uvm_page.c revision 1.46 1 1.46 chs /* $NetBSD: uvm_page.c,v 1.46 2000/12/01 09:54:42 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.44 chs #include "opt_uvmhist.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.1 mrg
81 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
82 1.1 mrg #include <uvm/uvm.h>
83 1.1 mrg
84 1.1 mrg /*
85 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
86 1.1 mrg */
87 1.1 mrg
88 1.1 mrg /*
89 1.1 mrg * physical memory config is stored in vm_physmem.
90 1.1 mrg */
91 1.1 mrg
92 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
93 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
94 1.1 mrg
95 1.1 mrg /*
96 1.36 thorpej * Some supported CPUs in a given architecture don't support all
97 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
98 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
99 1.34 thorpej */
100 1.44 chs /*
101 1.44 chs * XXX disabled until we can find a way to do this without causing
102 1.44 chs * problems for either cpu caches or DMA latency.
103 1.44 chs */
104 1.44 chs boolean_t vm_page_zero_enable = FALSE;
105 1.34 thorpej
106 1.44 chs extern struct uvm_pagerops uvm_vnodeops;
107 1.34 thorpej
108 1.34 thorpej /*
109 1.1 mrg * local variables
110 1.1 mrg */
111 1.1 mrg
112 1.1 mrg /*
113 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
114 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
115 1.1 mrg * and pmap_startup here also uses them internally.
116 1.1 mrg */
117 1.1 mrg
118 1.14 eeh static vaddr_t virtual_space_start;
119 1.14 eeh static vaddr_t virtual_space_end;
120 1.1 mrg
121 1.1 mrg /*
122 1.1 mrg * we use a hash table with only one bucket during bootup. we will
123 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
124 1.30 thorpej * we static allocate the one bootstrap bucket below...
125 1.1 mrg */
126 1.1 mrg
127 1.1 mrg static struct pglist uvm_bootbucket;
128 1.1 mrg
129 1.1 mrg /*
130 1.1 mrg * local prototypes
131 1.1 mrg */
132 1.1 mrg
133 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
134 1.44 chs static void uvm_pageremove __P((struct vm_page *));
135 1.1 mrg
136 1.1 mrg /*
137 1.1 mrg * inline functions
138 1.1 mrg */
139 1.1 mrg
140 1.1 mrg /*
141 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
142 1.1 mrg *
143 1.1 mrg * => caller must lock object
144 1.1 mrg * => caller must lock page queues
145 1.1 mrg * => call should have already set pg's object and offset pointers
146 1.1 mrg * and bumped the version counter
147 1.1 mrg */
148 1.1 mrg
149 1.7 mrg __inline static void
150 1.7 mrg uvm_pageinsert(pg)
151 1.7 mrg struct vm_page *pg;
152 1.1 mrg {
153 1.7 mrg struct pglist *buck;
154 1.7 mrg int s;
155 1.1 mrg
156 1.1 mrg #ifdef DIAGNOSTIC
157 1.7 mrg if (pg->flags & PG_TABLED)
158 1.7 mrg panic("uvm_pageinsert: already inserted");
159 1.1 mrg #endif
160 1.1 mrg
161 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
162 1.7 mrg s = splimp();
163 1.7 mrg simple_lock(&uvm.hashlock);
164 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
165 1.7 mrg simple_unlock(&uvm.hashlock);
166 1.7 mrg splx(s);
167 1.7 mrg
168 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
169 1.7 mrg pg->flags |= PG_TABLED;
170 1.7 mrg pg->uobject->uo_npages++;
171 1.1 mrg }
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * uvm_page_remove: remove page from object and hash
175 1.1 mrg *
176 1.1 mrg * => caller must lock object
177 1.1 mrg * => caller must lock page queues
178 1.1 mrg */
179 1.1 mrg
180 1.44 chs static __inline void
181 1.7 mrg uvm_pageremove(pg)
182 1.7 mrg struct vm_page *pg;
183 1.1 mrg {
184 1.7 mrg struct pglist *buck;
185 1.7 mrg int s;
186 1.1 mrg
187 1.44 chs KASSERT(pg->flags & PG_TABLED);
188 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
189 1.7 mrg s = splimp();
190 1.7 mrg simple_lock(&uvm.hashlock);
191 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
192 1.7 mrg simple_unlock(&uvm.hashlock);
193 1.7 mrg splx(s);
194 1.7 mrg
195 1.44 chs if (pg->uobject->pgops == &uvm_vnodeops) {
196 1.45 simonb uvmexp.vnodepages--;
197 1.44 chs }
198 1.44 chs
199 1.7 mrg /* object should be locked */
200 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
201 1.7 mrg
202 1.7 mrg pg->flags &= ~PG_TABLED;
203 1.7 mrg pg->uobject->uo_npages--;
204 1.7 mrg pg->uobject = NULL;
205 1.7 mrg pg->version++;
206 1.1 mrg }
207 1.1 mrg
208 1.1 mrg /*
209 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
210 1.1 mrg *
211 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
212 1.1 mrg */
213 1.1 mrg
214 1.7 mrg void
215 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
216 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
217 1.1 mrg {
218 1.27 thorpej vsize_t freepages, pagecount, n;
219 1.7 mrg vm_page_t pagearray;
220 1.27 thorpej int lcv, i;
221 1.14 eeh paddr_t paddr;
222 1.7 mrg
223 1.7 mrg /*
224 1.7 mrg * step 1: init the page queues and page queue locks
225 1.7 mrg */
226 1.34 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
227 1.34 thorpej for (i = 0; i < PGFL_NQUEUES; i++)
228 1.34 thorpej TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
229 1.34 thorpej }
230 1.7 mrg TAILQ_INIT(&uvm.page_active);
231 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
232 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
233 1.7 mrg simple_lock_init(&uvm.pageqlock);
234 1.7 mrg simple_lock_init(&uvm.fpageqlock);
235 1.7 mrg
236 1.7 mrg /*
237 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
238 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
239 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
240 1.7 mrg */
241 1.7 mrg
242 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
243 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
244 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
245 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
246 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
247 1.7 mrg
248 1.7 mrg /*
249 1.7 mrg * step 3: allocate vm_page structures.
250 1.7 mrg */
251 1.7 mrg
252 1.7 mrg /*
253 1.7 mrg * sanity check:
254 1.7 mrg * before calling this function the MD code is expected to register
255 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
256 1.7 mrg * now is to allocate vm_page structures for this memory.
257 1.7 mrg */
258 1.7 mrg
259 1.7 mrg if (vm_nphysseg == 0)
260 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
261 1.7 mrg
262 1.7 mrg /*
263 1.7 mrg * first calculate the number of free pages...
264 1.7 mrg *
265 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
266 1.7 mrg * this allows us to allocate extra vm_page structures in case we
267 1.7 mrg * want to return some memory to the pool after booting.
268 1.7 mrg */
269 1.7 mrg
270 1.7 mrg freepages = 0;
271 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
272 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
273 1.7 mrg
274 1.7 mrg /*
275 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
276 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
277 1.7 mrg * thus, the total number of pages we can use is the total size of
278 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
279 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
280 1.7 mrg * truncation errors (since we can only allocate in terms of whole
281 1.7 mrg * pages).
282 1.7 mrg */
283 1.7 mrg
284 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
285 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
286 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
287 1.7 mrg sizeof(struct vm_page));
288 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
289 1.7 mrg
290 1.7 mrg /*
291 1.7 mrg * step 4: init the vm_page structures and put them in the correct
292 1.7 mrg * place...
293 1.7 mrg */
294 1.7 mrg
295 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
296 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
297 1.7 mrg if (n > pagecount) {
298 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
299 1.27 thorpej (long)(n - pagecount));
300 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
301 1.7 mrg /* n = pagecount; */
302 1.7 mrg }
303 1.7 mrg /* set up page array pointers */
304 1.7 mrg vm_physmem[lcv].pgs = pagearray;
305 1.7 mrg pagearray += n;
306 1.7 mrg pagecount -= n;
307 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
308 1.7 mrg
309 1.13 perry /* init and free vm_pages (we've already zeroed them) */
310 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
311 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
312 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
313 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
314 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
315 1.7 mrg uvmexp.npages++;
316 1.7 mrg /* add page to free pool */
317 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
318 1.7 mrg }
319 1.7 mrg }
320 1.7 mrg }
321 1.44 chs
322 1.7 mrg /*
323 1.7 mrg * step 5: pass up the values of virtual_space_start and
324 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
325 1.7 mrg * layers of the VM.
326 1.7 mrg */
327 1.7 mrg
328 1.7 mrg *kvm_startp = round_page(virtual_space_start);
329 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
330 1.7 mrg
331 1.7 mrg /*
332 1.44 chs * step 6: init locks for kernel threads
333 1.7 mrg */
334 1.7 mrg
335 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
336 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
337 1.7 mrg
338 1.7 mrg /*
339 1.7 mrg * step 7: init reserve thresholds
340 1.7 mrg * XXXCDC - values may need adjusting
341 1.7 mrg */
342 1.7 mrg uvmexp.reserve_pagedaemon = 1;
343 1.7 mrg uvmexp.reserve_kernel = 5;
344 1.7 mrg
345 1.7 mrg /*
346 1.34 thorpej * step 8: determine if we should zero pages in the idle
347 1.34 thorpej * loop.
348 1.34 thorpej */
349 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
350 1.34 thorpej
351 1.34 thorpej /*
352 1.7 mrg * done!
353 1.7 mrg */
354 1.1 mrg
355 1.32 thorpej uvm.page_init_done = TRUE;
356 1.1 mrg }
357 1.1 mrg
358 1.1 mrg /*
359 1.1 mrg * uvm_setpagesize: set the page size
360 1.1 mrg *
361 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
362 1.1 mrg */
363 1.1 mrg
364 1.7 mrg void
365 1.7 mrg uvm_setpagesize()
366 1.1 mrg {
367 1.7 mrg if (uvmexp.pagesize == 0)
368 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
369 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
370 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
371 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
372 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
373 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
374 1.7 mrg break;
375 1.1 mrg }
376 1.1 mrg
377 1.1 mrg /*
378 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
379 1.1 mrg */
380 1.1 mrg
381 1.14 eeh vaddr_t
382 1.7 mrg uvm_pageboot_alloc(size)
383 1.14 eeh vsize_t size;
384 1.1 mrg {
385 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
386 1.14 eeh vaddr_t addr;
387 1.1 mrg
388 1.7 mrg /*
389 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
390 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
391 1.7 mrg * off virtual_space_start/virtual_space_end.
392 1.7 mrg */
393 1.1 mrg
394 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
395 1.7 mrg &virtual_space_end);
396 1.1 mrg
397 1.7 mrg return(addr);
398 1.1 mrg
399 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
400 1.1 mrg
401 1.19 thorpej static boolean_t initialized = FALSE;
402 1.14 eeh vaddr_t addr, vaddr;
403 1.14 eeh paddr_t paddr;
404 1.1 mrg
405 1.7 mrg /* round to page size */
406 1.7 mrg size = round_page(size);
407 1.1 mrg
408 1.7 mrg /*
409 1.19 thorpej * on first call to this function, initialize ourselves.
410 1.7 mrg */
411 1.19 thorpej if (initialized == FALSE) {
412 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
413 1.1 mrg
414 1.7 mrg /* round it the way we like it */
415 1.7 mrg virtual_space_start = round_page(virtual_space_start);
416 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
417 1.19 thorpej
418 1.19 thorpej initialized = TRUE;
419 1.7 mrg }
420 1.1 mrg
421 1.7 mrg /*
422 1.7 mrg * allocate virtual memory for this request
423 1.7 mrg */
424 1.19 thorpej if (virtual_space_start == virtual_space_end ||
425 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
426 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
427 1.20 thorpej
428 1.20 thorpej addr = virtual_space_start;
429 1.20 thorpej
430 1.20 thorpej #ifdef PMAP_GROWKERNEL
431 1.20 thorpej /*
432 1.20 thorpej * If the kernel pmap can't map the requested space,
433 1.20 thorpej * then allocate more resources for it.
434 1.20 thorpej */
435 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
436 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
437 1.20 thorpej if (uvm_maxkaddr < (addr + size))
438 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
439 1.19 thorpej }
440 1.20 thorpej #endif
441 1.1 mrg
442 1.7 mrg virtual_space_start += size;
443 1.1 mrg
444 1.9 thorpej /*
445 1.7 mrg * allocate and mapin physical pages to back new virtual pages
446 1.7 mrg */
447 1.1 mrg
448 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
449 1.7 mrg vaddr += PAGE_SIZE) {
450 1.1 mrg
451 1.7 mrg if (!uvm_page_physget(&paddr))
452 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
453 1.1 mrg
454 1.23 thorpej /*
455 1.23 thorpej * Note this memory is no longer managed, so using
456 1.23 thorpej * pmap_kenter is safe.
457 1.23 thorpej */
458 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
459 1.7 mrg }
460 1.7 mrg return(addr);
461 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
462 1.1 mrg }
463 1.1 mrg
464 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
465 1.1 mrg /*
466 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
467 1.1 mrg *
468 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
469 1.1 mrg * values match the start/end values. if we can't do that, then we
470 1.1 mrg * will advance both values (making them equal, and removing some
471 1.1 mrg * vm_page structures from the non-avail area).
472 1.1 mrg * => return false if out of memory.
473 1.1 mrg */
474 1.1 mrg
475 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
476 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
477 1.28 drochner
478 1.28 drochner static boolean_t
479 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
480 1.14 eeh paddr_t *paddrp;
481 1.28 drochner int freelist;
482 1.1 mrg {
483 1.7 mrg int lcv, x;
484 1.1 mrg
485 1.7 mrg /* pass 1: try allocating from a matching end */
486 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
487 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
488 1.1 mrg #else
489 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
490 1.1 mrg #endif
491 1.7 mrg {
492 1.1 mrg
493 1.32 thorpej if (uvm.page_init_done == TRUE)
494 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
495 1.1 mrg
496 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
497 1.28 drochner continue;
498 1.28 drochner
499 1.7 mrg /* try from front */
500 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
501 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
502 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
503 1.7 mrg vm_physmem[lcv].avail_start++;
504 1.7 mrg vm_physmem[lcv].start++;
505 1.7 mrg /* nothing left? nuke it */
506 1.7 mrg if (vm_physmem[lcv].avail_start ==
507 1.7 mrg vm_physmem[lcv].end) {
508 1.7 mrg if (vm_nphysseg == 1)
509 1.42 mrg panic("vum_page_physget: out of memory!");
510 1.7 mrg vm_nphysseg--;
511 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
512 1.7 mrg /* structure copy */
513 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
514 1.7 mrg }
515 1.7 mrg return (TRUE);
516 1.7 mrg }
517 1.7 mrg
518 1.7 mrg /* try from rear */
519 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
520 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
521 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
522 1.7 mrg vm_physmem[lcv].avail_end--;
523 1.7 mrg vm_physmem[lcv].end--;
524 1.7 mrg /* nothing left? nuke it */
525 1.7 mrg if (vm_physmem[lcv].avail_end ==
526 1.7 mrg vm_physmem[lcv].start) {
527 1.7 mrg if (vm_nphysseg == 1)
528 1.42 mrg panic("uvm_page_physget: out of memory!");
529 1.7 mrg vm_nphysseg--;
530 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
531 1.7 mrg /* structure copy */
532 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
533 1.7 mrg }
534 1.7 mrg return (TRUE);
535 1.7 mrg }
536 1.7 mrg }
537 1.1 mrg
538 1.7 mrg /* pass2: forget about matching ends, just allocate something */
539 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
540 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
541 1.1 mrg #else
542 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
543 1.1 mrg #endif
544 1.7 mrg {
545 1.1 mrg
546 1.7 mrg /* any room in this bank? */
547 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
548 1.7 mrg continue; /* nope */
549 1.7 mrg
550 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
551 1.7 mrg vm_physmem[lcv].avail_start++;
552 1.7 mrg /* truncate! */
553 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
554 1.7 mrg
555 1.7 mrg /* nothing left? nuke it */
556 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
557 1.7 mrg if (vm_nphysseg == 1)
558 1.42 mrg panic("uvm_page_physget: out of memory!");
559 1.7 mrg vm_nphysseg--;
560 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
561 1.7 mrg /* structure copy */
562 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
563 1.7 mrg }
564 1.7 mrg return (TRUE);
565 1.7 mrg }
566 1.1 mrg
567 1.7 mrg return (FALSE); /* whoops! */
568 1.28 drochner }
569 1.28 drochner
570 1.28 drochner boolean_t
571 1.28 drochner uvm_page_physget(paddrp)
572 1.28 drochner paddr_t *paddrp;
573 1.28 drochner {
574 1.28 drochner int i;
575 1.28 drochner
576 1.28 drochner /* try in the order of freelist preference */
577 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
578 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
579 1.28 drochner return (TRUE);
580 1.28 drochner return (FALSE);
581 1.1 mrg }
582 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
583 1.1 mrg
584 1.1 mrg /*
585 1.1 mrg * uvm_page_physload: load physical memory into VM system
586 1.1 mrg *
587 1.1 mrg * => all args are PFs
588 1.1 mrg * => all pages in start/end get vm_page structures
589 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
590 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
591 1.1 mrg */
592 1.1 mrg
593 1.7 mrg void
594 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
595 1.29 eeh paddr_t start, end, avail_start, avail_end;
596 1.12 thorpej int free_list;
597 1.1 mrg {
598 1.14 eeh int preload, lcv;
599 1.14 eeh psize_t npages;
600 1.7 mrg struct vm_page *pgs;
601 1.7 mrg struct vm_physseg *ps;
602 1.7 mrg
603 1.7 mrg if (uvmexp.pagesize == 0)
604 1.42 mrg panic("uvm_page_physload: page size not set!");
605 1.7 mrg
606 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
607 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
608 1.26 drochner
609 1.26 drochner if (start >= end)
610 1.26 drochner panic("uvm_page_physload: start >= end");
611 1.12 thorpej
612 1.7 mrg /*
613 1.7 mrg * do we have room?
614 1.7 mrg */
615 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
616 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
617 1.7 mrg "segment\n");
618 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
619 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
620 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
621 1.7 mrg return;
622 1.7 mrg }
623 1.7 mrg
624 1.7 mrg /*
625 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
626 1.7 mrg * called yet, so malloc is not available).
627 1.7 mrg */
628 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
629 1.7 mrg if (vm_physmem[lcv].pgs)
630 1.7 mrg break;
631 1.7 mrg }
632 1.7 mrg preload = (lcv == vm_nphysseg);
633 1.7 mrg
634 1.7 mrg /*
635 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
636 1.7 mrg */
637 1.7 mrg if (!preload) {
638 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
639 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
640 1.1 mrg #else
641 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
642 1.14 eeh paddr_t paddr;
643 1.7 mrg npages = end - start; /* # of pages */
644 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
645 1.40 thorpej M_VMPAGE, M_NOWAIT);
646 1.7 mrg if (pgs == NULL) {
647 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
648 1.7 mrg "structs for segment\n");
649 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
650 1.7 mrg return;
651 1.7 mrg }
652 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
653 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
654 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
655 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
656 1.7 mrg pgs[lcv].phys_addr = paddr;
657 1.12 thorpej pgs[lcv].free_list = free_list;
658 1.7 mrg if (atop(paddr) >= avail_start &&
659 1.7 mrg atop(paddr) <= avail_end)
660 1.8 chuck uvm_pagefree(&pgs[lcv]);
661 1.7 mrg }
662 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
663 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
664 1.1 mrg #endif
665 1.7 mrg } else {
666 1.1 mrg
667 1.7 mrg /* gcc complains if these don't get init'd */
668 1.7 mrg pgs = NULL;
669 1.7 mrg npages = 0;
670 1.1 mrg
671 1.7 mrg }
672 1.1 mrg
673 1.7 mrg /*
674 1.7 mrg * now insert us in the proper place in vm_physmem[]
675 1.7 mrg */
676 1.1 mrg
677 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
678 1.1 mrg
679 1.7 mrg /* random: put it at the end (easy!) */
680 1.7 mrg ps = &vm_physmem[vm_nphysseg];
681 1.1 mrg
682 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
683 1.1 mrg
684 1.7 mrg {
685 1.7 mrg int x;
686 1.7 mrg /* sort by address for binary search */
687 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
688 1.7 mrg if (start < vm_physmem[lcv].start)
689 1.7 mrg break;
690 1.7 mrg ps = &vm_physmem[lcv];
691 1.7 mrg /* move back other entries, if necessary ... */
692 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
693 1.7 mrg /* structure copy */
694 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
695 1.7 mrg }
696 1.1 mrg
697 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
698 1.1 mrg
699 1.7 mrg {
700 1.7 mrg int x;
701 1.7 mrg /* sort by largest segment first */
702 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
703 1.7 mrg if ((end - start) >
704 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
705 1.7 mrg break;
706 1.7 mrg ps = &vm_physmem[lcv];
707 1.7 mrg /* move back other entries, if necessary ... */
708 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
709 1.7 mrg /* structure copy */
710 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
711 1.7 mrg }
712 1.1 mrg
713 1.1 mrg #else
714 1.1 mrg
715 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
716 1.1 mrg
717 1.1 mrg #endif
718 1.1 mrg
719 1.7 mrg ps->start = start;
720 1.7 mrg ps->end = end;
721 1.7 mrg ps->avail_start = avail_start;
722 1.7 mrg ps->avail_end = avail_end;
723 1.7 mrg if (preload) {
724 1.7 mrg ps->pgs = NULL;
725 1.7 mrg } else {
726 1.7 mrg ps->pgs = pgs;
727 1.7 mrg ps->lastpg = pgs + npages - 1;
728 1.7 mrg }
729 1.12 thorpej ps->free_list = free_list;
730 1.7 mrg vm_nphysseg++;
731 1.7 mrg
732 1.7 mrg /*
733 1.7 mrg * done!
734 1.7 mrg */
735 1.1 mrg
736 1.7 mrg if (!preload)
737 1.7 mrg uvm_page_rehash();
738 1.1 mrg
739 1.7 mrg return;
740 1.1 mrg }
741 1.1 mrg
742 1.1 mrg /*
743 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
744 1.1 mrg */
745 1.1 mrg
746 1.7 mrg void
747 1.7 mrg uvm_page_rehash()
748 1.1 mrg {
749 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
750 1.7 mrg struct pglist *newbuckets, *oldbuckets;
751 1.7 mrg struct vm_page *pg;
752 1.30 thorpej size_t newsize, oldsize;
753 1.7 mrg
754 1.7 mrg /*
755 1.7 mrg * compute number of pages that can go in the free pool
756 1.7 mrg */
757 1.7 mrg
758 1.7 mrg freepages = 0;
759 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
760 1.7 mrg freepages +=
761 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
762 1.7 mrg
763 1.7 mrg /*
764 1.7 mrg * compute number of buckets needed for this number of pages
765 1.7 mrg */
766 1.7 mrg
767 1.7 mrg bucketcount = 1;
768 1.7 mrg while (bucketcount < freepages)
769 1.7 mrg bucketcount = bucketcount * 2;
770 1.7 mrg
771 1.7 mrg /*
772 1.30 thorpej * compute the size of the current table and new table.
773 1.7 mrg */
774 1.7 mrg
775 1.30 thorpej oldbuckets = uvm.page_hash;
776 1.30 thorpej oldcount = uvm.page_nhash;
777 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
778 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
779 1.30 thorpej
780 1.30 thorpej /*
781 1.30 thorpej * allocate the new buckets
782 1.30 thorpej */
783 1.30 thorpej
784 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
785 1.7 mrg if (newbuckets == NULL) {
786 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
787 1.7 mrg "hash table\n");
788 1.7 mrg return;
789 1.7 mrg }
790 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
791 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
792 1.7 mrg
793 1.7 mrg /*
794 1.7 mrg * now replace the old buckets with the new ones and rehash everything
795 1.7 mrg */
796 1.7 mrg
797 1.7 mrg s = splimp();
798 1.7 mrg simple_lock(&uvm.hashlock);
799 1.7 mrg uvm.page_hash = newbuckets;
800 1.7 mrg uvm.page_nhash = bucketcount;
801 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
802 1.7 mrg
803 1.7 mrg /* ... and rehash */
804 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
805 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
806 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
807 1.7 mrg TAILQ_INSERT_TAIL(
808 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
809 1.7 mrg pg, hashq);
810 1.7 mrg }
811 1.7 mrg }
812 1.7 mrg simple_unlock(&uvm.hashlock);
813 1.7 mrg splx(s);
814 1.7 mrg
815 1.7 mrg /*
816 1.30 thorpej * free old bucket array if is not the boot-time table
817 1.7 mrg */
818 1.7 mrg
819 1.7 mrg if (oldbuckets != &uvm_bootbucket)
820 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
821 1.7 mrg
822 1.7 mrg /*
823 1.7 mrg * done
824 1.7 mrg */
825 1.7 mrg return;
826 1.1 mrg }
827 1.1 mrg
828 1.1 mrg
829 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
830 1.1 mrg
831 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
832 1.1 mrg
833 1.1 mrg /* call from DDB */
834 1.7 mrg void
835 1.7 mrg uvm_page_physdump()
836 1.7 mrg {
837 1.7 mrg int lcv;
838 1.7 mrg
839 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
840 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
841 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
842 1.37 soda printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
843 1.37 soda (long long)vm_physmem[lcv].start,
844 1.37 soda (long long)vm_physmem[lcv].end,
845 1.37 soda (long long)vm_physmem[lcv].avail_start,
846 1.37 soda (long long)vm_physmem[lcv].avail_end);
847 1.7 mrg printf("STRATEGY = ");
848 1.7 mrg switch (VM_PHYSSEG_STRAT) {
849 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
850 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
851 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
852 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
853 1.7 mrg }
854 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
855 1.1 mrg }
856 1.1 mrg #endif
857 1.1 mrg
858 1.1 mrg /*
859 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
860 1.1 mrg *
861 1.1 mrg * => return null if no pages free
862 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
863 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
864 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
865 1.1 mrg * => only one of obj or anon can be non-null
866 1.1 mrg * => caller must activate/deactivate page if it is not wired.
867 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
868 1.34 thorpej * => policy decision: it is more important to pull a page off of the
869 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
870 1.34 thorpej * unknown contents page. This is because we live with the
871 1.34 thorpej * consequences of a bad free list decision for the entire
872 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
873 1.34 thorpej * is slower to access.
874 1.1 mrg */
875 1.1 mrg
876 1.7 mrg struct vm_page *
877 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
878 1.7 mrg struct uvm_object *obj;
879 1.31 kleink voff_t off;
880 1.18 chs int flags;
881 1.7 mrg struct vm_anon *anon;
882 1.12 thorpej int strat, free_list;
883 1.1 mrg {
884 1.34 thorpej int lcv, try1, try2, s, zeroit = 0;
885 1.7 mrg struct vm_page *pg;
886 1.12 thorpej struct pglist *freeq;
887 1.34 thorpej struct pgfreelist *pgfl;
888 1.18 chs boolean_t use_reserve;
889 1.1 mrg
890 1.44 chs KASSERT(obj == NULL || anon == NULL);
891 1.44 chs KASSERT(off == trunc_page(off));
892 1.44 chs s = uvm_lock_fpageq();
893 1.1 mrg
894 1.7 mrg /*
895 1.7 mrg * check to see if we need to generate some free pages waking
896 1.7 mrg * the pagedaemon.
897 1.7 mrg */
898 1.7 mrg
899 1.44 chs if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
900 1.44 chs (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
901 1.44 chs uvmexp.inactive < uvmexp.inactarg)) {
902 1.24 thorpej wakeup(&uvm.pagedaemon);
903 1.44 chs }
904 1.7 mrg
905 1.7 mrg /*
906 1.7 mrg * fail if any of these conditions is true:
907 1.7 mrg * [1] there really are no free pages, or
908 1.7 mrg * [2] only kernel "reserved" pages remain and
909 1.7 mrg * the page isn't being allocated to a kernel object.
910 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
911 1.7 mrg * the requestor isn't the pagedaemon.
912 1.7 mrg */
913 1.7 mrg
914 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
915 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
916 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
917 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
918 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
919 1.12 thorpej goto fail;
920 1.12 thorpej
921 1.34 thorpej #if PGFL_NQUEUES != 2
922 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
923 1.34 thorpej #endif
924 1.34 thorpej
925 1.34 thorpej /*
926 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
927 1.34 thorpej * we try the UNKNOWN queue first.
928 1.34 thorpej */
929 1.34 thorpej if (flags & UVM_PGA_ZERO) {
930 1.34 thorpej try1 = PGFL_ZEROS;
931 1.34 thorpej try2 = PGFL_UNKNOWN;
932 1.34 thorpej } else {
933 1.34 thorpej try1 = PGFL_UNKNOWN;
934 1.34 thorpej try2 = PGFL_ZEROS;
935 1.34 thorpej }
936 1.34 thorpej
937 1.12 thorpej again:
938 1.12 thorpej switch (strat) {
939 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
940 1.12 thorpej /* Check all freelists in descending priority order. */
941 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
942 1.34 thorpej pgfl = &uvm.page_free[lcv];
943 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
944 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
945 1.34 thorpej (pg = TAILQ_FIRST((freeq =
946 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
947 1.12 thorpej goto gotit;
948 1.12 thorpej }
949 1.12 thorpej
950 1.12 thorpej /* No pages free! */
951 1.12 thorpej goto fail;
952 1.12 thorpej
953 1.12 thorpej case UVM_PGA_STRAT_ONLY:
954 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
955 1.12 thorpej /* Attempt to allocate from the specified free list. */
956 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
957 1.34 thorpej pgfl = &uvm.page_free[free_list];
958 1.34 thorpej if ((pg = TAILQ_FIRST((freeq =
959 1.34 thorpej &pgfl->pgfl_queues[try1]))) != NULL ||
960 1.34 thorpej (pg = TAILQ_FIRST((freeq =
961 1.34 thorpej &pgfl->pgfl_queues[try2]))) != NULL)
962 1.12 thorpej goto gotit;
963 1.12 thorpej
964 1.12 thorpej /* Fall back, if possible. */
965 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
966 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
967 1.12 thorpej goto again;
968 1.12 thorpej }
969 1.12 thorpej
970 1.12 thorpej /* No pages free! */
971 1.12 thorpej goto fail;
972 1.12 thorpej
973 1.12 thorpej default:
974 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
975 1.12 thorpej /* NOTREACHED */
976 1.7 mrg }
977 1.7 mrg
978 1.12 thorpej gotit:
979 1.12 thorpej TAILQ_REMOVE(freeq, pg, pageq);
980 1.7 mrg uvmexp.free--;
981 1.7 mrg
982 1.34 thorpej /* update zero'd page count */
983 1.34 thorpej if (pg->flags & PG_ZERO)
984 1.34 thorpej uvmexp.zeropages--;
985 1.34 thorpej
986 1.34 thorpej /*
987 1.34 thorpej * update allocation statistics and remember if we have to
988 1.34 thorpej * zero the page
989 1.34 thorpej */
990 1.34 thorpej if (flags & UVM_PGA_ZERO) {
991 1.34 thorpej if (pg->flags & PG_ZERO) {
992 1.34 thorpej uvmexp.pga_zerohit++;
993 1.34 thorpej zeroit = 0;
994 1.34 thorpej } else {
995 1.34 thorpej uvmexp.pga_zeromiss++;
996 1.34 thorpej zeroit = 1;
997 1.34 thorpej }
998 1.34 thorpej }
999 1.34 thorpej
1000 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
1001 1.7 mrg
1002 1.7 mrg pg->offset = off;
1003 1.7 mrg pg->uobject = obj;
1004 1.7 mrg pg->uanon = anon;
1005 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1006 1.7 mrg pg->version++;
1007 1.7 mrg if (anon) {
1008 1.7 mrg anon->u.an_page = pg;
1009 1.7 mrg pg->pqflags = PQ_ANON;
1010 1.45 simonb uvmexp.anonpages++;
1011 1.7 mrg } else {
1012 1.7 mrg if (obj)
1013 1.7 mrg uvm_pageinsert(pg);
1014 1.7 mrg pg->pqflags = 0;
1015 1.7 mrg }
1016 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1017 1.7 mrg pg->owner_tag = NULL;
1018 1.1 mrg #endif
1019 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1020 1.33 thorpej
1021 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1022 1.33 thorpej /*
1023 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1024 1.34 thorpej * zero'd, then we have to zero it ourselves.
1025 1.33 thorpej */
1026 1.33 thorpej pg->flags &= ~PG_CLEAN;
1027 1.34 thorpej if (zeroit)
1028 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1029 1.33 thorpej }
1030 1.1 mrg
1031 1.7 mrg return(pg);
1032 1.12 thorpej
1033 1.12 thorpej fail:
1034 1.21 thorpej uvm_unlock_fpageq(s);
1035 1.12 thorpej return (NULL);
1036 1.1 mrg }
1037 1.1 mrg
1038 1.1 mrg /*
1039 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1040 1.1 mrg *
1041 1.1 mrg * => both objects must be locked
1042 1.1 mrg */
1043 1.1 mrg
1044 1.7 mrg void
1045 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1046 1.7 mrg struct vm_page *pg;
1047 1.7 mrg struct uvm_object *newobj;
1048 1.31 kleink voff_t newoff;
1049 1.1 mrg {
1050 1.7 mrg /*
1051 1.7 mrg * remove it from the old object
1052 1.7 mrg */
1053 1.7 mrg
1054 1.7 mrg if (pg->uobject) {
1055 1.7 mrg uvm_pageremove(pg);
1056 1.7 mrg }
1057 1.7 mrg
1058 1.7 mrg /*
1059 1.7 mrg * put it in the new object
1060 1.7 mrg */
1061 1.7 mrg
1062 1.7 mrg if (newobj) {
1063 1.7 mrg pg->uobject = newobj;
1064 1.7 mrg pg->offset = newoff;
1065 1.7 mrg pg->version++;
1066 1.7 mrg uvm_pageinsert(pg);
1067 1.7 mrg }
1068 1.1 mrg }
1069 1.1 mrg
1070 1.1 mrg
1071 1.1 mrg /*
1072 1.1 mrg * uvm_pagefree: free page
1073 1.1 mrg *
1074 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1075 1.1 mrg * => put page on free list
1076 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1077 1.1 mrg * => caller must lock page queues
1078 1.1 mrg * => assumes all valid mappings of pg are gone
1079 1.1 mrg */
1080 1.1 mrg
1081 1.44 chs void
1082 1.44 chs uvm_pagefree(pg)
1083 1.44 chs struct vm_page *pg;
1084 1.1 mrg {
1085 1.7 mrg int s;
1086 1.7 mrg int saved_loan_count = pg->loan_count;
1087 1.1 mrg
1088 1.44 chs #ifdef DEBUG
1089 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1090 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1091 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1092 1.44 chs }
1093 1.44 chs #endif
1094 1.44 chs
1095 1.7 mrg /*
1096 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1097 1.7 mrg * from the object.
1098 1.7 mrg */
1099 1.7 mrg
1100 1.7 mrg if (pg->flags & PG_TABLED) {
1101 1.7 mrg
1102 1.7 mrg /*
1103 1.44 chs * if the object page is on loan we are going to drop ownership.
1104 1.7 mrg * it is possible that an anon will take over as owner for this
1105 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1106 1.7 mrg * it knows it needs to allocate swap if it wants to page the
1107 1.7 mrg * page out.
1108 1.7 mrg */
1109 1.7 mrg
1110 1.7 mrg if (saved_loan_count)
1111 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1112 1.7 mrg uvm_pageremove(pg);
1113 1.7 mrg
1114 1.7 mrg /*
1115 1.7 mrg * if our page was on loan, then we just lost control over it
1116 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1117 1.7 mrg * already taken over ownership of the page by now and thus
1118 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1119 1.7 mrg * return (when the last loan is dropped, then the page can be
1120 1.7 mrg * freed by whatever was holding the last loan).
1121 1.7 mrg */
1122 1.44 chs
1123 1.7 mrg if (saved_loan_count)
1124 1.7 mrg return;
1125 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1126 1.7 mrg
1127 1.7 mrg /*
1128 1.7 mrg * if our page is owned by an anon and is loaned out to the
1129 1.7 mrg * kernel then we just want to drop ownership and return.
1130 1.7 mrg * the kernel must free the page when all its loans clear ...
1131 1.7 mrg * note that the kernel can't change the loan status of our
1132 1.7 mrg * page as long as we are holding PQ lock.
1133 1.7 mrg */
1134 1.44 chs
1135 1.7 mrg pg->pqflags &= ~PQ_ANON;
1136 1.7 mrg pg->uanon = NULL;
1137 1.7 mrg return;
1138 1.7 mrg }
1139 1.44 chs KASSERT(saved_loan_count == 0);
1140 1.1 mrg
1141 1.7 mrg /*
1142 1.7 mrg * now remove the page from the queues
1143 1.7 mrg */
1144 1.7 mrg
1145 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1146 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1147 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1148 1.7 mrg uvmexp.active--;
1149 1.7 mrg }
1150 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1151 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1152 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1153 1.7 mrg else
1154 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1155 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1156 1.7 mrg uvmexp.inactive--;
1157 1.7 mrg }
1158 1.7 mrg
1159 1.7 mrg /*
1160 1.7 mrg * if the page was wired, unwire it now.
1161 1.7 mrg */
1162 1.44 chs
1163 1.34 thorpej if (pg->wire_count) {
1164 1.7 mrg pg->wire_count = 0;
1165 1.7 mrg uvmexp.wired--;
1166 1.7 mrg }
1167 1.44 chs if (pg->uanon) {
1168 1.45 simonb uvmexp.anonpages--;
1169 1.44 chs }
1170 1.7 mrg
1171 1.7 mrg /*
1172 1.44 chs * and put on free queue
1173 1.7 mrg */
1174 1.7 mrg
1175 1.34 thorpej pg->flags &= ~PG_ZERO;
1176 1.34 thorpej
1177 1.21 thorpej s = uvm_lock_fpageq();
1178 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1179 1.34 thorpej uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1180 1.7 mrg pg->pqflags = PQ_FREE;
1181 1.3 chs #ifdef DEBUG
1182 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1183 1.7 mrg pg->offset = 0xdeadbeef;
1184 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1185 1.3 chs #endif
1186 1.7 mrg uvmexp.free++;
1187 1.34 thorpej
1188 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1189 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1190 1.34 thorpej
1191 1.21 thorpej uvm_unlock_fpageq(s);
1192 1.44 chs }
1193 1.44 chs
1194 1.44 chs /*
1195 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1196 1.44 chs *
1197 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1198 1.44 chs * => if pages are object-owned, object must be locked.
1199 1.44 chs * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1200 1.44 chs */
1201 1.44 chs
1202 1.44 chs void
1203 1.44 chs uvm_page_unbusy(pgs, npgs)
1204 1.44 chs struct vm_page **pgs;
1205 1.44 chs int npgs;
1206 1.44 chs {
1207 1.44 chs struct vm_page *pg;
1208 1.44 chs struct uvm_object *uobj;
1209 1.44 chs int i;
1210 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1211 1.44 chs
1212 1.44 chs for (i = 0; i < npgs; i++) {
1213 1.44 chs pg = pgs[i];
1214 1.44 chs
1215 1.44 chs if (pg == NULL) {
1216 1.44 chs continue;
1217 1.44 chs }
1218 1.44 chs if (pg->flags & PG_WANTED) {
1219 1.44 chs wakeup(pg);
1220 1.44 chs }
1221 1.44 chs if (pg->flags & PG_RELEASED) {
1222 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1223 1.44 chs uobj = pg->uobject;
1224 1.44 chs if (uobj != NULL) {
1225 1.44 chs uobj->pgops->pgo_releasepg(pg, NULL);
1226 1.44 chs } else {
1227 1.44 chs pg->flags &= ~(PG_BUSY);
1228 1.44 chs UVM_PAGE_OWN(pg, NULL);
1229 1.44 chs uvm_anfree(pg->uanon);
1230 1.44 chs }
1231 1.44 chs } else {
1232 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1233 1.46 chs KASSERT(pg->wire_count ||
1234 1.46 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1235 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1236 1.44 chs UVM_PAGE_OWN(pg, NULL);
1237 1.44 chs }
1238 1.44 chs }
1239 1.1 mrg }
1240 1.1 mrg
1241 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1242 1.1 mrg /*
1243 1.1 mrg * uvm_page_own: set or release page ownership
1244 1.1 mrg *
1245 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1246 1.1 mrg * and where they do it. it can be used to track down problems
1247 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1248 1.1 mrg * => page's object [if any] must be locked
1249 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1250 1.1 mrg */
1251 1.7 mrg void
1252 1.7 mrg uvm_page_own(pg, tag)
1253 1.7 mrg struct vm_page *pg;
1254 1.7 mrg char *tag;
1255 1.1 mrg {
1256 1.7 mrg /* gain ownership? */
1257 1.7 mrg if (tag) {
1258 1.7 mrg if (pg->owner_tag) {
1259 1.7 mrg printf("uvm_page_own: page %p already owned "
1260 1.7 mrg "by proc %d [%s]\n", pg,
1261 1.7 mrg pg->owner, pg->owner_tag);
1262 1.7 mrg panic("uvm_page_own");
1263 1.7 mrg }
1264 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1265 1.7 mrg pg->owner_tag = tag;
1266 1.7 mrg return;
1267 1.7 mrg }
1268 1.7 mrg
1269 1.7 mrg /* drop ownership */
1270 1.7 mrg if (pg->owner_tag == NULL) {
1271 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1272 1.7 mrg "page (%p)\n", pg);
1273 1.7 mrg panic("uvm_page_own");
1274 1.7 mrg }
1275 1.7 mrg pg->owner_tag = NULL;
1276 1.7 mrg return;
1277 1.1 mrg }
1278 1.1 mrg #endif
1279 1.34 thorpej
1280 1.34 thorpej /*
1281 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1282 1.34 thorpej *
1283 1.34 thorpej * => we do at least one iteration per call, if we are below the target.
1284 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1285 1.34 thorpej * there is a process ready to run.
1286 1.34 thorpej */
1287 1.34 thorpej void
1288 1.34 thorpej uvm_pageidlezero()
1289 1.34 thorpej {
1290 1.34 thorpej struct vm_page *pg;
1291 1.34 thorpej struct pgfreelist *pgfl;
1292 1.34 thorpej int free_list, s;
1293 1.34 thorpej
1294 1.34 thorpej do {
1295 1.34 thorpej s = uvm_lock_fpageq();
1296 1.34 thorpej
1297 1.34 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1298 1.34 thorpej uvm.page_idle_zero = FALSE;
1299 1.34 thorpej uvm_unlock_fpageq(s);
1300 1.34 thorpej return;
1301 1.34 thorpej }
1302 1.34 thorpej
1303 1.34 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1304 1.34 thorpej pgfl = &uvm.page_free[free_list];
1305 1.34 thorpej if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1306 1.34 thorpej PGFL_UNKNOWN])) != NULL)
1307 1.34 thorpej break;
1308 1.34 thorpej }
1309 1.34 thorpej
1310 1.34 thorpej if (pg == NULL) {
1311 1.34 thorpej /*
1312 1.34 thorpej * No non-zero'd pages; don't bother trying again
1313 1.34 thorpej * until we know we have non-zero'd pages free.
1314 1.34 thorpej */
1315 1.34 thorpej uvm.page_idle_zero = FALSE;
1316 1.34 thorpej uvm_unlock_fpageq(s);
1317 1.34 thorpej return;
1318 1.34 thorpej }
1319 1.34 thorpej
1320 1.34 thorpej TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1321 1.34 thorpej uvmexp.free--;
1322 1.34 thorpej uvm_unlock_fpageq(s);
1323 1.34 thorpej
1324 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1325 1.41 thorpej if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1326 1.41 thorpej /*
1327 1.41 thorpej * The machine-dependent code detected some
1328 1.41 thorpej * reason for us to abort zeroing pages,
1329 1.41 thorpej * probably because there is a process now
1330 1.41 thorpej * ready to run.
1331 1.41 thorpej */
1332 1.41 thorpej s = uvm_lock_fpageq();
1333 1.41 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1334 1.41 thorpej pg, pageq);
1335 1.41 thorpej uvmexp.free++;
1336 1.41 thorpej uvmexp.zeroaborts++;
1337 1.41 thorpej uvm_unlock_fpageq(s);
1338 1.41 thorpej return;
1339 1.41 thorpej }
1340 1.34 thorpej #else
1341 1.34 thorpej /*
1342 1.34 thorpej * XXX This will toast the cache unless the pmap_zero_page()
1343 1.34 thorpej * XXX implementation does uncached access.
1344 1.34 thorpej */
1345 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1346 1.34 thorpej #endif
1347 1.34 thorpej pg->flags |= PG_ZERO;
1348 1.34 thorpej
1349 1.34 thorpej s = uvm_lock_fpageq();
1350 1.34 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1351 1.34 thorpej uvmexp.free++;
1352 1.34 thorpej uvmexp.zeropages++;
1353 1.34 thorpej uvm_unlock_fpageq(s);
1354 1.35 thorpej } while (sched_whichqs == 0);
1355 1.34 thorpej }
1356