uvm_page.c revision 1.65 1 1.65 thorpej /* $NetBSD: uvm_page.c,v 1.65 2001/06/27 23:57:16 thorpej Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.44 chs #include "opt_uvmhist.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.1 mrg
82 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * physical memory config is stored in vm_physmem.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95 1.1 mrg
96 1.1 mrg /*
97 1.36 thorpej * Some supported CPUs in a given architecture don't support all
98 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
99 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
100 1.34 thorpej */
101 1.44 chs /*
102 1.44 chs * XXX disabled until we can find a way to do this without causing
103 1.44 chs * problems for either cpu caches or DMA latency.
104 1.44 chs */
105 1.44 chs boolean_t vm_page_zero_enable = FALSE;
106 1.34 thorpej
107 1.34 thorpej /*
108 1.1 mrg * local variables
109 1.1 mrg */
110 1.1 mrg
111 1.1 mrg /*
112 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
113 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
114 1.1 mrg * and pmap_startup here also uses them internally.
115 1.1 mrg */
116 1.1 mrg
117 1.14 eeh static vaddr_t virtual_space_start;
118 1.14 eeh static vaddr_t virtual_space_end;
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * we use a hash table with only one bucket during bootup. we will
122 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
123 1.30 thorpej * we static allocate the one bootstrap bucket below...
124 1.1 mrg */
125 1.1 mrg
126 1.1 mrg static struct pglist uvm_bootbucket;
127 1.1 mrg
128 1.1 mrg /*
129 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
130 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
131 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
132 1.60 thorpej * free the initial set of buckets, since they are allocated using
133 1.60 thorpej * uvm_pageboot_alloc().
134 1.60 thorpej */
135 1.60 thorpej
136 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
137 1.60 thorpej
138 1.60 thorpej /*
139 1.1 mrg * local prototypes
140 1.1 mrg */
141 1.1 mrg
142 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
143 1.44 chs static void uvm_pageremove __P((struct vm_page *));
144 1.1 mrg
145 1.1 mrg /*
146 1.1 mrg * inline functions
147 1.1 mrg */
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
151 1.1 mrg *
152 1.1 mrg * => caller must lock object
153 1.1 mrg * => caller must lock page queues
154 1.1 mrg * => call should have already set pg's object and offset pointers
155 1.1 mrg * and bumped the version counter
156 1.1 mrg */
157 1.1 mrg
158 1.7 mrg __inline static void
159 1.7 mrg uvm_pageinsert(pg)
160 1.7 mrg struct vm_page *pg;
161 1.1 mrg {
162 1.7 mrg struct pglist *buck;
163 1.7 mrg int s;
164 1.1 mrg
165 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
166 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
167 1.47 thorpej s = splvm();
168 1.7 mrg simple_lock(&uvm.hashlock);
169 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
170 1.7 mrg simple_unlock(&uvm.hashlock);
171 1.7 mrg splx(s);
172 1.7 mrg
173 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
174 1.7 mrg pg->flags |= PG_TABLED;
175 1.7 mrg pg->uobject->uo_npages++;
176 1.1 mrg }
177 1.1 mrg
178 1.1 mrg /*
179 1.1 mrg * uvm_page_remove: remove page from object and hash
180 1.1 mrg *
181 1.1 mrg * => caller must lock object
182 1.1 mrg * => caller must lock page queues
183 1.1 mrg */
184 1.1 mrg
185 1.44 chs static __inline void
186 1.7 mrg uvm_pageremove(pg)
187 1.7 mrg struct vm_page *pg;
188 1.1 mrg {
189 1.7 mrg struct pglist *buck;
190 1.7 mrg int s;
191 1.1 mrg
192 1.44 chs KASSERT(pg->flags & PG_TABLED);
193 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
194 1.47 thorpej s = splvm();
195 1.7 mrg simple_lock(&uvm.hashlock);
196 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
197 1.7 mrg simple_unlock(&uvm.hashlock);
198 1.7 mrg splx(s);
199 1.7 mrg
200 1.51 chs if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
201 1.51 chs uvmexp.vtextpages--;
202 1.51 chs } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
203 1.45 simonb uvmexp.vnodepages--;
204 1.51 chs }
205 1.44 chs
206 1.7 mrg /* object should be locked */
207 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
208 1.7 mrg
209 1.7 mrg pg->flags &= ~PG_TABLED;
210 1.7 mrg pg->uobject->uo_npages--;
211 1.7 mrg pg->uobject = NULL;
212 1.7 mrg pg->version++;
213 1.1 mrg }
214 1.1 mrg
215 1.60 thorpej static void
216 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
217 1.60 thorpej {
218 1.60 thorpej int color, i;
219 1.60 thorpej
220 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
221 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
222 1.60 thorpej TAILQ_INIT(&pgfl->pgfl_buckets[
223 1.60 thorpej color].pgfl_queues[i]);
224 1.60 thorpej }
225 1.60 thorpej }
226 1.60 thorpej }
227 1.60 thorpej
228 1.1 mrg /*
229 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
230 1.62 chs *
231 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
232 1.1 mrg */
233 1.1 mrg
234 1.7 mrg void
235 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
236 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
237 1.1 mrg {
238 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
239 1.60 thorpej struct pgflbucket *bucketarray;
240 1.63 chs struct vm_page *pagearray;
241 1.60 thorpej int lcv, i;
242 1.14 eeh paddr_t paddr;
243 1.7 mrg
244 1.7 mrg /*
245 1.60 thorpej * init the page queues and page queue locks, except the free
246 1.60 thorpej * list; we allocate that later (with the initial vm_page
247 1.60 thorpej * structures).
248 1.7 mrg */
249 1.51 chs
250 1.7 mrg TAILQ_INIT(&uvm.page_active);
251 1.61 ross TAILQ_INIT(&uvm.page_inactive);
252 1.7 mrg simple_lock_init(&uvm.pageqlock);
253 1.7 mrg simple_lock_init(&uvm.fpageqlock);
254 1.7 mrg
255 1.7 mrg /*
256 1.51 chs * init the <obj,offset> => <page> hash table. for now
257 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
258 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
259 1.7 mrg */
260 1.7 mrg
261 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
262 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
263 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
264 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
265 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
266 1.7 mrg
267 1.62 chs /*
268 1.51 chs * allocate vm_page structures.
269 1.7 mrg */
270 1.7 mrg
271 1.7 mrg /*
272 1.7 mrg * sanity check:
273 1.7 mrg * before calling this function the MD code is expected to register
274 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
275 1.7 mrg * now is to allocate vm_page structures for this memory.
276 1.7 mrg */
277 1.7 mrg
278 1.7 mrg if (vm_nphysseg == 0)
279 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
280 1.62 chs
281 1.7 mrg /*
282 1.62 chs * first calculate the number of free pages...
283 1.7 mrg *
284 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
285 1.7 mrg * this allows us to allocate extra vm_page structures in case we
286 1.7 mrg * want to return some memory to the pool after booting.
287 1.7 mrg */
288 1.62 chs
289 1.7 mrg freepages = 0;
290 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
291 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
292 1.7 mrg
293 1.7 mrg /*
294 1.60 thorpej * Let MD code initialize the number of colors, or default
295 1.60 thorpej * to 1 color if MD code doesn't care.
296 1.60 thorpej */
297 1.60 thorpej if (uvmexp.ncolors == 0)
298 1.60 thorpej uvmexp.ncolors = 1;
299 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
300 1.60 thorpej
301 1.60 thorpej /*
302 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
303 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
304 1.7 mrg * thus, the total number of pages we can use is the total size of
305 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
306 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
307 1.7 mrg * truncation errors (since we can only allocate in terms of whole
308 1.7 mrg * pages).
309 1.7 mrg */
310 1.62 chs
311 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
312 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
313 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
314 1.60 thorpej
315 1.60 thorpej bucketarray = (void *) uvm_pageboot_alloc((bucketcount *
316 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
317 1.60 thorpej sizeof(struct vm_page)));
318 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
319 1.60 thorpej
320 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
321 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
322 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
323 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
324 1.60 thorpej }
325 1.60 thorpej
326 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
327 1.62 chs
328 1.7 mrg /*
329 1.51 chs * init the vm_page structures and put them in the correct place.
330 1.7 mrg */
331 1.7 mrg
332 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
333 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
334 1.7 mrg if (n > pagecount) {
335 1.27 thorpej printf("uvm_page_init: lost %ld page(s) in init\n",
336 1.27 thorpej (long)(n - pagecount));
337 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
338 1.7 mrg /* n = pagecount; */
339 1.7 mrg }
340 1.51 chs
341 1.7 mrg /* set up page array pointers */
342 1.7 mrg vm_physmem[lcv].pgs = pagearray;
343 1.7 mrg pagearray += n;
344 1.7 mrg pagecount -= n;
345 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
346 1.7 mrg
347 1.13 perry /* init and free vm_pages (we've already zeroed them) */
348 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
349 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
350 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
351 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
352 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
353 1.56 thorpej #endif
354 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
355 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
356 1.7 mrg uvmexp.npages++;
357 1.7 mrg /* add page to free pool */
358 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
359 1.7 mrg }
360 1.7 mrg }
361 1.7 mrg }
362 1.44 chs
363 1.7 mrg /*
364 1.51 chs * pass up the values of virtual_space_start and
365 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
366 1.7 mrg * layers of the VM.
367 1.7 mrg */
368 1.7 mrg
369 1.7 mrg *kvm_startp = round_page(virtual_space_start);
370 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
371 1.7 mrg
372 1.7 mrg /*
373 1.51 chs * init locks for kernel threads
374 1.7 mrg */
375 1.7 mrg
376 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
377 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
378 1.7 mrg
379 1.7 mrg /*
380 1.51 chs * init various thresholds.
381 1.7 mrg * XXXCDC - values may need adjusting
382 1.7 mrg */
383 1.51 chs
384 1.7 mrg uvmexp.reserve_pagedaemon = 1;
385 1.7 mrg uvmexp.reserve_kernel = 5;
386 1.51 chs uvmexp.anonminpct = 10;
387 1.51 chs uvmexp.vnodeminpct = 10;
388 1.51 chs uvmexp.vtextminpct = 5;
389 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
390 1.51 chs uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
391 1.51 chs uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
392 1.7 mrg
393 1.7 mrg /*
394 1.51 chs * determine if we should zero pages in the idle loop.
395 1.34 thorpej */
396 1.51 chs
397 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
398 1.34 thorpej
399 1.34 thorpej /*
400 1.7 mrg * done!
401 1.7 mrg */
402 1.1 mrg
403 1.32 thorpej uvm.page_init_done = TRUE;
404 1.1 mrg }
405 1.1 mrg
406 1.1 mrg /*
407 1.1 mrg * uvm_setpagesize: set the page size
408 1.62 chs *
409 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
410 1.62 chs */
411 1.1 mrg
412 1.7 mrg void
413 1.7 mrg uvm_setpagesize()
414 1.1 mrg {
415 1.7 mrg if (uvmexp.pagesize == 0)
416 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
417 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
418 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
419 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
420 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
421 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
422 1.7 mrg break;
423 1.1 mrg }
424 1.1 mrg
425 1.1 mrg /*
426 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
427 1.1 mrg */
428 1.1 mrg
429 1.14 eeh vaddr_t
430 1.7 mrg uvm_pageboot_alloc(size)
431 1.14 eeh vsize_t size;
432 1.1 mrg {
433 1.52 thorpej static boolean_t initialized = FALSE;
434 1.14 eeh vaddr_t addr;
435 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
436 1.52 thorpej vaddr_t vaddr;
437 1.14 eeh paddr_t paddr;
438 1.52 thorpej #endif
439 1.1 mrg
440 1.7 mrg /*
441 1.19 thorpej * on first call to this function, initialize ourselves.
442 1.7 mrg */
443 1.19 thorpej if (initialized == FALSE) {
444 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
445 1.1 mrg
446 1.7 mrg /* round it the way we like it */
447 1.7 mrg virtual_space_start = round_page(virtual_space_start);
448 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
449 1.19 thorpej
450 1.19 thorpej initialized = TRUE;
451 1.7 mrg }
452 1.52 thorpej
453 1.52 thorpej /* round to page size */
454 1.52 thorpej size = round_page(size);
455 1.52 thorpej
456 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
457 1.52 thorpej
458 1.62 chs /*
459 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
460 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
461 1.52 thorpej * virtual_space_start/virtual_space_end if necessary.
462 1.52 thorpej */
463 1.52 thorpej
464 1.52 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
465 1.52 thorpej &virtual_space_end);
466 1.52 thorpej
467 1.52 thorpej return(addr);
468 1.52 thorpej
469 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
470 1.1 mrg
471 1.7 mrg /*
472 1.7 mrg * allocate virtual memory for this request
473 1.7 mrg */
474 1.19 thorpej if (virtual_space_start == virtual_space_end ||
475 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
476 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
477 1.20 thorpej
478 1.20 thorpej addr = virtual_space_start;
479 1.20 thorpej
480 1.20 thorpej #ifdef PMAP_GROWKERNEL
481 1.20 thorpej /*
482 1.20 thorpej * If the kernel pmap can't map the requested space,
483 1.20 thorpej * then allocate more resources for it.
484 1.20 thorpej */
485 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
486 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
487 1.20 thorpej if (uvm_maxkaddr < (addr + size))
488 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
489 1.19 thorpej }
490 1.20 thorpej #endif
491 1.1 mrg
492 1.7 mrg virtual_space_start += size;
493 1.1 mrg
494 1.9 thorpej /*
495 1.7 mrg * allocate and mapin physical pages to back new virtual pages
496 1.7 mrg */
497 1.1 mrg
498 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
499 1.7 mrg vaddr += PAGE_SIZE) {
500 1.1 mrg
501 1.7 mrg if (!uvm_page_physget(&paddr))
502 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
503 1.1 mrg
504 1.23 thorpej /*
505 1.23 thorpej * Note this memory is no longer managed, so using
506 1.23 thorpej * pmap_kenter is safe.
507 1.23 thorpej */
508 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
509 1.7 mrg }
510 1.53 thorpej pmap_update();
511 1.7 mrg return(addr);
512 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
513 1.1 mrg }
514 1.1 mrg
515 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
516 1.1 mrg /*
517 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
518 1.1 mrg *
519 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
520 1.1 mrg * values match the start/end values. if we can't do that, then we
521 1.1 mrg * will advance both values (making them equal, and removing some
522 1.1 mrg * vm_page structures from the non-avail area).
523 1.1 mrg * => return false if out of memory.
524 1.1 mrg */
525 1.1 mrg
526 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
527 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
528 1.28 drochner
529 1.28 drochner static boolean_t
530 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
531 1.14 eeh paddr_t *paddrp;
532 1.28 drochner int freelist;
533 1.1 mrg {
534 1.7 mrg int lcv, x;
535 1.1 mrg
536 1.7 mrg /* pass 1: try allocating from a matching end */
537 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
538 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
539 1.1 mrg #else
540 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
541 1.1 mrg #endif
542 1.7 mrg {
543 1.1 mrg
544 1.32 thorpej if (uvm.page_init_done == TRUE)
545 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
546 1.1 mrg
547 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
548 1.28 drochner continue;
549 1.28 drochner
550 1.7 mrg /* try from front */
551 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
552 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
553 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
554 1.7 mrg vm_physmem[lcv].avail_start++;
555 1.7 mrg vm_physmem[lcv].start++;
556 1.7 mrg /* nothing left? nuke it */
557 1.7 mrg if (vm_physmem[lcv].avail_start ==
558 1.7 mrg vm_physmem[lcv].end) {
559 1.7 mrg if (vm_nphysseg == 1)
560 1.42 mrg panic("vum_page_physget: out of memory!");
561 1.7 mrg vm_nphysseg--;
562 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
563 1.7 mrg /* structure copy */
564 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
565 1.7 mrg }
566 1.7 mrg return (TRUE);
567 1.7 mrg }
568 1.7 mrg
569 1.7 mrg /* try from rear */
570 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
571 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
572 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
573 1.7 mrg vm_physmem[lcv].avail_end--;
574 1.7 mrg vm_physmem[lcv].end--;
575 1.7 mrg /* nothing left? nuke it */
576 1.7 mrg if (vm_physmem[lcv].avail_end ==
577 1.7 mrg vm_physmem[lcv].start) {
578 1.7 mrg if (vm_nphysseg == 1)
579 1.42 mrg panic("uvm_page_physget: out of memory!");
580 1.7 mrg vm_nphysseg--;
581 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
582 1.7 mrg /* structure copy */
583 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
584 1.7 mrg }
585 1.7 mrg return (TRUE);
586 1.7 mrg }
587 1.7 mrg }
588 1.1 mrg
589 1.7 mrg /* pass2: forget about matching ends, just allocate something */
590 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
591 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
592 1.1 mrg #else
593 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
594 1.1 mrg #endif
595 1.7 mrg {
596 1.1 mrg
597 1.7 mrg /* any room in this bank? */
598 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
599 1.7 mrg continue; /* nope */
600 1.7 mrg
601 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
602 1.7 mrg vm_physmem[lcv].avail_start++;
603 1.7 mrg /* truncate! */
604 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
605 1.7 mrg
606 1.7 mrg /* nothing left? nuke it */
607 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
608 1.7 mrg if (vm_nphysseg == 1)
609 1.42 mrg panic("uvm_page_physget: out of memory!");
610 1.7 mrg vm_nphysseg--;
611 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
612 1.7 mrg /* structure copy */
613 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
614 1.7 mrg }
615 1.7 mrg return (TRUE);
616 1.7 mrg }
617 1.1 mrg
618 1.7 mrg return (FALSE); /* whoops! */
619 1.28 drochner }
620 1.28 drochner
621 1.28 drochner boolean_t
622 1.28 drochner uvm_page_physget(paddrp)
623 1.28 drochner paddr_t *paddrp;
624 1.28 drochner {
625 1.28 drochner int i;
626 1.28 drochner
627 1.28 drochner /* try in the order of freelist preference */
628 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
629 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
630 1.28 drochner return (TRUE);
631 1.28 drochner return (FALSE);
632 1.1 mrg }
633 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
634 1.1 mrg
635 1.1 mrg /*
636 1.1 mrg * uvm_page_physload: load physical memory into VM system
637 1.1 mrg *
638 1.1 mrg * => all args are PFs
639 1.1 mrg * => all pages in start/end get vm_page structures
640 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
641 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
642 1.1 mrg */
643 1.1 mrg
644 1.7 mrg void
645 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
646 1.29 eeh paddr_t start, end, avail_start, avail_end;
647 1.12 thorpej int free_list;
648 1.1 mrg {
649 1.14 eeh int preload, lcv;
650 1.14 eeh psize_t npages;
651 1.7 mrg struct vm_page *pgs;
652 1.7 mrg struct vm_physseg *ps;
653 1.7 mrg
654 1.7 mrg if (uvmexp.pagesize == 0)
655 1.42 mrg panic("uvm_page_physload: page size not set!");
656 1.7 mrg
657 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
658 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
659 1.26 drochner
660 1.26 drochner if (start >= end)
661 1.26 drochner panic("uvm_page_physload: start >= end");
662 1.12 thorpej
663 1.7 mrg /*
664 1.7 mrg * do we have room?
665 1.7 mrg */
666 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
667 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
668 1.7 mrg "segment\n");
669 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
670 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
671 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
672 1.7 mrg return;
673 1.7 mrg }
674 1.7 mrg
675 1.7 mrg /*
676 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
677 1.7 mrg * called yet, so malloc is not available).
678 1.7 mrg */
679 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
680 1.7 mrg if (vm_physmem[lcv].pgs)
681 1.7 mrg break;
682 1.7 mrg }
683 1.7 mrg preload = (lcv == vm_nphysseg);
684 1.7 mrg
685 1.7 mrg /*
686 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
687 1.7 mrg */
688 1.7 mrg if (!preload) {
689 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
690 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
691 1.1 mrg #else
692 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
693 1.14 eeh paddr_t paddr;
694 1.7 mrg npages = end - start; /* # of pages */
695 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
696 1.40 thorpej M_VMPAGE, M_NOWAIT);
697 1.7 mrg if (pgs == NULL) {
698 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
699 1.7 mrg "structs for segment\n");
700 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
701 1.7 mrg return;
702 1.7 mrg }
703 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
704 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
705 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
706 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
707 1.7 mrg pgs[lcv].phys_addr = paddr;
708 1.12 thorpej pgs[lcv].free_list = free_list;
709 1.7 mrg if (atop(paddr) >= avail_start &&
710 1.7 mrg atop(paddr) <= avail_end)
711 1.8 chuck uvm_pagefree(&pgs[lcv]);
712 1.7 mrg }
713 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
714 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
715 1.1 mrg #endif
716 1.7 mrg } else {
717 1.1 mrg
718 1.7 mrg /* gcc complains if these don't get init'd */
719 1.7 mrg pgs = NULL;
720 1.7 mrg npages = 0;
721 1.1 mrg
722 1.7 mrg }
723 1.1 mrg
724 1.7 mrg /*
725 1.7 mrg * now insert us in the proper place in vm_physmem[]
726 1.7 mrg */
727 1.1 mrg
728 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
729 1.1 mrg
730 1.7 mrg /* random: put it at the end (easy!) */
731 1.7 mrg ps = &vm_physmem[vm_nphysseg];
732 1.1 mrg
733 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
734 1.1 mrg
735 1.7 mrg {
736 1.7 mrg int x;
737 1.7 mrg /* sort by address for binary search */
738 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
739 1.7 mrg if (start < vm_physmem[lcv].start)
740 1.7 mrg break;
741 1.7 mrg ps = &vm_physmem[lcv];
742 1.7 mrg /* move back other entries, if necessary ... */
743 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
744 1.7 mrg /* structure copy */
745 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
746 1.7 mrg }
747 1.1 mrg
748 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
749 1.1 mrg
750 1.7 mrg {
751 1.7 mrg int x;
752 1.7 mrg /* sort by largest segment first */
753 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
754 1.7 mrg if ((end - start) >
755 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
756 1.7 mrg break;
757 1.7 mrg ps = &vm_physmem[lcv];
758 1.7 mrg /* move back other entries, if necessary ... */
759 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
760 1.7 mrg /* structure copy */
761 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
762 1.7 mrg }
763 1.1 mrg
764 1.1 mrg #else
765 1.1 mrg
766 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
767 1.1 mrg
768 1.1 mrg #endif
769 1.1 mrg
770 1.7 mrg ps->start = start;
771 1.7 mrg ps->end = end;
772 1.7 mrg ps->avail_start = avail_start;
773 1.7 mrg ps->avail_end = avail_end;
774 1.7 mrg if (preload) {
775 1.7 mrg ps->pgs = NULL;
776 1.7 mrg } else {
777 1.7 mrg ps->pgs = pgs;
778 1.7 mrg ps->lastpg = pgs + npages - 1;
779 1.7 mrg }
780 1.12 thorpej ps->free_list = free_list;
781 1.7 mrg vm_nphysseg++;
782 1.7 mrg
783 1.7 mrg /*
784 1.7 mrg * done!
785 1.7 mrg */
786 1.1 mrg
787 1.7 mrg if (!preload)
788 1.7 mrg uvm_page_rehash();
789 1.1 mrg
790 1.7 mrg return;
791 1.1 mrg }
792 1.1 mrg
793 1.1 mrg /*
794 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
795 1.1 mrg */
796 1.1 mrg
797 1.7 mrg void
798 1.7 mrg uvm_page_rehash()
799 1.1 mrg {
800 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
801 1.7 mrg struct pglist *newbuckets, *oldbuckets;
802 1.7 mrg struct vm_page *pg;
803 1.30 thorpej size_t newsize, oldsize;
804 1.7 mrg
805 1.7 mrg /*
806 1.7 mrg * compute number of pages that can go in the free pool
807 1.7 mrg */
808 1.7 mrg
809 1.7 mrg freepages = 0;
810 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
811 1.7 mrg freepages +=
812 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
813 1.7 mrg
814 1.7 mrg /*
815 1.7 mrg * compute number of buckets needed for this number of pages
816 1.7 mrg */
817 1.7 mrg
818 1.7 mrg bucketcount = 1;
819 1.7 mrg while (bucketcount < freepages)
820 1.7 mrg bucketcount = bucketcount * 2;
821 1.7 mrg
822 1.7 mrg /*
823 1.30 thorpej * compute the size of the current table and new table.
824 1.7 mrg */
825 1.7 mrg
826 1.30 thorpej oldbuckets = uvm.page_hash;
827 1.30 thorpej oldcount = uvm.page_nhash;
828 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
829 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
830 1.30 thorpej
831 1.30 thorpej /*
832 1.30 thorpej * allocate the new buckets
833 1.30 thorpej */
834 1.30 thorpej
835 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
836 1.7 mrg if (newbuckets == NULL) {
837 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
838 1.7 mrg "hash table\n");
839 1.7 mrg return;
840 1.7 mrg }
841 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
842 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
843 1.7 mrg
844 1.7 mrg /*
845 1.7 mrg * now replace the old buckets with the new ones and rehash everything
846 1.7 mrg */
847 1.7 mrg
848 1.47 thorpej s = splvm();
849 1.7 mrg simple_lock(&uvm.hashlock);
850 1.7 mrg uvm.page_hash = newbuckets;
851 1.7 mrg uvm.page_nhash = bucketcount;
852 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
853 1.7 mrg
854 1.7 mrg /* ... and rehash */
855 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
856 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
857 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
858 1.7 mrg TAILQ_INSERT_TAIL(
859 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
860 1.7 mrg pg, hashq);
861 1.7 mrg }
862 1.7 mrg }
863 1.7 mrg simple_unlock(&uvm.hashlock);
864 1.7 mrg splx(s);
865 1.7 mrg
866 1.7 mrg /*
867 1.30 thorpej * free old bucket array if is not the boot-time table
868 1.7 mrg */
869 1.7 mrg
870 1.7 mrg if (oldbuckets != &uvm_bootbucket)
871 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
872 1.7 mrg
873 1.7 mrg /*
874 1.7 mrg * done
875 1.7 mrg */
876 1.7 mrg return;
877 1.1 mrg }
878 1.1 mrg
879 1.60 thorpej /*
880 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
881 1.60 thorpej * larger than the old one.
882 1.60 thorpej */
883 1.60 thorpej
884 1.60 thorpej void
885 1.60 thorpej uvm_page_recolor(int newncolors)
886 1.60 thorpej {
887 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
888 1.60 thorpej struct pgfreelist pgfl;
889 1.63 chs struct vm_page *pg;
890 1.60 thorpej vsize_t bucketcount;
891 1.60 thorpej int s, lcv, color, i, ocolors;
892 1.60 thorpej
893 1.60 thorpej if (newncolors <= uvmexp.ncolors)
894 1.60 thorpej return;
895 1.60 thorpej
896 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
897 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
898 1.60 thorpej M_VMPAGE, M_NOWAIT);
899 1.60 thorpej if (bucketarray == NULL) {
900 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
901 1.60 thorpej (long) bucketcount);
902 1.60 thorpej return;
903 1.60 thorpej }
904 1.60 thorpej
905 1.60 thorpej s = uvm_lock_fpageq();
906 1.60 thorpej
907 1.60 thorpej /* Make sure we should still do this. */
908 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
909 1.60 thorpej uvm_unlock_fpageq(s);
910 1.60 thorpej free(bucketarray, M_VMPAGE);
911 1.60 thorpej return;
912 1.60 thorpej }
913 1.60 thorpej
914 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
915 1.60 thorpej ocolors = uvmexp.ncolors;
916 1.60 thorpej
917 1.60 thorpej uvmexp.ncolors = newncolors;
918 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
919 1.60 thorpej
920 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
921 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
922 1.60 thorpej uvm_page_init_buckets(&pgfl);
923 1.60 thorpej for (color = 0; color < ocolors; color++) {
924 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
925 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
926 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
927 1.60 thorpej != NULL) {
928 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
929 1.60 thorpej lcv].pgfl_buckets[
930 1.60 thorpej color].pgfl_queues[i], pg, pageq);
931 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
932 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
933 1.60 thorpej i], pg, pageq);
934 1.60 thorpej }
935 1.60 thorpej }
936 1.60 thorpej }
937 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
938 1.60 thorpej }
939 1.60 thorpej
940 1.60 thorpej if (have_recolored_pages) {
941 1.60 thorpej uvm_unlock_fpageq(s);
942 1.60 thorpej free(oldbucketarray, M_VMPAGE);
943 1.60 thorpej return;
944 1.60 thorpej }
945 1.60 thorpej
946 1.60 thorpej have_recolored_pages = TRUE;
947 1.60 thorpej uvm_unlock_fpageq(s);
948 1.60 thorpej }
949 1.1 mrg
950 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
951 1.1 mrg
952 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
953 1.1 mrg
954 1.1 mrg /* call from DDB */
955 1.7 mrg void
956 1.7 mrg uvm_page_physdump()
957 1.7 mrg {
958 1.7 mrg int lcv;
959 1.7 mrg
960 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
961 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
962 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
963 1.37 soda printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
964 1.37 soda (long long)vm_physmem[lcv].start,
965 1.37 soda (long long)vm_physmem[lcv].end,
966 1.37 soda (long long)vm_physmem[lcv].avail_start,
967 1.37 soda (long long)vm_physmem[lcv].avail_end);
968 1.7 mrg printf("STRATEGY = ");
969 1.7 mrg switch (VM_PHYSSEG_STRAT) {
970 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
971 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
972 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
973 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
974 1.7 mrg }
975 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
976 1.1 mrg }
977 1.1 mrg #endif
978 1.1 mrg
979 1.1 mrg /*
980 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
981 1.54 thorpej */
982 1.54 thorpej
983 1.54 thorpej static __inline struct vm_page *
984 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
985 1.54 thorpej unsigned int *trycolorp)
986 1.54 thorpej {
987 1.54 thorpej struct pglist *freeq;
988 1.54 thorpej struct vm_page *pg;
989 1.58 enami int color, trycolor = *trycolorp;
990 1.54 thorpej
991 1.58 enami color = trycolor;
992 1.58 enami do {
993 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
994 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
995 1.54 thorpej goto gotit;
996 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
997 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
998 1.54 thorpej goto gotit;
999 1.60 thorpej color = (color + 1) & uvmexp.colormask;
1000 1.58 enami } while (color != trycolor);
1001 1.54 thorpej
1002 1.54 thorpej return (NULL);
1003 1.54 thorpej
1004 1.54 thorpej gotit:
1005 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
1006 1.54 thorpej uvmexp.free--;
1007 1.54 thorpej
1008 1.54 thorpej /* update zero'd page count */
1009 1.54 thorpej if (pg->flags & PG_ZERO)
1010 1.54 thorpej uvmexp.zeropages--;
1011 1.54 thorpej
1012 1.54 thorpej if (color == trycolor)
1013 1.54 thorpej uvmexp.colorhit++;
1014 1.54 thorpej else {
1015 1.54 thorpej uvmexp.colormiss++;
1016 1.54 thorpej *trycolorp = color;
1017 1.54 thorpej }
1018 1.54 thorpej
1019 1.54 thorpej return (pg);
1020 1.54 thorpej }
1021 1.54 thorpej
1022 1.54 thorpej /*
1023 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1024 1.1 mrg *
1025 1.1 mrg * => return null if no pages free
1026 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1027 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
1028 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1029 1.1 mrg * => only one of obj or anon can be non-null
1030 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1031 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1032 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1033 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1034 1.34 thorpej * unknown contents page. This is because we live with the
1035 1.34 thorpej * consequences of a bad free list decision for the entire
1036 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1037 1.34 thorpej * is slower to access.
1038 1.1 mrg */
1039 1.1 mrg
1040 1.7 mrg struct vm_page *
1041 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
1042 1.7 mrg struct uvm_object *obj;
1043 1.31 kleink voff_t off;
1044 1.18 chs int flags;
1045 1.7 mrg struct vm_anon *anon;
1046 1.12 thorpej int strat, free_list;
1047 1.1 mrg {
1048 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
1049 1.7 mrg struct vm_page *pg;
1050 1.18 chs boolean_t use_reserve;
1051 1.1 mrg
1052 1.44 chs KASSERT(obj == NULL || anon == NULL);
1053 1.44 chs KASSERT(off == trunc_page(off));
1054 1.48 thorpej
1055 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1056 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1057 1.48 thorpej
1058 1.44 chs s = uvm_lock_fpageq();
1059 1.1 mrg
1060 1.7 mrg /*
1061 1.54 thorpej * This implements a global round-robin page coloring
1062 1.54 thorpej * algorithm.
1063 1.54 thorpej *
1064 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
1065 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1066 1.54 thorpej */
1067 1.54 thorpej color = uvm.page_free_nextcolor;
1068 1.54 thorpej
1069 1.54 thorpej /*
1070 1.7 mrg * check to see if we need to generate some free pages waking
1071 1.7 mrg * the pagedaemon.
1072 1.7 mrg */
1073 1.7 mrg
1074 1.64 thorpej UVM_KICK_PDAEMON();
1075 1.7 mrg
1076 1.7 mrg /*
1077 1.7 mrg * fail if any of these conditions is true:
1078 1.7 mrg * [1] there really are no free pages, or
1079 1.7 mrg * [2] only kernel "reserved" pages remain and
1080 1.7 mrg * the page isn't being allocated to a kernel object.
1081 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1082 1.7 mrg * the requestor isn't the pagedaemon.
1083 1.7 mrg */
1084 1.7 mrg
1085 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1086 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1087 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1088 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1089 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1090 1.12 thorpej goto fail;
1091 1.12 thorpej
1092 1.34 thorpej #if PGFL_NQUEUES != 2
1093 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1094 1.34 thorpej #endif
1095 1.34 thorpej
1096 1.34 thorpej /*
1097 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1098 1.34 thorpej * we try the UNKNOWN queue first.
1099 1.34 thorpej */
1100 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1101 1.34 thorpej try1 = PGFL_ZEROS;
1102 1.34 thorpej try2 = PGFL_UNKNOWN;
1103 1.34 thorpej } else {
1104 1.34 thorpej try1 = PGFL_UNKNOWN;
1105 1.34 thorpej try2 = PGFL_ZEROS;
1106 1.34 thorpej }
1107 1.34 thorpej
1108 1.12 thorpej again:
1109 1.12 thorpej switch (strat) {
1110 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1111 1.12 thorpej /* Check all freelists in descending priority order. */
1112 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1113 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1114 1.54 thorpej try1, try2, &color);
1115 1.54 thorpej if (pg != NULL)
1116 1.12 thorpej goto gotit;
1117 1.12 thorpej }
1118 1.12 thorpej
1119 1.12 thorpej /* No pages free! */
1120 1.12 thorpej goto fail;
1121 1.12 thorpej
1122 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1123 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1124 1.12 thorpej /* Attempt to allocate from the specified free list. */
1125 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1126 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1127 1.54 thorpej try1, try2, &color);
1128 1.54 thorpej if (pg != NULL)
1129 1.12 thorpej goto gotit;
1130 1.12 thorpej
1131 1.12 thorpej /* Fall back, if possible. */
1132 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1133 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1134 1.12 thorpej goto again;
1135 1.12 thorpej }
1136 1.12 thorpej
1137 1.12 thorpej /* No pages free! */
1138 1.12 thorpej goto fail;
1139 1.12 thorpej
1140 1.12 thorpej default:
1141 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1142 1.12 thorpej /* NOTREACHED */
1143 1.7 mrg }
1144 1.7 mrg
1145 1.12 thorpej gotit:
1146 1.54 thorpej /*
1147 1.54 thorpej * We now know which color we actually allocated from; set
1148 1.54 thorpej * the next color accordingly.
1149 1.54 thorpej */
1150 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1151 1.34 thorpej
1152 1.34 thorpej /*
1153 1.34 thorpej * update allocation statistics and remember if we have to
1154 1.34 thorpej * zero the page
1155 1.34 thorpej */
1156 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1157 1.34 thorpej if (pg->flags & PG_ZERO) {
1158 1.34 thorpej uvmexp.pga_zerohit++;
1159 1.34 thorpej zeroit = 0;
1160 1.34 thorpej } else {
1161 1.34 thorpej uvmexp.pga_zeromiss++;
1162 1.34 thorpej zeroit = 1;
1163 1.34 thorpej }
1164 1.34 thorpej }
1165 1.34 thorpej
1166 1.21 thorpej uvm_unlock_fpageq(s); /* unlock free page queue */
1167 1.7 mrg
1168 1.7 mrg pg->offset = off;
1169 1.7 mrg pg->uobject = obj;
1170 1.7 mrg pg->uanon = anon;
1171 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1172 1.7 mrg pg->version++;
1173 1.7 mrg if (anon) {
1174 1.7 mrg anon->u.an_page = pg;
1175 1.7 mrg pg->pqflags = PQ_ANON;
1176 1.45 simonb uvmexp.anonpages++;
1177 1.7 mrg } else {
1178 1.7 mrg if (obj)
1179 1.7 mrg uvm_pageinsert(pg);
1180 1.7 mrg pg->pqflags = 0;
1181 1.7 mrg }
1182 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1183 1.7 mrg pg->owner_tag = NULL;
1184 1.1 mrg #endif
1185 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1186 1.33 thorpej
1187 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1188 1.33 thorpej /*
1189 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1190 1.34 thorpej * zero'd, then we have to zero it ourselves.
1191 1.33 thorpej */
1192 1.33 thorpej pg->flags &= ~PG_CLEAN;
1193 1.34 thorpej if (zeroit)
1194 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1195 1.33 thorpej }
1196 1.1 mrg
1197 1.7 mrg return(pg);
1198 1.12 thorpej
1199 1.12 thorpej fail:
1200 1.21 thorpej uvm_unlock_fpageq(s);
1201 1.12 thorpej return (NULL);
1202 1.1 mrg }
1203 1.1 mrg
1204 1.1 mrg /*
1205 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1206 1.1 mrg *
1207 1.1 mrg * => both objects must be locked
1208 1.1 mrg */
1209 1.1 mrg
1210 1.7 mrg void
1211 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1212 1.7 mrg struct vm_page *pg;
1213 1.7 mrg struct uvm_object *newobj;
1214 1.31 kleink voff_t newoff;
1215 1.1 mrg {
1216 1.7 mrg /*
1217 1.7 mrg * remove it from the old object
1218 1.7 mrg */
1219 1.7 mrg
1220 1.7 mrg if (pg->uobject) {
1221 1.7 mrg uvm_pageremove(pg);
1222 1.7 mrg }
1223 1.7 mrg
1224 1.7 mrg /*
1225 1.7 mrg * put it in the new object
1226 1.7 mrg */
1227 1.7 mrg
1228 1.7 mrg if (newobj) {
1229 1.7 mrg pg->uobject = newobj;
1230 1.7 mrg pg->offset = newoff;
1231 1.7 mrg pg->version++;
1232 1.7 mrg uvm_pageinsert(pg);
1233 1.7 mrg }
1234 1.1 mrg }
1235 1.1 mrg
1236 1.1 mrg
1237 1.1 mrg /*
1238 1.1 mrg * uvm_pagefree: free page
1239 1.1 mrg *
1240 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1241 1.1 mrg * => put page on free list
1242 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1243 1.1 mrg * => caller must lock page queues
1244 1.1 mrg * => assumes all valid mappings of pg are gone
1245 1.1 mrg */
1246 1.1 mrg
1247 1.44 chs void
1248 1.44 chs uvm_pagefree(pg)
1249 1.44 chs struct vm_page *pg;
1250 1.1 mrg {
1251 1.7 mrg int s;
1252 1.7 mrg int saved_loan_count = pg->loan_count;
1253 1.1 mrg
1254 1.44 chs #ifdef DEBUG
1255 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1256 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1257 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1258 1.44 chs }
1259 1.44 chs #endif
1260 1.44 chs
1261 1.7 mrg /*
1262 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
1263 1.7 mrg * from the object.
1264 1.7 mrg */
1265 1.7 mrg
1266 1.7 mrg if (pg->flags & PG_TABLED) {
1267 1.7 mrg
1268 1.7 mrg /*
1269 1.44 chs * if the object page is on loan we are going to drop ownership.
1270 1.7 mrg * it is possible that an anon will take over as owner for this
1271 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
1272 1.62 chs * it knows it needs to allocate swap if it wants to page the
1273 1.62 chs * page out.
1274 1.7 mrg */
1275 1.7 mrg
1276 1.7 mrg if (saved_loan_count)
1277 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1278 1.7 mrg uvm_pageremove(pg);
1279 1.62 chs
1280 1.7 mrg /*
1281 1.7 mrg * if our page was on loan, then we just lost control over it
1282 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
1283 1.7 mrg * already taken over ownership of the page by now and thus
1284 1.62 chs * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1285 1.62 chs * return (when the last loan is dropped, then the page can be
1286 1.7 mrg * freed by whatever was holding the last loan).
1287 1.7 mrg */
1288 1.44 chs
1289 1.62 chs if (saved_loan_count)
1290 1.7 mrg return;
1291 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1292 1.7 mrg
1293 1.7 mrg /*
1294 1.7 mrg * if our page is owned by an anon and is loaned out to the
1295 1.7 mrg * kernel then we just want to drop ownership and return.
1296 1.7 mrg * the kernel must free the page when all its loans clear ...
1297 1.7 mrg * note that the kernel can't change the loan status of our
1298 1.7 mrg * page as long as we are holding PQ lock.
1299 1.7 mrg */
1300 1.44 chs
1301 1.7 mrg pg->pqflags &= ~PQ_ANON;
1302 1.7 mrg pg->uanon = NULL;
1303 1.7 mrg return;
1304 1.7 mrg }
1305 1.44 chs KASSERT(saved_loan_count == 0);
1306 1.1 mrg
1307 1.7 mrg /*
1308 1.7 mrg * now remove the page from the queues
1309 1.7 mrg */
1310 1.7 mrg
1311 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1312 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1313 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1314 1.7 mrg uvmexp.active--;
1315 1.65 thorpej } else if (pg->pqflags & PQ_INACTIVE) {
1316 1.61 ross TAILQ_REMOVE(&uvm.page_inactive, pg, pageq);
1317 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1318 1.7 mrg uvmexp.inactive--;
1319 1.7 mrg }
1320 1.7 mrg
1321 1.7 mrg /*
1322 1.7 mrg * if the page was wired, unwire it now.
1323 1.7 mrg */
1324 1.44 chs
1325 1.34 thorpej if (pg->wire_count) {
1326 1.7 mrg pg->wire_count = 0;
1327 1.7 mrg uvmexp.wired--;
1328 1.7 mrg }
1329 1.44 chs if (pg->uanon) {
1330 1.45 simonb uvmexp.anonpages--;
1331 1.44 chs }
1332 1.7 mrg
1333 1.7 mrg /*
1334 1.44 chs * and put on free queue
1335 1.7 mrg */
1336 1.7 mrg
1337 1.34 thorpej pg->flags &= ~PG_ZERO;
1338 1.34 thorpej
1339 1.21 thorpej s = uvm_lock_fpageq();
1340 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1341 1.54 thorpej uvm_page_lookup_freelist(pg)].pgfl_buckets[
1342 1.54 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1343 1.7 mrg pg->pqflags = PQ_FREE;
1344 1.3 chs #ifdef DEBUG
1345 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1346 1.7 mrg pg->offset = 0xdeadbeef;
1347 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1348 1.3 chs #endif
1349 1.7 mrg uvmexp.free++;
1350 1.34 thorpej
1351 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1352 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1353 1.34 thorpej
1354 1.21 thorpej uvm_unlock_fpageq(s);
1355 1.44 chs }
1356 1.44 chs
1357 1.44 chs /*
1358 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1359 1.44 chs *
1360 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1361 1.44 chs * => if pages are object-owned, object must be locked.
1362 1.44 chs * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1363 1.44 chs */
1364 1.44 chs
1365 1.44 chs void
1366 1.44 chs uvm_page_unbusy(pgs, npgs)
1367 1.44 chs struct vm_page **pgs;
1368 1.44 chs int npgs;
1369 1.44 chs {
1370 1.44 chs struct vm_page *pg;
1371 1.44 chs struct uvm_object *uobj;
1372 1.44 chs int i;
1373 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1374 1.44 chs
1375 1.44 chs for (i = 0; i < npgs; i++) {
1376 1.44 chs pg = pgs[i];
1377 1.44 chs
1378 1.44 chs if (pg == NULL) {
1379 1.44 chs continue;
1380 1.44 chs }
1381 1.44 chs if (pg->flags & PG_WANTED) {
1382 1.44 chs wakeup(pg);
1383 1.44 chs }
1384 1.44 chs if (pg->flags & PG_RELEASED) {
1385 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1386 1.44 chs uobj = pg->uobject;
1387 1.44 chs if (uobj != NULL) {
1388 1.44 chs uobj->pgops->pgo_releasepg(pg, NULL);
1389 1.44 chs } else {
1390 1.44 chs pg->flags &= ~(PG_BUSY);
1391 1.44 chs UVM_PAGE_OWN(pg, NULL);
1392 1.44 chs uvm_anfree(pg->uanon);
1393 1.44 chs }
1394 1.44 chs } else {
1395 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1396 1.46 chs KASSERT(pg->wire_count ||
1397 1.46 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1398 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1399 1.44 chs UVM_PAGE_OWN(pg, NULL);
1400 1.44 chs }
1401 1.44 chs }
1402 1.1 mrg }
1403 1.1 mrg
1404 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1405 1.1 mrg /*
1406 1.1 mrg * uvm_page_own: set or release page ownership
1407 1.1 mrg *
1408 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1409 1.1 mrg * and where they do it. it can be used to track down problems
1410 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1411 1.1 mrg * => page's object [if any] must be locked
1412 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1413 1.1 mrg */
1414 1.7 mrg void
1415 1.7 mrg uvm_page_own(pg, tag)
1416 1.7 mrg struct vm_page *pg;
1417 1.7 mrg char *tag;
1418 1.1 mrg {
1419 1.7 mrg /* gain ownership? */
1420 1.7 mrg if (tag) {
1421 1.7 mrg if (pg->owner_tag) {
1422 1.7 mrg printf("uvm_page_own: page %p already owned "
1423 1.7 mrg "by proc %d [%s]\n", pg,
1424 1.7 mrg pg->owner, pg->owner_tag);
1425 1.7 mrg panic("uvm_page_own");
1426 1.7 mrg }
1427 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1428 1.7 mrg pg->owner_tag = tag;
1429 1.7 mrg return;
1430 1.7 mrg }
1431 1.7 mrg
1432 1.7 mrg /* drop ownership */
1433 1.7 mrg if (pg->owner_tag == NULL) {
1434 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1435 1.7 mrg "page (%p)\n", pg);
1436 1.7 mrg panic("uvm_page_own");
1437 1.7 mrg }
1438 1.7 mrg pg->owner_tag = NULL;
1439 1.7 mrg return;
1440 1.1 mrg }
1441 1.1 mrg #endif
1442 1.34 thorpej
1443 1.34 thorpej /*
1444 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1445 1.34 thorpej *
1446 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1447 1.54 thorpej * on the CPU cache.
1448 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1449 1.34 thorpej * there is a process ready to run.
1450 1.34 thorpej */
1451 1.34 thorpej void
1452 1.34 thorpej uvm_pageidlezero()
1453 1.34 thorpej {
1454 1.34 thorpej struct vm_page *pg;
1455 1.34 thorpej struct pgfreelist *pgfl;
1456 1.58 enami int free_list, s, firstbucket;
1457 1.54 thorpej static int nextbucket;
1458 1.54 thorpej
1459 1.54 thorpej s = uvm_lock_fpageq();
1460 1.34 thorpej
1461 1.58 enami firstbucket = nextbucket;
1462 1.58 enami do {
1463 1.54 thorpej if (sched_whichqs != 0) {
1464 1.34 thorpej uvm_unlock_fpageq(s);
1465 1.34 thorpej return;
1466 1.34 thorpej }
1467 1.34 thorpej
1468 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1469 1.34 thorpej uvm.page_idle_zero = FALSE;
1470 1.34 thorpej uvm_unlock_fpageq(s);
1471 1.34 thorpej return;
1472 1.34 thorpej }
1473 1.34 thorpej
1474 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1475 1.54 thorpej pgfl = &uvm.page_free[free_list];
1476 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1477 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1478 1.54 thorpej if (sched_whichqs != 0) {
1479 1.54 thorpej uvm_unlock_fpageq(s);
1480 1.54 thorpej return;
1481 1.54 thorpej }
1482 1.54 thorpej
1483 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1484 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1485 1.54 thorpej pg, pageq);
1486 1.54 thorpej uvmexp.free--;
1487 1.54 thorpej uvm_unlock_fpageq(s);
1488 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1489 1.54 thorpej if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) ==
1490 1.54 thorpej FALSE) {
1491 1.54 thorpej /*
1492 1.54 thorpej * The machine-dependent code detected
1493 1.54 thorpej * some reason for us to abort zeroing
1494 1.54 thorpej * pages, probably because there is a
1495 1.54 thorpej * process now ready to run.
1496 1.54 thorpej */
1497 1.54 thorpej s = uvm_lock_fpageq();
1498 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1499 1.54 thorpej nextbucket].pgfl_queues[
1500 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1501 1.54 thorpej uvmexp.free++;
1502 1.54 thorpej uvmexp.zeroaborts++;
1503 1.54 thorpej uvm_unlock_fpageq(s);
1504 1.54 thorpej return;
1505 1.54 thorpej }
1506 1.54 thorpej #else
1507 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1508 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1509 1.54 thorpej pg->flags |= PG_ZERO;
1510 1.54 thorpej
1511 1.54 thorpej s = uvm_lock_fpageq();
1512 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1513 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1514 1.54 thorpej pg, pageq);
1515 1.54 thorpej uvmexp.free++;
1516 1.54 thorpej uvmexp.zeropages++;
1517 1.54 thorpej }
1518 1.41 thorpej }
1519 1.58 enami
1520 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1521 1.58 enami } while (nextbucket != firstbucket);
1522 1.34 thorpej
1523 1.54 thorpej uvm_unlock_fpageq(s);
1524 1.34 thorpej }
1525