uvm_page.c revision 1.44 1 1.44 chs /* $NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.44 chs #include "opt_uvmhist.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.1 mrg
81 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
82 1.1 mrg #include <uvm/uvm.h>
83 1.1 mrg
84 1.1 mrg /*
85 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
86 1.1 mrg */
87 1.1 mrg
88 1.1 mrg /*
89 1.1 mrg * physical memory config is stored in vm_physmem.
90 1.1 mrg */
91 1.1 mrg
92 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
93 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
94 1.1 mrg
95 1.1 mrg /*
96 1.36 thorpej * Some supported CPUs in a given architecture don't support all
97 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
98 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
99 1.34 thorpej */
100 1.44 chs /*
101 1.44 chs * XXX disabled until we can find a way to do this without causing
102 1.44 chs * problems for either cpu caches or DMA latency.
103 1.44 chs */
104 1.44 chs boolean_t vm_page_zero_enable = FALSE;
105 1.34 thorpej
106 1.44 chs u_long uvm_pgcnt_anon;
107 1.44 chs u_long uvm_pgcnt_vnode;
108 1.44 chs extern struct uvm_pagerops uvm_vnodeops;
109 1.34 thorpej
110 1.34 thorpej /*
111 1.1 mrg * local variables
112 1.1 mrg */
113 1.1 mrg
114 1.1 mrg /*
115 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
116 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
117 1.1 mrg * and pmap_startup here also uses them internally.
118 1.1 mrg */
119 1.1 mrg
120 1.14 eeh static vaddr_t virtual_space_start;
121 1.14 eeh static vaddr_t virtual_space_end;
122 1.1 mrg
123 1.1 mrg /*
124 1.1 mrg * we use a hash table with only one bucket during bootup. we will
125 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
126 1.30 thorpej * we static allocate the one bootstrap bucket below...
127 1.1 mrg */
128 1.1 mrg
129 1.1 mrg static struct pglist uvm_bootbucket;
130 1.1 mrg
131 1.1 mrg /*
132 1.1 mrg * local prototypes
133 1.1 mrg */
134 1.1 mrg
135 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
136 1.44 chs static void uvm_pageremove __P((struct vm_page *));
137 1.1 mrg
138 1.1 mrg /*
139 1.1 mrg * inline functions
140 1.1 mrg */
141 1.1 mrg
142 1.1 mrg /*
143 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
144 1.1 mrg *
145 1.1 mrg * => caller must lock object
146 1.1 mrg * => caller must lock page queues
147 1.1 mrg * => call should have already set pg's object and offset pointers
148 1.1 mrg * and bumped the version counter
149 1.1 mrg */
150 1.1 mrg
151 1.7 mrg __inline static void
152 1.7 mrg uvm_pageinsert(pg)
153 1.7 mrg struct vm_page *pg;
154 1.1 mrg {
155 1.7 mrg struct pglist *buck;
156 1.7 mrg int s;
157 1.1 mrg
158 1.1 mrg #ifdef DIAGNOSTIC
159 1.7 mrg if (pg->flags & PG_TABLED)
160 1.7 mrg panic("uvm_pageinsert: already inserted");
161 1.1 mrg #endif
162 1.1 mrg
163 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
164 1.7 mrg s = splimp();
165 1.7 mrg simple_lock(&uvm.hashlock);
166 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
167 1.7 mrg simple_unlock(&uvm.hashlock);
168 1.7 mrg splx(s);
169 1.7 mrg
170 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
171 1.7 mrg pg->flags |= PG_TABLED;
172 1.7 mrg pg->uobject->uo_npages++;
173 1.1 mrg }
174 1.1 mrg
175 1.1 mrg /*
176 1.1 mrg * uvm_page_remove: remove page from object and hash
177 1.1 mrg *
178 1.1 mrg * => caller must lock object
179 1.1 mrg * => caller must lock page queues
180 1.1 mrg */
181 1.1 mrg
182 1.44 chs static __inline void
183 1.7 mrg uvm_pageremove(pg)
184 1.7 mrg struct vm_page *pg;
185 1.1 mrg {
186 1.7 mrg struct pglist *buck;
187 1.7 mrg int s;
188 1.1 mrg
189 1.44 chs KASSERT(pg->flags & PG_TABLED);
190 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
191 1.7 mrg s = splimp();
192 1.7 mrg simple_lock(&uvm.hashlock);
193 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
194 1.7 mrg simple_unlock(&uvm.hashlock);
195 1.7 mrg splx(s);
196 1.7 mrg
197 1.44 chs if (pg->uobject->pgops == &uvm_vnodeops) {
198 1.44 chs uvm_pgcnt_vnode--;
199 1.44 chs }
200 1.44 chs
201 1.7 mrg /* object should be locked */
202 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
203 1.7 mrg
204 1.7 mrg pg->flags &= ~PG_TABLED;
205 1.7 mrg pg->uobject->uo_npages--;
206 1.7 mrg pg->uobject = NULL;
207 1.7 mrg pg->version++;
208 1.1 mrg }
209 1.1 mrg
210 1.1 mrg /*
211 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
212 1.1 mrg *
213 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
214 1.1 mrg */
215 1.1 mrg
216 1.7 mrg void
217 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
218 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
219 1.1 mrg {
220 1.27 thorpej vsize_t freepages, pagecount, n;
221 1.7 mrg vm_page_t pagearray;
222 1.27 thorpej int lcv, i;
223 1.14 eeh paddr_t paddr;
224 1.7 mrg
225 1.7 mrg /*
226 1.7 mrg * step 1: init the page queues and page queue locks
227 1.7 mrg */
228 1.34 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
229 1.34 thorpej for (i = 0; i < PGFL_NQUEUES; i++)
230 1.34 thorpej TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
231 1.34 thorpej }
232 1.7 mrg TAILQ_INIT(&uvm.page_active);
233 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
234 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
235 1.7 mrg simple_lock_init(&uvm.pageqlock);
236 1.7 mrg simple_lock_init(&uvm.fpageqlock);
237 1.7 mrg
238 1.7 mrg /*
239 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
240 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
241 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
242 1.7 mrg */
243 1.7 mrg
244 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
245 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
246 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
247 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
248 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
249 1.7 mrg
250 1.7 mrg /*
251 1.7 mrg * step 3: allocate vm_page structures.
252 1.7 mrg */
253 1.7 mrg
254 1.7 mrg /*
255 1.7 mrg * sanity check:
256 1.7 mrg * before calling this function the MD code is expected to register
257 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
258 1.7 mrg * now is to allocate vm_page structures for this memory.
259 1.7 mrg */
260 1.7 mrg
261 1.7 mrg if (vm_nphysseg == 0)
262 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
263 1.7 mrg
264 1.7 mrg /*
265 1.7 mrg * first calculate the number of free pages...
266 1.7 mrg *
267 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
268 1.7 mrg * this allows us to allocate extra vm_page structures in case we
269 1.7 mrg * want to return some memory to the pool after booting.
270 1.7 mrg */
271 1.7 mrg
272 1.7 mrg freepages = 0;
273 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
274 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
275 1.7 mrg
276 1.7 mrg /*
277 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
278 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
279 1.7 mrg * thus, the total number of pages we can use is the total size of
280 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
281 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
282 1.7 mrg * truncation errors (since we can only allocate in terms of whole
283 1.7 mrg * pages).
284 1.7 mrg */
285 1.7 mrg
286 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
287 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
288 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
289 1.7 mrg sizeof(struct vm_page));
290 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
291 1.7 mrg
292 1.7 mrg /*
293 1.7 mrg * step 4: init the vm_page structures and put them in the correct
294 1.7 mrg * place...
295 1.7 mrg */
296 1.7 mrg
297 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
298 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
299 1.7 mrg if (n > pagecount) {
300 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
301 1.27 thorpej (long)(n - pagecount));
302 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
303 1.7 mrg /* n = pagecount; */
304 1.7 mrg }
305 1.7 mrg /* set up page array pointers */
306 1.7 mrg vm_physmem[lcv].pgs = pagearray;
307 1.7 mrg pagearray += n;
308 1.7 mrg pagecount -= n;
309 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
310 1.7 mrg
311 1.13 perry /* init and free vm_pages (we've already zeroed them) */
312 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
313 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
314 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
315 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
316 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
317 1.7 mrg uvmexp.npages++;
318 1.7 mrg /* add page to free pool */
319 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
320 1.7 mrg }
321 1.7 mrg }
322 1.7 mrg }
323 1.44 chs
324 1.7 mrg /*
325 1.7 mrg * step 5: pass up the values of virtual_space_start and
326 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
327 1.7 mrg * layers of the VM.
328 1.7 mrg */
329 1.7 mrg
330 1.7 mrg *kvm_startp = round_page(virtual_space_start);
331 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
332 1.7 mrg
333 1.7 mrg /*
334 1.44 chs * step 6: init locks for kernel threads
335 1.7 mrg */
336 1.7 mrg
337 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
338 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
339 1.7 mrg
340 1.7 mrg /*
341 1.7 mrg * step 7: init reserve thresholds
342 1.7 mrg * XXXCDC - values may need adjusting
343 1.7 mrg */
344 1.7 mrg uvmexp.reserve_pagedaemon = 1;
345 1.7 mrg uvmexp.reserve_kernel = 5;
346 1.7 mrg
347 1.7 mrg /*
348 1.34 thorpej * step 8: determine if we should zero pages in the idle
349 1.34 thorpej * loop.
350 1.34 thorpej */
351 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
352 1.34 thorpej
353 1.34 thorpej /*
354 1.7 mrg * done!
355 1.7 mrg */
356 1.1 mrg
357 1.32 thorpej uvm.page_init_done = TRUE;
358 1.1 mrg }
359 1.1 mrg
360 1.1 mrg /*
361 1.1 mrg * uvm_setpagesize: set the page size
362 1.1 mrg *
363 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
364 1.1 mrg */
365 1.1 mrg
366 1.7 mrg void
367 1.7 mrg uvm_setpagesize()
368 1.1 mrg {
369 1.7 mrg if (uvmexp.pagesize == 0)
370 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
371 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
372 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
373 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
374 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
375 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
376 1.7 mrg break;
377 1.1 mrg }
378 1.1 mrg
379 1.1 mrg /*
380 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
381 1.1 mrg */
382 1.1 mrg
383 1.14 eeh vaddr_t
384 1.7 mrg uvm_pageboot_alloc(size)
385 1.14 eeh vsize_t size;
386 1.1 mrg {
387 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
388 1.14 eeh vaddr_t addr;
389 1.1 mrg
390 1.7 mrg /*
391 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
392 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
393 1.7 mrg * off virtual_space_start/virtual_space_end.
394 1.7 mrg */
395 1.1 mrg
396 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
397 1.7 mrg &virtual_space_end);
398 1.1 mrg
399 1.7 mrg return(addr);
400 1.1 mrg
401 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
402 1.1 mrg
403 1.19 thorpej static boolean_t initialized = FALSE;
404 1.14 eeh vaddr_t addr, vaddr;
405 1.14 eeh paddr_t paddr;
406 1.1 mrg
407 1.7 mrg /* round to page size */
408 1.7 mrg size = round_page(size);
409 1.1 mrg
410 1.7 mrg /*
411 1.19 thorpej * on first call to this function, initialize ourselves.
412 1.7 mrg */
413 1.19 thorpej if (initialized == FALSE) {
414 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
415 1.1 mrg
416 1.7 mrg /* round it the way we like it */
417 1.7 mrg virtual_space_start = round_page(virtual_space_start);
418 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
419 1.19 thorpej
420 1.19 thorpej initialized = TRUE;
421 1.7 mrg }
422 1.1 mrg
423 1.7 mrg /*
424 1.7 mrg * allocate virtual memory for this request
425 1.7 mrg */
426 1.19 thorpej if (virtual_space_start == virtual_space_end ||
427 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
428 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
429 1.20 thorpej
430 1.20 thorpej addr = virtual_space_start;
431 1.20 thorpej
432 1.20 thorpej #ifdef PMAP_GROWKERNEL
433 1.20 thorpej /*
434 1.20 thorpej * If the kernel pmap can't map the requested space,
435 1.20 thorpej * then allocate more resources for it.
436 1.20 thorpej */
437 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
438 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
439 1.20 thorpej if (uvm_maxkaddr < (addr + size))
440 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
441 1.19 thorpej }
442 1.20 thorpej #endif
443 1.1 mrg
444 1.7 mrg virtual_space_start += size;
445 1.1 mrg
446 1.9 thorpej /*
447 1.7 mrg * allocate and mapin physical pages to back new virtual pages
448 1.7 mrg */
449 1.1 mrg
450 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
451 1.7 mrg vaddr += PAGE_SIZE) {
452 1.1 mrg
453 1.7 mrg if (!uvm_page_physget(&paddr))
454 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
455 1.1 mrg
456 1.23 thorpej /*
457 1.23 thorpej * Note this memory is no longer managed, so using
458 1.23 thorpej * pmap_kenter is safe.
459 1.23 thorpej */
460 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
461 1.7 mrg }
462 1.7 mrg return(addr);
463 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
464 1.1 mrg }
465 1.1 mrg
466 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
467 1.1 mrg /*
468 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
469 1.1 mrg *
470 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
471 1.1 mrg * values match the start/end values. if we can't do that, then we
472 1.1 mrg * will advance both values (making them equal, and removing some
473 1.1 mrg * vm_page structures from the non-avail area).
474 1.1 mrg * => return false if out of memory.
475 1.1 mrg */
476 1.1 mrg
477 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
478 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
479 1.28 drochner
480 1.28 drochner static boolean_t
481 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
482 1.14 eeh paddr_t *paddrp;
483 1.28 drochner int freelist;
484 1.1 mrg {
485 1.7 mrg int lcv, x;
486 1.1 mrg
487 1.7 mrg /* pass 1: try allocating from a matching end */
488 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
489 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
490 1.1 mrg #else
491 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
492 1.1 mrg #endif
493 1.7 mrg {
494 1.1 mrg
495 1.32 thorpej if (uvm.page_init_done == TRUE)
496 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
497 1.1 mrg
498 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
499 1.28 drochner continue;
500 1.28 drochner
501 1.7 mrg /* try from front */
502 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
503 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
504 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
505 1.7 mrg vm_physmem[lcv].avail_start++;
506 1.7 mrg vm_physmem[lcv].start++;
507 1.7 mrg /* nothing left? nuke it */
508 1.7 mrg if (vm_physmem[lcv].avail_start ==
509 1.7 mrg vm_physmem[lcv].end) {
510 1.7 mrg if (vm_nphysseg == 1)
511 1.42 mrg panic("vum_page_physget: out of memory!");
512 1.7 mrg vm_nphysseg--;
513 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
514 1.7 mrg /* structure copy */
515 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
516 1.7 mrg }
517 1.7 mrg return (TRUE);
518 1.7 mrg }
519 1.7 mrg
520 1.7 mrg /* try from rear */
521 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
522 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
523 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
524 1.7 mrg vm_physmem[lcv].avail_end--;
525 1.7 mrg vm_physmem[lcv].end--;
526 1.7 mrg /* nothing left? nuke it */
527 1.7 mrg if (vm_physmem[lcv].avail_end ==
528 1.7 mrg vm_physmem[lcv].start) {
529 1.7 mrg if (vm_nphysseg == 1)
530 1.42 mrg panic("uvm_page_physget: out of memory!");
531 1.7 mrg vm_nphysseg--;
532 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
533 1.7 mrg /* structure copy */
534 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
535 1.7 mrg }
536 1.7 mrg return (TRUE);
537 1.7 mrg }
538 1.7 mrg }
539 1.1 mrg
540 1.7 mrg /* pass2: forget about matching ends, just allocate something */
541 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
542 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
543 1.1 mrg #else
544 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
545 1.1 mrg #endif
546 1.7 mrg {
547 1.1 mrg
548 1.7 mrg /* any room in this bank? */
549 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
550 1.7 mrg continue; /* nope */
551 1.7 mrg
552 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
553 1.7 mrg vm_physmem[lcv].avail_start++;
554 1.7 mrg /* truncate! */
555 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
556 1.7 mrg
557 1.7 mrg /* nothing left? nuke it */
558 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
559 1.7 mrg if (vm_nphysseg == 1)
560 1.42 mrg panic("uvm_page_physget: out of memory!");
561 1.7 mrg vm_nphysseg--;
562 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
563 1.7 mrg /* structure copy */
564 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
565 1.7 mrg }
566 1.7 mrg return (TRUE);
567 1.7 mrg }
568 1.1 mrg
569 1.7 mrg return (FALSE); /* whoops! */
570 1.28 drochner }
571 1.28 drochner
572 1.28 drochner boolean_t
573 1.28 drochner uvm_page_physget(paddrp)
574 1.28 drochner paddr_t *paddrp;
575 1.28 drochner {
576 1.28 drochner int i;
577 1.28 drochner
578 1.28 drochner /* try in the order of freelist preference */
579 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
580 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
581 1.28 drochner return (TRUE);
582 1.28 drochner return (FALSE);
583 1.1 mrg }
584 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
585 1.1 mrg
586 1.1 mrg /*
587 1.1 mrg * uvm_page_physload: load physical memory into VM system
588 1.1 mrg *
589 1.1 mrg * => all args are PFs
590 1.1 mrg * => all pages in start/end get vm_page structures
591 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
592 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
593 1.1 mrg */
594 1.1 mrg
595 1.7 mrg void
596 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
597 1.29 eeh paddr_t start, end, avail_start, avail_end;
598 1.12 thorpej int free_list;
599 1.1 mrg {
600 1.14 eeh int preload, lcv;
601 1.14 eeh psize_t npages;
602 1.7 mrg struct vm_page *pgs;
603 1.7 mrg struct vm_physseg *ps;
604 1.7 mrg
605 1.7 mrg if (uvmexp.pagesize == 0)
606 1.42 mrg panic("uvm_page_physload: page size not set!");
607 1.7 mrg
608 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
609 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
610 1.26 drochner
611 1.26 drochner if (start >= end)
612 1.26 drochner panic("uvm_page_physload: start >= end");
613 1.12 thorpej
614 1.7 mrg /*
615 1.7 mrg * do we have room?
616 1.7 mrg */
617 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
618 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
619 1.7 mrg "segment\n");
620 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
621 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
622 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
623 1.7 mrg return;
624 1.7 mrg }
625 1.7 mrg
626 1.7 mrg /*
627 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
628 1.7 mrg * called yet, so malloc is not available).
629 1.7 mrg */
630 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
631 1.7 mrg if (vm_physmem[lcv].pgs)
632 1.7 mrg break;
633 1.7 mrg }
634 1.7 mrg preload = (lcv == vm_nphysseg);
635 1.7 mrg
636 1.7 mrg /*
637 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
638 1.7 mrg */
639 1.7 mrg if (!preload) {
640 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
641 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
642 1.1 mrg #else
643 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
644 1.14 eeh paddr_t paddr;
645 1.7 mrg npages = end - start; /* # of pages */
646 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
647 1.40 thorpej M_VMPAGE, M_NOWAIT);
648 1.7 mrg if (pgs == NULL) {
649 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
650 1.7 mrg "structs for segment\n");
651 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
652 1.7 mrg return;
653 1.7 mrg }
654 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
655 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
656 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
657 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
658 1.7 mrg pgs[lcv].phys_addr = paddr;
659 1.12 thorpej pgs[lcv].free_list = free_list;
660 1.7 mrg if (atop(paddr) >= avail_start &&
661 1.7 mrg atop(paddr) <= avail_end)
662 1.8 chuck uvm_pagefree(&pgs[lcv]);
663 1.7 mrg }
664 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
665 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
666 1.1 mrg #endif
667 1.7 mrg } else {
668 1.1 mrg
669 1.7 mrg /* gcc complains if these don't get init'd */
670 1.7 mrg pgs = NULL;
671 1.7 mrg npages = 0;
672 1.1 mrg
673 1.7 mrg }
674 1.1 mrg
675 1.7 mrg /*
676 1.7 mrg * now insert us in the proper place in vm_physmem[]
677 1.7 mrg */
678 1.1 mrg
679 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
680 1.1 mrg
681 1.7 mrg /* random: put it at the end (easy!) */
682 1.7 mrg ps = &vm_physmem[vm_nphysseg];
683 1.1 mrg
684 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
685 1.1 mrg
686 1.7 mrg {
687 1.7 mrg int x;
688 1.7 mrg /* sort by address for binary search */
689 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
690 1.7 mrg if (start < vm_physmem[lcv].start)
691 1.7 mrg break;
692 1.7 mrg ps = &vm_physmem[lcv];
693 1.7 mrg /* move back other entries, if necessary ... */
694 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
695 1.7 mrg /* structure copy */
696 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
697 1.7 mrg }
698 1.1 mrg
699 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
700 1.1 mrg
701 1.7 mrg {
702 1.7 mrg int x;
703 1.7 mrg /* sort by largest segment first */
704 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
705 1.7 mrg if ((end - start) >
706 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
707 1.7 mrg break;
708 1.7 mrg ps = &vm_physmem[lcv];
709 1.7 mrg /* move back other entries, if necessary ... */
710 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
711 1.7 mrg /* structure copy */
712 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
713 1.7 mrg }
714 1.1 mrg
715 1.1 mrg #else
716 1.1 mrg
717 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
718 1.1 mrg
719 1.1 mrg #endif
720 1.1 mrg
721 1.7 mrg ps->start = start;
722 1.7 mrg ps->end = end;
723 1.7 mrg ps->avail_start = avail_start;
724 1.7 mrg ps->avail_end = avail_end;
725 1.7 mrg if (preload) {
726 1.7 mrg ps->pgs = NULL;
727 1.7 mrg } else {
728 1.7 mrg ps->pgs = pgs;
729 1.7 mrg ps->lastpg = pgs + npages - 1;
730 1.7 mrg }
731 1.12 thorpej ps->free_list = free_list;
732 1.7 mrg vm_nphysseg++;
733 1.7 mrg
734 1.7 mrg /*
735 1.7 mrg * done!
736 1.7 mrg */
737 1.1 mrg
738 1.7 mrg if (!preload)
739 1.7 mrg uvm_page_rehash();
740 1.1 mrg
741 1.7 mrg return;
742 1.1 mrg }
743 1.1 mrg
744 1.1 mrg /*
745 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
746 1.1 mrg */
747 1.1 mrg
748 1.7 mrg void
749 1.7 mrg uvm_page_rehash()
750 1.1 mrg {
751 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
752 1.7 mrg struct pglist *newbuckets, *oldbuckets;
753 1.7 mrg struct vm_page *pg;
754 1.30 thorpej size_t newsize, oldsize;
755 1.7 mrg
756 1.7 mrg /*
757 1.7 mrg * compute number of pages that can go in the free pool
758 1.7 mrg */
759 1.7 mrg
760 1.7 mrg freepages = 0;
761 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
762 1.7 mrg freepages +=
763 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
764 1.7 mrg
765 1.7 mrg /*
766 1.7 mrg * compute number of buckets needed for this number of pages
767 1.7 mrg */
768 1.7 mrg
769 1.7 mrg bucketcount = 1;
770 1.7 mrg while (bucketcount < freepages)
771 1.7 mrg bucketcount = bucketcount * 2;
772 1.7 mrg
773 1.7 mrg /*
774 1.30 thorpej * compute the size of the current table and new table.
775 1.7 mrg */
776 1.7 mrg
777 1.30 thorpej oldbuckets = uvm.page_hash;
778 1.30 thorpej oldcount = uvm.page_nhash;
779 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
780 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
781 1.30 thorpej
782 1.30 thorpej /*
783 1.30 thorpej * allocate the new buckets
784 1.30 thorpej */
785 1.30 thorpej
786 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
787 1.7 mrg if (newbuckets == NULL) {
788 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
789 1.7 mrg "hash table\n");
790 1.7 mrg return;
791 1.7 mrg }
792 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
793 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
794 1.7 mrg
795 1.7 mrg /*
796 1.7 mrg * now replace the old buckets with the new ones and rehash everything
797 1.7 mrg */
798 1.7 mrg
799 1.7 mrg s = splimp();
800 1.7 mrg simple_lock(&uvm.hashlock);
801 1.7 mrg uvm.page_hash = newbuckets;
802 1.7 mrg uvm.page_nhash = bucketcount;
803 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
804 1.7 mrg
805 1.7 mrg /* ... and rehash */
806 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
807 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
808 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
809 1.7 mrg TAILQ_INSERT_TAIL(
810 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
811 1.7 mrg pg, hashq);
812 1.7 mrg }
813 1.7 mrg }
814 1.7 mrg simple_unlock(&uvm.hashlock);
815 1.7 mrg splx(s);
816 1.7 mrg
817 1.7 mrg /*
818 1.30 thorpej * free old bucket array if is not the boot-time table
819 1.7 mrg */
820 1.7 mrg
821 1.7 mrg if (oldbuckets != &uvm_bootbucket)
822 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
823 1.7 mrg
824 1.7 mrg /*
825 1.7 mrg * done
826 1.7 mrg */
827 1.7 mrg return;
828 1.1 mrg }
829 1.1 mrg
830 1.1 mrg
831 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
832 1.1 mrg
833 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
834 1.1 mrg
835 1.1 mrg /* call from DDB */
836 1.7 mrg void
837 1.7 mrg uvm_page_physdump()
838 1.7 mrg {
839 1.7 mrg int lcv;
840 1.7 mrg
841 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
842 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
843 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
844 1.37 soda printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
845 1.37 soda (long long)vm_physmem[lcv].start,
846 1.37 soda (long long)vm_physmem[lcv].end,
847 1.37 soda (long long)vm_physmem[lcv].avail_start,
848 1.37 soda (long long)vm_physmem[lcv].avail_end);
849 1.7 mrg printf("STRATEGY = ");
850 1.7 mrg switch (VM_PHYSSEG_STRAT) {
851 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
852 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
853 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
854 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
855 1.7 mrg }
856 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
857 1.1 mrg }
858 1.1 mrg #endif
859 1.1 mrg
860 1.1 mrg /*
861 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
862 1.1 mrg *
863 1.1 mrg * => return null if no pages free
864 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
865 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
866 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
867 1.1 mrg * => only one of obj or anon can be non-null
868 1.1 mrg * => caller must activate/deactivate page if it is not wired.
869 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
870 1.34 thorpej * => policy decision: it is more important to pull a page off of the
871 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
872 1.34 thorpej * unknown contents page. This is because we live with the
873 1.34 thorpej * consequences of a bad free list decision for the entire
874 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
875 1.34 thorpej * is slower to access.
876 1.1 mrg */
877 1.1 mrg
878 1.7 mrg struct vm_page *
879 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
880 1.7 mrg struct uvm_object *obj;
881 1.31 kleink voff_t off;
882 1.18 chs int flags;
883 1.7 mrg struct vm_anon *anon;
884 1.12 thorpej int strat, free_list;
885 1.1 mrg {
886 1.34 thorpej int lcv, try1, try2, s, zeroit = 0;
887 1.7 mrg struct vm_page *pg;
888 1.12 thorpej struct pglist *freeq;
889 1.34 thorpej struct pgfreelist *pgfl;
890 1.18 chs boolean_t use_reserve;
891 1.1 mrg
892 1.44 chs KASSERT(obj == NULL || anon == NULL);
893 1.44 chs KASSERT(off == trunc_page(off));
894 1.44 chs s = uvm_lock_fpageq();
895 1.1 mrg
896 1.7 mrg /*
897 1.7 mrg * check to see if we need to generate some free pages waking
898 1.7 mrg * the pagedaemon.
899 1.7 mrg */
900 1.7 mrg
901 1.44 chs if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
902 1.44 chs (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
903 1.44 chs uvmexp.inactive < uvmexp.inactarg)) {
904 1.24 thorpej wakeup(&uvm.pagedaemon);
905 1.44 chs }
906 1.7 mrg
907 1.7 mrg /*
908 1.7 mrg * fail if any of these conditions is true:
909 1.7 mrg * [1] there really are no free pages, or
910 1.7 mrg * [2] only kernel "reserved" pages remain and
911 1.7 mrg * the page isn't being allocated to a kernel object.
912 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
913 1.7 mrg * the requestor isn't the pagedaemon.
914 1.7 mrg */
915 1.7 mrg
916 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
917 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
918 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
919 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
920 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
921 1.12 thorpej goto fail;
922 1.12 thorpej
923 1.34 thorpej #if PGFL_NQUEUES != 2
924 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
925 1.34 thorpej #endif
926 1.34 thorpej
927 1.34 thorpej /*
928 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
929 1.34 thorpej * we try the UNKNOWN queue first.
930 1.34 thorpej */
931 1.34 thorpej if (flags & UVM_PGA_ZERO) {
932 1.34 thorpej try1 = PGFL_ZEROS;
933 1.34 thorpej try2 = PGFL_UNKNOWN;
934 1.34 thorpej } else {
935 1.34 thorpej try1 = PGFL_UNKNOWN;
936 1.34 thorpej try2 = PGFL_ZEROS;
937 1.34 thorpej }
938 1.34 thorpej
939 1.12 thorpej again:
940 1.12 thorpej switch (strat) {
941 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
942 1.12 thorpej /* Check all freelists in descending priority order. */
943 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
944 1.34 thorpej pgfl = &uvm.page_free[lcv];
945 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
946 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
947 1.34 thorpej (pg = TAILQ_FIRST((freeq =
948 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
949 1.12 thorpej goto gotit;
950 1.12 thorpej }
951 1.12 thorpej
952 1.12 thorpej /* No pages free! */
953 1.12 thorpej goto fail;
954 1.12 thorpej
955 1.12 thorpej case UVM_PGA_STRAT_ONLY:
956 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
957 1.12 thorpej /* Attempt to allocate from the specified free list. */
958 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
959 1.34 thorpej pgfl = &uvm.page_free[free_list];
960 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
961 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
962 1.34 thorpej (pg = TAILQ_FIRST((freeq =
963 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
964 1.12 thorpej goto gotit;
965 1.12 thorpej
966 1.12 thorpej /* Fall back, if possible. */
967 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
968 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
969 1.12 thorpej goto again;
970 1.12 thorpej }
971 1.12 thorpej
972 1.12 thorpej /* No pages free! */
973 1.12 thorpej goto fail;
974 1.12 thorpej
975 1.12 thorpej default:
976 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
977 1.12 thorpej /* NOTREACHED */
978 1.7 mrg }
979 1.7 mrg
980 1.12 thorpej gotit:
981 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
982 1.7 mrg uvmexp.free--;
983 1.7 mrg
984 1.34 thorpej /* update zero'd page count */
985 1.34 thorpej if (pg->flags & PG_ZERO)
986 1.34 thorpej uvmexp.zeropages--;
987 1.34 thorpej
988 1.34 thorpej /*
989 1.34 thorpej * update allocation statistics and remember if we have to
990 1.34 thorpej * zero the page
991 1.34 thorpej */
992 1.34 thorpej if (flags & UVM_PGA_ZERO) {
993 1.34 thorpej if (pg->flags & PG_ZERO) {
994 1.34 thorpej uvmexp.pga_zerohit++;
995 1.34 thorpej zeroit = 0;
996 1.34 thorpej } else {
997 1.34 thorpej uvmexp.pga_zeromiss++;
998 1.34 thorpej zeroit = 1;
999 1.34 thorpej }
1000 1.34 thorpej }
1001 1.34 thorpej
1002 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
1003 1.7 mrg
1004 1.7 mrg pg->offset = off;
1005 1.7 mrg pg->uobject = obj;
1006 1.7 mrg pg->uanon = anon;
1007 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1008 1.7 mrg pg->version++;
1009 1.7 mrg if (anon) {
1010 1.7 mrg anon->u.an_page = pg;
1011 1.7 mrg pg->pqflags = PQ_ANON;
1012 1.44 chs uvm_pgcnt_anon++;
1013 1.7 mrg } else {
1014 1.7 mrg if (obj)
1015 1.7 mrg uvm_pageinsert(pg);
1016 1.7 mrg pg->pqflags = 0;
1017 1.7 mrg }
1018 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1019 1.7 mrg pg->owner_tag = NULL;
1020 1.1 mrg #endif
1021 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1022 1.33 thorpej
1023 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1024 1.33 thorpej /*
1025 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1026 1.34 thorpej * zero'd, then we have to zero it ourselves.
1027 1.33 thorpej */
1028 1.33 thorpej pg->flags &= ~PG_CLEAN;
1029 1.34 thorpej if (zeroit)
1030 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1031 1.33 thorpej }
1032 1.1 mrg
1033 1.7 mrg return(pg);
1034 1.12 thorpej
1035 1.12 thorpej fail:
1036 1.21 thorpej uvm_unlock_fpageq(s);
1037 1.12 thorpej return (NULL);
1038 1.1 mrg }
1039 1.1 mrg
1040 1.1 mrg /*
1041 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1042 1.1 mrg *
1043 1.1 mrg * => both objects must be locked
1044 1.1 mrg */
1045 1.1 mrg
1046 1.7 mrg void
1047 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1048 1.7 mrg struct vm_page *pg;
1049 1.7 mrg struct uvm_object *newobj;
1050 1.31 kleink voff_t newoff;
1051 1.1 mrg {
1052 1.7 mrg /*
1053 1.7 mrg * remove it from the old object
1054 1.7 mrg */
1055 1.7 mrg
1056 1.7 mrg if (pg->uobject) {
1057 1.7 mrg uvm_pageremove(pg);
1058 1.7 mrg }
1059 1.7 mrg
1060 1.7 mrg /*
1061 1.7 mrg * put it in the new object
1062 1.7 mrg */
1063 1.7 mrg
1064 1.7 mrg if (newobj) {
1065 1.7 mrg pg->uobject = newobj;
1066 1.7 mrg pg->offset = newoff;
1067 1.7 mrg pg->version++;
1068 1.7 mrg uvm_pageinsert(pg);
1069 1.7 mrg }
1070 1.1 mrg }
1071 1.1 mrg
1072 1.1 mrg
1073 1.1 mrg /*
1074 1.1 mrg * uvm_pagefree: free page
1075 1.1 mrg *
1076 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1077 1.1 mrg * => put page on free list
1078 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1079 1.1 mrg * => caller must lock page queues
1080 1.1 mrg * => assumes all valid mappings of pg are gone
1081 1.1 mrg */
1082 1.1 mrg
1083 1.44 chs void
1084 1.44 chs uvm_pagefree(pg)
1085 1.44 chs struct vm_page *pg;
1086 1.1 mrg {
1087 1.7 mrg int s;
1088 1.7 mrg int saved_loan_count = pg->loan_count;
1089 1.1 mrg
1090 1.44 chs #ifdef DEBUG
1091 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1092 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1093 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1094 1.44 chs }
1095 1.44 chs #endif
1096 1.44 chs
1097 1.7 mrg /*
1098 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1099 1.7 mrg * from the object.
1100 1.7 mrg */
1101 1.7 mrg
1102 1.7 mrg if (pg->flags & PG_TABLED) {
1103 1.7 mrg
1104 1.7 mrg /*
1105 1.44 chs * if the object page is on loan we are going to drop ownership.
1106 1.7 mrg * it is possible that an anon will take over as owner for this
1107 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1108 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1109 1.7 mrg * page out.
1110 1.7 mrg */
1111 1.7 mrg
1112 1.7 mrg if (saved_loan_count)
1113 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1114 1.7 mrg uvm_pageremove(pg);
1115 1.7 mrg
1116 1.7 mrg /*
1117 1.7 mrg * if our page was on loan, then we just lost control over it
1118 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1119 1.7 mrg * already taken over ownership of the page by now and thus
1120 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1121 1.7 mrg * return (when the last loan is dropped, then the page can be
1122 1.7 mrg * freed by whatever was holding the last loan).
1123 1.7 mrg */
1124 1.44 chs
1125 1.7 mrg if (saved_loan_count)
1126 1.7 mrg return;
1127 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1128 1.7 mrg
1129 1.7 mrg /*
1130 1.7 mrg * if our page is owned by an anon and is loaned out to the
1131 1.7 mrg * kernel then we just want to drop ownership and return.
1132 1.7 mrg * the kernel must free the page when all its loans clear ...
1133 1.7 mrg * note that the kernel can't change the loan status of our
1134 1.7 mrg * page as long as we are holding PQ lock.
1135 1.7 mrg */
1136 1.44 chs
1137 1.7 mrg pg->pqflags &= ~PQ_ANON;
1138 1.7 mrg pg->uanon = NULL;
1139 1.7 mrg return;
1140 1.7 mrg }
1141 1.44 chs KASSERT(saved_loan_count == 0);
1142 1.1 mrg
1143 1.7 mrg /*
1144 1.7 mrg * now remove the page from the queues
1145 1.7 mrg */
1146 1.7 mrg
1147 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1148 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1149 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1150 1.7 mrg uvmexp.active--;
1151 1.7 mrg }
1152 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1153 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1154 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1155 1.7 mrg else
1156 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1157 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1158 1.7 mrg uvmexp.inactive--;
1159 1.7 mrg }
1160 1.7 mrg
1161 1.7 mrg /*
1162 1.7 mrg * if the page was wired, unwire it now.
1163 1.7 mrg */
1164 1.44 chs
1165 1.34 thorpej if (pg->wire_count) {
1166 1.7 mrg pg->wire_count = 0;
1167 1.7 mrg uvmexp.wired--;
1168 1.7 mrg }
1169 1.44 chs if (pg->uanon) {
1170 1.44 chs uvm_pgcnt_anon--;
1171 1.44 chs }
1172 1.7 mrg
1173 1.7 mrg /*
1174 1.44 chs * and put on free queue
1175 1.7 mrg */
1176 1.7 mrg
1177 1.34 thorpej pg->flags &= ~PG_ZERO;
1178 1.34 thorpej
1179 1.21 thorpej s = uvm_lock_fpageq();
1180 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1181 1.34 thorpej uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1182 1.7 mrg pg->pqflags = PQ_FREE;
1183 1.3 chs #ifdef DEBUG
1184 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1185 1.7 mrg pg->offset = 0xdeadbeef;
1186 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1187 1.3 chs #endif
1188 1.7 mrg uvmexp.free++;
1189 1.34 thorpej
1190 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1191 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1192 1.34 thorpej
1193 1.21 thorpej uvm_unlock_fpageq(s);
1194 1.44 chs }
1195 1.44 chs
1196 1.44 chs /*
1197 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1198 1.44 chs *
1199 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1200 1.44 chs * => if pages are object-owned, object must be locked.
1201 1.44 chs * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1202 1.44 chs */
1203 1.44 chs
1204 1.44 chs void
1205 1.44 chs uvm_page_unbusy(pgs, npgs)
1206 1.44 chs struct vm_page **pgs;
1207 1.44 chs int npgs;
1208 1.44 chs {
1209 1.44 chs struct vm_page *pg;
1210 1.44 chs struct uvm_object *uobj;
1211 1.44 chs int i;
1212 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1213 1.44 chs
1214 1.44 chs for (i = 0; i < npgs; i++) {
1215 1.44 chs pg = pgs[i];
1216 1.44 chs
1217 1.44 chs if (pg == NULL) {
1218 1.44 chs continue;
1219 1.44 chs }
1220 1.44 chs if (pg->flags & PG_WANTED) {
1221 1.44 chs wakeup(pg);
1222 1.44 chs }
1223 1.44 chs if (pg->flags & PG_RELEASED) {
1224 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1225 1.44 chs uobj = pg->uobject;
1226 1.44 chs if (uobj != NULL) {
1227 1.44 chs uobj->pgops->pgo_releasepg(pg, NULL);
1228 1.44 chs } else {
1229 1.44 chs pg->flags &= ~(PG_BUSY);
1230 1.44 chs UVM_PAGE_OWN(pg, NULL);
1231 1.44 chs uvm_anfree(pg->uanon);
1232 1.44 chs }
1233 1.44 chs } else {
1234 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1235 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1236 1.44 chs UVM_PAGE_OWN(pg, NULL);
1237 1.44 chs }
1238 1.44 chs }
1239 1.1 mrg }
1240 1.1 mrg
1241 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1242 1.1 mrg /*
1243 1.1 mrg * uvm_page_own: set or release page ownership
1244 1.1 mrg *
1245 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1246 1.1 mrg * and where they do it. it can be used to track down problems
1247 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1248 1.1 mrg * => page's object [if any] must be locked
1249 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1250 1.1 mrg */
1251 1.7 mrg void
1252 1.7 mrg uvm_page_own(pg, tag)
1253 1.7 mrg struct vm_page *pg;
1254 1.7 mrg char *tag;
1255 1.1 mrg {
1256 1.7 mrg /* gain ownership? */
1257 1.7 mrg if (tag) {
1258 1.7 mrg if (pg->owner_tag) {
1259 1.7 mrg printf("uvm_page_own: page %p already owned "
1260 1.7 mrg "by proc %d [%s]\n", pg,
1261 1.7 mrg pg->owner, pg->owner_tag);
1262 1.7 mrg panic("uvm_page_own");
1263 1.7 mrg }
1264 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1265 1.7 mrg pg->owner_tag = tag;
1266 1.7 mrg return;
1267 1.7 mrg }
1268 1.7 mrg
1269 1.7 mrg /* drop ownership */
1270 1.7 mrg if (pg->owner_tag == NULL) {
1271 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1272 1.7 mrg "page (%p)\n", pg);
1273 1.7 mrg panic("uvm_page_own");
1274 1.7 mrg }
1275 1.7 mrg pg->owner_tag = NULL;
1276 1.7 mrg return;
1277 1.1 mrg }
1278 1.1 mrg #endif
1279 1.34 thorpej
1280 1.34 thorpej /*
1281 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1282 1.34 thorpej *
1283 1.34 thorpej * => we do at least one iteration per call, if we are below the target.
1284 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1285 1.34 thorpej * there is a process ready to run.
1286 1.34 thorpej */
1287 1.34 thorpej void
1288 1.34 thorpej uvm_pageidlezero()
1289 1.34 thorpej {
1290 1.34 thorpej struct vm_page *pg;
1291 1.34 thorpej struct pgfreelist *pgfl;
1292 1.34 thorpej int free_list, s;
1293 1.34 thorpej
1294 1.34 thorpej do {
1295 1.34 thorpej s = uvm_lock_fpageq();
1296 1.34 thorpej
1297 1.34 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1298 1.34 thorpej uvm.page_idle_zero = FALSE;
1299 1.34 thorpej uvm_unlock_fpageq(s);
1300 1.34 thorpej return;
1301 1.34 thorpej }
1302 1.34 thorpej
1303 1.34 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1304 1.34 thorpej pgfl = &uvm.page_free[free_list];
1305 1.34 thorpej if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1306 1.34 thorpej PGFL_UNKNOWN])) != NULL)
1307 1.34 thorpej break;
1308 1.34 thorpej }
1309 1.34 thorpej
1310 1.34 thorpej if (pg == NULL) {
1311 1.34 thorpej /*
1312 1.34 thorpej * No non-zero'd pages; don't bother trying again
1313 1.34 thorpej * until we know we have non-zero'd pages free.
1314 1.34 thorpej */
1315 1.34 thorpej uvm.page_idle_zero = FALSE;
1316 1.34 thorpej uvm_unlock_fpageq(s);
1317 1.34 thorpej return;
1318 1.34 thorpej }
1319 1.34 thorpej
1320 1.34 thorpej TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1321 1.34 thorpej uvmexp.free--;
1322 1.34 thorpej uvm_unlock_fpageq(s);
1323 1.34 thorpej
1324 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1325 1.41 thorpej if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1326 1.41 thorpej /*
1327 1.41 thorpej * The machine-dependent code detected some
1328 1.41 thorpej * reason for us to abort zeroing pages,
1329 1.41 thorpej * probably because there is a process now
1330 1.41 thorpej * ready to run.
1331 1.41 thorpej */
1332 1.41 thorpej s = uvm_lock_fpageq();
1333 1.41 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1334 1.41 thorpej pg, pageq);
1335 1.41 thorpej uvmexp.free++;
1336 1.41 thorpej uvmexp.zeroaborts++;
1337 1.41 thorpej uvm_unlock_fpageq(s);
1338 1.41 thorpej return;
1339 1.41 thorpej }
1340 1.34 thorpej #else
1341 1.34 thorpej /*
1342 1.34 thorpej * XXX This will toast the cache unless the pmap_zero_page()
1343 1.34 thorpej * XXX implementation does uncached access.
1344 1.34 thorpej */
1345 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1346 1.34 thorpej #endif
1347 1.34 thorpej pg->flags |= PG_ZERO;
1348 1.34 thorpej
1349 1.34 thorpej s = uvm_lock_fpageq();
1350 1.34 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1351 1.34 thorpej uvmexp.free++;
1352 1.34 thorpej uvmexp.zeropages++;
1353 1.34 thorpej uvm_unlock_fpageq(s);
1354 1.35 thorpej } while (sched_whichqs == 0);
1355 1.34 thorpej }
1356