Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.45
      1  1.45    simonb /*	$NetBSD: uvm_page.c,v 1.45 2000/11/30 11:04:44 simonb Exp $	*/
      2   1.1       mrg 
      3   1.1       mrg /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1       mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.1       mrg  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42   1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47   1.1       mrg  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.1       mrg  *
     54   1.1       mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.1       mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.1       mrg  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_page.c: page ops.
     71   1.1       mrg  */
     72   1.6       mrg 
     73  1.44       chs #include "opt_uvmhist.h"
     74  1.44       chs 
     75   1.1       mrg #include <sys/param.h>
     76   1.1       mrg #include <sys/systm.h>
     77   1.1       mrg #include <sys/malloc.h>
     78  1.35   thorpej #include <sys/sched.h>
     79  1.44       chs #include <sys/kernel.h>
     80   1.1       mrg 
     81   1.1       mrg #define UVM_PAGE                /* pull in uvm_page.h functions */
     82   1.1       mrg #include <uvm/uvm.h>
     83   1.1       mrg 
     84   1.1       mrg /*
     85   1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     86   1.1       mrg  */
     87   1.1       mrg 
     88   1.1       mrg /*
     89   1.1       mrg  * physical memory config is stored in vm_physmem.
     90   1.1       mrg  */
     91   1.1       mrg 
     92   1.1       mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     93   1.1       mrg int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     94   1.1       mrg 
     95   1.1       mrg /*
     96  1.36   thorpej  * Some supported CPUs in a given architecture don't support all
     97  1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
     98  1.36   thorpej  * We therefore provide a way to disable it from machdep code here.
     99  1.34   thorpej  */
    100  1.44       chs /*
    101  1.44       chs  * XXX disabled until we can find a way to do this without causing
    102  1.44       chs  * problems for either cpu caches or DMA latency.
    103  1.44       chs  */
    104  1.44       chs boolean_t vm_page_zero_enable = FALSE;
    105  1.34   thorpej 
    106  1.44       chs extern struct uvm_pagerops uvm_vnodeops;
    107  1.34   thorpej 
    108  1.34   thorpej /*
    109   1.1       mrg  * local variables
    110   1.1       mrg  */
    111   1.1       mrg 
    112   1.1       mrg /*
    113   1.1       mrg  * these variables record the values returned by vm_page_bootstrap,
    114   1.1       mrg  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    115   1.1       mrg  * and pmap_startup here also uses them internally.
    116   1.1       mrg  */
    117   1.1       mrg 
    118  1.14       eeh static vaddr_t      virtual_space_start;
    119  1.14       eeh static vaddr_t      virtual_space_end;
    120   1.1       mrg 
    121   1.1       mrg /*
    122   1.1       mrg  * we use a hash table with only one bucket during bootup.  we will
    123  1.30   thorpej  * later rehash (resize) the hash table once the allocator is ready.
    124  1.30   thorpej  * we static allocate the one bootstrap bucket below...
    125   1.1       mrg  */
    126   1.1       mrg 
    127   1.1       mrg static struct pglist uvm_bootbucket;
    128   1.1       mrg 
    129   1.1       mrg /*
    130   1.1       mrg  * local prototypes
    131   1.1       mrg  */
    132   1.1       mrg 
    133   1.1       mrg static void uvm_pageinsert __P((struct vm_page *));
    134  1.44       chs static void uvm_pageremove __P((struct vm_page *));
    135   1.1       mrg 
    136   1.1       mrg /*
    137   1.1       mrg  * inline functions
    138   1.1       mrg  */
    139   1.1       mrg 
    140   1.1       mrg /*
    141   1.1       mrg  * uvm_pageinsert: insert a page in the object and the hash table
    142   1.1       mrg  *
    143   1.1       mrg  * => caller must lock object
    144   1.1       mrg  * => caller must lock page queues
    145   1.1       mrg  * => call should have already set pg's object and offset pointers
    146   1.1       mrg  *    and bumped the version counter
    147   1.1       mrg  */
    148   1.1       mrg 
    149   1.7       mrg __inline static void
    150   1.7       mrg uvm_pageinsert(pg)
    151   1.7       mrg 	struct vm_page *pg;
    152   1.1       mrg {
    153   1.7       mrg 	struct pglist *buck;
    154   1.7       mrg 	int s;
    155   1.1       mrg 
    156   1.1       mrg #ifdef DIAGNOSTIC
    157   1.7       mrg 	if (pg->flags & PG_TABLED)
    158   1.7       mrg 		panic("uvm_pageinsert: already inserted");
    159   1.1       mrg #endif
    160   1.1       mrg 
    161   1.7       mrg 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    162   1.7       mrg 	s = splimp();
    163   1.7       mrg 	simple_lock(&uvm.hashlock);
    164   1.7       mrg 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    165   1.7       mrg 	simple_unlock(&uvm.hashlock);
    166   1.7       mrg 	splx(s);
    167   1.7       mrg 
    168   1.7       mrg 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    169   1.7       mrg 	pg->flags |= PG_TABLED;
    170   1.7       mrg 	pg->uobject->uo_npages++;
    171   1.1       mrg }
    172   1.1       mrg 
    173   1.1       mrg /*
    174   1.1       mrg  * uvm_page_remove: remove page from object and hash
    175   1.1       mrg  *
    176   1.1       mrg  * => caller must lock object
    177   1.1       mrg  * => caller must lock page queues
    178   1.1       mrg  */
    179   1.1       mrg 
    180  1.44       chs static __inline void
    181   1.7       mrg uvm_pageremove(pg)
    182   1.7       mrg 	struct vm_page *pg;
    183   1.1       mrg {
    184   1.7       mrg 	struct pglist *buck;
    185   1.7       mrg 	int s;
    186   1.1       mrg 
    187  1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    188   1.7       mrg 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    189   1.7       mrg 	s = splimp();
    190   1.7       mrg 	simple_lock(&uvm.hashlock);
    191   1.7       mrg 	TAILQ_REMOVE(buck, pg, hashq);
    192   1.7       mrg 	simple_unlock(&uvm.hashlock);
    193   1.7       mrg 	splx(s);
    194   1.7       mrg 
    195  1.44       chs 	if (pg->uobject->pgops == &uvm_vnodeops) {
    196  1.45    simonb 		uvmexp.vnodepages--;
    197  1.44       chs 	}
    198  1.44       chs 
    199   1.7       mrg 	/* object should be locked */
    200   1.7       mrg 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    201   1.7       mrg 
    202   1.7       mrg 	pg->flags &= ~PG_TABLED;
    203   1.7       mrg 	pg->uobject->uo_npages--;
    204   1.7       mrg 	pg->uobject = NULL;
    205   1.7       mrg 	pg->version++;
    206   1.1       mrg }
    207   1.1       mrg 
    208   1.1       mrg /*
    209   1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    210   1.1       mrg  *
    211   1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    212   1.1       mrg  */
    213   1.1       mrg 
    214   1.7       mrg void
    215   1.7       mrg uvm_page_init(kvm_startp, kvm_endp)
    216  1.14       eeh 	vaddr_t *kvm_startp, *kvm_endp;
    217   1.1       mrg {
    218  1.27   thorpej 	vsize_t freepages, pagecount, n;
    219   1.7       mrg 	vm_page_t pagearray;
    220  1.27   thorpej 	int lcv, i;
    221  1.14       eeh 	paddr_t paddr;
    222   1.7       mrg 
    223   1.7       mrg 	/*
    224   1.7       mrg 	 * step 1: init the page queues and page queue locks
    225   1.7       mrg 	 */
    226  1.34   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    227  1.34   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++)
    228  1.34   thorpej 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
    229  1.34   thorpej 	}
    230   1.7       mrg 	TAILQ_INIT(&uvm.page_active);
    231   1.7       mrg 	TAILQ_INIT(&uvm.page_inactive_swp);
    232   1.7       mrg 	TAILQ_INIT(&uvm.page_inactive_obj);
    233   1.7       mrg 	simple_lock_init(&uvm.pageqlock);
    234   1.7       mrg 	simple_lock_init(&uvm.fpageqlock);
    235   1.7       mrg 
    236   1.7       mrg 	/*
    237   1.7       mrg 	 * step 2: init the <obj,offset> => <page> hash table. for now
    238   1.7       mrg 	 * we just have one bucket (the bootstrap bucket).   later on we
    239  1.30   thorpej 	 * will allocate new buckets as we dynamically resize the hash table.
    240   1.7       mrg 	 */
    241   1.7       mrg 
    242   1.7       mrg 	uvm.page_nhash = 1;			/* 1 bucket */
    243  1.44       chs 	uvm.page_hashmask = 0;			/* mask for hash function */
    244   1.7       mrg 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    245   1.7       mrg 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    246   1.7       mrg 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    247   1.7       mrg 
    248   1.7       mrg 	/*
    249   1.7       mrg 	 * step 3: allocate vm_page structures.
    250   1.7       mrg 	 */
    251   1.7       mrg 
    252   1.7       mrg 	/*
    253   1.7       mrg 	 * sanity check:
    254   1.7       mrg 	 * before calling this function the MD code is expected to register
    255   1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    256   1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    257   1.7       mrg 	 */
    258   1.7       mrg 
    259   1.7       mrg 	if (vm_nphysseg == 0)
    260  1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    261   1.7       mrg 
    262   1.7       mrg 	/*
    263   1.7       mrg 	 * first calculate the number of free pages...
    264   1.7       mrg 	 *
    265   1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    266   1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    267   1.7       mrg 	 * want to return some memory to the pool after booting.
    268   1.7       mrg 	 */
    269   1.7       mrg 
    270   1.7       mrg 	freepages = 0;
    271   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    272   1.7       mrg 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    273   1.7       mrg 
    274   1.7       mrg 	/*
    275   1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    276   1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    277   1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    278   1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    279   1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    280   1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    281   1.7       mrg 	 * pages).
    282   1.7       mrg 	 */
    283   1.7       mrg 
    284  1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    285   1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    286   1.7       mrg 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    287   1.7       mrg 	    sizeof(struct vm_page));
    288  1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    289   1.7       mrg 
    290   1.7       mrg 	/*
    291   1.7       mrg 	 * step 4: init the vm_page structures and put them in the correct
    292   1.7       mrg 	 * place...
    293   1.7       mrg 	 */
    294   1.7       mrg 
    295   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    296   1.7       mrg 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    297   1.7       mrg 		if (n > pagecount) {
    298  1.27   thorpej 			printf("uvm_page_init: lost %ld page(s) in init\n",
    299  1.27   thorpej 			    (long)(n - pagecount));
    300   1.7       mrg 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    301   1.7       mrg 			/* n = pagecount; */
    302   1.7       mrg 		}
    303   1.7       mrg 		/* set up page array pointers */
    304   1.7       mrg 		vm_physmem[lcv].pgs = pagearray;
    305   1.7       mrg 		pagearray += n;
    306   1.7       mrg 		pagecount -= n;
    307   1.7       mrg 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    308   1.7       mrg 
    309  1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    310   1.7       mrg 		paddr = ptoa(vm_physmem[lcv].start);
    311   1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    312   1.7       mrg 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    313   1.7       mrg 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    314   1.7       mrg 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    315   1.7       mrg 				uvmexp.npages++;
    316   1.7       mrg 				/* add page to free pool */
    317   1.7       mrg 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    318   1.7       mrg 			}
    319   1.7       mrg 		}
    320   1.7       mrg 	}
    321  1.44       chs 
    322   1.7       mrg 	/*
    323   1.7       mrg 	 * step 5: pass up the values of virtual_space_start and
    324   1.7       mrg 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    325   1.7       mrg 	 * layers of the VM.
    326   1.7       mrg 	 */
    327   1.7       mrg 
    328   1.7       mrg 	*kvm_startp = round_page(virtual_space_start);
    329   1.7       mrg 	*kvm_endp = trunc_page(virtual_space_end);
    330   1.7       mrg 
    331   1.7       mrg 	/*
    332  1.44       chs 	 * step 6: init locks for kernel threads
    333   1.7       mrg 	 */
    334   1.7       mrg 
    335   1.7       mrg 	simple_lock_init(&uvm.pagedaemon_lock);
    336  1.44       chs 	simple_lock_init(&uvm.aiodoned_lock);
    337   1.7       mrg 
    338   1.7       mrg 	/*
    339   1.7       mrg 	 * step 7: init reserve thresholds
    340   1.7       mrg 	 * XXXCDC - values may need adjusting
    341   1.7       mrg 	 */
    342   1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    343   1.7       mrg 	uvmexp.reserve_kernel = 5;
    344   1.7       mrg 
    345   1.7       mrg 	/*
    346  1.34   thorpej 	 * step 8: determine if we should zero pages in the idle
    347  1.34   thorpej 	 * loop.
    348  1.34   thorpej 	 */
    349  1.34   thorpej 	uvm.page_idle_zero = vm_page_zero_enable;
    350  1.34   thorpej 
    351  1.34   thorpej 	/*
    352   1.7       mrg 	 * done!
    353   1.7       mrg 	 */
    354   1.1       mrg 
    355  1.32   thorpej 	uvm.page_init_done = TRUE;
    356   1.1       mrg }
    357   1.1       mrg 
    358   1.1       mrg /*
    359   1.1       mrg  * uvm_setpagesize: set the page size
    360   1.1       mrg  *
    361   1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    362   1.1       mrg  */
    363   1.1       mrg 
    364   1.7       mrg void
    365   1.7       mrg uvm_setpagesize()
    366   1.1       mrg {
    367   1.7       mrg 	if (uvmexp.pagesize == 0)
    368   1.7       mrg 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    369   1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    370   1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    371   1.7       mrg 		panic("uvm_setpagesize: page size not a power of two");
    372   1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    373   1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    374   1.7       mrg 			break;
    375   1.1       mrg }
    376   1.1       mrg 
    377   1.1       mrg /*
    378   1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    379   1.1       mrg  */
    380   1.1       mrg 
    381  1.14       eeh vaddr_t
    382   1.7       mrg uvm_pageboot_alloc(size)
    383  1.14       eeh 	vsize_t size;
    384   1.1       mrg {
    385   1.1       mrg #if defined(PMAP_STEAL_MEMORY)
    386  1.14       eeh 	vaddr_t addr;
    387   1.1       mrg 
    388   1.7       mrg 	/*
    389   1.7       mrg 	 * defer bootstrap allocation to MD code (it may want to allocate
    390   1.7       mrg 	 * from a direct-mapped segment).  pmap_steal_memory should round
    391   1.7       mrg 	 * off virtual_space_start/virtual_space_end.
    392   1.7       mrg 	 */
    393   1.1       mrg 
    394   1.7       mrg 	addr = pmap_steal_memory(size, &virtual_space_start,
    395   1.7       mrg 	    &virtual_space_end);
    396   1.1       mrg 
    397   1.7       mrg 	return(addr);
    398   1.1       mrg 
    399   1.1       mrg #else /* !PMAP_STEAL_MEMORY */
    400   1.1       mrg 
    401  1.19   thorpej 	static boolean_t initialized = FALSE;
    402  1.14       eeh 	vaddr_t addr, vaddr;
    403  1.14       eeh 	paddr_t paddr;
    404   1.1       mrg 
    405   1.7       mrg 	/* round to page size */
    406   1.7       mrg 	size = round_page(size);
    407   1.1       mrg 
    408   1.7       mrg 	/*
    409  1.19   thorpej 	 * on first call to this function, initialize ourselves.
    410   1.7       mrg 	 */
    411  1.19   thorpej 	if (initialized == FALSE) {
    412   1.7       mrg 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    413   1.1       mrg 
    414   1.7       mrg 		/* round it the way we like it */
    415   1.7       mrg 		virtual_space_start = round_page(virtual_space_start);
    416   1.7       mrg 		virtual_space_end = trunc_page(virtual_space_end);
    417  1.19   thorpej 
    418  1.19   thorpej 		initialized = TRUE;
    419   1.7       mrg 	}
    420   1.1       mrg 
    421   1.7       mrg 	/*
    422   1.7       mrg 	 * allocate virtual memory for this request
    423   1.7       mrg 	 */
    424  1.19   thorpej 	if (virtual_space_start == virtual_space_end ||
    425  1.20   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    426  1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    427  1.20   thorpej 
    428  1.20   thorpej 	addr = virtual_space_start;
    429  1.20   thorpej 
    430  1.20   thorpej #ifdef PMAP_GROWKERNEL
    431  1.20   thorpej 	/*
    432  1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    433  1.20   thorpej 	 * then allocate more resources for it.
    434  1.20   thorpej 	 */
    435  1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    436  1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    437  1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    438  1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    439  1.19   thorpej 	}
    440  1.20   thorpej #endif
    441   1.1       mrg 
    442   1.7       mrg 	virtual_space_start += size;
    443   1.1       mrg 
    444   1.9   thorpej 	/*
    445   1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    446   1.7       mrg 	 */
    447   1.1       mrg 
    448   1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    449   1.7       mrg 	    vaddr += PAGE_SIZE) {
    450   1.1       mrg 
    451   1.7       mrg 		if (!uvm_page_physget(&paddr))
    452   1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    453   1.1       mrg 
    454  1.23   thorpej 		/*
    455  1.23   thorpej 		 * Note this memory is no longer managed, so using
    456  1.23   thorpej 		 * pmap_kenter is safe.
    457  1.23   thorpej 		 */
    458   1.7       mrg 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    459   1.7       mrg 	}
    460   1.7       mrg 	return(addr);
    461   1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    462   1.1       mrg }
    463   1.1       mrg 
    464   1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    465   1.1       mrg /*
    466   1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    467   1.1       mrg  *
    468   1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    469   1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    470   1.1       mrg  *    will advance both values (making them equal, and removing some
    471   1.1       mrg  *    vm_page structures from the non-avail area).
    472   1.1       mrg  * => return false if out of memory.
    473   1.1       mrg  */
    474   1.1       mrg 
    475  1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    476  1.28  drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    477  1.28  drochner 
    478  1.28  drochner static boolean_t
    479  1.28  drochner uvm_page_physget_freelist(paddrp, freelist)
    480  1.14       eeh 	paddr_t *paddrp;
    481  1.28  drochner 	int freelist;
    482   1.1       mrg {
    483   1.7       mrg 	int lcv, x;
    484   1.1       mrg 
    485   1.7       mrg 	/* pass 1: try allocating from a matching end */
    486   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    487   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    488   1.1       mrg #else
    489   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    490   1.1       mrg #endif
    491   1.7       mrg 	{
    492   1.1       mrg 
    493  1.32   thorpej 		if (uvm.page_init_done == TRUE)
    494  1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    495   1.1       mrg 
    496  1.28  drochner 		if (vm_physmem[lcv].free_list != freelist)
    497  1.28  drochner 			continue;
    498  1.28  drochner 
    499   1.7       mrg 		/* try from front */
    500   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    501   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    502   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    503   1.7       mrg 			vm_physmem[lcv].avail_start++;
    504   1.7       mrg 			vm_physmem[lcv].start++;
    505   1.7       mrg 			/* nothing left?   nuke it */
    506   1.7       mrg 			if (vm_physmem[lcv].avail_start ==
    507   1.7       mrg 			    vm_physmem[lcv].end) {
    508   1.7       mrg 				if (vm_nphysseg == 1)
    509  1.42       mrg 				    panic("vum_page_physget: out of memory!");
    510   1.7       mrg 				vm_nphysseg--;
    511   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    512   1.7       mrg 					/* structure copy */
    513   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    514   1.7       mrg 			}
    515   1.7       mrg 			return (TRUE);
    516   1.7       mrg 		}
    517   1.7       mrg 
    518   1.7       mrg 		/* try from rear */
    519   1.7       mrg 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    520   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    521   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    522   1.7       mrg 			vm_physmem[lcv].avail_end--;
    523   1.7       mrg 			vm_physmem[lcv].end--;
    524   1.7       mrg 			/* nothing left?   nuke it */
    525   1.7       mrg 			if (vm_physmem[lcv].avail_end ==
    526   1.7       mrg 			    vm_physmem[lcv].start) {
    527   1.7       mrg 				if (vm_nphysseg == 1)
    528  1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    529   1.7       mrg 				vm_nphysseg--;
    530   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    531   1.7       mrg 					/* structure copy */
    532   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    533   1.7       mrg 			}
    534   1.7       mrg 			return (TRUE);
    535   1.7       mrg 		}
    536   1.7       mrg 	}
    537   1.1       mrg 
    538   1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    539   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    540   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    541   1.1       mrg #else
    542   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    543   1.1       mrg #endif
    544   1.7       mrg 	{
    545   1.1       mrg 
    546   1.7       mrg 		/* any room in this bank? */
    547   1.7       mrg 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    548   1.7       mrg 			continue;  /* nope */
    549   1.7       mrg 
    550   1.7       mrg 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    551   1.7       mrg 		vm_physmem[lcv].avail_start++;
    552   1.7       mrg 		/* truncate! */
    553   1.7       mrg 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    554   1.7       mrg 
    555   1.7       mrg 		/* nothing left?   nuke it */
    556   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    557   1.7       mrg 			if (vm_nphysseg == 1)
    558  1.42       mrg 				panic("uvm_page_physget: out of memory!");
    559   1.7       mrg 			vm_nphysseg--;
    560   1.7       mrg 			for (x = lcv ; x < vm_nphysseg ; x++)
    561   1.7       mrg 				/* structure copy */
    562   1.7       mrg 				vm_physmem[x] = vm_physmem[x+1];
    563   1.7       mrg 		}
    564   1.7       mrg 		return (TRUE);
    565   1.7       mrg 	}
    566   1.1       mrg 
    567   1.7       mrg 	return (FALSE);        /* whoops! */
    568  1.28  drochner }
    569  1.28  drochner 
    570  1.28  drochner boolean_t
    571  1.28  drochner uvm_page_physget(paddrp)
    572  1.28  drochner 	paddr_t *paddrp;
    573  1.28  drochner {
    574  1.28  drochner 	int i;
    575  1.28  drochner 
    576  1.28  drochner 	/* try in the order of freelist preference */
    577  1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    578  1.28  drochner 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    579  1.28  drochner 			return (TRUE);
    580  1.28  drochner 	return (FALSE);
    581   1.1       mrg }
    582   1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    583   1.1       mrg 
    584   1.1       mrg /*
    585   1.1       mrg  * uvm_page_physload: load physical memory into VM system
    586   1.1       mrg  *
    587   1.1       mrg  * => all args are PFs
    588   1.1       mrg  * => all pages in start/end get vm_page structures
    589   1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    590   1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    591   1.1       mrg  */
    592   1.1       mrg 
    593   1.7       mrg void
    594  1.12   thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
    595  1.29       eeh 	paddr_t start, end, avail_start, avail_end;
    596  1.12   thorpej 	int free_list;
    597   1.1       mrg {
    598  1.14       eeh 	int preload, lcv;
    599  1.14       eeh 	psize_t npages;
    600   1.7       mrg 	struct vm_page *pgs;
    601   1.7       mrg 	struct vm_physseg *ps;
    602   1.7       mrg 
    603   1.7       mrg 	if (uvmexp.pagesize == 0)
    604  1.42       mrg 		panic("uvm_page_physload: page size not set!");
    605   1.7       mrg 
    606  1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    607  1.12   thorpej 		panic("uvm_page_physload: bad free list %d\n", free_list);
    608  1.26  drochner 
    609  1.26  drochner 	if (start >= end)
    610  1.26  drochner 		panic("uvm_page_physload: start >= end");
    611  1.12   thorpej 
    612   1.7       mrg 	/*
    613   1.7       mrg 	 * do we have room?
    614   1.7       mrg 	 */
    615   1.7       mrg 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    616  1.42       mrg 		printf("uvm_page_physload: unable to load physical memory "
    617   1.7       mrg 		    "segment\n");
    618  1.37      soda 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    619  1.37      soda 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    620  1.43  christos 		printf("\tincrease VM_PHYSSEG_MAX\n");
    621   1.7       mrg 		return;
    622   1.7       mrg 	}
    623   1.7       mrg 
    624   1.7       mrg 	/*
    625   1.7       mrg 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    626   1.7       mrg 	 * called yet, so malloc is not available).
    627   1.7       mrg 	 */
    628   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    629   1.7       mrg 		if (vm_physmem[lcv].pgs)
    630   1.7       mrg 			break;
    631   1.7       mrg 	}
    632   1.7       mrg 	preload = (lcv == vm_nphysseg);
    633   1.7       mrg 
    634   1.7       mrg 	/*
    635   1.7       mrg 	 * if VM is already running, attempt to malloc() vm_page structures
    636   1.7       mrg 	 */
    637   1.7       mrg 	if (!preload) {
    638   1.1       mrg #if defined(VM_PHYSSEG_NOADD)
    639  1.42       mrg 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    640   1.1       mrg #else
    641   1.7       mrg 		/* XXXCDC: need some sort of lockout for this case */
    642  1.14       eeh 		paddr_t paddr;
    643   1.7       mrg 		npages = end - start;  /* # of pages */
    644  1.40   thorpej 		pgs = malloc(sizeof(struct vm_page) * npages,
    645  1.40   thorpej 		    M_VMPAGE, M_NOWAIT);
    646   1.7       mrg 		if (pgs == NULL) {
    647  1.42       mrg 			printf("uvm_page_physload: can not malloc vm_page "
    648   1.7       mrg 			    "structs for segment\n");
    649   1.7       mrg 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    650   1.7       mrg 			return;
    651   1.7       mrg 		}
    652  1.12   thorpej 		/* zero data, init phys_addr and free_list, and free pages */
    653  1.13     perry 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    654   1.7       mrg 		for (lcv = 0, paddr = ptoa(start) ;
    655   1.7       mrg 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    656   1.7       mrg 			pgs[lcv].phys_addr = paddr;
    657  1.12   thorpej 			pgs[lcv].free_list = free_list;
    658   1.7       mrg 			if (atop(paddr) >= avail_start &&
    659   1.7       mrg 			    atop(paddr) <= avail_end)
    660   1.8     chuck 				uvm_pagefree(&pgs[lcv]);
    661   1.7       mrg 		}
    662   1.7       mrg 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    663   1.7       mrg 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    664   1.1       mrg #endif
    665   1.7       mrg 	} else {
    666   1.1       mrg 
    667   1.7       mrg 		/* gcc complains if these don't get init'd */
    668   1.7       mrg 		pgs = NULL;
    669   1.7       mrg 		npages = 0;
    670   1.1       mrg 
    671   1.7       mrg 	}
    672   1.1       mrg 
    673   1.7       mrg 	/*
    674   1.7       mrg 	 * now insert us in the proper place in vm_physmem[]
    675   1.7       mrg 	 */
    676   1.1       mrg 
    677   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    678   1.1       mrg 
    679   1.7       mrg 	/* random: put it at the end (easy!) */
    680   1.7       mrg 	ps = &vm_physmem[vm_nphysseg];
    681   1.1       mrg 
    682   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    683   1.1       mrg 
    684   1.7       mrg 	{
    685   1.7       mrg 		int x;
    686   1.7       mrg 		/* sort by address for binary search */
    687   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    688   1.7       mrg 			if (start < vm_physmem[lcv].start)
    689   1.7       mrg 				break;
    690   1.7       mrg 		ps = &vm_physmem[lcv];
    691   1.7       mrg 		/* move back other entries, if necessary ... */
    692   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    693   1.7       mrg 			/* structure copy */
    694   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    695   1.7       mrg 	}
    696   1.1       mrg 
    697   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    698   1.1       mrg 
    699   1.7       mrg 	{
    700   1.7       mrg 		int x;
    701   1.7       mrg 		/* sort by largest segment first */
    702   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    703   1.7       mrg 			if ((end - start) >
    704   1.7       mrg 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    705   1.7       mrg 				break;
    706   1.7       mrg 		ps = &vm_physmem[lcv];
    707   1.7       mrg 		/* move back other entries, if necessary ... */
    708   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    709   1.7       mrg 			/* structure copy */
    710   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    711   1.7       mrg 	}
    712   1.1       mrg 
    713   1.1       mrg #else
    714   1.1       mrg 
    715  1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    716   1.1       mrg 
    717   1.1       mrg #endif
    718   1.1       mrg 
    719   1.7       mrg 	ps->start = start;
    720   1.7       mrg 	ps->end = end;
    721   1.7       mrg 	ps->avail_start = avail_start;
    722   1.7       mrg 	ps->avail_end = avail_end;
    723   1.7       mrg 	if (preload) {
    724   1.7       mrg 		ps->pgs = NULL;
    725   1.7       mrg 	} else {
    726   1.7       mrg 		ps->pgs = pgs;
    727   1.7       mrg 		ps->lastpg = pgs + npages - 1;
    728   1.7       mrg 	}
    729  1.12   thorpej 	ps->free_list = free_list;
    730   1.7       mrg 	vm_nphysseg++;
    731   1.7       mrg 
    732   1.7       mrg 	/*
    733   1.7       mrg 	 * done!
    734   1.7       mrg 	 */
    735   1.1       mrg 
    736   1.7       mrg 	if (!preload)
    737   1.7       mrg 		uvm_page_rehash();
    738   1.1       mrg 
    739   1.7       mrg 	return;
    740   1.1       mrg }
    741   1.1       mrg 
    742   1.1       mrg /*
    743   1.1       mrg  * uvm_page_rehash: reallocate hash table based on number of free pages.
    744   1.1       mrg  */
    745   1.1       mrg 
    746   1.7       mrg void
    747   1.7       mrg uvm_page_rehash()
    748   1.1       mrg {
    749   1.7       mrg 	int freepages, lcv, bucketcount, s, oldcount;
    750   1.7       mrg 	struct pglist *newbuckets, *oldbuckets;
    751   1.7       mrg 	struct vm_page *pg;
    752  1.30   thorpej 	size_t newsize, oldsize;
    753   1.7       mrg 
    754   1.7       mrg 	/*
    755   1.7       mrg 	 * compute number of pages that can go in the free pool
    756   1.7       mrg 	 */
    757   1.7       mrg 
    758   1.7       mrg 	freepages = 0;
    759   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    760   1.7       mrg 		freepages +=
    761   1.7       mrg 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    762   1.7       mrg 
    763   1.7       mrg 	/*
    764   1.7       mrg 	 * compute number of buckets needed for this number of pages
    765   1.7       mrg 	 */
    766   1.7       mrg 
    767   1.7       mrg 	bucketcount = 1;
    768   1.7       mrg 	while (bucketcount < freepages)
    769   1.7       mrg 		bucketcount = bucketcount * 2;
    770   1.7       mrg 
    771   1.7       mrg 	/*
    772  1.30   thorpej 	 * compute the size of the current table and new table.
    773   1.7       mrg 	 */
    774   1.7       mrg 
    775  1.30   thorpej 	oldbuckets = uvm.page_hash;
    776  1.30   thorpej 	oldcount = uvm.page_nhash;
    777  1.30   thorpej 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    778  1.30   thorpej 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    779  1.30   thorpej 
    780  1.30   thorpej 	/*
    781  1.30   thorpej 	 * allocate the new buckets
    782  1.30   thorpej 	 */
    783  1.30   thorpej 
    784  1.30   thorpej 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    785   1.7       mrg 	if (newbuckets == NULL) {
    786  1.30   thorpej 		printf("uvm_page_physrehash: WARNING: could not grow page "
    787   1.7       mrg 		    "hash table\n");
    788   1.7       mrg 		return;
    789   1.7       mrg 	}
    790   1.7       mrg 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    791   1.7       mrg 		TAILQ_INIT(&newbuckets[lcv]);
    792   1.7       mrg 
    793   1.7       mrg 	/*
    794   1.7       mrg 	 * now replace the old buckets with the new ones and rehash everything
    795   1.7       mrg 	 */
    796   1.7       mrg 
    797   1.7       mrg 	s = splimp();
    798   1.7       mrg 	simple_lock(&uvm.hashlock);
    799   1.7       mrg 	uvm.page_hash = newbuckets;
    800   1.7       mrg 	uvm.page_nhash = bucketcount;
    801   1.7       mrg 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    802   1.7       mrg 
    803   1.7       mrg 	/* ... and rehash */
    804   1.7       mrg 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    805   1.7       mrg 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    806   1.7       mrg 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    807   1.7       mrg 			TAILQ_INSERT_TAIL(
    808   1.7       mrg 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    809   1.7       mrg 			  pg, hashq);
    810   1.7       mrg 		}
    811   1.7       mrg 	}
    812   1.7       mrg 	simple_unlock(&uvm.hashlock);
    813   1.7       mrg 	splx(s);
    814   1.7       mrg 
    815   1.7       mrg 	/*
    816  1.30   thorpej 	 * free old bucket array if is not the boot-time table
    817   1.7       mrg 	 */
    818   1.7       mrg 
    819   1.7       mrg 	if (oldbuckets != &uvm_bootbucket)
    820  1.30   thorpej 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    821   1.7       mrg 
    822   1.7       mrg 	/*
    823   1.7       mrg 	 * done
    824   1.7       mrg 	 */
    825   1.7       mrg 	return;
    826   1.1       mrg }
    827   1.1       mrg 
    828   1.1       mrg 
    829   1.1       mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    830   1.1       mrg 
    831   1.1       mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    832   1.1       mrg 
    833   1.1       mrg /* call from DDB */
    834   1.7       mrg void
    835   1.7       mrg uvm_page_physdump()
    836   1.7       mrg {
    837   1.7       mrg 	int lcv;
    838   1.7       mrg 
    839   1.7       mrg 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    840   1.7       mrg 				 vm_nphysseg, VM_PHYSSEG_MAX);
    841   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    842  1.37      soda 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
    843  1.37      soda 		    (long long)vm_physmem[lcv].start,
    844  1.37      soda 		    (long long)vm_physmem[lcv].end,
    845  1.37      soda 		    (long long)vm_physmem[lcv].avail_start,
    846  1.37      soda 		    (long long)vm_physmem[lcv].avail_end);
    847   1.7       mrg 	printf("STRATEGY = ");
    848   1.7       mrg 	switch (VM_PHYSSEG_STRAT) {
    849   1.7       mrg 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    850   1.7       mrg 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    851   1.7       mrg 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    852   1.7       mrg 	default: printf("<<UNKNOWN>>!!!!\n");
    853   1.7       mrg 	}
    854   1.7       mrg 	printf("number of buckets = %d\n", uvm.page_nhash);
    855   1.1       mrg }
    856   1.1       mrg #endif
    857   1.1       mrg 
    858   1.1       mrg /*
    859  1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    860   1.1       mrg  *
    861   1.1       mrg  * => return null if no pages free
    862   1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    863   1.1       mrg  * => if obj != NULL, obj must be locked (to put in hash)
    864   1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    865   1.1       mrg  * => only one of obj or anon can be non-null
    866   1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    867  1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    868  1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    869  1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    870  1.34   thorpej  *	unknown contents page.  This is because we live with the
    871  1.34   thorpej  *	consequences of a bad free list decision for the entire
    872  1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    873  1.34   thorpej  *	is slower to access.
    874   1.1       mrg  */
    875   1.1       mrg 
    876   1.7       mrg struct vm_page *
    877  1.18       chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    878   1.7       mrg 	struct uvm_object *obj;
    879  1.31    kleink 	voff_t off;
    880  1.18       chs 	int flags;
    881   1.7       mrg 	struct vm_anon *anon;
    882  1.12   thorpej 	int strat, free_list;
    883   1.1       mrg {
    884  1.34   thorpej 	int lcv, try1, try2, s, zeroit = 0;
    885   1.7       mrg 	struct vm_page *pg;
    886  1.12   thorpej 	struct pglist *freeq;
    887  1.34   thorpej 	struct pgfreelist *pgfl;
    888  1.18       chs 	boolean_t use_reserve;
    889   1.1       mrg 
    890  1.44       chs 	KASSERT(obj == NULL || anon == NULL);
    891  1.44       chs 	KASSERT(off == trunc_page(off));
    892  1.44       chs 	s = uvm_lock_fpageq();
    893   1.1       mrg 
    894   1.7       mrg 	/*
    895   1.7       mrg 	 * check to see if we need to generate some free pages waking
    896   1.7       mrg 	 * the pagedaemon.
    897   1.7       mrg 	 */
    898   1.7       mrg 
    899  1.44       chs 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    900  1.44       chs 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    901  1.44       chs 	     uvmexp.inactive < uvmexp.inactarg)) {
    902  1.24   thorpej 		wakeup(&uvm.pagedaemon);
    903  1.44       chs 	}
    904   1.7       mrg 
    905   1.7       mrg 	/*
    906   1.7       mrg 	 * fail if any of these conditions is true:
    907   1.7       mrg 	 * [1]  there really are no free pages, or
    908   1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
    909   1.7       mrg 	 *        the page isn't being allocated to a kernel object.
    910   1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
    911   1.7       mrg 	 *        the requestor isn't the pagedaemon.
    912   1.7       mrg 	 */
    913   1.7       mrg 
    914  1.18       chs 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
    915  1.22   thorpej 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
    916  1.18       chs 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
    917   1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    918  1.18       chs 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
    919  1.12   thorpej 		goto fail;
    920  1.12   thorpej 
    921  1.34   thorpej #if PGFL_NQUEUES != 2
    922  1.34   thorpej #error uvm_pagealloc_strat needs to be updated
    923  1.34   thorpej #endif
    924  1.34   thorpej 
    925  1.34   thorpej 	/*
    926  1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    927  1.34   thorpej 	 * we try the UNKNOWN queue first.
    928  1.34   thorpej 	 */
    929  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    930  1.34   thorpej 		try1 = PGFL_ZEROS;
    931  1.34   thorpej 		try2 = PGFL_UNKNOWN;
    932  1.34   thorpej 	} else {
    933  1.34   thorpej 		try1 = PGFL_UNKNOWN;
    934  1.34   thorpej 		try2 = PGFL_ZEROS;
    935  1.34   thorpej 	}
    936  1.34   thorpej 
    937  1.12   thorpej  again:
    938  1.12   thorpej 	switch (strat) {
    939  1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
    940  1.12   thorpej 		/* Check all freelists in descending priority order. */
    941  1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    942  1.34   thorpej 			pgfl = &uvm.page_free[lcv];
    943  1.34   thorpej 			if ((pg = TAILQ_FIRST((freeq =
    944  1.34   thorpej 			      &pgfl->pgfl_queues[try1]))) != NULL ||
    945  1.34   thorpej 			    (pg = TAILQ_FIRST((freeq =
    946  1.34   thorpej 			      &pgfl->pgfl_queues[try2]))) != NULL)
    947  1.12   thorpej 				goto gotit;
    948  1.12   thorpej 		}
    949  1.12   thorpej 
    950  1.12   thorpej 		/* No pages free! */
    951  1.12   thorpej 		goto fail;
    952  1.12   thorpej 
    953  1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
    954  1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
    955  1.12   thorpej 		/* Attempt to allocate from the specified free list. */
    956  1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    957  1.34   thorpej 		pgfl = &uvm.page_free[free_list];
    958  1.34   thorpej 		if ((pg = TAILQ_FIRST((freeq =
    959  1.34   thorpej 		      &pgfl->pgfl_queues[try1]))) != NULL ||
    960  1.34   thorpej 		    (pg = TAILQ_FIRST((freeq =
    961  1.34   thorpej 		      &pgfl->pgfl_queues[try2]))) != NULL)
    962  1.12   thorpej 			goto gotit;
    963  1.12   thorpej 
    964  1.12   thorpej 		/* Fall back, if possible. */
    965  1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    966  1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
    967  1.12   thorpej 			goto again;
    968  1.12   thorpej 		}
    969  1.12   thorpej 
    970  1.12   thorpej 		/* No pages free! */
    971  1.12   thorpej 		goto fail;
    972  1.12   thorpej 
    973  1.12   thorpej 	default:
    974  1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    975  1.12   thorpej 		/* NOTREACHED */
    976   1.7       mrg 	}
    977   1.7       mrg 
    978  1.12   thorpej  gotit:
    979  1.12   thorpej 	TAILQ_REMOVE(freeq, pg, pageq);
    980   1.7       mrg 	uvmexp.free--;
    981   1.7       mrg 
    982  1.34   thorpej 	/* update zero'd page count */
    983  1.34   thorpej 	if (pg->flags & PG_ZERO)
    984  1.34   thorpej 		uvmexp.zeropages--;
    985  1.34   thorpej 
    986  1.34   thorpej 	/*
    987  1.34   thorpej 	 * update allocation statistics and remember if we have to
    988  1.34   thorpej 	 * zero the page
    989  1.34   thorpej 	 */
    990  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
    991  1.34   thorpej 		if (pg->flags & PG_ZERO) {
    992  1.34   thorpej 			uvmexp.pga_zerohit++;
    993  1.34   thorpej 			zeroit = 0;
    994  1.34   thorpej 		} else {
    995  1.34   thorpej 			uvmexp.pga_zeromiss++;
    996  1.34   thorpej 			zeroit = 1;
    997  1.34   thorpej 		}
    998  1.34   thorpej 	}
    999  1.34   thorpej 
   1000  1.21   thorpej 	uvm_unlock_fpageq(s);		/* unlock free page queue */
   1001   1.7       mrg 
   1002   1.7       mrg 	pg->offset = off;
   1003   1.7       mrg 	pg->uobject = obj;
   1004   1.7       mrg 	pg->uanon = anon;
   1005   1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1006   1.7       mrg 	pg->version++;
   1007   1.7       mrg 	if (anon) {
   1008   1.7       mrg 		anon->u.an_page = pg;
   1009   1.7       mrg 		pg->pqflags = PQ_ANON;
   1010  1.45    simonb 		uvmexp.anonpages++;
   1011   1.7       mrg 	} else {
   1012   1.7       mrg 		if (obj)
   1013   1.7       mrg 			uvm_pageinsert(pg);
   1014   1.7       mrg 		pg->pqflags = 0;
   1015   1.7       mrg 	}
   1016   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1017   1.7       mrg 	pg->owner_tag = NULL;
   1018   1.1       mrg #endif
   1019   1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1020  1.33   thorpej 
   1021  1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1022  1.33   thorpej 		/*
   1023  1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1024  1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1025  1.33   thorpej 		 */
   1026  1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1027  1.34   thorpej 		if (zeroit)
   1028  1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1029  1.33   thorpej 	}
   1030   1.1       mrg 
   1031   1.7       mrg 	return(pg);
   1032  1.12   thorpej 
   1033  1.12   thorpej  fail:
   1034  1.21   thorpej 	uvm_unlock_fpageq(s);
   1035  1.12   thorpej 	return (NULL);
   1036   1.1       mrg }
   1037   1.1       mrg 
   1038   1.1       mrg /*
   1039   1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1040   1.1       mrg  *
   1041   1.1       mrg  * => both objects must be locked
   1042   1.1       mrg  */
   1043   1.1       mrg 
   1044   1.7       mrg void
   1045   1.7       mrg uvm_pagerealloc(pg, newobj, newoff)
   1046   1.7       mrg 	struct vm_page *pg;
   1047   1.7       mrg 	struct uvm_object *newobj;
   1048  1.31    kleink 	voff_t newoff;
   1049   1.1       mrg {
   1050   1.7       mrg 	/*
   1051   1.7       mrg 	 * remove it from the old object
   1052   1.7       mrg 	 */
   1053   1.7       mrg 
   1054   1.7       mrg 	if (pg->uobject) {
   1055   1.7       mrg 		uvm_pageremove(pg);
   1056   1.7       mrg 	}
   1057   1.7       mrg 
   1058   1.7       mrg 	/*
   1059   1.7       mrg 	 * put it in the new object
   1060   1.7       mrg 	 */
   1061   1.7       mrg 
   1062   1.7       mrg 	if (newobj) {
   1063   1.7       mrg 		pg->uobject = newobj;
   1064   1.7       mrg 		pg->offset = newoff;
   1065   1.7       mrg 		pg->version++;
   1066   1.7       mrg 		uvm_pageinsert(pg);
   1067   1.7       mrg 	}
   1068   1.1       mrg }
   1069   1.1       mrg 
   1070   1.1       mrg 
   1071   1.1       mrg /*
   1072   1.1       mrg  * uvm_pagefree: free page
   1073   1.1       mrg  *
   1074   1.1       mrg  * => erase page's identity (i.e. remove from hash/object)
   1075   1.1       mrg  * => put page on free list
   1076   1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1077   1.1       mrg  * => caller must lock page queues
   1078   1.1       mrg  * => assumes all valid mappings of pg are gone
   1079   1.1       mrg  */
   1080   1.1       mrg 
   1081  1.44       chs void
   1082  1.44       chs uvm_pagefree(pg)
   1083  1.44       chs 	struct vm_page *pg;
   1084   1.1       mrg {
   1085   1.7       mrg 	int s;
   1086   1.7       mrg 	int saved_loan_count = pg->loan_count;
   1087   1.1       mrg 
   1088  1.44       chs #ifdef DEBUG
   1089  1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1090  1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1091  1.44       chs 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1092  1.44       chs 	}
   1093  1.44       chs #endif
   1094  1.44       chs 
   1095   1.7       mrg 	/*
   1096   1.7       mrg 	 * if the page was an object page (and thus "TABLED"), remove it
   1097   1.7       mrg 	 * from the object.
   1098   1.7       mrg 	 */
   1099   1.7       mrg 
   1100   1.7       mrg 	if (pg->flags & PG_TABLED) {
   1101   1.7       mrg 
   1102   1.7       mrg 		/*
   1103  1.44       chs 		 * if the object page is on loan we are going to drop ownership.
   1104   1.7       mrg 		 * it is possible that an anon will take over as owner for this
   1105   1.7       mrg 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1106   1.7       mrg 		 * it knows it needs to allocate swap if it wants to page the
   1107   1.7       mrg 		 * page out.
   1108   1.7       mrg 		 */
   1109   1.7       mrg 
   1110   1.7       mrg 		if (saved_loan_count)
   1111   1.7       mrg 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1112   1.7       mrg 		uvm_pageremove(pg);
   1113   1.7       mrg 
   1114   1.7       mrg 		/*
   1115   1.7       mrg 		 * if our page was on loan, then we just lost control over it
   1116   1.7       mrg 		 * (in fact, if it was loaned to an anon, the anon may have
   1117   1.7       mrg 		 * already taken over ownership of the page by now and thus
   1118   1.7       mrg 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1119   1.7       mrg 		 * return (when the last loan is dropped, then the page can be
   1120   1.7       mrg 		 * freed by whatever was holding the last loan).
   1121   1.7       mrg 		 */
   1122  1.44       chs 
   1123   1.7       mrg 		if (saved_loan_count)
   1124   1.7       mrg 			return;
   1125   1.7       mrg 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1126   1.7       mrg 
   1127   1.7       mrg 		/*
   1128   1.7       mrg 		 * if our page is owned by an anon and is loaned out to the
   1129   1.7       mrg 		 * kernel then we just want to drop ownership and return.
   1130   1.7       mrg 		 * the kernel must free the page when all its loans clear ...
   1131   1.7       mrg 		 * note that the kernel can't change the loan status of our
   1132   1.7       mrg 		 * page as long as we are holding PQ lock.
   1133   1.7       mrg 		 */
   1134  1.44       chs 
   1135   1.7       mrg 		pg->pqflags &= ~PQ_ANON;
   1136   1.7       mrg 		pg->uanon = NULL;
   1137   1.7       mrg 		return;
   1138   1.7       mrg 	}
   1139  1.44       chs 	KASSERT(saved_loan_count == 0);
   1140   1.1       mrg 
   1141   1.7       mrg 	/*
   1142   1.7       mrg 	 * now remove the page from the queues
   1143   1.7       mrg 	 */
   1144   1.7       mrg 
   1145   1.7       mrg 	if (pg->pqflags & PQ_ACTIVE) {
   1146   1.7       mrg 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1147   1.7       mrg 		pg->pqflags &= ~PQ_ACTIVE;
   1148   1.7       mrg 		uvmexp.active--;
   1149   1.7       mrg 	}
   1150   1.7       mrg 	if (pg->pqflags & PQ_INACTIVE) {
   1151   1.7       mrg 		if (pg->pqflags & PQ_SWAPBACKED)
   1152   1.7       mrg 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1153   1.7       mrg 		else
   1154   1.7       mrg 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1155   1.7       mrg 		pg->pqflags &= ~PQ_INACTIVE;
   1156   1.7       mrg 		uvmexp.inactive--;
   1157   1.7       mrg 	}
   1158   1.7       mrg 
   1159   1.7       mrg 	/*
   1160   1.7       mrg 	 * if the page was wired, unwire it now.
   1161   1.7       mrg 	 */
   1162  1.44       chs 
   1163  1.34   thorpej 	if (pg->wire_count) {
   1164   1.7       mrg 		pg->wire_count = 0;
   1165   1.7       mrg 		uvmexp.wired--;
   1166   1.7       mrg 	}
   1167  1.44       chs 	if (pg->uanon) {
   1168  1.45    simonb 		uvmexp.anonpages--;
   1169  1.44       chs 	}
   1170   1.7       mrg 
   1171   1.7       mrg 	/*
   1172  1.44       chs 	 * and put on free queue
   1173   1.7       mrg 	 */
   1174   1.7       mrg 
   1175  1.34   thorpej 	pg->flags &= ~PG_ZERO;
   1176  1.34   thorpej 
   1177  1.21   thorpej 	s = uvm_lock_fpageq();
   1178  1.34   thorpej 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1179  1.34   thorpej 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1180   1.7       mrg 	pg->pqflags = PQ_FREE;
   1181   1.3       chs #ifdef DEBUG
   1182   1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1183   1.7       mrg 	pg->offset = 0xdeadbeef;
   1184   1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1185   1.3       chs #endif
   1186   1.7       mrg 	uvmexp.free++;
   1187  1.34   thorpej 
   1188  1.34   thorpej 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1189  1.34   thorpej 		uvm.page_idle_zero = vm_page_zero_enable;
   1190  1.34   thorpej 
   1191  1.21   thorpej 	uvm_unlock_fpageq(s);
   1192  1.44       chs }
   1193  1.44       chs 
   1194  1.44       chs /*
   1195  1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1196  1.44       chs  *
   1197  1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1198  1.44       chs  * => if pages are object-owned, object must be locked.
   1199  1.44       chs  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
   1200  1.44       chs  */
   1201  1.44       chs 
   1202  1.44       chs void
   1203  1.44       chs uvm_page_unbusy(pgs, npgs)
   1204  1.44       chs 	struct vm_page **pgs;
   1205  1.44       chs 	int npgs;
   1206  1.44       chs {
   1207  1.44       chs 	struct vm_page *pg;
   1208  1.44       chs 	struct uvm_object *uobj;
   1209  1.44       chs 	int i;
   1210  1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1211  1.44       chs 
   1212  1.44       chs 	for (i = 0; i < npgs; i++) {
   1213  1.44       chs 		pg = pgs[i];
   1214  1.44       chs 
   1215  1.44       chs 		if (pg == NULL) {
   1216  1.44       chs 			continue;
   1217  1.44       chs 		}
   1218  1.44       chs 		if (pg->flags & PG_WANTED) {
   1219  1.44       chs 			wakeup(pg);
   1220  1.44       chs 		}
   1221  1.44       chs 		if (pg->flags & PG_RELEASED) {
   1222  1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1223  1.44       chs 			uobj = pg->uobject;
   1224  1.44       chs 			if (uobj != NULL) {
   1225  1.44       chs 				uobj->pgops->pgo_releasepg(pg, NULL);
   1226  1.44       chs 			} else {
   1227  1.44       chs 				pg->flags &= ~(PG_BUSY);
   1228  1.44       chs 				UVM_PAGE_OWN(pg, NULL);
   1229  1.44       chs 				uvm_anfree(pg->uanon);
   1230  1.44       chs 			}
   1231  1.44       chs 		} else {
   1232  1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1233  1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1234  1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1235  1.44       chs 		}
   1236  1.44       chs 	}
   1237   1.1       mrg }
   1238   1.1       mrg 
   1239   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1240   1.1       mrg /*
   1241   1.1       mrg  * uvm_page_own: set or release page ownership
   1242   1.1       mrg  *
   1243   1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1244   1.1       mrg  *	and where they do it.   it can be used to track down problems
   1245   1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1246   1.1       mrg  * => page's object [if any] must be locked
   1247   1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1248   1.1       mrg  */
   1249   1.7       mrg void
   1250   1.7       mrg uvm_page_own(pg, tag)
   1251   1.7       mrg 	struct vm_page *pg;
   1252   1.7       mrg 	char *tag;
   1253   1.1       mrg {
   1254   1.7       mrg 	/* gain ownership? */
   1255   1.7       mrg 	if (tag) {
   1256   1.7       mrg 		if (pg->owner_tag) {
   1257   1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1258   1.7       mrg 			    "by proc %d [%s]\n", pg,
   1259   1.7       mrg 			     pg->owner, pg->owner_tag);
   1260   1.7       mrg 			panic("uvm_page_own");
   1261   1.7       mrg 		}
   1262   1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1263   1.7       mrg 		pg->owner_tag = tag;
   1264   1.7       mrg 		return;
   1265   1.7       mrg 	}
   1266   1.7       mrg 
   1267   1.7       mrg 	/* drop ownership */
   1268   1.7       mrg 	if (pg->owner_tag == NULL) {
   1269   1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1270   1.7       mrg 		    "page (%p)\n", pg);
   1271   1.7       mrg 		panic("uvm_page_own");
   1272   1.7       mrg 	}
   1273   1.7       mrg 	pg->owner_tag = NULL;
   1274   1.7       mrg 	return;
   1275   1.1       mrg }
   1276   1.1       mrg #endif
   1277  1.34   thorpej 
   1278  1.34   thorpej /*
   1279  1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1280  1.34   thorpej  *
   1281  1.34   thorpej  * => we do at least one iteration per call, if we are below the target.
   1282  1.34   thorpej  * => we loop until we either reach the target or whichqs indicates that
   1283  1.34   thorpej  *	there is a process ready to run.
   1284  1.34   thorpej  */
   1285  1.34   thorpej void
   1286  1.34   thorpej uvm_pageidlezero()
   1287  1.34   thorpej {
   1288  1.34   thorpej 	struct vm_page *pg;
   1289  1.34   thorpej 	struct pgfreelist *pgfl;
   1290  1.34   thorpej 	int free_list, s;
   1291  1.34   thorpej 
   1292  1.34   thorpej 	do {
   1293  1.34   thorpej 		s = uvm_lock_fpageq();
   1294  1.34   thorpej 
   1295  1.34   thorpej 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1296  1.34   thorpej 			uvm.page_idle_zero = FALSE;
   1297  1.34   thorpej 			uvm_unlock_fpageq(s);
   1298  1.34   thorpej 			return;
   1299  1.34   thorpej 		}
   1300  1.34   thorpej 
   1301  1.34   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1302  1.34   thorpej 			pgfl = &uvm.page_free[free_list];
   1303  1.34   thorpej 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
   1304  1.34   thorpej 			    PGFL_UNKNOWN])) != NULL)
   1305  1.34   thorpej 				break;
   1306  1.34   thorpej 		}
   1307  1.34   thorpej 
   1308  1.34   thorpej 		if (pg == NULL) {
   1309  1.34   thorpej 			/*
   1310  1.34   thorpej 			 * No non-zero'd pages; don't bother trying again
   1311  1.34   thorpej 			 * until we know we have non-zero'd pages free.
   1312  1.34   thorpej 			 */
   1313  1.34   thorpej 			uvm.page_idle_zero = FALSE;
   1314  1.34   thorpej 			uvm_unlock_fpageq(s);
   1315  1.34   thorpej 			return;
   1316  1.34   thorpej 		}
   1317  1.34   thorpej 
   1318  1.34   thorpej 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1319  1.34   thorpej 		uvmexp.free--;
   1320  1.34   thorpej 		uvm_unlock_fpageq(s);
   1321  1.34   thorpej 
   1322  1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1323  1.41   thorpej 		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
   1324  1.41   thorpej 			/*
   1325  1.41   thorpej 			 * The machine-dependent code detected some
   1326  1.41   thorpej 			 * reason for us to abort zeroing pages,
   1327  1.41   thorpej 			 * probably because there is a process now
   1328  1.41   thorpej 			 * ready to run.
   1329  1.41   thorpej 			 */
   1330  1.41   thorpej 			s = uvm_lock_fpageq();
   1331  1.41   thorpej 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
   1332  1.41   thorpej 			    pg, pageq);
   1333  1.41   thorpej 			uvmexp.free++;
   1334  1.41   thorpej 			uvmexp.zeroaborts++;
   1335  1.41   thorpej 			uvm_unlock_fpageq(s);
   1336  1.41   thorpej 			return;
   1337  1.41   thorpej 		}
   1338  1.34   thorpej #else
   1339  1.34   thorpej 		/*
   1340  1.34   thorpej 		 * XXX This will toast the cache unless the pmap_zero_page()
   1341  1.34   thorpej 		 * XXX implementation does uncached access.
   1342  1.34   thorpej 		 */
   1343  1.34   thorpej 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1344  1.34   thorpej #endif
   1345  1.34   thorpej 		pg->flags |= PG_ZERO;
   1346  1.34   thorpej 
   1347  1.34   thorpej 		s = uvm_lock_fpageq();
   1348  1.34   thorpej 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
   1349  1.34   thorpej 		uvmexp.free++;
   1350  1.34   thorpej 		uvmexp.zeropages++;
   1351  1.34   thorpej 		uvm_unlock_fpageq(s);
   1352  1.35   thorpej 	} while (sched_whichqs == 0);
   1353  1.34   thorpej }
   1354