 mrg
546 1.1 mrg void uvm_page_physload(start, end, avail_start, avail_end)
547 1.1 mrg
548 1.1 mrg vm_offset_t start, end, avail_start, avail_end;
549 1.1 mrg
550 1.1 mrg {
551 1.1 mrg int preload, lcv, npages;
552 1.1 mrg struct vm_page *pgs;
553 1.1 mrg struct vm_physseg *ps;
554 1.1 mrg
555 1.1 mrg if (uvmexp.pagesize == 0)
556 1.1 mrg panic("vm_page_physload: page size not set!");
557 1.1 mrg
558 1.1 mrg /*
559 1.1 mrg * do we have room?
560 1.1 mrg */
561 1.1 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
562 1.1 mrg printf("vm_page_physload: unable to load physical memory segment\n");
563 1.1 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
564 1.1 mrg VM_PHYSSEG_MAX, start, end);
565 1.1 mrg return;
566 1.1 mrg }
567 1.1 mrg
568 1.1 mrg /*
569 1.1 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
570 1.1 mrg * called yet, so malloc is not available).
571 1.1 mrg */
572 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
573 1.1 mrg if (vm_physmem[lcv].pgs)
574 1.1 mrg break;
575 1.1 mrg }
576 1.1 mrg preload = (lcv == vm_nphysseg);
577 1.1 mrg
578 1.1 mrg /*
579 1.1 mrg * if VM is already running, attempt to malloc() vm_page structures
580 1.1 mrg */
581 1.1 mrg if (!preload) {
582 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
583 1.1 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
584 1.1 mrg #else
585 1.1 mrg /* XXXCDC: need some sort of lockout for this case */
586 1.1 mrg vm_offset_t paddr;
587 1.1 mrg npages = end - start; /* # of pages */
588 1.1 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
589 1.1 mrg M_VMPAGE, M_NOWAIT);
590 1.1 mrg if (pgs == NULL) {
591 1.1 mrg printf("vm_page_physload: can not malloc vm_page structs for segment\n");
592 1.1 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
593 1.1 mrg return;
594 1.1 mrg }
595 1.1 mrg /* zero data, init phys_addr, and free pages */
596 1.1 mrg bzero(pgs, sizeof(struct vm_page) * npages);
597 1.1 mrg for (lcv = 0, paddr = ptoa(start) ;
598 1.1 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
599 1.1 mrg pgs[lcv].phys_addr = paddr;
600 1.1 mrg if (atop(paddr) >= avail_start && atop(paddr) <= avail_end)
601 1.1 mrg vm_page_free(&pgs[i]);
602 1.1 mrg }
603 1.1 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
604 1.1 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
605 1.1 mrg #endif
606 1.1 mrg } else {
607 1.1 mrg
608 1.1 mrg /* gcc complains if these don't get init'd */
609 1.1 mrg pgs = NULL;
610 1.1 mrg npages = 0;
611 1.1 mrg
612 1.1 mrg }
613 1.1 mrg
614 1.1 mrg /*
615 1.1 mrg * now insert us in the proper place in vm_physmem[]
616 1.1 mrg */
617 1.1 mrg
618 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
619 1.1 mrg
620 1.1 mrg /* random: put it at the end (easy!) */
621 1.1 mrg ps = &vm_physmem[vm_nphysseg];
622 1.1 mrg
623 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
624 1.1 mrg
625 1.1 mrg {
626 1.1 mrg int x;
627 1.1 mrg /* sort by address for binary search */
628 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
629 1.1 mrg if (start < vm_physmem[lcv].start)
630 1.1 mrg break;
631 1.1 mrg ps = &vm_physmem[lcv];
632 1.1 mrg /* move back other entries, if necessary ... */
633 1.1 mrg for (x = vm_nphysseg ; x > lcv ; x--)
634 1.1 mrg vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
635 1.1 mrg }
636 1.1 mrg
637 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
638 1.1 mrg
639 1.1 mrg {
640 1.1 mrg int x;
641 1.1 mrg /* sort by largest segment first */
642 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
643 1.1 mrg if ((end - start) > (vm_physmem[lcv].end - vm_physmem[lcv].start))
644 1.1 mrg break;
645 1.1 mrg ps = &vm_physmem[lcv];
646 1.1 mrg /* move back other entries, if necessary ... */
647 1.1 mrg for (x = vm_nphysseg ; x > lcv ; x--)
648 1.1 mrg vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
649 1.1 mrg }
650 1.1 mrg
651 1.1 mrg #else
652 1.1 mrg
653 1.1 mrg panic("vm_page_physload: unknown physseg strategy selected!");
654 1.1 mrg
655 1.1 mrg #endif
656 1.1 mrg
657 1.1 mrg ps->start = start;
658 1.1 mrg ps->end = end;
659 1.1 mrg ps->avail_start = avail_start;
660 1.1 mrg ps->avail_end = avail_end;
661 1.1 mrg if (preload) {
662 1.1 mrg ps->pgs = NULL;
663 1.1 mrg } else {
664 1.1 mrg ps->pgs = pgs;
665 1.1 mrg ps->lastpg = pgs + npages - 1;
666 1.1 mrg }
667 1.1 mrg vm_nphysseg++;
668 1.1 mrg
669 1.1 mrg /*
670 1.1 mrg * done!
671 1.1 mrg */
672 1.1 mrg
673 1.1 mrg if (!preload)
674 1.1 mrg uvm_page_rehash();
675 1.1 mrg
676 1.1 mrg return;
677 1.1 mrg }
678 1.1 mrg
679 1.1 mrg /*
680 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
681 1.1 mrg */
682 1.1 mrg
683 1.1 mrg void uvm_page_rehash()
684 1.1 mrg
685 1.1 mrg {
686 1.1 mrg int freepages, lcv, bucketcount, s, oldcount;
687 1.1 mrg struct pglist *newbuckets, *oldbuckets;
688 1.1 mrg struct vm_page *pg;
689 1.1 mrg
690 1.1 mrg /*
691 1.1 mrg * compute number of pages that can go in the free pool
692 1.1 mrg */
693 1.1 mrg
694 1.1 mrg freepages = 0;
695 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
696 1.1 mrg freepages = freepages +
697 1.1 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
698 1.1 mrg
699 1.1 mrg /*
700 1.1 mrg * compute number of buckets needed for this number of pages
701 1.1 mrg */
702 1.1 mrg
703 1.1 mrg bucketcount = 1;
704 1.1 mrg while (bucketcount < freepages)
705 1.1 mrg bucketcount = bucketcount * 2;
706 1.1 mrg
707 1.1 mrg /*
708 1.1 mrg * malloc new buckets
709 1.1 mrg */
710 1.1 mrg
711 1.1 mrg MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
712 1.1 mrg M_VMPBUCKET, M_NOWAIT);
713 1.1 mrg if (newbuckets == NULL) {
714 1.1 mrg printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
715 1.1 mrg return;
716 1.1 mrg }
717 1.1 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
718 1.1 mrg TAILQ_INIT(&newbuckets[lcv]);
719 1.1 mrg
720 1.1 mrg /*
721 1.1 mrg * now replace the old buckets with the new ones and rehash everything
722 1.1 mrg */
723 1.1 mrg
724 1.1 mrg s = splimp();
725 1.1 mrg simple_lock(&uvm.hashlock);
726 1.1 mrg /* swap old for new ... */
727 1.1 mrg oldbuckets = uvm.page_hash;
728 1.1 mrg oldcount = uvm.page_nhash;
729 1.1 mrg uvm.page_hash = newbuckets;
730 1.1 mrg uvm.page_nhash = bucketcount;
731 1.1 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
732 1.1 mrg
733 1.1 mrg /* ... and rehash */
734 1.1 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
735 1.1 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
736 1.1 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
737 1.1 mrg TAILQ_INSERT_TAIL(
738 1.1 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], pg, hashq);
739 1.1 mrg }
740 1.1 mrg }
741 1.1 mrg simple_unlock(&uvm.hashlock);
742 1.1 mrg splx(s);
743 1.1 mrg
744 1.1 mrg /*
745 1.1 mrg * free old bucket array if we malloc'd it previously
746 1.1 mrg */
747 1.1 mrg
748 1.1 mrg if (oldbuckets != &uvm_bootbucket)
749 1.1 mrg FREE(oldbuckets, M_VMPBUCKET);
750 1.1 mrg
751 1.1 mrg /*
752 1.1 mrg * done
753 1.1 mrg */
754 1.1 mrg return;
755 1.1 mrg }
756 1.1 mrg
757 1.1 mrg
758 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
759 1.1 mrg
760 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
761 1.1 mrg
762 1.1 mrg /* call from DDB */
763 1.1 mrg void uvm_page_physdump() {
764 1.1 mrg int lcv;
765 1.1 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
766 1.1 mrg vm_nphysseg, VM_PHYSSEG_MAX);
767 1.1 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
768 1.1 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
769 1.1 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
770 1.1 mrg vm_physmem[lcv].avail_end);
771 1.1 mrg printf("STRATEGY = ");
772 1.1 mrg switch (VM_PHYSSEG_STRAT) {
773 1.1 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
774 1.1 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
775 1.1 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
776 1.1 mrg default: printf("<<UNKNOWN>>!!!!\n");
777 1.1 mrg }
778 1.1 mrg printf("number of buckets = %d\n", uvm.page_nhash);
779 1.1 mrg }
780 1.1 mrg #endif
781 1.1 mrg
782 1.1 mrg /*
783 1.1 mrg * uvm_pagealloc: allocate vm_page.
784 1.1 mrg *
785 1.1 mrg * => return null if no pages free
786 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
787 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
788 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
789 1.1 mrg * => only one of obj or anon can be non-null
790 1.1 mrg * => caller must activate/deactivate page if it is not wired.
791 1.1 mrg */
792 1.1 mrg
793 1.1 mrg struct vm_page *uvm_pagealloc(obj, off, anon)
794 1.1 mrg
795 1.1 mrg struct uvm_object *obj;
796 1.1 mrg vm_offset_t off;
797 1.1 mrg struct vm_anon *anon;
798 1.1 mrg
799 1.1 mrg {
800 1.3 chs int s;
801 1.1 mrg struct vm_page *pg;
802 1.1 mrg
803 1.1 mrg #ifdef DIAGNOSTIC
804 1.1 mrg /* sanity check */
805 1.1 mrg if (obj && anon)
806 1.1 mrg panic("uvm_pagealloc: obj and anon != NULL");
807 1.1 mrg #endif
808 1.1 mrg
809 1.1 mrg s = splimp();
810 1.1 mrg
811 1.1 mrg uvm_lock_fpageq(); /* lock free page queue */
812 1.1 mrg
813 1.1 mrg /*
814 1.1 mrg * check to see if we need to generate some free pages waking
815 1.1 mrg * the pagedaemon.
816 1.1 mrg */
817 1.1 mrg
818 1.1 mrg if (uvmexp.free < uvmexp.freemin ||
819 1.1 mrg (uvmexp.free < uvmexp.freetarg && uvmexp.inactive < uvmexp.inactarg)) {
820 1.1 mrg
821 1.1 mrg thread_wakeup(&uvm.pagedaemon);
822 1.1 mrg }
823 1.1 mrg
824 1.3 chs /*
825 1.3 chs * fail if any of these conditions is true:
826 1.3 chs * [1] there really are no free pages, or
827 1.3 chs * [2] only kernel "reserved" pages remain and
828 1.3 chs * the page isn't being allocated to a kernel object.
829 1.3 chs * [3] only pagedaemon "reserved" pages remain and
830 1.3 chs * the requestor isn't the pagedaemon.
831 1.3 chs */
832 1.3 chs
833 1.3 chs pg = uvm.page_free.tqh_first;
834 1.3 chs if (pg == NULL ||
835 1.3 chs (uvmexp.free <= uvmexp.reserve_kernel &&
836 1.3 chs !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
837 1.3 chs (uvmexp.free <= uvmexp.reserve_pagedaemon &&
838 1.3 chs !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc))) {
839 1.3 chs uvm_unlock_fpageq();
840 1.3 chs splx(s);
841 1.3 chs return(NULL);
842 1.3 chs }
843 1.3 chs
844 1.3 chs TAILQ_REMOVE(&uvm.page_free, pg, pageq);
845 1.3 chs uvmexp.free--;
846 1.3 chs
847 1.3 chs uvm_unlock_fpageq(); /* unlock free page queue */
848 1.3 chs splx(s);
849 1.3 chs
850 1.1 mrg pg->offset = off;
851 1.1 mrg pg->uobject = obj;
852 1.1 mrg pg->uanon = anon;
853 1.1 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
854 1.1 mrg pg->version++;
855 1.1 mrg pg->wire_count = 0;
856 1.1 mrg pg->loan_count = 0;
857 1.1 mrg if (anon) {
858 1.1 mrg anon->u.an_page = pg;
859 1.1 mrg pg->pqflags = PQ_ANON;
860 1.1 mrg } else {
861 1.1 mrg if (obj)
862 1.1 mrg uvm_pageinsert(pg);
863 1.1 mrg pg->pqflags = 0;
864 1.1 mrg }
865 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
866 1.1 mrg pg->owner_tag = NULL;
867 1.1 mrg #endif
868 1.1 mrg UVM_PAGE_OWN(pg, "new alloc");
869 1.1 mrg
870 1.1 mrg return(pg);
871 1.1 mrg }
872 1.1 mrg
873 1.1 mrg /*
874 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
875 1.1 mrg *
876 1.1 mrg * => both objects must be locked
877 1.1 mrg */
878 1.1 mrg
879 1.1 mrg void uvm_pagerealloc(pg, newobj, newoff)
880 1.1 mrg
881 1.1 mrg struct vm_page *pg;
882 1.1 mrg struct uvm_object *newobj;
883 1.1 mrg vm_offset_t newoff;
884 1.1 mrg
885 1.1 mrg {
886 1.1 mrg /*
887 1.1 mrg * remove it from the old object
888 1.1 mrg */
889 1.1 mrg
890 1.1 mrg if (pg->uobject) {
891 1.1 mrg uvm_pageremove(pg);
892 1.1 mrg }
893 1.1 mrg
894 1.1 mrg /*
895 1.1 mrg * put it in the new object
896 1.1 mrg */
897 1.1 mrg
898 1.1 mrg if (newobj) {
899 1.1 mrg pg->uobject = newobj;
900 1.1 mrg pg->offset = newoff;
901 1.1 mrg pg->version++;
902 1.1 mrg uvm_pageinsert(pg);
903 1.1 mrg }
904 1.1 mrg
905 1.1 mrg return;
906 1.1 mrg }
907 1.1 mrg
908 1.1 mrg
909 1.1 mrg /*
910 1.1 mrg * uvm_pagefree: free page
911 1.1 mrg *
912 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
913 1.1 mrg * => put page on free list
914 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
915 1.1 mrg * => caller must lock page queues
916 1.1 mrg * => assumes all valid mappings of pg are gone
917 1.1 mrg */
918 1.1 mrg
919 1.1 mrg void uvm_pagefree(pg)
920 1.1 mrg
921 1.1 mrg struct vm_page *pg;
922 1.1 mrg
923 1.1 mrg {
924 1.1 mrg int s;
925 1.1 mrg int saved_loan_count = pg->loan_count;
926 1.1 mrg
927 1.1 mrg /*
928 1.1 mrg * if the page was an object page (and thus "TABLED"), remove it
929 1.1 mrg * from the object.
930 1.1 mrg */
931 1.1 mrg
932 1.1 mrg if (pg->flags & PG_TABLED) {
933 1.1 mrg
934 1.1 mrg /*
935 1.1 mrg * if the object page is on loan we are going to drop ownership.
936 1.1 mrg * it is possible that an anon will take over as owner for this
937 1.1 mrg * page later on. the anon will want a !PG_CLEAN page so that
938 1.1 mrg * it knows it needs to allocate swap if it wants to page the
939 1.1 mrg * page out.
940 1.1 mrg */
941 1.1 mrg
942 1.1 mrg if (saved_loan_count)
943 1.1 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
944 1.1 mrg
945 1.1 mrg uvm_pageremove(pg);
946 1.1 mrg
947 1.1 mrg /*
948 1.1 mrg * if our page was on loan, then we just lost control over it
949 1.1 mrg * (in fact, if it was loaned to an anon, the anon may have
950 1.1 mrg * already taken over ownership of the page by now and thus
951 1.1 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
952 1.1 mrg * return (when the last loan is dropped, then the page can be
953 1.1 mrg * freed by whatever was holding the last loan).
954 1.1 mrg */
955 1.1 mrg if (saved_loan_count)
956 1.1 mrg return;
957 1.1 mrg
958 1.1 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
959 1.1 mrg
960 1.1 mrg /*
961 1.1 mrg * if our page is owned by an anon and is loaned out to the kernel
962 1.1 mrg * then we just want to drop ownership and return. the kernel
963 1.1 mrg * must free the page when all its loans clear ... note that the
964 1.1 mrg * kernel can't change the loan status of our page as long as we
965 1.1 mrg * are holding PQ lock.
966 1.1 mrg */
967 1.1 mrg pg->pqflags &= ~PQ_ANON;
968 1.1 mrg pg->uanon = NULL;
969 1.1 mrg return;
970 1.1 mrg
971 1.1 mrg }
972 1.1 mrg
973 1.1 mrg #ifdef DIAGNOSTIC
974 1.1 mrg if (saved_loan_count) {
975 1.1 mrg printf("uvm_pagefree: warning: freeing page with a loan count of %d\n",
976 1.1 mrg saved_loan_count);
977 1.1 mrg panic("uvm_pagefree: loan count");
978 1.1 mrg }
979 1.1 mrg #endif
980 1.1 mrg
981 1.1 mrg
982 1.1 mrg /*
983 1.1 mrg * now remove the page from the queues
984 1.1 mrg */
985 1.1 mrg
986 1.1 mrg if (pg->pqflags & PQ_ACTIVE) {
987 1.1 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
988 1.1 mrg pg->pqflags &= ~PQ_ACTIVE;
989 1.1 mrg uvmexp.active--;
990 1.1 mrg }
991 1.1 mrg if (pg->pqflags & PQ_INACTIVE) {
992 1.1 mrg if (pg->pqflags & PQ_SWAPBACKED)
993 1.1 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
994 1.1 mrg else
995 1.1 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
996 1.1 mrg pg->pqflags &= ~PQ_INACTIVE;
997 1.1 mrg uvmexp.inactive--;
998 1.1 mrg }
999 1.1 mrg
1000 1.1 mrg /*
1001 1.3 chs * if the page was wired, unwire it now.
1002 1.3 chs */
1003 1.3 chs if (pg->wire_count)
1004 1.3 chs {
1005 1.3 chs pg->wire_count = 0;
1006 1.3 chs uvmexp.wired--;
1007 1.3 chs }
1008 1.3 chs
1009 1.3 chs /*
1010 1.1 mrg * and put on free queue
1011 1.1 mrg */
1012 1.1 mrg
1013 1.1 mrg s = splimp();
1014 1.1 mrg uvm_lock_fpageq();
1015 1.1 mrg TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
1016 1.1 mrg pg->pqflags = PQ_FREE;
1017 1.3 chs #ifdef DEBUG
1018 1.3 chs pg->uobject = (void *)0xdeadbeef;
1019 1.3 chs pg->offset = 0xdeadbeef;
1020 1.3 chs pg->uanon = (void *)0xdeadbeef;
1021 1.3 chs #endif
1022 1.1 mrg uvmexp.free++;
1023 1.1 mrg uvm_unlock_fpageq();
1024 1.1 mrg splx(s);
1025 1.1 mrg }
1026 1.1 mrg
1027 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1028 1.1 mrg /*
1029 1.1 mrg * uvm_page_own: set or release page ownership
1030 1.1 mrg *
1031 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1032 1.1 mrg * and where they do it. it can be used to track down problems
1033 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1034 1.1 mrg * => page's object [if any] must be locked
1035 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1036 1.1 mrg */
1037 1.1 mrg void uvm_page_own(pg, tag)
1038 1.1 mrg
1039 1.1 mrg struct vm_page *pg;
1040 1.1 mrg char *tag;
1041 1.1 mrg
1042 1.1 mrg {
1043 1.1 mrg /* gain ownership? */
1044 1.1 mrg if (tag) {
1045 1.1 mrg if (pg->owner_tag) {
1046 1.1 mrg printf("uvm_page_own: page %p already owned by proc %d [%s]\n", pg,
1047 1.1 mrg pg->owner, pg->owner_tag);
1048 1.1 mrg panic("uvm_page_own");
1049 1.1 mrg }
1050 1.1 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1051 1.1 mrg pg->owner_tag = tag;
1052 1.1 mrg return;
1053 1.1 mrg }
1054 1.1 mrg
1055 1.1 mrg /* drop ownership */
1056 1.1 mrg if (pg->owner_tag == NULL) {
1057 1.1 mrg printf("uvm_page_own: dropping ownership of an non-owned page (%p)\n", pg);
1058 1.1 mrg panic("uvm_page_own");
1059 1.1 mrg }
1060 1.1 mrg pg->owner_tag = NULL;
1061 1.1 mrg return;
1062 1.1 mrg }
1063 1.1 mrg #endif
1064