uvm_page.c revision 1.67 1 1.67 chs /* $NetBSD: uvm_page.c,v 1.67 2001/09/15 20:36:46 chs Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.44 chs #include "opt_uvmhist.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.1 mrg
82 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
83 1.1 mrg #include <uvm/uvm.h>
84 1.1 mrg
85 1.1 mrg /*
86 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * physical memory config is stored in vm_physmem.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95 1.1 mrg
96 1.1 mrg /*
97 1.36 thorpej * Some supported CPUs in a given architecture don't support all
98 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
99 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
100 1.34 thorpej */
101 1.44 chs /*
102 1.44 chs * XXX disabled until we can find a way to do this without causing
103 1.44 chs * problems for either cpu caches or DMA latency.
104 1.44 chs */
105 1.44 chs boolean_t vm_page_zero_enable = FALSE;
106 1.34 thorpej
107 1.34 thorpej /*
108 1.1 mrg * local variables
109 1.1 mrg */
110 1.1 mrg
111 1.1 mrg /*
112 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
113 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
114 1.1 mrg * and pmap_startup here also uses them internally.
115 1.1 mrg */
116 1.1 mrg
117 1.14 eeh static vaddr_t virtual_space_start;
118 1.14 eeh static vaddr_t virtual_space_end;
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * we use a hash table with only one bucket during bootup. we will
122 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
123 1.30 thorpej * we static allocate the one bootstrap bucket below...
124 1.1 mrg */
125 1.1 mrg
126 1.1 mrg static struct pglist uvm_bootbucket;
127 1.1 mrg
128 1.1 mrg /*
129 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
130 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
131 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
132 1.60 thorpej * free the initial set of buckets, since they are allocated using
133 1.60 thorpej * uvm_pageboot_alloc().
134 1.60 thorpej */
135 1.60 thorpej
136 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
137 1.60 thorpej
138 1.60 thorpej /*
139 1.1 mrg * local prototypes
140 1.1 mrg */
141 1.1 mrg
142 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
143 1.44 chs static void uvm_pageremove __P((struct vm_page *));
144 1.1 mrg
145 1.1 mrg /*
146 1.1 mrg * inline functions
147 1.1 mrg */
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
151 1.1 mrg *
152 1.1 mrg * => caller must lock object
153 1.1 mrg * => caller must lock page queues
154 1.1 mrg * => call should have already set pg's object and offset pointers
155 1.1 mrg * and bumped the version counter
156 1.1 mrg */
157 1.1 mrg
158 1.7 mrg __inline static void
159 1.7 mrg uvm_pageinsert(pg)
160 1.7 mrg struct vm_page *pg;
161 1.1 mrg {
162 1.7 mrg struct pglist *buck;
163 1.67 chs struct uvm_object *uobj = pg->uobject;
164 1.1 mrg
165 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
166 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
167 1.7 mrg simple_lock(&uvm.hashlock);
168 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
169 1.7 mrg simple_unlock(&uvm.hashlock);
170 1.7 mrg
171 1.67 chs TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
172 1.7 mrg pg->flags |= PG_TABLED;
173 1.67 chs uobj->uo_npages++;
174 1.1 mrg }
175 1.1 mrg
176 1.1 mrg /*
177 1.1 mrg * uvm_page_remove: remove page from object and hash
178 1.1 mrg *
179 1.1 mrg * => caller must lock object
180 1.1 mrg * => caller must lock page queues
181 1.1 mrg */
182 1.1 mrg
183 1.44 chs static __inline void
184 1.7 mrg uvm_pageremove(pg)
185 1.7 mrg struct vm_page *pg;
186 1.1 mrg {
187 1.7 mrg struct pglist *buck;
188 1.67 chs struct uvm_object *uobj = pg->uobject;
189 1.1 mrg
190 1.44 chs KASSERT(pg->flags & PG_TABLED);
191 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
192 1.7 mrg simple_lock(&uvm.hashlock);
193 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
194 1.7 mrg simple_unlock(&uvm.hashlock);
195 1.7 mrg
196 1.67 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
197 1.51 chs uvmexp.vtextpages--;
198 1.67 chs } else if (UVM_OBJ_IS_VNODE(uobj)) {
199 1.45 simonb uvmexp.vnodepages--;
200 1.51 chs }
201 1.44 chs
202 1.7 mrg /* object should be locked */
203 1.67 chs uobj->uo_npages--;
204 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
205 1.7 mrg pg->flags &= ~PG_TABLED;
206 1.7 mrg pg->uobject = NULL;
207 1.1 mrg }
208 1.1 mrg
209 1.60 thorpej static void
210 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
211 1.60 thorpej {
212 1.60 thorpej int color, i;
213 1.60 thorpej
214 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
215 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
216 1.60 thorpej TAILQ_INIT(&pgfl->pgfl_buckets[
217 1.60 thorpej color].pgfl_queues[i]);
218 1.60 thorpej }
219 1.60 thorpej }
220 1.60 thorpej }
221 1.60 thorpej
222 1.1 mrg /*
223 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
224 1.62 chs *
225 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
226 1.1 mrg */
227 1.1 mrg
228 1.7 mrg void
229 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
230 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
231 1.1 mrg {
232 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
233 1.60 thorpej struct pgflbucket *bucketarray;
234 1.63 chs struct vm_page *pagearray;
235 1.60 thorpej int lcv, i;
236 1.14 eeh paddr_t paddr;
237 1.7 mrg
238 1.7 mrg /*
239 1.60 thorpej * init the page queues and page queue locks, except the free
240 1.60 thorpej * list; we allocate that later (with the initial vm_page
241 1.60 thorpej * structures).
242 1.7 mrg */
243 1.51 chs
244 1.7 mrg TAILQ_INIT(&uvm.page_active);
245 1.61 ross TAILQ_INIT(&uvm.page_inactive);
246 1.7 mrg simple_lock_init(&uvm.pageqlock);
247 1.7 mrg simple_lock_init(&uvm.fpageqlock);
248 1.7 mrg
249 1.7 mrg /*
250 1.51 chs * init the <obj,offset> => <page> hash table. for now
251 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
252 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
253 1.7 mrg */
254 1.7 mrg
255 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
256 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
257 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
258 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
259 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
260 1.7 mrg
261 1.62 chs /*
262 1.51 chs * allocate vm_page structures.
263 1.7 mrg */
264 1.7 mrg
265 1.7 mrg /*
266 1.7 mrg * sanity check:
267 1.7 mrg * before calling this function the MD code is expected to register
268 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
269 1.7 mrg * now is to allocate vm_page structures for this memory.
270 1.7 mrg */
271 1.7 mrg
272 1.7 mrg if (vm_nphysseg == 0)
273 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
274 1.62 chs
275 1.7 mrg /*
276 1.62 chs * first calculate the number of free pages...
277 1.7 mrg *
278 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
279 1.7 mrg * this allows us to allocate extra vm_page structures in case we
280 1.7 mrg * want to return some memory to the pool after booting.
281 1.7 mrg */
282 1.62 chs
283 1.7 mrg freepages = 0;
284 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
285 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
286 1.7 mrg
287 1.7 mrg /*
288 1.60 thorpej * Let MD code initialize the number of colors, or default
289 1.60 thorpej * to 1 color if MD code doesn't care.
290 1.60 thorpej */
291 1.60 thorpej if (uvmexp.ncolors == 0)
292 1.60 thorpej uvmexp.ncolors = 1;
293 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
294 1.60 thorpej
295 1.60 thorpej /*
296 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
297 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
298 1.7 mrg * thus, the total number of pages we can use is the total size of
299 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
300 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
301 1.7 mrg * truncation errors (since we can only allocate in terms of whole
302 1.7 mrg * pages).
303 1.7 mrg */
304 1.62 chs
305 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
306 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
307 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
308 1.60 thorpej
309 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
310 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
311 1.60 thorpej sizeof(struct vm_page)));
312 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
313 1.60 thorpej
314 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
315 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
316 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
317 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
318 1.60 thorpej }
319 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
320 1.62 chs
321 1.7 mrg /*
322 1.51 chs * init the vm_page structures and put them in the correct place.
323 1.7 mrg */
324 1.7 mrg
325 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
326 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
327 1.51 chs
328 1.7 mrg /* set up page array pointers */
329 1.7 mrg vm_physmem[lcv].pgs = pagearray;
330 1.7 mrg pagearray += n;
331 1.7 mrg pagecount -= n;
332 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
333 1.7 mrg
334 1.13 perry /* init and free vm_pages (we've already zeroed them) */
335 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
336 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
337 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
338 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
339 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
340 1.56 thorpej #endif
341 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
342 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
343 1.7 mrg uvmexp.npages++;
344 1.7 mrg /* add page to free pool */
345 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
346 1.7 mrg }
347 1.7 mrg }
348 1.7 mrg }
349 1.44 chs
350 1.7 mrg /*
351 1.51 chs * pass up the values of virtual_space_start and
352 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
353 1.7 mrg * layers of the VM.
354 1.7 mrg */
355 1.7 mrg
356 1.7 mrg *kvm_startp = round_page(virtual_space_start);
357 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
358 1.7 mrg
359 1.7 mrg /*
360 1.51 chs * init locks for kernel threads
361 1.7 mrg */
362 1.7 mrg
363 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
364 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
365 1.7 mrg
366 1.7 mrg /*
367 1.51 chs * init various thresholds.
368 1.7 mrg * XXXCDC - values may need adjusting
369 1.7 mrg */
370 1.51 chs
371 1.7 mrg uvmexp.reserve_pagedaemon = 1;
372 1.7 mrg uvmexp.reserve_kernel = 5;
373 1.51 chs uvmexp.anonminpct = 10;
374 1.51 chs uvmexp.vnodeminpct = 10;
375 1.51 chs uvmexp.vtextminpct = 5;
376 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
377 1.51 chs uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
378 1.51 chs uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
379 1.7 mrg
380 1.7 mrg /*
381 1.51 chs * determine if we should zero pages in the idle loop.
382 1.34 thorpej */
383 1.51 chs
384 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
385 1.34 thorpej
386 1.34 thorpej /*
387 1.7 mrg * done!
388 1.7 mrg */
389 1.1 mrg
390 1.32 thorpej uvm.page_init_done = TRUE;
391 1.1 mrg }
392 1.1 mrg
393 1.1 mrg /*
394 1.1 mrg * uvm_setpagesize: set the page size
395 1.62 chs *
396 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
397 1.62 chs */
398 1.1 mrg
399 1.7 mrg void
400 1.7 mrg uvm_setpagesize()
401 1.1 mrg {
402 1.7 mrg if (uvmexp.pagesize == 0)
403 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
404 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
405 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
406 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
407 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
408 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
409 1.7 mrg break;
410 1.1 mrg }
411 1.1 mrg
412 1.1 mrg /*
413 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
414 1.1 mrg */
415 1.1 mrg
416 1.14 eeh vaddr_t
417 1.7 mrg uvm_pageboot_alloc(size)
418 1.14 eeh vsize_t size;
419 1.1 mrg {
420 1.52 thorpej static boolean_t initialized = FALSE;
421 1.14 eeh vaddr_t addr;
422 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
423 1.52 thorpej vaddr_t vaddr;
424 1.14 eeh paddr_t paddr;
425 1.52 thorpej #endif
426 1.1 mrg
427 1.7 mrg /*
428 1.19 thorpej * on first call to this function, initialize ourselves.
429 1.7 mrg */
430 1.19 thorpej if (initialized == FALSE) {
431 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
432 1.1 mrg
433 1.7 mrg /* round it the way we like it */
434 1.7 mrg virtual_space_start = round_page(virtual_space_start);
435 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
436 1.19 thorpej
437 1.19 thorpej initialized = TRUE;
438 1.7 mrg }
439 1.52 thorpej
440 1.52 thorpej /* round to page size */
441 1.52 thorpej size = round_page(size);
442 1.52 thorpej
443 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
444 1.52 thorpej
445 1.62 chs /*
446 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
447 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
448 1.52 thorpej * virtual_space_start/virtual_space_end if necessary.
449 1.52 thorpej */
450 1.52 thorpej
451 1.52 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
452 1.52 thorpej &virtual_space_end);
453 1.52 thorpej
454 1.52 thorpej return(addr);
455 1.52 thorpej
456 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
457 1.1 mrg
458 1.7 mrg /*
459 1.7 mrg * allocate virtual memory for this request
460 1.7 mrg */
461 1.19 thorpej if (virtual_space_start == virtual_space_end ||
462 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
463 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
464 1.20 thorpej
465 1.20 thorpej addr = virtual_space_start;
466 1.20 thorpej
467 1.20 thorpej #ifdef PMAP_GROWKERNEL
468 1.20 thorpej /*
469 1.20 thorpej * If the kernel pmap can't map the requested space,
470 1.20 thorpej * then allocate more resources for it.
471 1.20 thorpej */
472 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
473 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
474 1.20 thorpej if (uvm_maxkaddr < (addr + size))
475 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
476 1.19 thorpej }
477 1.20 thorpej #endif
478 1.1 mrg
479 1.7 mrg virtual_space_start += size;
480 1.1 mrg
481 1.9 thorpej /*
482 1.7 mrg * allocate and mapin physical pages to back new virtual pages
483 1.7 mrg */
484 1.1 mrg
485 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
486 1.7 mrg vaddr += PAGE_SIZE) {
487 1.1 mrg
488 1.7 mrg if (!uvm_page_physget(&paddr))
489 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
490 1.1 mrg
491 1.23 thorpej /*
492 1.23 thorpej * Note this memory is no longer managed, so using
493 1.23 thorpej * pmap_kenter is safe.
494 1.23 thorpej */
495 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
496 1.7 mrg }
497 1.66 chris pmap_update(pmap_kernel());
498 1.7 mrg return(addr);
499 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
500 1.1 mrg }
501 1.1 mrg
502 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
503 1.1 mrg /*
504 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
505 1.1 mrg *
506 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
507 1.1 mrg * values match the start/end values. if we can't do that, then we
508 1.1 mrg * will advance both values (making them equal, and removing some
509 1.1 mrg * vm_page structures from the non-avail area).
510 1.1 mrg * => return false if out of memory.
511 1.1 mrg */
512 1.1 mrg
513 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
514 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
515 1.28 drochner
516 1.28 drochner static boolean_t
517 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
518 1.14 eeh paddr_t *paddrp;
519 1.28 drochner int freelist;
520 1.1 mrg {
521 1.7 mrg int lcv, x;
522 1.1 mrg
523 1.7 mrg /* pass 1: try allocating from a matching end */
524 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
525 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
526 1.1 mrg #else
527 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
528 1.1 mrg #endif
529 1.7 mrg {
530 1.1 mrg
531 1.32 thorpej if (uvm.page_init_done == TRUE)
532 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
533 1.1 mrg
534 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
535 1.28 drochner continue;
536 1.28 drochner
537 1.7 mrg /* try from front */
538 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
539 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
540 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
541 1.7 mrg vm_physmem[lcv].avail_start++;
542 1.7 mrg vm_physmem[lcv].start++;
543 1.7 mrg /* nothing left? nuke it */
544 1.7 mrg if (vm_physmem[lcv].avail_start ==
545 1.7 mrg vm_physmem[lcv].end) {
546 1.7 mrg if (vm_nphysseg == 1)
547 1.42 mrg panic("vum_page_physget: out of memory!");
548 1.7 mrg vm_nphysseg--;
549 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
550 1.7 mrg /* structure copy */
551 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
552 1.7 mrg }
553 1.7 mrg return (TRUE);
554 1.7 mrg }
555 1.7 mrg
556 1.7 mrg /* try from rear */
557 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
558 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
559 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
560 1.7 mrg vm_physmem[lcv].avail_end--;
561 1.7 mrg vm_physmem[lcv].end--;
562 1.7 mrg /* nothing left? nuke it */
563 1.7 mrg if (vm_physmem[lcv].avail_end ==
564 1.7 mrg vm_physmem[lcv].start) {
565 1.7 mrg if (vm_nphysseg == 1)
566 1.42 mrg panic("uvm_page_physget: out of memory!");
567 1.7 mrg vm_nphysseg--;
568 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
569 1.7 mrg /* structure copy */
570 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
571 1.7 mrg }
572 1.7 mrg return (TRUE);
573 1.7 mrg }
574 1.7 mrg }
575 1.1 mrg
576 1.7 mrg /* pass2: forget about matching ends, just allocate something */
577 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
578 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
579 1.1 mrg #else
580 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
581 1.1 mrg #endif
582 1.7 mrg {
583 1.1 mrg
584 1.7 mrg /* any room in this bank? */
585 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
586 1.7 mrg continue; /* nope */
587 1.7 mrg
588 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
589 1.7 mrg vm_physmem[lcv].avail_start++;
590 1.7 mrg /* truncate! */
591 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
592 1.7 mrg
593 1.7 mrg /* nothing left? nuke it */
594 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
595 1.7 mrg if (vm_nphysseg == 1)
596 1.42 mrg panic("uvm_page_physget: out of memory!");
597 1.7 mrg vm_nphysseg--;
598 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
599 1.7 mrg /* structure copy */
600 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
601 1.7 mrg }
602 1.7 mrg return (TRUE);
603 1.7 mrg }
604 1.1 mrg
605 1.7 mrg return (FALSE); /* whoops! */
606 1.28 drochner }
607 1.28 drochner
608 1.28 drochner boolean_t
609 1.28 drochner uvm_page_physget(paddrp)
610 1.28 drochner paddr_t *paddrp;
611 1.28 drochner {
612 1.28 drochner int i;
613 1.28 drochner
614 1.28 drochner /* try in the order of freelist preference */
615 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
616 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
617 1.28 drochner return (TRUE);
618 1.28 drochner return (FALSE);
619 1.1 mrg }
620 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
621 1.1 mrg
622 1.1 mrg /*
623 1.1 mrg * uvm_page_physload: load physical memory into VM system
624 1.1 mrg *
625 1.1 mrg * => all args are PFs
626 1.1 mrg * => all pages in start/end get vm_page structures
627 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
628 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
629 1.1 mrg */
630 1.1 mrg
631 1.7 mrg void
632 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
633 1.29 eeh paddr_t start, end, avail_start, avail_end;
634 1.12 thorpej int free_list;
635 1.1 mrg {
636 1.14 eeh int preload, lcv;
637 1.14 eeh psize_t npages;
638 1.7 mrg struct vm_page *pgs;
639 1.7 mrg struct vm_physseg *ps;
640 1.7 mrg
641 1.7 mrg if (uvmexp.pagesize == 0)
642 1.42 mrg panic("uvm_page_physload: page size not set!");
643 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
644 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
645 1.26 drochner if (start >= end)
646 1.26 drochner panic("uvm_page_physload: start >= end");
647 1.12 thorpej
648 1.7 mrg /*
649 1.7 mrg * do we have room?
650 1.7 mrg */
651 1.67 chs
652 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
653 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
654 1.7 mrg "segment\n");
655 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
656 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
657 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
658 1.7 mrg return;
659 1.7 mrg }
660 1.7 mrg
661 1.7 mrg /*
662 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
663 1.7 mrg * called yet, so malloc is not available).
664 1.7 mrg */
665 1.67 chs
666 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
667 1.7 mrg if (vm_physmem[lcv].pgs)
668 1.7 mrg break;
669 1.7 mrg }
670 1.7 mrg preload = (lcv == vm_nphysseg);
671 1.7 mrg
672 1.7 mrg /*
673 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
674 1.7 mrg */
675 1.67 chs
676 1.7 mrg if (!preload) {
677 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
678 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
679 1.1 mrg #else
680 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
681 1.14 eeh paddr_t paddr;
682 1.7 mrg npages = end - start; /* # of pages */
683 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
684 1.40 thorpej M_VMPAGE, M_NOWAIT);
685 1.7 mrg if (pgs == NULL) {
686 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
687 1.7 mrg "structs for segment\n");
688 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
689 1.7 mrg return;
690 1.7 mrg }
691 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
692 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
693 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
694 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
695 1.7 mrg pgs[lcv].phys_addr = paddr;
696 1.12 thorpej pgs[lcv].free_list = free_list;
697 1.7 mrg if (atop(paddr) >= avail_start &&
698 1.7 mrg atop(paddr) <= avail_end)
699 1.8 chuck uvm_pagefree(&pgs[lcv]);
700 1.7 mrg }
701 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
702 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
703 1.1 mrg #endif
704 1.7 mrg } else {
705 1.7 mrg pgs = NULL;
706 1.7 mrg npages = 0;
707 1.7 mrg }
708 1.1 mrg
709 1.7 mrg /*
710 1.7 mrg * now insert us in the proper place in vm_physmem[]
711 1.7 mrg */
712 1.1 mrg
713 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
714 1.7 mrg /* random: put it at the end (easy!) */
715 1.7 mrg ps = &vm_physmem[vm_nphysseg];
716 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
717 1.7 mrg {
718 1.7 mrg int x;
719 1.7 mrg /* sort by address for binary search */
720 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
721 1.7 mrg if (start < vm_physmem[lcv].start)
722 1.7 mrg break;
723 1.7 mrg ps = &vm_physmem[lcv];
724 1.7 mrg /* move back other entries, if necessary ... */
725 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
726 1.7 mrg /* structure copy */
727 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
728 1.7 mrg }
729 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
730 1.7 mrg {
731 1.7 mrg int x;
732 1.7 mrg /* sort by largest segment first */
733 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
734 1.7 mrg if ((end - start) >
735 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
736 1.7 mrg break;
737 1.7 mrg ps = &vm_physmem[lcv];
738 1.7 mrg /* move back other entries, if necessary ... */
739 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
740 1.7 mrg /* structure copy */
741 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
742 1.7 mrg }
743 1.1 mrg #else
744 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
745 1.1 mrg #endif
746 1.1 mrg
747 1.7 mrg ps->start = start;
748 1.7 mrg ps->end = end;
749 1.7 mrg ps->avail_start = avail_start;
750 1.7 mrg ps->avail_end = avail_end;
751 1.7 mrg if (preload) {
752 1.7 mrg ps->pgs = NULL;
753 1.7 mrg } else {
754 1.7 mrg ps->pgs = pgs;
755 1.7 mrg ps->lastpg = pgs + npages - 1;
756 1.7 mrg }
757 1.12 thorpej ps->free_list = free_list;
758 1.7 mrg vm_nphysseg++;
759 1.7 mrg
760 1.7 mrg if (!preload)
761 1.7 mrg uvm_page_rehash();
762 1.1 mrg }
763 1.1 mrg
764 1.1 mrg /*
765 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
766 1.1 mrg */
767 1.1 mrg
768 1.7 mrg void
769 1.7 mrg uvm_page_rehash()
770 1.1 mrg {
771 1.67 chs int freepages, lcv, bucketcount, oldcount;
772 1.7 mrg struct pglist *newbuckets, *oldbuckets;
773 1.7 mrg struct vm_page *pg;
774 1.30 thorpej size_t newsize, oldsize;
775 1.7 mrg
776 1.7 mrg /*
777 1.7 mrg * compute number of pages that can go in the free pool
778 1.7 mrg */
779 1.7 mrg
780 1.7 mrg freepages = 0;
781 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
782 1.7 mrg freepages +=
783 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
784 1.7 mrg
785 1.7 mrg /*
786 1.7 mrg * compute number of buckets needed for this number of pages
787 1.7 mrg */
788 1.7 mrg
789 1.7 mrg bucketcount = 1;
790 1.7 mrg while (bucketcount < freepages)
791 1.7 mrg bucketcount = bucketcount * 2;
792 1.7 mrg
793 1.7 mrg /*
794 1.30 thorpej * compute the size of the current table and new table.
795 1.7 mrg */
796 1.7 mrg
797 1.30 thorpej oldbuckets = uvm.page_hash;
798 1.30 thorpej oldcount = uvm.page_nhash;
799 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
800 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
801 1.30 thorpej
802 1.30 thorpej /*
803 1.30 thorpej * allocate the new buckets
804 1.30 thorpej */
805 1.30 thorpej
806 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
807 1.7 mrg if (newbuckets == NULL) {
808 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
809 1.7 mrg "hash table\n");
810 1.7 mrg return;
811 1.7 mrg }
812 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
813 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
814 1.7 mrg
815 1.7 mrg /*
816 1.7 mrg * now replace the old buckets with the new ones and rehash everything
817 1.7 mrg */
818 1.7 mrg
819 1.7 mrg simple_lock(&uvm.hashlock);
820 1.7 mrg uvm.page_hash = newbuckets;
821 1.7 mrg uvm.page_nhash = bucketcount;
822 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
823 1.7 mrg
824 1.7 mrg /* ... and rehash */
825 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
826 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
827 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
828 1.7 mrg TAILQ_INSERT_TAIL(
829 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
830 1.7 mrg pg, hashq);
831 1.7 mrg }
832 1.7 mrg }
833 1.7 mrg simple_unlock(&uvm.hashlock);
834 1.7 mrg
835 1.7 mrg /*
836 1.30 thorpej * free old bucket array if is not the boot-time table
837 1.7 mrg */
838 1.7 mrg
839 1.7 mrg if (oldbuckets != &uvm_bootbucket)
840 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
841 1.1 mrg }
842 1.1 mrg
843 1.60 thorpej /*
844 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
845 1.60 thorpej * larger than the old one.
846 1.60 thorpej */
847 1.60 thorpej
848 1.60 thorpej void
849 1.60 thorpej uvm_page_recolor(int newncolors)
850 1.60 thorpej {
851 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
852 1.60 thorpej struct pgfreelist pgfl;
853 1.63 chs struct vm_page *pg;
854 1.60 thorpej vsize_t bucketcount;
855 1.60 thorpej int s, lcv, color, i, ocolors;
856 1.60 thorpej
857 1.60 thorpej if (newncolors <= uvmexp.ncolors)
858 1.60 thorpej return;
859 1.60 thorpej
860 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
861 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
862 1.60 thorpej M_VMPAGE, M_NOWAIT);
863 1.60 thorpej if (bucketarray == NULL) {
864 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
865 1.60 thorpej (long) bucketcount);
866 1.60 thorpej return;
867 1.60 thorpej }
868 1.60 thorpej
869 1.60 thorpej s = uvm_lock_fpageq();
870 1.60 thorpej
871 1.60 thorpej /* Make sure we should still do this. */
872 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
873 1.60 thorpej uvm_unlock_fpageq(s);
874 1.60 thorpej free(bucketarray, M_VMPAGE);
875 1.60 thorpej return;
876 1.60 thorpej }
877 1.60 thorpej
878 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
879 1.60 thorpej ocolors = uvmexp.ncolors;
880 1.60 thorpej
881 1.60 thorpej uvmexp.ncolors = newncolors;
882 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
883 1.60 thorpej
884 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
885 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
886 1.60 thorpej uvm_page_init_buckets(&pgfl);
887 1.60 thorpej for (color = 0; color < ocolors; color++) {
888 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
889 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
890 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
891 1.60 thorpej != NULL) {
892 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
893 1.60 thorpej lcv].pgfl_buckets[
894 1.60 thorpej color].pgfl_queues[i], pg, pageq);
895 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
896 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
897 1.60 thorpej i], pg, pageq);
898 1.60 thorpej }
899 1.60 thorpej }
900 1.60 thorpej }
901 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
902 1.60 thorpej }
903 1.60 thorpej
904 1.60 thorpej if (have_recolored_pages) {
905 1.60 thorpej uvm_unlock_fpageq(s);
906 1.60 thorpej free(oldbucketarray, M_VMPAGE);
907 1.60 thorpej return;
908 1.60 thorpej }
909 1.60 thorpej
910 1.60 thorpej have_recolored_pages = TRUE;
911 1.60 thorpej uvm_unlock_fpageq(s);
912 1.60 thorpej }
913 1.1 mrg
914 1.1 mrg /*
915 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
916 1.54 thorpej */
917 1.54 thorpej
918 1.54 thorpej static __inline struct vm_page *
919 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
920 1.54 thorpej unsigned int *trycolorp)
921 1.54 thorpej {
922 1.54 thorpej struct pglist *freeq;
923 1.54 thorpej struct vm_page *pg;
924 1.58 enami int color, trycolor = *trycolorp;
925 1.54 thorpej
926 1.58 enami color = trycolor;
927 1.58 enami do {
928 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
929 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
930 1.54 thorpej goto gotit;
931 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
932 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
933 1.54 thorpej goto gotit;
934 1.60 thorpej color = (color + 1) & uvmexp.colormask;
935 1.58 enami } while (color != trycolor);
936 1.54 thorpej
937 1.54 thorpej return (NULL);
938 1.54 thorpej
939 1.54 thorpej gotit:
940 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
941 1.54 thorpej uvmexp.free--;
942 1.54 thorpej
943 1.54 thorpej /* update zero'd page count */
944 1.54 thorpej if (pg->flags & PG_ZERO)
945 1.54 thorpej uvmexp.zeropages--;
946 1.54 thorpej
947 1.54 thorpej if (color == trycolor)
948 1.54 thorpej uvmexp.colorhit++;
949 1.54 thorpej else {
950 1.54 thorpej uvmexp.colormiss++;
951 1.54 thorpej *trycolorp = color;
952 1.54 thorpej }
953 1.54 thorpej
954 1.54 thorpej return (pg);
955 1.54 thorpej }
956 1.54 thorpej
957 1.54 thorpej /*
958 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
959 1.1 mrg *
960 1.1 mrg * => return null if no pages free
961 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
962 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
963 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
964 1.1 mrg * => only one of obj or anon can be non-null
965 1.1 mrg * => caller must activate/deactivate page if it is not wired.
966 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
967 1.34 thorpej * => policy decision: it is more important to pull a page off of the
968 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
969 1.34 thorpej * unknown contents page. This is because we live with the
970 1.34 thorpej * consequences of a bad free list decision for the entire
971 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
972 1.34 thorpej * is slower to access.
973 1.1 mrg */
974 1.1 mrg
975 1.7 mrg struct vm_page *
976 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
977 1.7 mrg struct uvm_object *obj;
978 1.31 kleink voff_t off;
979 1.18 chs int flags;
980 1.7 mrg struct vm_anon *anon;
981 1.12 thorpej int strat, free_list;
982 1.1 mrg {
983 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
984 1.7 mrg struct vm_page *pg;
985 1.18 chs boolean_t use_reserve;
986 1.1 mrg
987 1.44 chs KASSERT(obj == NULL || anon == NULL);
988 1.44 chs KASSERT(off == trunc_page(off));
989 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
990 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
991 1.48 thorpej
992 1.44 chs s = uvm_lock_fpageq();
993 1.1 mrg
994 1.7 mrg /*
995 1.54 thorpej * This implements a global round-robin page coloring
996 1.54 thorpej * algorithm.
997 1.54 thorpej *
998 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
999 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1000 1.54 thorpej */
1001 1.67 chs
1002 1.54 thorpej color = uvm.page_free_nextcolor;
1003 1.54 thorpej
1004 1.54 thorpej /*
1005 1.7 mrg * check to see if we need to generate some free pages waking
1006 1.7 mrg * the pagedaemon.
1007 1.7 mrg */
1008 1.7 mrg
1009 1.64 thorpej UVM_KICK_PDAEMON();
1010 1.7 mrg
1011 1.7 mrg /*
1012 1.7 mrg * fail if any of these conditions is true:
1013 1.7 mrg * [1] there really are no free pages, or
1014 1.7 mrg * [2] only kernel "reserved" pages remain and
1015 1.7 mrg * the page isn't being allocated to a kernel object.
1016 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1017 1.7 mrg * the requestor isn't the pagedaemon.
1018 1.7 mrg */
1019 1.7 mrg
1020 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1021 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1022 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1023 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1024 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1025 1.12 thorpej goto fail;
1026 1.12 thorpej
1027 1.34 thorpej #if PGFL_NQUEUES != 2
1028 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1029 1.34 thorpej #endif
1030 1.34 thorpej
1031 1.34 thorpej /*
1032 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1033 1.34 thorpej * we try the UNKNOWN queue first.
1034 1.34 thorpej */
1035 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1036 1.34 thorpej try1 = PGFL_ZEROS;
1037 1.34 thorpej try2 = PGFL_UNKNOWN;
1038 1.34 thorpej } else {
1039 1.34 thorpej try1 = PGFL_UNKNOWN;
1040 1.34 thorpej try2 = PGFL_ZEROS;
1041 1.34 thorpej }
1042 1.34 thorpej
1043 1.12 thorpej again:
1044 1.12 thorpej switch (strat) {
1045 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1046 1.12 thorpej /* Check all freelists in descending priority order. */
1047 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1048 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1049 1.54 thorpej try1, try2, &color);
1050 1.54 thorpej if (pg != NULL)
1051 1.12 thorpej goto gotit;
1052 1.12 thorpej }
1053 1.12 thorpej
1054 1.12 thorpej /* No pages free! */
1055 1.12 thorpej goto fail;
1056 1.12 thorpej
1057 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1058 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1059 1.12 thorpej /* Attempt to allocate from the specified free list. */
1060 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1061 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1062 1.54 thorpej try1, try2, &color);
1063 1.54 thorpej if (pg != NULL)
1064 1.12 thorpej goto gotit;
1065 1.12 thorpej
1066 1.12 thorpej /* Fall back, if possible. */
1067 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1068 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1069 1.12 thorpej goto again;
1070 1.12 thorpej }
1071 1.12 thorpej
1072 1.12 thorpej /* No pages free! */
1073 1.12 thorpej goto fail;
1074 1.12 thorpej
1075 1.12 thorpej default:
1076 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1077 1.12 thorpej /* NOTREACHED */
1078 1.7 mrg }
1079 1.7 mrg
1080 1.12 thorpej gotit:
1081 1.54 thorpej /*
1082 1.54 thorpej * We now know which color we actually allocated from; set
1083 1.54 thorpej * the next color accordingly.
1084 1.54 thorpej */
1085 1.67 chs
1086 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1087 1.34 thorpej
1088 1.34 thorpej /*
1089 1.34 thorpej * update allocation statistics and remember if we have to
1090 1.34 thorpej * zero the page
1091 1.34 thorpej */
1092 1.67 chs
1093 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1094 1.34 thorpej if (pg->flags & PG_ZERO) {
1095 1.34 thorpej uvmexp.pga_zerohit++;
1096 1.34 thorpej zeroit = 0;
1097 1.34 thorpej } else {
1098 1.34 thorpej uvmexp.pga_zeromiss++;
1099 1.34 thorpej zeroit = 1;
1100 1.34 thorpej }
1101 1.34 thorpej }
1102 1.67 chs uvm_unlock_fpageq(s);
1103 1.7 mrg
1104 1.7 mrg pg->offset = off;
1105 1.7 mrg pg->uobject = obj;
1106 1.7 mrg pg->uanon = anon;
1107 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1108 1.7 mrg if (anon) {
1109 1.7 mrg anon->u.an_page = pg;
1110 1.7 mrg pg->pqflags = PQ_ANON;
1111 1.45 simonb uvmexp.anonpages++;
1112 1.7 mrg } else {
1113 1.67 chs if (obj) {
1114 1.7 mrg uvm_pageinsert(pg);
1115 1.67 chs }
1116 1.7 mrg pg->pqflags = 0;
1117 1.7 mrg }
1118 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1119 1.7 mrg pg->owner_tag = NULL;
1120 1.1 mrg #endif
1121 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1122 1.33 thorpej
1123 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1124 1.33 thorpej /*
1125 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1126 1.34 thorpej * zero'd, then we have to zero it ourselves.
1127 1.33 thorpej */
1128 1.33 thorpej pg->flags &= ~PG_CLEAN;
1129 1.34 thorpej if (zeroit)
1130 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1131 1.33 thorpej }
1132 1.1 mrg
1133 1.7 mrg return(pg);
1134 1.12 thorpej
1135 1.12 thorpej fail:
1136 1.21 thorpej uvm_unlock_fpageq(s);
1137 1.12 thorpej return (NULL);
1138 1.1 mrg }
1139 1.1 mrg
1140 1.1 mrg /*
1141 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1142 1.1 mrg *
1143 1.1 mrg * => both objects must be locked
1144 1.1 mrg */
1145 1.1 mrg
1146 1.7 mrg void
1147 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1148 1.7 mrg struct vm_page *pg;
1149 1.7 mrg struct uvm_object *newobj;
1150 1.31 kleink voff_t newoff;
1151 1.1 mrg {
1152 1.7 mrg /*
1153 1.7 mrg * remove it from the old object
1154 1.7 mrg */
1155 1.7 mrg
1156 1.7 mrg if (pg->uobject) {
1157 1.7 mrg uvm_pageremove(pg);
1158 1.7 mrg }
1159 1.7 mrg
1160 1.7 mrg /*
1161 1.7 mrg * put it in the new object
1162 1.7 mrg */
1163 1.7 mrg
1164 1.7 mrg if (newobj) {
1165 1.7 mrg pg->uobject = newobj;
1166 1.7 mrg pg->offset = newoff;
1167 1.7 mrg uvm_pageinsert(pg);
1168 1.7 mrg }
1169 1.1 mrg }
1170 1.1 mrg
1171 1.1 mrg /*
1172 1.1 mrg * uvm_pagefree: free page
1173 1.1 mrg *
1174 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1175 1.1 mrg * => put page on free list
1176 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1177 1.1 mrg * => caller must lock page queues
1178 1.1 mrg * => assumes all valid mappings of pg are gone
1179 1.1 mrg */
1180 1.1 mrg
1181 1.44 chs void
1182 1.44 chs uvm_pagefree(pg)
1183 1.44 chs struct vm_page *pg;
1184 1.1 mrg {
1185 1.7 mrg int s;
1186 1.67 chs
1187 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1188 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1189 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1190 1.1 mrg
1191 1.44 chs #ifdef DEBUG
1192 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1193 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1194 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1195 1.44 chs }
1196 1.44 chs #endif
1197 1.44 chs
1198 1.7 mrg /*
1199 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1200 1.7 mrg */
1201 1.7 mrg
1202 1.67 chs if (pg->loan_count) {
1203 1.7 mrg
1204 1.7 mrg /*
1205 1.67 chs * if the page is owned by an anon then we just want to
1206 1.67 chs * drop ownership and return. the kernel will free the page
1207 1.67 chs * when it is done with it. if the page is owned by an object,
1208 1.67 chs * mark it clean for the benefit of possible anon owners
1209 1.67 chs * and mark it as anon-owned if there current anon loanees.
1210 1.7 mrg */
1211 1.7 mrg
1212 1.67 chs if (pg->pqflags & PQ_ANON) {
1213 1.67 chs pg->pqflags &= ~PQ_ANON;
1214 1.67 chs pg->uanon = NULL;
1215 1.67 chs } else if (pg->flags & PG_TABLED) {
1216 1.67 chs pg->flags &= ~PG_CLEAN;
1217 1.67 chs if (pg->uanon) {
1218 1.67 chs pg->pqflags |= PQ_ANON;
1219 1.67 chs }
1220 1.67 chs }
1221 1.67 chs return;
1222 1.67 chs }
1223 1.62 chs
1224 1.67 chs /*
1225 1.67 chs * remove page from its object or anon.
1226 1.67 chs * adjust swpgonly if the page is swap-backed.
1227 1.67 chs */
1228 1.44 chs
1229 1.67 chs if (pg->flags & PG_TABLED) {
1230 1.67 chs if (pg->pqflags & PQ_AOBJ &&
1231 1.67 chs uao_find_swslot(pg->uobject,
1232 1.67 chs pg->offset >> PAGE_SHIFT) != 0) {
1233 1.67 chs simple_lock(&uvm.swap_data_lock);
1234 1.67 chs uvmexp.swpgonly++;
1235 1.67 chs simple_unlock(&uvm.swap_data_lock);
1236 1.67 chs }
1237 1.67 chs uvm_pageremove(pg);
1238 1.67 chs } else if (pg->pqflags & PQ_ANON) {
1239 1.67 chs if (pg->uanon->an_swslot) {
1240 1.67 chs simple_lock(&uvm.swap_data_lock);
1241 1.67 chs uvmexp.swpgonly++;
1242 1.67 chs simple_unlock(&uvm.swap_data_lock);
1243 1.67 chs }
1244 1.67 chs pg->uanon->u.an_page = NULL;
1245 1.7 mrg }
1246 1.1 mrg
1247 1.7 mrg /*
1248 1.7 mrg * now remove the page from the queues
1249 1.7 mrg */
1250 1.7 mrg
1251 1.67 chs uvm_pagedequeue(pg);
1252 1.7 mrg
1253 1.7 mrg /*
1254 1.7 mrg * if the page was wired, unwire it now.
1255 1.7 mrg */
1256 1.44 chs
1257 1.34 thorpej if (pg->wire_count) {
1258 1.7 mrg pg->wire_count = 0;
1259 1.7 mrg uvmexp.wired--;
1260 1.7 mrg }
1261 1.67 chs if (pg->pqflags & PQ_ANON) {
1262 1.45 simonb uvmexp.anonpages--;
1263 1.44 chs }
1264 1.7 mrg
1265 1.7 mrg /*
1266 1.44 chs * and put on free queue
1267 1.7 mrg */
1268 1.7 mrg
1269 1.34 thorpej pg->flags &= ~PG_ZERO;
1270 1.34 thorpej
1271 1.21 thorpej s = uvm_lock_fpageq();
1272 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1273 1.54 thorpej uvm_page_lookup_freelist(pg)].pgfl_buckets[
1274 1.54 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1275 1.7 mrg pg->pqflags = PQ_FREE;
1276 1.3 chs #ifdef DEBUG
1277 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1278 1.7 mrg pg->offset = 0xdeadbeef;
1279 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1280 1.3 chs #endif
1281 1.7 mrg uvmexp.free++;
1282 1.34 thorpej
1283 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1284 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1285 1.34 thorpej
1286 1.21 thorpej uvm_unlock_fpageq(s);
1287 1.44 chs }
1288 1.44 chs
1289 1.44 chs /*
1290 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1291 1.44 chs *
1292 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1293 1.44 chs * => if pages are object-owned, object must be locked.
1294 1.67 chs * => if pages are anon-owned, anons must be locked.
1295 1.44 chs */
1296 1.44 chs
1297 1.44 chs void
1298 1.44 chs uvm_page_unbusy(pgs, npgs)
1299 1.44 chs struct vm_page **pgs;
1300 1.44 chs int npgs;
1301 1.44 chs {
1302 1.44 chs struct vm_page *pg;
1303 1.44 chs int i;
1304 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1305 1.44 chs
1306 1.44 chs for (i = 0; i < npgs; i++) {
1307 1.44 chs pg = pgs[i];
1308 1.44 chs if (pg == NULL) {
1309 1.44 chs continue;
1310 1.44 chs }
1311 1.44 chs if (pg->flags & PG_WANTED) {
1312 1.44 chs wakeup(pg);
1313 1.44 chs }
1314 1.44 chs if (pg->flags & PG_RELEASED) {
1315 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1316 1.67 chs pg->flags &= ~PG_RELEASED;
1317 1.67 chs uvm_pagefree(pg);
1318 1.44 chs } else {
1319 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1320 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1321 1.44 chs UVM_PAGE_OWN(pg, NULL);
1322 1.44 chs }
1323 1.44 chs }
1324 1.1 mrg }
1325 1.1 mrg
1326 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1327 1.1 mrg /*
1328 1.1 mrg * uvm_page_own: set or release page ownership
1329 1.1 mrg *
1330 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1331 1.1 mrg * and where they do it. it can be used to track down problems
1332 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1333 1.1 mrg * => page's object [if any] must be locked
1334 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1335 1.1 mrg */
1336 1.7 mrg void
1337 1.7 mrg uvm_page_own(pg, tag)
1338 1.7 mrg struct vm_page *pg;
1339 1.7 mrg char *tag;
1340 1.1 mrg {
1341 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1342 1.67 chs
1343 1.7 mrg /* gain ownership? */
1344 1.7 mrg if (tag) {
1345 1.7 mrg if (pg->owner_tag) {
1346 1.7 mrg printf("uvm_page_own: page %p already owned "
1347 1.7 mrg "by proc %d [%s]\n", pg,
1348 1.7 mrg pg->owner, pg->owner_tag);
1349 1.7 mrg panic("uvm_page_own");
1350 1.7 mrg }
1351 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1352 1.7 mrg pg->owner_tag = tag;
1353 1.7 mrg return;
1354 1.7 mrg }
1355 1.7 mrg
1356 1.7 mrg /* drop ownership */
1357 1.7 mrg if (pg->owner_tag == NULL) {
1358 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1359 1.7 mrg "page (%p)\n", pg);
1360 1.7 mrg panic("uvm_page_own");
1361 1.7 mrg }
1362 1.7 mrg pg->owner_tag = NULL;
1363 1.67 chs KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1364 1.67 chs pg->uobject == uvm.kernel_object ||
1365 1.67 chs pg->wire_count || (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1366 1.7 mrg return;
1367 1.1 mrg }
1368 1.1 mrg #endif
1369 1.34 thorpej
1370 1.34 thorpej /*
1371 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1372 1.34 thorpej *
1373 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1374 1.54 thorpej * on the CPU cache.
1375 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1376 1.34 thorpej * there is a process ready to run.
1377 1.34 thorpej */
1378 1.34 thorpej void
1379 1.34 thorpej uvm_pageidlezero()
1380 1.34 thorpej {
1381 1.34 thorpej struct vm_page *pg;
1382 1.34 thorpej struct pgfreelist *pgfl;
1383 1.58 enami int free_list, s, firstbucket;
1384 1.54 thorpej static int nextbucket;
1385 1.54 thorpej
1386 1.54 thorpej s = uvm_lock_fpageq();
1387 1.58 enami firstbucket = nextbucket;
1388 1.58 enami do {
1389 1.54 thorpej if (sched_whichqs != 0) {
1390 1.34 thorpej uvm_unlock_fpageq(s);
1391 1.34 thorpej return;
1392 1.34 thorpej }
1393 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1394 1.34 thorpej uvm.page_idle_zero = FALSE;
1395 1.34 thorpej uvm_unlock_fpageq(s);
1396 1.34 thorpej return;
1397 1.34 thorpej }
1398 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1399 1.54 thorpej pgfl = &uvm.page_free[free_list];
1400 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1401 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1402 1.54 thorpej if (sched_whichqs != 0) {
1403 1.54 thorpej uvm_unlock_fpageq(s);
1404 1.54 thorpej return;
1405 1.54 thorpej }
1406 1.54 thorpej
1407 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1408 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1409 1.54 thorpej pg, pageq);
1410 1.54 thorpej uvmexp.free--;
1411 1.54 thorpej uvm_unlock_fpageq(s);
1412 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1413 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1414 1.67 chs
1415 1.54 thorpej /*
1416 1.54 thorpej * The machine-dependent code detected
1417 1.54 thorpej * some reason for us to abort zeroing
1418 1.54 thorpej * pages, probably because there is a
1419 1.54 thorpej * process now ready to run.
1420 1.54 thorpej */
1421 1.67 chs
1422 1.54 thorpej s = uvm_lock_fpageq();
1423 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1424 1.54 thorpej nextbucket].pgfl_queues[
1425 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1426 1.54 thorpej uvmexp.free++;
1427 1.54 thorpej uvmexp.zeroaborts++;
1428 1.54 thorpej uvm_unlock_fpageq(s);
1429 1.54 thorpej return;
1430 1.54 thorpej }
1431 1.54 thorpej #else
1432 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1433 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1434 1.54 thorpej pg->flags |= PG_ZERO;
1435 1.54 thorpej
1436 1.54 thorpej s = uvm_lock_fpageq();
1437 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1438 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1439 1.54 thorpej pg, pageq);
1440 1.54 thorpej uvmexp.free++;
1441 1.54 thorpej uvmexp.zeropages++;
1442 1.54 thorpej }
1443 1.41 thorpej }
1444 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1445 1.58 enami } while (nextbucket != firstbucket);
1446 1.54 thorpej uvm_unlock_fpageq(s);
1447 1.34 thorpej }
1448