Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.41
      1  1.41   thorpej /*	$NetBSD: uvm_page.c,v 1.41 2000/09/21 17:46:04 thorpej Exp $	*/
      2   1.1       mrg 
      3   1.1       mrg /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1       mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.1       mrg  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42   1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47   1.1       mrg  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.1       mrg  *
     54   1.1       mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.1       mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.1       mrg  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_page.c: page ops.
     71   1.1       mrg  */
     72   1.6       mrg 
     73   1.1       mrg #include <sys/param.h>
     74   1.1       mrg #include <sys/systm.h>
     75   1.1       mrg #include <sys/malloc.h>
     76  1.35   thorpej #include <sys/sched.h>
     77   1.1       mrg 
     78   1.1       mrg #define UVM_PAGE                /* pull in uvm_page.h functions */
     79   1.1       mrg #include <uvm/uvm.h>
     80   1.1       mrg 
     81   1.1       mrg /*
     82   1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     83   1.1       mrg  */
     84   1.1       mrg 
     85   1.1       mrg /*
     86   1.1       mrg  * physical memory config is stored in vm_physmem.
     87   1.1       mrg  */
     88   1.1       mrg 
     89   1.1       mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     90   1.1       mrg int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     91   1.1       mrg 
     92   1.1       mrg /*
     93  1.36   thorpej  * Some supported CPUs in a given architecture don't support all
     94  1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
     95  1.36   thorpej  * We therefore provide a way to disable it from machdep code here.
     96  1.34   thorpej  */
     97  1.34   thorpej 
     98  1.34   thorpej boolean_t vm_page_zero_enable = TRUE;
     99  1.34   thorpej 
    100  1.34   thorpej /*
    101   1.1       mrg  * local variables
    102   1.1       mrg  */
    103   1.1       mrg 
    104   1.1       mrg /*
    105   1.1       mrg  * these variables record the values returned by vm_page_bootstrap,
    106   1.1       mrg  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    107   1.1       mrg  * and pmap_startup here also uses them internally.
    108   1.1       mrg  */
    109   1.1       mrg 
    110  1.14       eeh static vaddr_t      virtual_space_start;
    111  1.14       eeh static vaddr_t      virtual_space_end;
    112   1.1       mrg 
    113   1.1       mrg /*
    114   1.1       mrg  * we use a hash table with only one bucket during bootup.  we will
    115  1.30   thorpej  * later rehash (resize) the hash table once the allocator is ready.
    116  1.30   thorpej  * we static allocate the one bootstrap bucket below...
    117   1.1       mrg  */
    118   1.1       mrg 
    119   1.1       mrg static struct pglist uvm_bootbucket;
    120   1.1       mrg 
    121   1.1       mrg /*
    122   1.1       mrg  * local prototypes
    123   1.1       mrg  */
    124   1.1       mrg 
    125   1.1       mrg static void uvm_pageinsert __P((struct vm_page *));
    126   1.1       mrg 
    127   1.1       mrg 
    128   1.1       mrg /*
    129   1.1       mrg  * inline functions
    130   1.1       mrg  */
    131   1.1       mrg 
    132   1.1       mrg /*
    133   1.1       mrg  * uvm_pageinsert: insert a page in the object and the hash table
    134   1.1       mrg  *
    135   1.1       mrg  * => caller must lock object
    136   1.1       mrg  * => caller must lock page queues
    137   1.1       mrg  * => call should have already set pg's object and offset pointers
    138   1.1       mrg  *    and bumped the version counter
    139   1.1       mrg  */
    140   1.1       mrg 
    141   1.7       mrg __inline static void
    142   1.7       mrg uvm_pageinsert(pg)
    143   1.7       mrg 	struct vm_page *pg;
    144   1.1       mrg {
    145   1.7       mrg 	struct pglist *buck;
    146   1.7       mrg 	int s;
    147   1.1       mrg 
    148   1.1       mrg #ifdef DIAGNOSTIC
    149   1.7       mrg 	if (pg->flags & PG_TABLED)
    150   1.7       mrg 		panic("uvm_pageinsert: already inserted");
    151   1.1       mrg #endif
    152   1.1       mrg 
    153   1.7       mrg 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    154   1.7       mrg 	s = splimp();
    155   1.7       mrg 	simple_lock(&uvm.hashlock);
    156   1.7       mrg 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    157   1.7       mrg 	simple_unlock(&uvm.hashlock);
    158   1.7       mrg 	splx(s);
    159   1.7       mrg 
    160   1.7       mrg 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    161   1.7       mrg 	pg->flags |= PG_TABLED;
    162   1.7       mrg 	pg->uobject->uo_npages++;
    163   1.1       mrg 
    164   1.1       mrg }
    165   1.1       mrg 
    166   1.1       mrg /*
    167   1.1       mrg  * uvm_page_remove: remove page from object and hash
    168   1.1       mrg  *
    169   1.1       mrg  * => caller must lock object
    170   1.1       mrg  * => caller must lock page queues
    171   1.1       mrg  */
    172   1.1       mrg 
    173   1.7       mrg void __inline
    174   1.7       mrg uvm_pageremove(pg)
    175   1.7       mrg 	struct vm_page *pg;
    176   1.1       mrg {
    177   1.7       mrg 	struct pglist *buck;
    178   1.7       mrg 	int s;
    179   1.1       mrg 
    180   1.1       mrg #ifdef DIAGNOSTIC
    181   1.7       mrg 	if ((pg->flags & (PG_FAULTING)) != 0)
    182   1.7       mrg 		panic("uvm_pageremove: page is faulting");
    183   1.1       mrg #endif
    184   1.1       mrg 
    185   1.7       mrg 	if ((pg->flags & PG_TABLED) == 0)
    186   1.7       mrg 		return;				/* XXX: log */
    187   1.1       mrg 
    188   1.7       mrg 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    189   1.7       mrg 	s = splimp();
    190   1.7       mrg 	simple_lock(&uvm.hashlock);
    191   1.7       mrg 	TAILQ_REMOVE(buck, pg, hashq);
    192   1.7       mrg 	simple_unlock(&uvm.hashlock);
    193   1.7       mrg 	splx(s);
    194   1.7       mrg 
    195   1.7       mrg 	/* object should be locked */
    196   1.7       mrg 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    197   1.7       mrg 
    198   1.7       mrg 	pg->flags &= ~PG_TABLED;
    199   1.7       mrg 	pg->uobject->uo_npages--;
    200   1.7       mrg 	pg->uobject = NULL;
    201   1.7       mrg 	pg->version++;
    202   1.1       mrg 
    203   1.1       mrg }
    204   1.1       mrg 
    205   1.1       mrg /*
    206   1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    207   1.1       mrg  *
    208   1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    209   1.1       mrg  */
    210   1.1       mrg 
    211   1.7       mrg void
    212   1.7       mrg uvm_page_init(kvm_startp, kvm_endp)
    213  1.14       eeh 	vaddr_t *kvm_startp, *kvm_endp;
    214   1.1       mrg {
    215  1.27   thorpej 	vsize_t freepages, pagecount, n;
    216   1.7       mrg 	vm_page_t pagearray;
    217  1.27   thorpej 	int lcv, i;
    218  1.14       eeh 	paddr_t paddr;
    219   1.7       mrg 
    220   1.7       mrg 
    221   1.7       mrg 	/*
    222   1.7       mrg 	 * step 1: init the page queues and page queue locks
    223   1.7       mrg 	 */
    224  1.34   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    225  1.34   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++)
    226  1.34   thorpej 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
    227  1.34   thorpej 	}
    228   1.7       mrg 	TAILQ_INIT(&uvm.page_active);
    229   1.7       mrg 	TAILQ_INIT(&uvm.page_inactive_swp);
    230   1.7       mrg 	TAILQ_INIT(&uvm.page_inactive_obj);
    231   1.7       mrg 	simple_lock_init(&uvm.pageqlock);
    232   1.7       mrg 	simple_lock_init(&uvm.fpageqlock);
    233   1.7       mrg 
    234   1.7       mrg 	/*
    235   1.7       mrg 	 * step 2: init the <obj,offset> => <page> hash table. for now
    236   1.7       mrg 	 * we just have one bucket (the bootstrap bucket).   later on we
    237  1.30   thorpej 	 * will allocate new buckets as we dynamically resize the hash table.
    238   1.7       mrg 	 */
    239   1.7       mrg 
    240   1.7       mrg 	uvm.page_nhash = 1;			/* 1 bucket */
    241   1.7       mrg 	uvm.page_hashmask = 0;		/* mask for hash function */
    242   1.7       mrg 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    243   1.7       mrg 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    244   1.7       mrg 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    245   1.7       mrg 
    246   1.7       mrg 	/*
    247   1.7       mrg 	 * step 3: allocate vm_page structures.
    248   1.7       mrg 	 */
    249   1.7       mrg 
    250   1.7       mrg 	/*
    251   1.7       mrg 	 * sanity check:
    252   1.7       mrg 	 * before calling this function the MD code is expected to register
    253   1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    254   1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    255   1.7       mrg 	 */
    256   1.7       mrg 
    257   1.7       mrg 	if (vm_nphysseg == 0)
    258   1.7       mrg 		panic("vm_page_bootstrap: no memory pre-allocated");
    259   1.7       mrg 
    260   1.7       mrg 	/*
    261   1.7       mrg 	 * first calculate the number of free pages...
    262   1.7       mrg 	 *
    263   1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    264   1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    265   1.7       mrg 	 * want to return some memory to the pool after booting.
    266   1.7       mrg 	 */
    267   1.7       mrg 
    268   1.7       mrg 	freepages = 0;
    269   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    270   1.7       mrg 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    271   1.7       mrg 
    272   1.7       mrg 	/*
    273   1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    274   1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    275   1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    276   1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    277   1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    278   1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    279   1.7       mrg 	 * pages).
    280   1.7       mrg 	 */
    281   1.7       mrg 
    282  1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    283   1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    284   1.7       mrg 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    285   1.7       mrg 	    sizeof(struct vm_page));
    286  1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    287   1.7       mrg 
    288   1.7       mrg 	/*
    289   1.7       mrg 	 * step 4: init the vm_page structures and put them in the correct
    290   1.7       mrg 	 * place...
    291   1.7       mrg 	 */
    292   1.7       mrg 
    293   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    294   1.7       mrg 
    295   1.7       mrg 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    296   1.7       mrg 		if (n > pagecount) {
    297  1.27   thorpej 			printf("uvm_page_init: lost %ld page(s) in init\n",
    298  1.27   thorpej 			    (long)(n - pagecount));
    299   1.7       mrg 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    300   1.7       mrg 			/* n = pagecount; */
    301   1.7       mrg 		}
    302   1.7       mrg 		/* set up page array pointers */
    303   1.7       mrg 		vm_physmem[lcv].pgs = pagearray;
    304   1.7       mrg 		pagearray += n;
    305   1.7       mrg 		pagecount -= n;
    306   1.7       mrg 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    307   1.7       mrg 
    308  1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    309   1.7       mrg 		paddr = ptoa(vm_physmem[lcv].start);
    310   1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    311   1.7       mrg 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    312   1.7       mrg 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    313   1.7       mrg 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    314   1.7       mrg 				uvmexp.npages++;
    315   1.7       mrg 				/* add page to free pool */
    316   1.7       mrg 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    317   1.7       mrg 			}
    318   1.7       mrg 		}
    319   1.7       mrg 	}
    320   1.7       mrg 	/*
    321   1.7       mrg 	 * step 5: pass up the values of virtual_space_start and
    322   1.7       mrg 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    323   1.7       mrg 	 * layers of the VM.
    324   1.7       mrg 	 */
    325   1.7       mrg 
    326   1.7       mrg 	*kvm_startp = round_page(virtual_space_start);
    327   1.7       mrg 	*kvm_endp = trunc_page(virtual_space_end);
    328   1.7       mrg 
    329   1.7       mrg 	/*
    330   1.7       mrg 	 * step 6: init pagedaemon lock
    331   1.7       mrg 	 */
    332   1.7       mrg 
    333   1.7       mrg 	simple_lock_init(&uvm.pagedaemon_lock);
    334   1.7       mrg 
    335   1.7       mrg 	/*
    336   1.7       mrg 	 * step 7: init reserve thresholds
    337   1.7       mrg 	 * XXXCDC - values may need adjusting
    338   1.7       mrg 	 */
    339   1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    340   1.7       mrg 	uvmexp.reserve_kernel = 5;
    341   1.7       mrg 
    342   1.7       mrg 	/*
    343  1.34   thorpej 	 * step 8: determine if we should zero pages in the idle
    344  1.34   thorpej 	 * loop.
    345  1.34   thorpej 	 *
    346  1.34   thorpej 	 * XXXJRT - might consider zero'ing up to the target *now*,
    347  1.34   thorpej 	 *	    but that could take an awfully long time if you
    348  1.34   thorpej 	 *	    have a lot of memory.
    349  1.34   thorpej 	 */
    350  1.34   thorpej 	uvm.page_idle_zero = vm_page_zero_enable;
    351  1.34   thorpej 
    352  1.34   thorpej 	/*
    353   1.7       mrg 	 * done!
    354   1.7       mrg 	 */
    355   1.1       mrg 
    356  1.32   thorpej 	uvm.page_init_done = TRUE;
    357   1.1       mrg }
    358   1.1       mrg 
    359   1.1       mrg /*
    360   1.1       mrg  * uvm_setpagesize: set the page size
    361   1.1       mrg  *
    362   1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    363   1.1       mrg  * => XXXCDC: move global vars.
    364   1.1       mrg  */
    365   1.1       mrg 
    366   1.7       mrg void
    367   1.7       mrg uvm_setpagesize()
    368   1.1       mrg {
    369   1.7       mrg 	if (uvmexp.pagesize == 0)
    370   1.7       mrg 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    371   1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    372   1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    373   1.7       mrg 		panic("uvm_setpagesize: page size not a power of two");
    374   1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    375   1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    376   1.7       mrg 			break;
    377   1.1       mrg }
    378   1.1       mrg 
    379   1.1       mrg /*
    380   1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    381   1.1       mrg  */
    382   1.1       mrg 
    383  1.14       eeh vaddr_t
    384   1.7       mrg uvm_pageboot_alloc(size)
    385  1.14       eeh 	vsize_t size;
    386   1.1       mrg {
    387   1.1       mrg #if defined(PMAP_STEAL_MEMORY)
    388  1.14       eeh 	vaddr_t addr;
    389   1.1       mrg 
    390   1.7       mrg 	/*
    391   1.7       mrg 	 * defer bootstrap allocation to MD code (it may want to allocate
    392   1.7       mrg 	 * from a direct-mapped segment).  pmap_steal_memory should round
    393   1.7       mrg 	 * off virtual_space_start/virtual_space_end.
    394   1.7       mrg 	 */
    395   1.1       mrg 
    396   1.7       mrg 	addr = pmap_steal_memory(size, &virtual_space_start,
    397   1.7       mrg 	    &virtual_space_end);
    398   1.1       mrg 
    399   1.7       mrg 	return(addr);
    400   1.1       mrg 
    401   1.1       mrg #else /* !PMAP_STEAL_MEMORY */
    402   1.1       mrg 
    403  1.19   thorpej 	static boolean_t initialized = FALSE;
    404  1.14       eeh 	vaddr_t addr, vaddr;
    405  1.14       eeh 	paddr_t paddr;
    406   1.1       mrg 
    407   1.7       mrg 	/* round to page size */
    408   1.7       mrg 	size = round_page(size);
    409   1.1       mrg 
    410   1.7       mrg 	/*
    411  1.19   thorpej 	 * on first call to this function, initialize ourselves.
    412   1.7       mrg 	 */
    413  1.19   thorpej 	if (initialized == FALSE) {
    414   1.7       mrg 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    415   1.1       mrg 
    416   1.7       mrg 		/* round it the way we like it */
    417   1.7       mrg 		virtual_space_start = round_page(virtual_space_start);
    418   1.7       mrg 		virtual_space_end = trunc_page(virtual_space_end);
    419  1.19   thorpej 
    420  1.19   thorpej 		initialized = TRUE;
    421   1.7       mrg 	}
    422   1.1       mrg 
    423   1.7       mrg 	/*
    424   1.7       mrg 	 * allocate virtual memory for this request
    425   1.7       mrg 	 */
    426  1.19   thorpej 	if (virtual_space_start == virtual_space_end ||
    427  1.20   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    428  1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    429  1.20   thorpej 
    430  1.20   thorpej 	addr = virtual_space_start;
    431  1.20   thorpej 
    432  1.20   thorpej #ifdef PMAP_GROWKERNEL
    433  1.20   thorpej 	/*
    434  1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    435  1.20   thorpej 	 * then allocate more resources for it.
    436  1.20   thorpej 	 */
    437  1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    438  1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    439  1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    440  1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    441  1.19   thorpej 	}
    442  1.20   thorpej #endif
    443   1.1       mrg 
    444   1.7       mrg 	virtual_space_start += size;
    445   1.1       mrg 
    446   1.9   thorpej 	/*
    447   1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    448   1.7       mrg 	 */
    449   1.1       mrg 
    450   1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    451   1.7       mrg 	    vaddr += PAGE_SIZE) {
    452   1.1       mrg 
    453   1.7       mrg 		if (!uvm_page_physget(&paddr))
    454   1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    455   1.1       mrg 
    456  1.23   thorpej 		/*
    457  1.23   thorpej 		 * Note this memory is no longer managed, so using
    458  1.23   thorpej 		 * pmap_kenter is safe.
    459  1.23   thorpej 		 */
    460   1.7       mrg 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    461   1.7       mrg 	}
    462   1.7       mrg 	return(addr);
    463   1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    464   1.1       mrg }
    465   1.1       mrg 
    466   1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    467   1.1       mrg /*
    468   1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    469   1.1       mrg  *
    470   1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    471   1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    472   1.1       mrg  *    will advance both values (making them equal, and removing some
    473   1.1       mrg  *    vm_page structures from the non-avail area).
    474   1.1       mrg  * => return false if out of memory.
    475   1.1       mrg  */
    476   1.1       mrg 
    477  1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    478  1.28  drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    479  1.28  drochner 
    480  1.28  drochner static boolean_t
    481  1.28  drochner uvm_page_physget_freelist(paddrp, freelist)
    482  1.14       eeh 	paddr_t *paddrp;
    483  1.28  drochner 	int freelist;
    484   1.1       mrg {
    485   1.7       mrg 	int lcv, x;
    486   1.1       mrg 
    487   1.7       mrg 	/* pass 1: try allocating from a matching end */
    488   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    489   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    490   1.1       mrg #else
    491   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    492   1.1       mrg #endif
    493   1.7       mrg 	{
    494   1.1       mrg 
    495  1.32   thorpej 		if (uvm.page_init_done == TRUE)
    496   1.7       mrg 			panic("vm_page_physget: called _after_ bootstrap");
    497   1.1       mrg 
    498  1.28  drochner 		if (vm_physmem[lcv].free_list != freelist)
    499  1.28  drochner 			continue;
    500  1.28  drochner 
    501   1.7       mrg 		/* try from front */
    502   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    503   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    504   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    505   1.7       mrg 			vm_physmem[lcv].avail_start++;
    506   1.7       mrg 			vm_physmem[lcv].start++;
    507   1.7       mrg 			/* nothing left?   nuke it */
    508   1.7       mrg 			if (vm_physmem[lcv].avail_start ==
    509   1.7       mrg 			    vm_physmem[lcv].end) {
    510   1.7       mrg 				if (vm_nphysseg == 1)
    511   1.7       mrg 				    panic("vm_page_physget: out of memory!");
    512   1.7       mrg 				vm_nphysseg--;
    513   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    514   1.7       mrg 					/* structure copy */
    515   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    516   1.7       mrg 			}
    517   1.7       mrg 			return (TRUE);
    518   1.7       mrg 		}
    519   1.7       mrg 
    520   1.7       mrg 		/* try from rear */
    521   1.7       mrg 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    522   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    523   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    524   1.7       mrg 			vm_physmem[lcv].avail_end--;
    525   1.7       mrg 			vm_physmem[lcv].end--;
    526   1.7       mrg 			/* nothing left?   nuke it */
    527   1.7       mrg 			if (vm_physmem[lcv].avail_end ==
    528   1.7       mrg 			    vm_physmem[lcv].start) {
    529   1.7       mrg 				if (vm_nphysseg == 1)
    530   1.7       mrg 				    panic("vm_page_physget: out of memory!");
    531   1.7       mrg 				vm_nphysseg--;
    532   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    533   1.7       mrg 					/* structure copy */
    534   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    535   1.7       mrg 			}
    536   1.7       mrg 			return (TRUE);
    537   1.7       mrg 		}
    538   1.7       mrg 	}
    539   1.1       mrg 
    540   1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    541   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    542   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    543   1.1       mrg #else
    544   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    545   1.1       mrg #endif
    546   1.7       mrg 	{
    547   1.1       mrg 
    548   1.7       mrg 		/* any room in this bank? */
    549   1.7       mrg 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    550   1.7       mrg 			continue;  /* nope */
    551   1.7       mrg 
    552   1.7       mrg 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    553   1.7       mrg 		vm_physmem[lcv].avail_start++;
    554   1.7       mrg 		/* truncate! */
    555   1.7       mrg 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    556   1.7       mrg 
    557   1.7       mrg 		/* nothing left?   nuke it */
    558   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    559   1.7       mrg 			if (vm_nphysseg == 1)
    560   1.7       mrg 				panic("vm_page_physget: out of memory!");
    561   1.7       mrg 			vm_nphysseg--;
    562   1.7       mrg 			for (x = lcv ; x < vm_nphysseg ; x++)
    563   1.7       mrg 				/* structure copy */
    564   1.7       mrg 				vm_physmem[x] = vm_physmem[x+1];
    565   1.7       mrg 		}
    566   1.7       mrg 		return (TRUE);
    567   1.7       mrg 	}
    568   1.1       mrg 
    569   1.7       mrg 	return (FALSE);        /* whoops! */
    570  1.28  drochner }
    571  1.28  drochner 
    572  1.28  drochner boolean_t
    573  1.28  drochner uvm_page_physget(paddrp)
    574  1.28  drochner 	paddr_t *paddrp;
    575  1.28  drochner {
    576  1.28  drochner 	int i;
    577  1.28  drochner 
    578  1.28  drochner 	/* try in the order of freelist preference */
    579  1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    580  1.28  drochner 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    581  1.28  drochner 			return (TRUE);
    582  1.28  drochner 	return (FALSE);
    583   1.1       mrg }
    584   1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    585   1.1       mrg 
    586   1.1       mrg /*
    587   1.1       mrg  * uvm_page_physload: load physical memory into VM system
    588   1.1       mrg  *
    589   1.1       mrg  * => all args are PFs
    590   1.1       mrg  * => all pages in start/end get vm_page structures
    591   1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    592   1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    593   1.1       mrg  */
    594   1.1       mrg 
    595   1.7       mrg void
    596  1.12   thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
    597  1.29       eeh 	paddr_t start, end, avail_start, avail_end;
    598  1.12   thorpej 	int free_list;
    599   1.1       mrg {
    600  1.14       eeh 	int preload, lcv;
    601  1.14       eeh 	psize_t npages;
    602   1.7       mrg 	struct vm_page *pgs;
    603   1.7       mrg 	struct vm_physseg *ps;
    604   1.7       mrg 
    605   1.7       mrg 	if (uvmexp.pagesize == 0)
    606   1.7       mrg 		panic("vm_page_physload: page size not set!");
    607   1.7       mrg 
    608  1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    609  1.12   thorpej 		panic("uvm_page_physload: bad free list %d\n", free_list);
    610  1.26  drochner 
    611  1.26  drochner 	if (start >= end)
    612  1.26  drochner 		panic("uvm_page_physload: start >= end");
    613  1.12   thorpej 
    614   1.7       mrg 	/*
    615   1.7       mrg 	 * do we have room?
    616   1.7       mrg 	 */
    617   1.7       mrg 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    618   1.7       mrg 		printf("vm_page_physload: unable to load physical memory "
    619   1.7       mrg 		    "segment\n");
    620  1.37      soda 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    621  1.37      soda 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    622   1.7       mrg 		return;
    623   1.7       mrg 	}
    624   1.7       mrg 
    625   1.7       mrg 	/*
    626   1.7       mrg 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    627   1.7       mrg 	 * called yet, so malloc is not available).
    628   1.7       mrg 	 */
    629   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    630   1.7       mrg 		if (vm_physmem[lcv].pgs)
    631   1.7       mrg 			break;
    632   1.7       mrg 	}
    633   1.7       mrg 	preload = (lcv == vm_nphysseg);
    634   1.7       mrg 
    635   1.7       mrg 	/*
    636   1.7       mrg 	 * if VM is already running, attempt to malloc() vm_page structures
    637   1.7       mrg 	 */
    638   1.7       mrg 	if (!preload) {
    639   1.1       mrg #if defined(VM_PHYSSEG_NOADD)
    640   1.7       mrg 		panic("vm_page_physload: tried to add RAM after vm_mem_init");
    641   1.1       mrg #else
    642   1.7       mrg 		/* XXXCDC: need some sort of lockout for this case */
    643  1.14       eeh 		paddr_t paddr;
    644   1.7       mrg 		npages = end - start;  /* # of pages */
    645  1.40   thorpej 		pgs = malloc(sizeof(struct vm_page) * npages,
    646  1.40   thorpej 		    M_VMPAGE, M_NOWAIT);
    647   1.7       mrg 		if (pgs == NULL) {
    648   1.7       mrg 			printf("vm_page_physload: can not malloc vm_page "
    649   1.7       mrg 			    "structs for segment\n");
    650   1.7       mrg 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    651   1.7       mrg 			return;
    652   1.7       mrg 		}
    653  1.12   thorpej 		/* zero data, init phys_addr and free_list, and free pages */
    654  1.13     perry 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    655   1.7       mrg 		for (lcv = 0, paddr = ptoa(start) ;
    656   1.7       mrg 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    657   1.7       mrg 			pgs[lcv].phys_addr = paddr;
    658  1.12   thorpej 			pgs[lcv].free_list = free_list;
    659   1.7       mrg 			if (atop(paddr) >= avail_start &&
    660   1.7       mrg 			    atop(paddr) <= avail_end)
    661   1.8     chuck 				uvm_pagefree(&pgs[lcv]);
    662   1.7       mrg 		}
    663   1.7       mrg 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    664   1.7       mrg 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    665   1.1       mrg #endif
    666   1.7       mrg 	} else {
    667   1.1       mrg 
    668   1.7       mrg 		/* gcc complains if these don't get init'd */
    669   1.7       mrg 		pgs = NULL;
    670   1.7       mrg 		npages = 0;
    671   1.1       mrg 
    672   1.7       mrg 	}
    673   1.1       mrg 
    674   1.7       mrg 	/*
    675   1.7       mrg 	 * now insert us in the proper place in vm_physmem[]
    676   1.7       mrg 	 */
    677   1.1       mrg 
    678   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    679   1.1       mrg 
    680   1.7       mrg 	/* random: put it at the end (easy!) */
    681   1.7       mrg 	ps = &vm_physmem[vm_nphysseg];
    682   1.1       mrg 
    683   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    684   1.1       mrg 
    685   1.7       mrg 	{
    686   1.7       mrg 		int x;
    687   1.7       mrg 		/* sort by address for binary search */
    688   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    689   1.7       mrg 			if (start < vm_physmem[lcv].start)
    690   1.7       mrg 				break;
    691   1.7       mrg 		ps = &vm_physmem[lcv];
    692   1.7       mrg 		/* move back other entries, if necessary ... */
    693   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    694   1.7       mrg 			/* structure copy */
    695   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    696   1.7       mrg 	}
    697   1.1       mrg 
    698   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    699   1.1       mrg 
    700   1.7       mrg 	{
    701   1.7       mrg 		int x;
    702   1.7       mrg 		/* sort by largest segment first */
    703   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    704   1.7       mrg 			if ((end - start) >
    705   1.7       mrg 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    706   1.7       mrg 				break;
    707   1.7       mrg 		ps = &vm_physmem[lcv];
    708   1.7       mrg 		/* move back other entries, if necessary ... */
    709   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    710   1.7       mrg 			/* structure copy */
    711   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    712   1.7       mrg 	}
    713   1.1       mrg 
    714   1.1       mrg #else
    715   1.1       mrg 
    716   1.7       mrg 	panic("vm_page_physload: unknown physseg strategy selected!");
    717   1.1       mrg 
    718   1.1       mrg #endif
    719   1.1       mrg 
    720   1.7       mrg 	ps->start = start;
    721   1.7       mrg 	ps->end = end;
    722   1.7       mrg 	ps->avail_start = avail_start;
    723   1.7       mrg 	ps->avail_end = avail_end;
    724   1.7       mrg 	if (preload) {
    725   1.7       mrg 		ps->pgs = NULL;
    726   1.7       mrg 	} else {
    727   1.7       mrg 		ps->pgs = pgs;
    728   1.7       mrg 		ps->lastpg = pgs + npages - 1;
    729   1.7       mrg 	}
    730  1.12   thorpej 	ps->free_list = free_list;
    731   1.7       mrg 	vm_nphysseg++;
    732   1.7       mrg 
    733   1.7       mrg 	/*
    734   1.7       mrg 	 * done!
    735   1.7       mrg 	 */
    736   1.1       mrg 
    737   1.7       mrg 	if (!preload)
    738   1.7       mrg 		uvm_page_rehash();
    739   1.1       mrg 
    740   1.7       mrg 	return;
    741   1.1       mrg }
    742   1.1       mrg 
    743   1.1       mrg /*
    744   1.1       mrg  * uvm_page_rehash: reallocate hash table based on number of free pages.
    745   1.1       mrg  */
    746   1.1       mrg 
    747   1.7       mrg void
    748   1.7       mrg uvm_page_rehash()
    749   1.1       mrg {
    750   1.7       mrg 	int freepages, lcv, bucketcount, s, oldcount;
    751   1.7       mrg 	struct pglist *newbuckets, *oldbuckets;
    752   1.7       mrg 	struct vm_page *pg;
    753  1.30   thorpej 	size_t newsize, oldsize;
    754   1.7       mrg 
    755   1.7       mrg 	/*
    756   1.7       mrg 	 * compute number of pages that can go in the free pool
    757   1.7       mrg 	 */
    758   1.7       mrg 
    759   1.7       mrg 	freepages = 0;
    760   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    761   1.7       mrg 		freepages +=
    762   1.7       mrg 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    763   1.7       mrg 
    764   1.7       mrg 	/*
    765   1.7       mrg 	 * compute number of buckets needed for this number of pages
    766   1.7       mrg 	 */
    767   1.7       mrg 
    768   1.7       mrg 	bucketcount = 1;
    769   1.7       mrg 	while (bucketcount < freepages)
    770   1.7       mrg 		bucketcount = bucketcount * 2;
    771   1.7       mrg 
    772   1.7       mrg 	/*
    773  1.30   thorpej 	 * compute the size of the current table and new table.
    774   1.7       mrg 	 */
    775   1.7       mrg 
    776  1.30   thorpej 	oldbuckets = uvm.page_hash;
    777  1.30   thorpej 	oldcount = uvm.page_nhash;
    778  1.30   thorpej 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    779  1.30   thorpej 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    780  1.30   thorpej 
    781  1.30   thorpej 	/*
    782  1.30   thorpej 	 * allocate the new buckets
    783  1.30   thorpej 	 */
    784  1.30   thorpej 
    785  1.30   thorpej 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    786   1.7       mrg 	if (newbuckets == NULL) {
    787  1.30   thorpej 		printf("uvm_page_physrehash: WARNING: could not grow page "
    788   1.7       mrg 		    "hash table\n");
    789   1.7       mrg 		return;
    790   1.7       mrg 	}
    791   1.7       mrg 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    792   1.7       mrg 		TAILQ_INIT(&newbuckets[lcv]);
    793   1.7       mrg 
    794   1.7       mrg 	/*
    795   1.7       mrg 	 * now replace the old buckets with the new ones and rehash everything
    796   1.7       mrg 	 */
    797   1.7       mrg 
    798   1.7       mrg 	s = splimp();
    799   1.7       mrg 	simple_lock(&uvm.hashlock);
    800   1.7       mrg 	uvm.page_hash = newbuckets;
    801   1.7       mrg 	uvm.page_nhash = bucketcount;
    802   1.7       mrg 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    803   1.7       mrg 
    804   1.7       mrg 	/* ... and rehash */
    805   1.7       mrg 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    806   1.7       mrg 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    807   1.7       mrg 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    808   1.7       mrg 			TAILQ_INSERT_TAIL(
    809   1.7       mrg 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    810   1.7       mrg 			  pg, hashq);
    811   1.7       mrg 		}
    812   1.7       mrg 	}
    813   1.7       mrg 	simple_unlock(&uvm.hashlock);
    814   1.7       mrg 	splx(s);
    815   1.7       mrg 
    816   1.7       mrg 	/*
    817  1.30   thorpej 	 * free old bucket array if is not the boot-time table
    818   1.7       mrg 	 */
    819   1.7       mrg 
    820   1.7       mrg 	if (oldbuckets != &uvm_bootbucket)
    821  1.30   thorpej 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    822   1.7       mrg 
    823   1.7       mrg 	/*
    824   1.7       mrg 	 * done
    825   1.7       mrg 	 */
    826   1.7       mrg 	return;
    827   1.1       mrg }
    828   1.1       mrg 
    829   1.1       mrg 
    830   1.1       mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    831   1.1       mrg 
    832   1.1       mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    833   1.1       mrg 
    834   1.1       mrg /* call from DDB */
    835   1.7       mrg void
    836   1.7       mrg uvm_page_physdump()
    837   1.7       mrg {
    838   1.7       mrg 	int lcv;
    839   1.7       mrg 
    840   1.7       mrg 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    841   1.7       mrg 				 vm_nphysseg, VM_PHYSSEG_MAX);
    842   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    843  1.37      soda 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
    844  1.37      soda 		    (long long)vm_physmem[lcv].start,
    845  1.37      soda 		    (long long)vm_physmem[lcv].end,
    846  1.37      soda 		    (long long)vm_physmem[lcv].avail_start,
    847  1.37      soda 		    (long long)vm_physmem[lcv].avail_end);
    848   1.7       mrg 	printf("STRATEGY = ");
    849   1.7       mrg 	switch (VM_PHYSSEG_STRAT) {
    850   1.7       mrg 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    851   1.7       mrg 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    852   1.7       mrg 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    853   1.7       mrg 	default: printf("<<UNKNOWN>>!!!!\n");
    854   1.7       mrg 	}
    855   1.7       mrg 	printf("number of buckets = %d\n", uvm.page_nhash);
    856   1.1       mrg }
    857   1.1       mrg #endif
    858   1.1       mrg 
    859   1.1       mrg /*
    860  1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    861   1.1       mrg  *
    862   1.1       mrg  * => return null if no pages free
    863   1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    864   1.1       mrg  * => if obj != NULL, obj must be locked (to put in hash)
    865   1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    866   1.1       mrg  * => only one of obj or anon can be non-null
    867   1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    868  1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    869  1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    870  1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    871  1.34   thorpej  *	unknown contents page.  This is because we live with the
    872  1.34   thorpej  *	consequences of a bad free list decision for the entire
    873  1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    874  1.34   thorpej  *	is slower to access.
    875   1.1       mrg  */
    876   1.1       mrg 
    877   1.7       mrg struct vm_page *
    878  1.18       chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    879   1.7       mrg 	struct uvm_object *obj;
    880  1.31    kleink 	voff_t off;
    881  1.18       chs 	int flags;
    882   1.7       mrg 	struct vm_anon *anon;
    883  1.12   thorpej 	int strat, free_list;
    884   1.1       mrg {
    885  1.34   thorpej 	int lcv, try1, try2, s, zeroit = 0;
    886   1.7       mrg 	struct vm_page *pg;
    887  1.12   thorpej 	struct pglist *freeq;
    888  1.34   thorpej 	struct pgfreelist *pgfl;
    889  1.18       chs 	boolean_t use_reserve;
    890   1.1       mrg 
    891   1.1       mrg #ifdef DIAGNOSTIC
    892   1.7       mrg 	/* sanity check */
    893   1.7       mrg 	if (obj && anon)
    894   1.7       mrg 		panic("uvm_pagealloc: obj and anon != NULL");
    895   1.1       mrg #endif
    896   1.1       mrg 
    897  1.21   thorpej 	s = uvm_lock_fpageq();		/* lock free page queue */
    898   1.1       mrg 
    899   1.7       mrg 	/*
    900   1.7       mrg 	 * check to see if we need to generate some free pages waking
    901   1.7       mrg 	 * the pagedaemon.
    902   1.7       mrg 	 */
    903   1.7       mrg 
    904   1.7       mrg 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
    905   1.7       mrg 	    uvmexp.inactive < uvmexp.inactarg))
    906  1.24   thorpej 		wakeup(&uvm.pagedaemon);
    907   1.7       mrg 
    908   1.7       mrg 	/*
    909   1.7       mrg 	 * fail if any of these conditions is true:
    910   1.7       mrg 	 * [1]  there really are no free pages, or
    911   1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
    912   1.7       mrg 	 *        the page isn't being allocated to a kernel object.
    913   1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
    914   1.7       mrg 	 *        the requestor isn't the pagedaemon.
    915   1.7       mrg 	 */
    916   1.7       mrg 
    917  1.18       chs 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
    918  1.22   thorpej 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
    919  1.18       chs 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
    920   1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    921  1.18       chs 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
    922  1.12   thorpej 		goto fail;
    923  1.12   thorpej 
    924  1.34   thorpej #if PGFL_NQUEUES != 2
    925  1.34   thorpej #error uvm_pagealloc_strat needs to be updated
    926  1.34   thorpej #endif
    927  1.34   thorpej 
    928  1.34   thorpej 	/*
    929  1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    930  1.34   thorpej 	 * we try the UNKNOWN queue first.
    931  1.34   thorpej 	 */
    932  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    933  1.34   thorpej 		try1 = PGFL_ZEROS;
    934  1.34   thorpej 		try2 = PGFL_UNKNOWN;
    935  1.34   thorpej 	} else {
    936  1.34   thorpej 		try1 = PGFL_UNKNOWN;
    937  1.34   thorpej 		try2 = PGFL_ZEROS;
    938  1.34   thorpej 	}
    939  1.34   thorpej 
    940  1.12   thorpej  again:
    941  1.12   thorpej 	switch (strat) {
    942  1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
    943  1.12   thorpej 		/* Check all freelists in descending priority order. */
    944  1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    945  1.34   thorpej 			pgfl = &uvm.page_free[lcv];
    946  1.34   thorpej 			if ((pg = TAILQ_FIRST((freeq =
    947  1.34   thorpej 			      &pgfl->pgfl_queues[try1]))) != NULL ||
    948  1.34   thorpej 			    (pg = TAILQ_FIRST((freeq =
    949  1.34   thorpej 			      &pgfl->pgfl_queues[try2]))) != NULL)
    950  1.12   thorpej 				goto gotit;
    951  1.12   thorpej 		}
    952  1.12   thorpej 
    953  1.12   thorpej 		/* No pages free! */
    954  1.12   thorpej 		goto fail;
    955  1.12   thorpej 
    956  1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
    957  1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
    958  1.12   thorpej 		/* Attempt to allocate from the specified free list. */
    959  1.12   thorpej #ifdef DIAGNOSTIC
    960  1.12   thorpej 		if (free_list >= VM_NFREELIST || free_list < 0)
    961  1.12   thorpej 			panic("uvm_pagealloc_strat: bad free list %d",
    962  1.12   thorpej 			    free_list);
    963  1.12   thorpej #endif
    964  1.34   thorpej 		pgfl = &uvm.page_free[free_list];
    965  1.34   thorpej 		if ((pg = TAILQ_FIRST((freeq =
    966  1.34   thorpej 		      &pgfl->pgfl_queues[try1]))) != NULL ||
    967  1.34   thorpej 		    (pg = TAILQ_FIRST((freeq =
    968  1.34   thorpej 		      &pgfl->pgfl_queues[try2]))) != NULL)
    969  1.12   thorpej 			goto gotit;
    970  1.12   thorpej 
    971  1.12   thorpej 		/* Fall back, if possible. */
    972  1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    973  1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
    974  1.12   thorpej 			goto again;
    975  1.12   thorpej 		}
    976  1.12   thorpej 
    977  1.12   thorpej 		/* No pages free! */
    978  1.12   thorpej 		goto fail;
    979  1.12   thorpej 
    980  1.12   thorpej 	default:
    981  1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    982  1.12   thorpej 		/* NOTREACHED */
    983   1.7       mrg 	}
    984   1.7       mrg 
    985  1.12   thorpej  gotit:
    986  1.12   thorpej 	TAILQ_REMOVE(freeq, pg, pageq);
    987   1.7       mrg 	uvmexp.free--;
    988   1.7       mrg 
    989  1.34   thorpej 	/* update zero'd page count */
    990  1.34   thorpej 	if (pg->flags & PG_ZERO)
    991  1.34   thorpej 		uvmexp.zeropages--;
    992  1.34   thorpej 
    993  1.34   thorpej 	/*
    994  1.34   thorpej 	 * update allocation statistics and remember if we have to
    995  1.34   thorpej 	 * zero the page
    996  1.34   thorpej 	 */
    997  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    998  1.34   thorpej 		if (pg->flags & PG_ZERO) {
    999  1.34   thorpej 			uvmexp.pga_zerohit++;
   1000  1.34   thorpej 			zeroit = 0;
   1001  1.34   thorpej 		} else {
   1002  1.34   thorpej 			uvmexp.pga_zeromiss++;
   1003  1.34   thorpej 			zeroit = 1;
   1004  1.34   thorpej 		}
   1005  1.34   thorpej 	}
   1006  1.34   thorpej 
   1007  1.21   thorpej 	uvm_unlock_fpageq(s);		/* unlock free page queue */
   1008   1.7       mrg 
   1009   1.7       mrg 	pg->offset = off;
   1010   1.7       mrg 	pg->uobject = obj;
   1011   1.7       mrg 	pg->uanon = anon;
   1012   1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1013   1.7       mrg 	pg->version++;
   1014   1.7       mrg 	pg->wire_count = 0;
   1015   1.7       mrg 	pg->loan_count = 0;
   1016   1.7       mrg 	if (anon) {
   1017   1.7       mrg 		anon->u.an_page = pg;
   1018   1.7       mrg 		pg->pqflags = PQ_ANON;
   1019   1.7       mrg 	} else {
   1020   1.7       mrg 		if (obj)
   1021   1.7       mrg 			uvm_pageinsert(pg);
   1022   1.7       mrg 		pg->pqflags = 0;
   1023   1.7       mrg 	}
   1024   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1025   1.7       mrg 	pg->owner_tag = NULL;
   1026   1.1       mrg #endif
   1027   1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1028  1.33   thorpej 
   1029  1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1030  1.33   thorpej 		/*
   1031  1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1032  1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1033  1.33   thorpej 		 */
   1034  1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1035  1.34   thorpej 		if (zeroit)
   1036  1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1037  1.33   thorpej 	}
   1038   1.1       mrg 
   1039   1.7       mrg 	return(pg);
   1040  1.12   thorpej 
   1041  1.12   thorpej  fail:
   1042  1.21   thorpej 	uvm_unlock_fpageq(s);
   1043  1.12   thorpej 	return (NULL);
   1044   1.1       mrg }
   1045   1.1       mrg 
   1046   1.1       mrg /*
   1047   1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1048   1.1       mrg  *
   1049   1.1       mrg  * => both objects must be locked
   1050   1.1       mrg  */
   1051   1.1       mrg 
   1052   1.7       mrg void
   1053   1.7       mrg uvm_pagerealloc(pg, newobj, newoff)
   1054   1.7       mrg 	struct vm_page *pg;
   1055   1.7       mrg 	struct uvm_object *newobj;
   1056  1.31    kleink 	voff_t newoff;
   1057   1.1       mrg {
   1058   1.7       mrg 	/*
   1059   1.7       mrg 	 * remove it from the old object
   1060   1.7       mrg 	 */
   1061   1.7       mrg 
   1062   1.7       mrg 	if (pg->uobject) {
   1063   1.7       mrg 		uvm_pageremove(pg);
   1064   1.7       mrg 	}
   1065   1.7       mrg 
   1066   1.7       mrg 	/*
   1067   1.7       mrg 	 * put it in the new object
   1068   1.7       mrg 	 */
   1069   1.7       mrg 
   1070   1.7       mrg 	if (newobj) {
   1071   1.7       mrg 		pg->uobject = newobj;
   1072   1.7       mrg 		pg->offset = newoff;
   1073   1.7       mrg 		pg->version++;
   1074   1.7       mrg 		uvm_pageinsert(pg);
   1075   1.7       mrg 	}
   1076   1.1       mrg 
   1077   1.7       mrg 	return;
   1078   1.1       mrg }
   1079   1.1       mrg 
   1080   1.1       mrg 
   1081   1.1       mrg /*
   1082   1.1       mrg  * uvm_pagefree: free page
   1083   1.1       mrg  *
   1084   1.1       mrg  * => erase page's identity (i.e. remove from hash/object)
   1085   1.1       mrg  * => put page on free list
   1086   1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1087   1.1       mrg  * => caller must lock page queues
   1088   1.1       mrg  * => assumes all valid mappings of pg are gone
   1089   1.1       mrg  */
   1090   1.1       mrg 
   1091   1.1       mrg void uvm_pagefree(pg)
   1092   1.1       mrg 
   1093   1.1       mrg struct vm_page *pg;
   1094   1.1       mrg 
   1095   1.1       mrg {
   1096   1.7       mrg 	int s;
   1097   1.7       mrg 	int saved_loan_count = pg->loan_count;
   1098   1.1       mrg 
   1099   1.7       mrg 	/*
   1100   1.7       mrg 	 * if the page was an object page (and thus "TABLED"), remove it
   1101   1.7       mrg 	 * from the object.
   1102   1.7       mrg 	 */
   1103   1.7       mrg 
   1104   1.7       mrg 	if (pg->flags & PG_TABLED) {
   1105   1.7       mrg 
   1106   1.7       mrg 		/*
   1107   1.7       mrg 		 * if the object page is on loan we are going to drop ownership.
   1108   1.7       mrg 		 * it is possible that an anon will take over as owner for this
   1109   1.7       mrg 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1110   1.7       mrg 		 * it knows it needs to allocate swap if it wants to page the
   1111   1.7       mrg 		 * page out.
   1112   1.7       mrg 		 */
   1113   1.7       mrg 
   1114   1.7       mrg 		if (saved_loan_count)
   1115   1.7       mrg 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1116   1.7       mrg 
   1117   1.7       mrg 		uvm_pageremove(pg);
   1118   1.7       mrg 
   1119   1.7       mrg 		/*
   1120   1.7       mrg 		 * if our page was on loan, then we just lost control over it
   1121   1.7       mrg 		 * (in fact, if it was loaned to an anon, the anon may have
   1122   1.7       mrg 		 * already taken over ownership of the page by now and thus
   1123   1.7       mrg 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1124   1.7       mrg 		 * return (when the last loan is dropped, then the page can be
   1125   1.7       mrg 		 * freed by whatever was holding the last loan).
   1126   1.7       mrg 		 */
   1127   1.7       mrg 		if (saved_loan_count)
   1128   1.7       mrg 			return;
   1129   1.7       mrg 
   1130   1.7       mrg 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1131   1.7       mrg 
   1132   1.7       mrg 		/*
   1133   1.7       mrg 		 * if our page is owned by an anon and is loaned out to the
   1134   1.7       mrg 		 * kernel then we just want to drop ownership and return.
   1135   1.7       mrg 		 * the kernel must free the page when all its loans clear ...
   1136   1.7       mrg 		 * note that the kernel can't change the loan status of our
   1137   1.7       mrg 		 * page as long as we are holding PQ lock.
   1138   1.7       mrg 		 */
   1139   1.7       mrg 		pg->pqflags &= ~PQ_ANON;
   1140   1.7       mrg 		pg->uanon = NULL;
   1141   1.7       mrg 		return;
   1142   1.7       mrg 	}
   1143   1.1       mrg 
   1144   1.1       mrg #ifdef DIAGNOSTIC
   1145   1.7       mrg 	if (saved_loan_count) {
   1146   1.7       mrg 		printf("uvm_pagefree: warning: freeing page with a loan "
   1147   1.7       mrg 		    "count of %d\n", saved_loan_count);
   1148   1.7       mrg 		panic("uvm_pagefree: loan count");
   1149   1.7       mrg 	}
   1150   1.1       mrg #endif
   1151   1.7       mrg 
   1152   1.1       mrg 
   1153   1.7       mrg 	/*
   1154   1.7       mrg 	 * now remove the page from the queues
   1155   1.7       mrg 	 */
   1156   1.7       mrg 
   1157   1.7       mrg 	if (pg->pqflags & PQ_ACTIVE) {
   1158   1.7       mrg 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1159   1.7       mrg 		pg->pqflags &= ~PQ_ACTIVE;
   1160   1.7       mrg 		uvmexp.active--;
   1161   1.7       mrg 	}
   1162   1.7       mrg 	if (pg->pqflags & PQ_INACTIVE) {
   1163   1.7       mrg 		if (pg->pqflags & PQ_SWAPBACKED)
   1164   1.7       mrg 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1165   1.7       mrg 		else
   1166   1.7       mrg 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1167   1.7       mrg 		pg->pqflags &= ~PQ_INACTIVE;
   1168   1.7       mrg 		uvmexp.inactive--;
   1169   1.7       mrg 	}
   1170   1.7       mrg 
   1171   1.7       mrg 	/*
   1172   1.7       mrg 	 * if the page was wired, unwire it now.
   1173   1.7       mrg 	 */
   1174  1.34   thorpej 	if (pg->wire_count) {
   1175   1.7       mrg 		pg->wire_count = 0;
   1176   1.7       mrg 		uvmexp.wired--;
   1177   1.7       mrg 	}
   1178   1.7       mrg 
   1179   1.7       mrg 	/*
   1180   1.7       mrg 	 * and put on free queue
   1181   1.7       mrg 	 */
   1182   1.7       mrg 
   1183  1.34   thorpej 	pg->flags &= ~PG_ZERO;
   1184  1.34   thorpej 
   1185  1.21   thorpej 	s = uvm_lock_fpageq();
   1186  1.34   thorpej 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1187  1.34   thorpej 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1188   1.7       mrg 	pg->pqflags = PQ_FREE;
   1189   1.3       chs #ifdef DEBUG
   1190   1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1191   1.7       mrg 	pg->offset = 0xdeadbeef;
   1192   1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1193   1.3       chs #endif
   1194   1.7       mrg 	uvmexp.free++;
   1195  1.34   thorpej 
   1196  1.34   thorpej 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1197  1.34   thorpej 		uvm.page_idle_zero = vm_page_zero_enable;
   1198  1.34   thorpej 
   1199  1.21   thorpej 	uvm_unlock_fpageq(s);
   1200   1.1       mrg }
   1201   1.1       mrg 
   1202   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1203   1.1       mrg /*
   1204   1.1       mrg  * uvm_page_own: set or release page ownership
   1205   1.1       mrg  *
   1206   1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1207   1.1       mrg  *	and where they do it.   it can be used to track down problems
   1208   1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1209   1.1       mrg  * => page's object [if any] must be locked
   1210   1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1211   1.1       mrg  */
   1212   1.7       mrg void
   1213   1.7       mrg uvm_page_own(pg, tag)
   1214   1.7       mrg 	struct vm_page *pg;
   1215   1.7       mrg 	char *tag;
   1216   1.1       mrg {
   1217   1.7       mrg 	/* gain ownership? */
   1218   1.7       mrg 	if (tag) {
   1219   1.7       mrg 		if (pg->owner_tag) {
   1220   1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1221   1.7       mrg 			    "by proc %d [%s]\n", pg,
   1222   1.7       mrg 			     pg->owner, pg->owner_tag);
   1223   1.7       mrg 			panic("uvm_page_own");
   1224   1.7       mrg 		}
   1225   1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1226   1.7       mrg 		pg->owner_tag = tag;
   1227   1.7       mrg 		return;
   1228   1.7       mrg 	}
   1229   1.7       mrg 
   1230   1.7       mrg 	/* drop ownership */
   1231   1.7       mrg 	if (pg->owner_tag == NULL) {
   1232   1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1233   1.7       mrg 		    "page (%p)\n", pg);
   1234   1.7       mrg 		panic("uvm_page_own");
   1235   1.7       mrg 	}
   1236   1.7       mrg 	pg->owner_tag = NULL;
   1237   1.7       mrg 	return;
   1238   1.1       mrg }
   1239   1.1       mrg #endif
   1240  1.34   thorpej 
   1241  1.34   thorpej /*
   1242  1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1243  1.34   thorpej  *
   1244  1.34   thorpej  * => we do at least one iteration per call, if we are below the target.
   1245  1.34   thorpej  * => we loop until we either reach the target or whichqs indicates that
   1246  1.34   thorpej  *	there is a process ready to run.
   1247  1.34   thorpej  */
   1248  1.34   thorpej void
   1249  1.34   thorpej uvm_pageidlezero()
   1250  1.34   thorpej {
   1251  1.34   thorpej 	struct vm_page *pg;
   1252  1.34   thorpej 	struct pgfreelist *pgfl;
   1253  1.34   thorpej 	int free_list, s;
   1254  1.34   thorpej 
   1255  1.34   thorpej 	do {
   1256  1.34   thorpej 		s = uvm_lock_fpageq();
   1257  1.34   thorpej 
   1258  1.34   thorpej 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1259  1.34   thorpej 			uvm.page_idle_zero = FALSE;
   1260  1.34   thorpej 			uvm_unlock_fpageq(s);
   1261  1.34   thorpej 			return;
   1262  1.34   thorpej 		}
   1263  1.34   thorpej 
   1264  1.34   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1265  1.34   thorpej 			pgfl = &uvm.page_free[free_list];
   1266  1.34   thorpej 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
   1267  1.34   thorpej 			    PGFL_UNKNOWN])) != NULL)
   1268  1.34   thorpej 				break;
   1269  1.34   thorpej 		}
   1270  1.34   thorpej 
   1271  1.34   thorpej 		if (pg == NULL) {
   1272  1.34   thorpej 			/*
   1273  1.34   thorpej 			 * No non-zero'd pages; don't bother trying again
   1274  1.34   thorpej 			 * until we know we have non-zero'd pages free.
   1275  1.34   thorpej 			 */
   1276  1.34   thorpej 			uvm.page_idle_zero = FALSE;
   1277  1.34   thorpej 			uvm_unlock_fpageq(s);
   1278  1.34   thorpej 			return;
   1279  1.34   thorpej 		}
   1280  1.34   thorpej 
   1281  1.34   thorpej 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1282  1.34   thorpej 		uvmexp.free--;
   1283  1.34   thorpej 		uvm_unlock_fpageq(s);
   1284  1.34   thorpej 
   1285  1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1286  1.41   thorpej 		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
   1287  1.41   thorpej 			/*
   1288  1.41   thorpej 			 * The machine-dependent code detected some
   1289  1.41   thorpej 			 * reason for us to abort zeroing pages,
   1290  1.41   thorpej 			 * probably because there is a process now
   1291  1.41   thorpej 			 * ready to run.
   1292  1.41   thorpej 			 */
   1293  1.41   thorpej 			s = uvm_lock_fpageq();
   1294  1.41   thorpej 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
   1295  1.41   thorpej 			    pg, pageq);
   1296  1.41   thorpej 			uvmexp.free++;
   1297  1.41   thorpej 			uvmexp.zeroaborts++;
   1298  1.41   thorpej 			uvm_unlock_fpageq(s);
   1299  1.41   thorpej 			return;
   1300  1.41   thorpej 		}
   1301  1.34   thorpej #else
   1302  1.34   thorpej 		/*
   1303  1.34   thorpej 		 * XXX This will toast the cache unless the pmap_zero_page()
   1304  1.34   thorpej 		 * XXX implementation does uncached access.
   1305  1.34   thorpej 		 */
   1306  1.34   thorpej 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1307  1.34   thorpej #endif
   1308  1.34   thorpej 		pg->flags |= PG_ZERO;
   1309  1.34   thorpej 
   1310  1.34   thorpej 		s = uvm_lock_fpageq();
   1311  1.34   thorpej 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
   1312  1.34   thorpej 		uvmexp.free++;
   1313  1.34   thorpej 		uvmexp.zeropages++;
   1314  1.34   thorpej 		uvm_unlock_fpageq(s);
   1315  1.35   thorpej 	} while (sched_whichqs == 0);
   1316  1.34   thorpej }
   1317