uvm_page.c revision 1.70 1 1.70 chs /* $NetBSD: uvm_page.c,v 1.70 2001/11/06 08:07:51 chs Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.6 mrg
73 1.44 chs #include "opt_uvmhist.h"
74 1.44 chs
75 1.1 mrg #include <sys/param.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/malloc.h>
78 1.35 thorpej #include <sys/sched.h>
79 1.44 chs #include <sys/kernel.h>
80 1.51 chs #include <sys/vnode.h>
81 1.68 chs #include <sys/proc.h>
82 1.1 mrg
83 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
84 1.1 mrg #include <uvm/uvm.h>
85 1.1 mrg
86 1.1 mrg /*
87 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
88 1.1 mrg */
89 1.1 mrg
90 1.1 mrg /*
91 1.1 mrg * physical memory config is stored in vm_physmem.
92 1.1 mrg */
93 1.1 mrg
94 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
95 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
96 1.1 mrg
97 1.1 mrg /*
98 1.36 thorpej * Some supported CPUs in a given architecture don't support all
99 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
100 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
101 1.34 thorpej */
102 1.44 chs /*
103 1.44 chs * XXX disabled until we can find a way to do this without causing
104 1.44 chs * problems for either cpu caches or DMA latency.
105 1.44 chs */
106 1.44 chs boolean_t vm_page_zero_enable = FALSE;
107 1.34 thorpej
108 1.34 thorpej /*
109 1.1 mrg * local variables
110 1.1 mrg */
111 1.1 mrg
112 1.1 mrg /*
113 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
114 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
115 1.1 mrg * and pmap_startup here also uses them internally.
116 1.1 mrg */
117 1.1 mrg
118 1.14 eeh static vaddr_t virtual_space_start;
119 1.14 eeh static vaddr_t virtual_space_end;
120 1.1 mrg
121 1.1 mrg /*
122 1.1 mrg * we use a hash table with only one bucket during bootup. we will
123 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
124 1.30 thorpej * we static allocate the one bootstrap bucket below...
125 1.1 mrg */
126 1.1 mrg
127 1.1 mrg static struct pglist uvm_bootbucket;
128 1.1 mrg
129 1.1 mrg /*
130 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
131 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
132 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
133 1.60 thorpej * free the initial set of buckets, since they are allocated using
134 1.60 thorpej * uvm_pageboot_alloc().
135 1.60 thorpej */
136 1.60 thorpej
137 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
138 1.60 thorpej
139 1.60 thorpej /*
140 1.1 mrg * local prototypes
141 1.1 mrg */
142 1.1 mrg
143 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
144 1.44 chs static void uvm_pageremove __P((struct vm_page *));
145 1.1 mrg
146 1.1 mrg /*
147 1.1 mrg * inline functions
148 1.1 mrg */
149 1.1 mrg
150 1.1 mrg /*
151 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
152 1.1 mrg *
153 1.1 mrg * => caller must lock object
154 1.1 mrg * => caller must lock page queues
155 1.1 mrg * => call should have already set pg's object and offset pointers
156 1.1 mrg * and bumped the version counter
157 1.1 mrg */
158 1.1 mrg
159 1.7 mrg __inline static void
160 1.7 mrg uvm_pageinsert(pg)
161 1.7 mrg struct vm_page *pg;
162 1.1 mrg {
163 1.7 mrg struct pglist *buck;
164 1.67 chs struct uvm_object *uobj = pg->uobject;
165 1.1 mrg
166 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
167 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
168 1.7 mrg simple_lock(&uvm.hashlock);
169 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
170 1.7 mrg simple_unlock(&uvm.hashlock);
171 1.7 mrg
172 1.67 chs TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
173 1.7 mrg pg->flags |= PG_TABLED;
174 1.67 chs uobj->uo_npages++;
175 1.1 mrg }
176 1.1 mrg
177 1.1 mrg /*
178 1.1 mrg * uvm_page_remove: remove page from object and hash
179 1.1 mrg *
180 1.1 mrg * => caller must lock object
181 1.1 mrg * => caller must lock page queues
182 1.1 mrg */
183 1.1 mrg
184 1.44 chs static __inline void
185 1.7 mrg uvm_pageremove(pg)
186 1.7 mrg struct vm_page *pg;
187 1.1 mrg {
188 1.7 mrg struct pglist *buck;
189 1.67 chs struct uvm_object *uobj = pg->uobject;
190 1.1 mrg
191 1.44 chs KASSERT(pg->flags & PG_TABLED);
192 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
193 1.7 mrg simple_lock(&uvm.hashlock);
194 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
195 1.7 mrg simple_unlock(&uvm.hashlock);
196 1.7 mrg
197 1.67 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
198 1.51 chs uvmexp.vtextpages--;
199 1.67 chs } else if (UVM_OBJ_IS_VNODE(uobj)) {
200 1.45 simonb uvmexp.vnodepages--;
201 1.51 chs }
202 1.44 chs
203 1.7 mrg /* object should be locked */
204 1.67 chs uobj->uo_npages--;
205 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
206 1.7 mrg pg->flags &= ~PG_TABLED;
207 1.7 mrg pg->uobject = NULL;
208 1.1 mrg }
209 1.1 mrg
210 1.60 thorpej static void
211 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
212 1.60 thorpej {
213 1.60 thorpej int color, i;
214 1.60 thorpej
215 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
216 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
217 1.60 thorpej TAILQ_INIT(&pgfl->pgfl_buckets[
218 1.60 thorpej color].pgfl_queues[i]);
219 1.60 thorpej }
220 1.60 thorpej }
221 1.60 thorpej }
222 1.60 thorpej
223 1.1 mrg /*
224 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
225 1.62 chs *
226 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
227 1.1 mrg */
228 1.1 mrg
229 1.7 mrg void
230 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
231 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
232 1.1 mrg {
233 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
234 1.60 thorpej struct pgflbucket *bucketarray;
235 1.63 chs struct vm_page *pagearray;
236 1.60 thorpej int lcv, i;
237 1.14 eeh paddr_t paddr;
238 1.7 mrg
239 1.7 mrg /*
240 1.60 thorpej * init the page queues and page queue locks, except the free
241 1.60 thorpej * list; we allocate that later (with the initial vm_page
242 1.60 thorpej * structures).
243 1.7 mrg */
244 1.51 chs
245 1.7 mrg TAILQ_INIT(&uvm.page_active);
246 1.61 ross TAILQ_INIT(&uvm.page_inactive);
247 1.7 mrg simple_lock_init(&uvm.pageqlock);
248 1.7 mrg simple_lock_init(&uvm.fpageqlock);
249 1.7 mrg
250 1.7 mrg /*
251 1.51 chs * init the <obj,offset> => <page> hash table. for now
252 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
253 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
254 1.7 mrg */
255 1.7 mrg
256 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
257 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
258 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
259 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
260 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
261 1.7 mrg
262 1.62 chs /*
263 1.51 chs * allocate vm_page structures.
264 1.7 mrg */
265 1.7 mrg
266 1.7 mrg /*
267 1.7 mrg * sanity check:
268 1.7 mrg * before calling this function the MD code is expected to register
269 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
270 1.7 mrg * now is to allocate vm_page structures for this memory.
271 1.7 mrg */
272 1.7 mrg
273 1.7 mrg if (vm_nphysseg == 0)
274 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
275 1.62 chs
276 1.7 mrg /*
277 1.62 chs * first calculate the number of free pages...
278 1.7 mrg *
279 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
280 1.7 mrg * this allows us to allocate extra vm_page structures in case we
281 1.7 mrg * want to return some memory to the pool after booting.
282 1.7 mrg */
283 1.62 chs
284 1.7 mrg freepages = 0;
285 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
286 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
287 1.7 mrg
288 1.7 mrg /*
289 1.60 thorpej * Let MD code initialize the number of colors, or default
290 1.60 thorpej * to 1 color if MD code doesn't care.
291 1.60 thorpej */
292 1.60 thorpej if (uvmexp.ncolors == 0)
293 1.60 thorpej uvmexp.ncolors = 1;
294 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
295 1.60 thorpej
296 1.60 thorpej /*
297 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
298 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
299 1.7 mrg * thus, the total number of pages we can use is the total size of
300 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
301 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
302 1.7 mrg * truncation errors (since we can only allocate in terms of whole
303 1.7 mrg * pages).
304 1.7 mrg */
305 1.62 chs
306 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
307 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
308 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
309 1.60 thorpej
310 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
311 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
312 1.60 thorpej sizeof(struct vm_page)));
313 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
314 1.60 thorpej
315 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
316 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
317 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
318 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
319 1.60 thorpej }
320 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
321 1.62 chs
322 1.7 mrg /*
323 1.51 chs * init the vm_page structures and put them in the correct place.
324 1.7 mrg */
325 1.7 mrg
326 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
327 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
328 1.51 chs
329 1.7 mrg /* set up page array pointers */
330 1.7 mrg vm_physmem[lcv].pgs = pagearray;
331 1.7 mrg pagearray += n;
332 1.7 mrg pagecount -= n;
333 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
334 1.7 mrg
335 1.13 perry /* init and free vm_pages (we've already zeroed them) */
336 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
337 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
338 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
339 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
340 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
341 1.56 thorpej #endif
342 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
343 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
344 1.7 mrg uvmexp.npages++;
345 1.7 mrg /* add page to free pool */
346 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
347 1.7 mrg }
348 1.7 mrg }
349 1.7 mrg }
350 1.44 chs
351 1.7 mrg /*
352 1.51 chs * pass up the values of virtual_space_start and
353 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
354 1.7 mrg * layers of the VM.
355 1.7 mrg */
356 1.7 mrg
357 1.7 mrg *kvm_startp = round_page(virtual_space_start);
358 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
359 1.7 mrg
360 1.7 mrg /*
361 1.51 chs * init locks for kernel threads
362 1.7 mrg */
363 1.7 mrg
364 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
365 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
366 1.7 mrg
367 1.7 mrg /*
368 1.51 chs * init various thresholds.
369 1.7 mrg * XXXCDC - values may need adjusting
370 1.7 mrg */
371 1.51 chs
372 1.7 mrg uvmexp.reserve_pagedaemon = 1;
373 1.7 mrg uvmexp.reserve_kernel = 5;
374 1.51 chs uvmexp.anonminpct = 10;
375 1.51 chs uvmexp.vnodeminpct = 10;
376 1.51 chs uvmexp.vtextminpct = 5;
377 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
378 1.51 chs uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
379 1.51 chs uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
380 1.7 mrg
381 1.7 mrg /*
382 1.51 chs * determine if we should zero pages in the idle loop.
383 1.34 thorpej */
384 1.51 chs
385 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
386 1.34 thorpej
387 1.34 thorpej /*
388 1.7 mrg * done!
389 1.7 mrg */
390 1.1 mrg
391 1.32 thorpej uvm.page_init_done = TRUE;
392 1.1 mrg }
393 1.1 mrg
394 1.1 mrg /*
395 1.1 mrg * uvm_setpagesize: set the page size
396 1.62 chs *
397 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
398 1.62 chs */
399 1.1 mrg
400 1.7 mrg void
401 1.7 mrg uvm_setpagesize()
402 1.1 mrg {
403 1.7 mrg if (uvmexp.pagesize == 0)
404 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
405 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
406 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
407 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
408 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
409 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
410 1.7 mrg break;
411 1.1 mrg }
412 1.1 mrg
413 1.1 mrg /*
414 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
415 1.1 mrg */
416 1.1 mrg
417 1.14 eeh vaddr_t
418 1.7 mrg uvm_pageboot_alloc(size)
419 1.14 eeh vsize_t size;
420 1.1 mrg {
421 1.52 thorpej static boolean_t initialized = FALSE;
422 1.14 eeh vaddr_t addr;
423 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
424 1.52 thorpej vaddr_t vaddr;
425 1.14 eeh paddr_t paddr;
426 1.52 thorpej #endif
427 1.1 mrg
428 1.7 mrg /*
429 1.19 thorpej * on first call to this function, initialize ourselves.
430 1.7 mrg */
431 1.19 thorpej if (initialized == FALSE) {
432 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
433 1.1 mrg
434 1.7 mrg /* round it the way we like it */
435 1.7 mrg virtual_space_start = round_page(virtual_space_start);
436 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
437 1.19 thorpej
438 1.19 thorpej initialized = TRUE;
439 1.7 mrg }
440 1.52 thorpej
441 1.52 thorpej /* round to page size */
442 1.52 thorpej size = round_page(size);
443 1.52 thorpej
444 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
445 1.52 thorpej
446 1.62 chs /*
447 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
448 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
449 1.52 thorpej * virtual_space_start/virtual_space_end if necessary.
450 1.52 thorpej */
451 1.52 thorpej
452 1.52 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
453 1.52 thorpej &virtual_space_end);
454 1.52 thorpej
455 1.52 thorpej return(addr);
456 1.52 thorpej
457 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
458 1.1 mrg
459 1.7 mrg /*
460 1.7 mrg * allocate virtual memory for this request
461 1.7 mrg */
462 1.19 thorpej if (virtual_space_start == virtual_space_end ||
463 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
464 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
465 1.20 thorpej
466 1.20 thorpej addr = virtual_space_start;
467 1.20 thorpej
468 1.20 thorpej #ifdef PMAP_GROWKERNEL
469 1.20 thorpej /*
470 1.20 thorpej * If the kernel pmap can't map the requested space,
471 1.20 thorpej * then allocate more resources for it.
472 1.20 thorpej */
473 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
474 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
475 1.20 thorpej if (uvm_maxkaddr < (addr + size))
476 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
477 1.19 thorpej }
478 1.20 thorpej #endif
479 1.1 mrg
480 1.7 mrg virtual_space_start += size;
481 1.1 mrg
482 1.9 thorpej /*
483 1.7 mrg * allocate and mapin physical pages to back new virtual pages
484 1.7 mrg */
485 1.1 mrg
486 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
487 1.7 mrg vaddr += PAGE_SIZE) {
488 1.1 mrg
489 1.7 mrg if (!uvm_page_physget(&paddr))
490 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
491 1.1 mrg
492 1.23 thorpej /*
493 1.23 thorpej * Note this memory is no longer managed, so using
494 1.23 thorpej * pmap_kenter is safe.
495 1.23 thorpej */
496 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
497 1.7 mrg }
498 1.66 chris pmap_update(pmap_kernel());
499 1.7 mrg return(addr);
500 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
501 1.1 mrg }
502 1.1 mrg
503 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
504 1.1 mrg /*
505 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
506 1.1 mrg *
507 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
508 1.1 mrg * values match the start/end values. if we can't do that, then we
509 1.1 mrg * will advance both values (making them equal, and removing some
510 1.1 mrg * vm_page structures from the non-avail area).
511 1.1 mrg * => return false if out of memory.
512 1.1 mrg */
513 1.1 mrg
514 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
515 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
516 1.28 drochner
517 1.28 drochner static boolean_t
518 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
519 1.14 eeh paddr_t *paddrp;
520 1.28 drochner int freelist;
521 1.1 mrg {
522 1.7 mrg int lcv, x;
523 1.1 mrg
524 1.7 mrg /* pass 1: try allocating from a matching end */
525 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
526 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
527 1.1 mrg #else
528 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
529 1.1 mrg #endif
530 1.7 mrg {
531 1.1 mrg
532 1.32 thorpej if (uvm.page_init_done == TRUE)
533 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
534 1.1 mrg
535 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
536 1.28 drochner continue;
537 1.28 drochner
538 1.7 mrg /* try from front */
539 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
540 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
541 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
542 1.7 mrg vm_physmem[lcv].avail_start++;
543 1.7 mrg vm_physmem[lcv].start++;
544 1.7 mrg /* nothing left? nuke it */
545 1.7 mrg if (vm_physmem[lcv].avail_start ==
546 1.7 mrg vm_physmem[lcv].end) {
547 1.7 mrg if (vm_nphysseg == 1)
548 1.42 mrg panic("vum_page_physget: out of memory!");
549 1.7 mrg vm_nphysseg--;
550 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
551 1.7 mrg /* structure copy */
552 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
553 1.7 mrg }
554 1.7 mrg return (TRUE);
555 1.7 mrg }
556 1.7 mrg
557 1.7 mrg /* try from rear */
558 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
559 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
560 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
561 1.7 mrg vm_physmem[lcv].avail_end--;
562 1.7 mrg vm_physmem[lcv].end--;
563 1.7 mrg /* nothing left? nuke it */
564 1.7 mrg if (vm_physmem[lcv].avail_end ==
565 1.7 mrg vm_physmem[lcv].start) {
566 1.7 mrg if (vm_nphysseg == 1)
567 1.42 mrg panic("uvm_page_physget: out of memory!");
568 1.7 mrg vm_nphysseg--;
569 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
570 1.7 mrg /* structure copy */
571 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
572 1.7 mrg }
573 1.7 mrg return (TRUE);
574 1.7 mrg }
575 1.7 mrg }
576 1.1 mrg
577 1.7 mrg /* pass2: forget about matching ends, just allocate something */
578 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
579 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
580 1.1 mrg #else
581 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
582 1.1 mrg #endif
583 1.7 mrg {
584 1.1 mrg
585 1.7 mrg /* any room in this bank? */
586 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
587 1.7 mrg continue; /* nope */
588 1.7 mrg
589 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
590 1.7 mrg vm_physmem[lcv].avail_start++;
591 1.7 mrg /* truncate! */
592 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
593 1.7 mrg
594 1.7 mrg /* nothing left? nuke it */
595 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
596 1.7 mrg if (vm_nphysseg == 1)
597 1.42 mrg panic("uvm_page_physget: out of memory!");
598 1.7 mrg vm_nphysseg--;
599 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
600 1.7 mrg /* structure copy */
601 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
602 1.7 mrg }
603 1.7 mrg return (TRUE);
604 1.7 mrg }
605 1.1 mrg
606 1.7 mrg return (FALSE); /* whoops! */
607 1.28 drochner }
608 1.28 drochner
609 1.28 drochner boolean_t
610 1.28 drochner uvm_page_physget(paddrp)
611 1.28 drochner paddr_t *paddrp;
612 1.28 drochner {
613 1.28 drochner int i;
614 1.28 drochner
615 1.28 drochner /* try in the order of freelist preference */
616 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
617 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
618 1.28 drochner return (TRUE);
619 1.28 drochner return (FALSE);
620 1.1 mrg }
621 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
622 1.1 mrg
623 1.1 mrg /*
624 1.1 mrg * uvm_page_physload: load physical memory into VM system
625 1.1 mrg *
626 1.1 mrg * => all args are PFs
627 1.1 mrg * => all pages in start/end get vm_page structures
628 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
629 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
630 1.1 mrg */
631 1.1 mrg
632 1.7 mrg void
633 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
634 1.29 eeh paddr_t start, end, avail_start, avail_end;
635 1.12 thorpej int free_list;
636 1.1 mrg {
637 1.14 eeh int preload, lcv;
638 1.14 eeh psize_t npages;
639 1.7 mrg struct vm_page *pgs;
640 1.7 mrg struct vm_physseg *ps;
641 1.7 mrg
642 1.7 mrg if (uvmexp.pagesize == 0)
643 1.42 mrg panic("uvm_page_physload: page size not set!");
644 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
645 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
646 1.26 drochner if (start >= end)
647 1.26 drochner panic("uvm_page_physload: start >= end");
648 1.12 thorpej
649 1.7 mrg /*
650 1.7 mrg * do we have room?
651 1.7 mrg */
652 1.67 chs
653 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
654 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
655 1.7 mrg "segment\n");
656 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
657 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
658 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
659 1.7 mrg return;
660 1.7 mrg }
661 1.7 mrg
662 1.7 mrg /*
663 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
664 1.7 mrg * called yet, so malloc is not available).
665 1.7 mrg */
666 1.67 chs
667 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
668 1.7 mrg if (vm_physmem[lcv].pgs)
669 1.7 mrg break;
670 1.7 mrg }
671 1.7 mrg preload = (lcv == vm_nphysseg);
672 1.7 mrg
673 1.7 mrg /*
674 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
675 1.7 mrg */
676 1.67 chs
677 1.7 mrg if (!preload) {
678 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
679 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
680 1.1 mrg #else
681 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
682 1.14 eeh paddr_t paddr;
683 1.7 mrg npages = end - start; /* # of pages */
684 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
685 1.40 thorpej M_VMPAGE, M_NOWAIT);
686 1.7 mrg if (pgs == NULL) {
687 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
688 1.7 mrg "structs for segment\n");
689 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
690 1.7 mrg return;
691 1.7 mrg }
692 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
693 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
694 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
695 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
696 1.7 mrg pgs[lcv].phys_addr = paddr;
697 1.12 thorpej pgs[lcv].free_list = free_list;
698 1.7 mrg if (atop(paddr) >= avail_start &&
699 1.7 mrg atop(paddr) <= avail_end)
700 1.8 chuck uvm_pagefree(&pgs[lcv]);
701 1.7 mrg }
702 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
703 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
704 1.1 mrg #endif
705 1.7 mrg } else {
706 1.7 mrg pgs = NULL;
707 1.7 mrg npages = 0;
708 1.7 mrg }
709 1.1 mrg
710 1.7 mrg /*
711 1.7 mrg * now insert us in the proper place in vm_physmem[]
712 1.7 mrg */
713 1.1 mrg
714 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
715 1.7 mrg /* random: put it at the end (easy!) */
716 1.7 mrg ps = &vm_physmem[vm_nphysseg];
717 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
718 1.7 mrg {
719 1.7 mrg int x;
720 1.7 mrg /* sort by address for binary search */
721 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
722 1.7 mrg if (start < vm_physmem[lcv].start)
723 1.7 mrg break;
724 1.7 mrg ps = &vm_physmem[lcv];
725 1.7 mrg /* move back other entries, if necessary ... */
726 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
727 1.7 mrg /* structure copy */
728 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
729 1.7 mrg }
730 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
731 1.7 mrg {
732 1.7 mrg int x;
733 1.7 mrg /* sort by largest segment first */
734 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
735 1.7 mrg if ((end - start) >
736 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
737 1.7 mrg break;
738 1.7 mrg ps = &vm_physmem[lcv];
739 1.7 mrg /* move back other entries, if necessary ... */
740 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
741 1.7 mrg /* structure copy */
742 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
743 1.7 mrg }
744 1.1 mrg #else
745 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
746 1.1 mrg #endif
747 1.1 mrg
748 1.7 mrg ps->start = start;
749 1.7 mrg ps->end = end;
750 1.7 mrg ps->avail_start = avail_start;
751 1.7 mrg ps->avail_end = avail_end;
752 1.7 mrg if (preload) {
753 1.7 mrg ps->pgs = NULL;
754 1.7 mrg } else {
755 1.7 mrg ps->pgs = pgs;
756 1.7 mrg ps->lastpg = pgs + npages - 1;
757 1.7 mrg }
758 1.12 thorpej ps->free_list = free_list;
759 1.7 mrg vm_nphysseg++;
760 1.7 mrg
761 1.7 mrg if (!preload)
762 1.7 mrg uvm_page_rehash();
763 1.1 mrg }
764 1.1 mrg
765 1.1 mrg /*
766 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
767 1.1 mrg */
768 1.1 mrg
769 1.7 mrg void
770 1.7 mrg uvm_page_rehash()
771 1.1 mrg {
772 1.67 chs int freepages, lcv, bucketcount, oldcount;
773 1.7 mrg struct pglist *newbuckets, *oldbuckets;
774 1.7 mrg struct vm_page *pg;
775 1.30 thorpej size_t newsize, oldsize;
776 1.7 mrg
777 1.7 mrg /*
778 1.7 mrg * compute number of pages that can go in the free pool
779 1.7 mrg */
780 1.7 mrg
781 1.7 mrg freepages = 0;
782 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
783 1.7 mrg freepages +=
784 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
785 1.7 mrg
786 1.7 mrg /*
787 1.7 mrg * compute number of buckets needed for this number of pages
788 1.7 mrg */
789 1.7 mrg
790 1.7 mrg bucketcount = 1;
791 1.7 mrg while (bucketcount < freepages)
792 1.7 mrg bucketcount = bucketcount * 2;
793 1.7 mrg
794 1.7 mrg /*
795 1.30 thorpej * compute the size of the current table and new table.
796 1.7 mrg */
797 1.7 mrg
798 1.30 thorpej oldbuckets = uvm.page_hash;
799 1.30 thorpej oldcount = uvm.page_nhash;
800 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
801 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
802 1.30 thorpej
803 1.30 thorpej /*
804 1.30 thorpej * allocate the new buckets
805 1.30 thorpej */
806 1.30 thorpej
807 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
808 1.7 mrg if (newbuckets == NULL) {
809 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
810 1.7 mrg "hash table\n");
811 1.7 mrg return;
812 1.7 mrg }
813 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
814 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
815 1.7 mrg
816 1.7 mrg /*
817 1.7 mrg * now replace the old buckets with the new ones and rehash everything
818 1.7 mrg */
819 1.7 mrg
820 1.7 mrg simple_lock(&uvm.hashlock);
821 1.7 mrg uvm.page_hash = newbuckets;
822 1.7 mrg uvm.page_nhash = bucketcount;
823 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
824 1.7 mrg
825 1.7 mrg /* ... and rehash */
826 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
827 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
828 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
829 1.7 mrg TAILQ_INSERT_TAIL(
830 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
831 1.7 mrg pg, hashq);
832 1.7 mrg }
833 1.7 mrg }
834 1.7 mrg simple_unlock(&uvm.hashlock);
835 1.7 mrg
836 1.7 mrg /*
837 1.30 thorpej * free old bucket array if is not the boot-time table
838 1.7 mrg */
839 1.7 mrg
840 1.7 mrg if (oldbuckets != &uvm_bootbucket)
841 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
842 1.1 mrg }
843 1.1 mrg
844 1.60 thorpej /*
845 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
846 1.60 thorpej * larger than the old one.
847 1.60 thorpej */
848 1.60 thorpej
849 1.60 thorpej void
850 1.60 thorpej uvm_page_recolor(int newncolors)
851 1.60 thorpej {
852 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
853 1.60 thorpej struct pgfreelist pgfl;
854 1.63 chs struct vm_page *pg;
855 1.60 thorpej vsize_t bucketcount;
856 1.60 thorpej int s, lcv, color, i, ocolors;
857 1.60 thorpej
858 1.60 thorpej if (newncolors <= uvmexp.ncolors)
859 1.60 thorpej return;
860 1.60 thorpej
861 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
862 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
863 1.60 thorpej M_VMPAGE, M_NOWAIT);
864 1.60 thorpej if (bucketarray == NULL) {
865 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
866 1.60 thorpej (long) bucketcount);
867 1.60 thorpej return;
868 1.60 thorpej }
869 1.60 thorpej
870 1.60 thorpej s = uvm_lock_fpageq();
871 1.60 thorpej
872 1.60 thorpej /* Make sure we should still do this. */
873 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
874 1.60 thorpej uvm_unlock_fpageq(s);
875 1.60 thorpej free(bucketarray, M_VMPAGE);
876 1.60 thorpej return;
877 1.60 thorpej }
878 1.60 thorpej
879 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
880 1.60 thorpej ocolors = uvmexp.ncolors;
881 1.60 thorpej
882 1.60 thorpej uvmexp.ncolors = newncolors;
883 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
884 1.60 thorpej
885 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
886 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
887 1.60 thorpej uvm_page_init_buckets(&pgfl);
888 1.60 thorpej for (color = 0; color < ocolors; color++) {
889 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
890 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
891 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
892 1.60 thorpej != NULL) {
893 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
894 1.60 thorpej lcv].pgfl_buckets[
895 1.60 thorpej color].pgfl_queues[i], pg, pageq);
896 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
897 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
898 1.60 thorpej i], pg, pageq);
899 1.60 thorpej }
900 1.60 thorpej }
901 1.60 thorpej }
902 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
903 1.60 thorpej }
904 1.60 thorpej
905 1.60 thorpej if (have_recolored_pages) {
906 1.60 thorpej uvm_unlock_fpageq(s);
907 1.60 thorpej free(oldbucketarray, M_VMPAGE);
908 1.60 thorpej return;
909 1.60 thorpej }
910 1.60 thorpej
911 1.60 thorpej have_recolored_pages = TRUE;
912 1.60 thorpej uvm_unlock_fpageq(s);
913 1.60 thorpej }
914 1.1 mrg
915 1.1 mrg /*
916 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
917 1.54 thorpej */
918 1.54 thorpej
919 1.54 thorpej static __inline struct vm_page *
920 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
921 1.69 simonb int *trycolorp)
922 1.54 thorpej {
923 1.54 thorpej struct pglist *freeq;
924 1.54 thorpej struct vm_page *pg;
925 1.58 enami int color, trycolor = *trycolorp;
926 1.54 thorpej
927 1.58 enami color = trycolor;
928 1.58 enami do {
929 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
930 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
931 1.54 thorpej goto gotit;
932 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
933 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
934 1.54 thorpej goto gotit;
935 1.60 thorpej color = (color + 1) & uvmexp.colormask;
936 1.58 enami } while (color != trycolor);
937 1.54 thorpej
938 1.54 thorpej return (NULL);
939 1.54 thorpej
940 1.54 thorpej gotit:
941 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
942 1.54 thorpej uvmexp.free--;
943 1.54 thorpej
944 1.54 thorpej /* update zero'd page count */
945 1.54 thorpej if (pg->flags & PG_ZERO)
946 1.54 thorpej uvmexp.zeropages--;
947 1.54 thorpej
948 1.54 thorpej if (color == trycolor)
949 1.54 thorpej uvmexp.colorhit++;
950 1.54 thorpej else {
951 1.54 thorpej uvmexp.colormiss++;
952 1.54 thorpej *trycolorp = color;
953 1.54 thorpej }
954 1.54 thorpej
955 1.54 thorpej return (pg);
956 1.54 thorpej }
957 1.54 thorpej
958 1.54 thorpej /*
959 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
960 1.1 mrg *
961 1.1 mrg * => return null if no pages free
962 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
963 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
964 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
965 1.1 mrg * => only one of obj or anon can be non-null
966 1.1 mrg * => caller must activate/deactivate page if it is not wired.
967 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
968 1.34 thorpej * => policy decision: it is more important to pull a page off of the
969 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
970 1.34 thorpej * unknown contents page. This is because we live with the
971 1.34 thorpej * consequences of a bad free list decision for the entire
972 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
973 1.34 thorpej * is slower to access.
974 1.1 mrg */
975 1.1 mrg
976 1.7 mrg struct vm_page *
977 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
978 1.7 mrg struct uvm_object *obj;
979 1.31 kleink voff_t off;
980 1.18 chs int flags;
981 1.7 mrg struct vm_anon *anon;
982 1.12 thorpej int strat, free_list;
983 1.1 mrg {
984 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
985 1.7 mrg struct vm_page *pg;
986 1.18 chs boolean_t use_reserve;
987 1.1 mrg
988 1.44 chs KASSERT(obj == NULL || anon == NULL);
989 1.44 chs KASSERT(off == trunc_page(off));
990 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
991 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
992 1.48 thorpej
993 1.44 chs s = uvm_lock_fpageq();
994 1.1 mrg
995 1.7 mrg /*
996 1.54 thorpej * This implements a global round-robin page coloring
997 1.54 thorpej * algorithm.
998 1.54 thorpej *
999 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
1000 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1001 1.54 thorpej */
1002 1.67 chs
1003 1.54 thorpej color = uvm.page_free_nextcolor;
1004 1.54 thorpej
1005 1.54 thorpej /*
1006 1.7 mrg * check to see if we need to generate some free pages waking
1007 1.7 mrg * the pagedaemon.
1008 1.7 mrg */
1009 1.7 mrg
1010 1.64 thorpej UVM_KICK_PDAEMON();
1011 1.7 mrg
1012 1.7 mrg /*
1013 1.7 mrg * fail if any of these conditions is true:
1014 1.7 mrg * [1] there really are no free pages, or
1015 1.7 mrg * [2] only kernel "reserved" pages remain and
1016 1.7 mrg * the page isn't being allocated to a kernel object.
1017 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1018 1.7 mrg * the requestor isn't the pagedaemon.
1019 1.7 mrg */
1020 1.7 mrg
1021 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1022 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1023 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1024 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1025 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1026 1.12 thorpej goto fail;
1027 1.12 thorpej
1028 1.34 thorpej #if PGFL_NQUEUES != 2
1029 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1030 1.34 thorpej #endif
1031 1.34 thorpej
1032 1.34 thorpej /*
1033 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1034 1.34 thorpej * we try the UNKNOWN queue first.
1035 1.34 thorpej */
1036 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1037 1.34 thorpej try1 = PGFL_ZEROS;
1038 1.34 thorpej try2 = PGFL_UNKNOWN;
1039 1.34 thorpej } else {
1040 1.34 thorpej try1 = PGFL_UNKNOWN;
1041 1.34 thorpej try2 = PGFL_ZEROS;
1042 1.34 thorpej }
1043 1.34 thorpej
1044 1.12 thorpej again:
1045 1.12 thorpej switch (strat) {
1046 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1047 1.12 thorpej /* Check all freelists in descending priority order. */
1048 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1049 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1050 1.54 thorpej try1, try2, &color);
1051 1.54 thorpej if (pg != NULL)
1052 1.12 thorpej goto gotit;
1053 1.12 thorpej }
1054 1.12 thorpej
1055 1.12 thorpej /* No pages free! */
1056 1.12 thorpej goto fail;
1057 1.12 thorpej
1058 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1059 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1060 1.12 thorpej /* Attempt to allocate from the specified free list. */
1061 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1062 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1063 1.54 thorpej try1, try2, &color);
1064 1.54 thorpej if (pg != NULL)
1065 1.12 thorpej goto gotit;
1066 1.12 thorpej
1067 1.12 thorpej /* Fall back, if possible. */
1068 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1069 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1070 1.12 thorpej goto again;
1071 1.12 thorpej }
1072 1.12 thorpej
1073 1.12 thorpej /* No pages free! */
1074 1.12 thorpej goto fail;
1075 1.12 thorpej
1076 1.12 thorpej default:
1077 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1078 1.12 thorpej /* NOTREACHED */
1079 1.7 mrg }
1080 1.7 mrg
1081 1.12 thorpej gotit:
1082 1.54 thorpej /*
1083 1.54 thorpej * We now know which color we actually allocated from; set
1084 1.54 thorpej * the next color accordingly.
1085 1.54 thorpej */
1086 1.67 chs
1087 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1088 1.34 thorpej
1089 1.34 thorpej /*
1090 1.34 thorpej * update allocation statistics and remember if we have to
1091 1.34 thorpej * zero the page
1092 1.34 thorpej */
1093 1.67 chs
1094 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1095 1.34 thorpej if (pg->flags & PG_ZERO) {
1096 1.34 thorpej uvmexp.pga_zerohit++;
1097 1.34 thorpej zeroit = 0;
1098 1.34 thorpej } else {
1099 1.34 thorpej uvmexp.pga_zeromiss++;
1100 1.34 thorpej zeroit = 1;
1101 1.34 thorpej }
1102 1.34 thorpej }
1103 1.67 chs uvm_unlock_fpageq(s);
1104 1.7 mrg
1105 1.7 mrg pg->offset = off;
1106 1.7 mrg pg->uobject = obj;
1107 1.7 mrg pg->uanon = anon;
1108 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1109 1.7 mrg if (anon) {
1110 1.7 mrg anon->u.an_page = pg;
1111 1.7 mrg pg->pqflags = PQ_ANON;
1112 1.45 simonb uvmexp.anonpages++;
1113 1.7 mrg } else {
1114 1.67 chs if (obj) {
1115 1.7 mrg uvm_pageinsert(pg);
1116 1.67 chs }
1117 1.7 mrg pg->pqflags = 0;
1118 1.7 mrg }
1119 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1120 1.7 mrg pg->owner_tag = NULL;
1121 1.1 mrg #endif
1122 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1123 1.33 thorpej
1124 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1125 1.33 thorpej /*
1126 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1127 1.34 thorpej * zero'd, then we have to zero it ourselves.
1128 1.33 thorpej */
1129 1.33 thorpej pg->flags &= ~PG_CLEAN;
1130 1.34 thorpej if (zeroit)
1131 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1132 1.33 thorpej }
1133 1.1 mrg
1134 1.7 mrg return(pg);
1135 1.12 thorpej
1136 1.12 thorpej fail:
1137 1.21 thorpej uvm_unlock_fpageq(s);
1138 1.12 thorpej return (NULL);
1139 1.1 mrg }
1140 1.1 mrg
1141 1.1 mrg /*
1142 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1143 1.1 mrg *
1144 1.1 mrg * => both objects must be locked
1145 1.1 mrg */
1146 1.1 mrg
1147 1.7 mrg void
1148 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1149 1.7 mrg struct vm_page *pg;
1150 1.7 mrg struct uvm_object *newobj;
1151 1.31 kleink voff_t newoff;
1152 1.1 mrg {
1153 1.7 mrg /*
1154 1.7 mrg * remove it from the old object
1155 1.7 mrg */
1156 1.7 mrg
1157 1.7 mrg if (pg->uobject) {
1158 1.7 mrg uvm_pageremove(pg);
1159 1.7 mrg }
1160 1.7 mrg
1161 1.7 mrg /*
1162 1.7 mrg * put it in the new object
1163 1.7 mrg */
1164 1.7 mrg
1165 1.7 mrg if (newobj) {
1166 1.7 mrg pg->uobject = newobj;
1167 1.7 mrg pg->offset = newoff;
1168 1.7 mrg uvm_pageinsert(pg);
1169 1.7 mrg }
1170 1.1 mrg }
1171 1.1 mrg
1172 1.1 mrg /*
1173 1.1 mrg * uvm_pagefree: free page
1174 1.1 mrg *
1175 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1176 1.1 mrg * => put page on free list
1177 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1178 1.1 mrg * => caller must lock page queues
1179 1.1 mrg * => assumes all valid mappings of pg are gone
1180 1.1 mrg */
1181 1.1 mrg
1182 1.44 chs void
1183 1.44 chs uvm_pagefree(pg)
1184 1.44 chs struct vm_page *pg;
1185 1.1 mrg {
1186 1.7 mrg int s;
1187 1.67 chs
1188 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1189 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1190 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1191 1.70 chs LOCK_ASSERT(pg->uobject == NULL ||
1192 1.70 chs simple_lock_held(&pg->uobject->vmobjlock));
1193 1.70 chs LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1194 1.70 chs simple_lock_held(&pg->uanon->an_lock));
1195 1.1 mrg
1196 1.44 chs #ifdef DEBUG
1197 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1198 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1199 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1200 1.44 chs }
1201 1.44 chs #endif
1202 1.44 chs
1203 1.7 mrg /*
1204 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1205 1.7 mrg */
1206 1.7 mrg
1207 1.67 chs if (pg->loan_count) {
1208 1.70 chs KASSERT(pg->wire_count == 0);
1209 1.7 mrg
1210 1.7 mrg /*
1211 1.67 chs * if the page is owned by an anon then we just want to
1212 1.70 chs * drop anon ownership. the kernel will free the page when
1213 1.70 chs * it is done with it. if the page is owned by an object,
1214 1.70 chs * remove it from the object and mark it dirty for the benefit
1215 1.70 chs * of possible anon owners.
1216 1.70 chs *
1217 1.70 chs * regardless of previous ownership, wakeup any waiters,
1218 1.70 chs * unbusy the page, and we're done.
1219 1.7 mrg */
1220 1.7 mrg
1221 1.67 chs if (pg->pqflags & PQ_ANON) {
1222 1.67 chs pg->pqflags &= ~PQ_ANON;
1223 1.67 chs pg->uanon = NULL;
1224 1.67 chs } else if (pg->flags & PG_TABLED) {
1225 1.70 chs uvm_pageremove(pg);
1226 1.67 chs pg->flags &= ~PG_CLEAN;
1227 1.67 chs }
1228 1.70 chs if (pg->flags & PG_WANTED) {
1229 1.70 chs wakeup(pg);
1230 1.70 chs }
1231 1.70 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1232 1.70 chs #ifdef UVM_PAGE_TRKOWN
1233 1.70 chs pg->owner_tag = NULL;
1234 1.70 chs #endif
1235 1.67 chs return;
1236 1.67 chs }
1237 1.62 chs
1238 1.67 chs /*
1239 1.67 chs * remove page from its object or anon.
1240 1.67 chs * adjust swpgonly if the page is swap-backed.
1241 1.67 chs */
1242 1.44 chs
1243 1.67 chs if (pg->flags & PG_TABLED) {
1244 1.67 chs uvm_pageremove(pg);
1245 1.67 chs } else if (pg->pqflags & PQ_ANON) {
1246 1.67 chs pg->uanon->u.an_page = NULL;
1247 1.7 mrg }
1248 1.1 mrg
1249 1.7 mrg /*
1250 1.70 chs * now remove the page from the queues.
1251 1.7 mrg */
1252 1.7 mrg
1253 1.67 chs uvm_pagedequeue(pg);
1254 1.7 mrg
1255 1.7 mrg /*
1256 1.7 mrg * if the page was wired, unwire it now.
1257 1.7 mrg */
1258 1.44 chs
1259 1.34 thorpej if (pg->wire_count) {
1260 1.7 mrg pg->wire_count = 0;
1261 1.7 mrg uvmexp.wired--;
1262 1.7 mrg }
1263 1.67 chs if (pg->pqflags & PQ_ANON) {
1264 1.45 simonb uvmexp.anonpages--;
1265 1.44 chs }
1266 1.7 mrg
1267 1.7 mrg /*
1268 1.44 chs * and put on free queue
1269 1.7 mrg */
1270 1.7 mrg
1271 1.34 thorpej pg->flags &= ~PG_ZERO;
1272 1.34 thorpej
1273 1.21 thorpej s = uvm_lock_fpageq();
1274 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1275 1.54 thorpej uvm_page_lookup_freelist(pg)].pgfl_buckets[
1276 1.54 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1277 1.7 mrg pg->pqflags = PQ_FREE;
1278 1.3 chs #ifdef DEBUG
1279 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1280 1.7 mrg pg->offset = 0xdeadbeef;
1281 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1282 1.3 chs #endif
1283 1.7 mrg uvmexp.free++;
1284 1.34 thorpej
1285 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1286 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1287 1.34 thorpej
1288 1.21 thorpej uvm_unlock_fpageq(s);
1289 1.44 chs }
1290 1.44 chs
1291 1.44 chs /*
1292 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1293 1.44 chs *
1294 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1295 1.44 chs * => if pages are object-owned, object must be locked.
1296 1.67 chs * => if pages are anon-owned, anons must be locked.
1297 1.44 chs */
1298 1.44 chs
1299 1.44 chs void
1300 1.44 chs uvm_page_unbusy(pgs, npgs)
1301 1.44 chs struct vm_page **pgs;
1302 1.44 chs int npgs;
1303 1.44 chs {
1304 1.44 chs struct vm_page *pg;
1305 1.44 chs int i;
1306 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1307 1.44 chs
1308 1.44 chs for (i = 0; i < npgs; i++) {
1309 1.44 chs pg = pgs[i];
1310 1.44 chs if (pg == NULL) {
1311 1.44 chs continue;
1312 1.44 chs }
1313 1.44 chs if (pg->flags & PG_WANTED) {
1314 1.44 chs wakeup(pg);
1315 1.44 chs }
1316 1.44 chs if (pg->flags & PG_RELEASED) {
1317 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1318 1.67 chs pg->flags &= ~PG_RELEASED;
1319 1.67 chs uvm_pagefree(pg);
1320 1.44 chs } else {
1321 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1322 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1323 1.44 chs UVM_PAGE_OWN(pg, NULL);
1324 1.44 chs }
1325 1.44 chs }
1326 1.1 mrg }
1327 1.1 mrg
1328 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1329 1.1 mrg /*
1330 1.1 mrg * uvm_page_own: set or release page ownership
1331 1.1 mrg *
1332 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1333 1.1 mrg * and where they do it. it can be used to track down problems
1334 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1335 1.1 mrg * => page's object [if any] must be locked
1336 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1337 1.1 mrg */
1338 1.7 mrg void
1339 1.7 mrg uvm_page_own(pg, tag)
1340 1.7 mrg struct vm_page *pg;
1341 1.7 mrg char *tag;
1342 1.1 mrg {
1343 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1344 1.67 chs
1345 1.7 mrg /* gain ownership? */
1346 1.7 mrg if (tag) {
1347 1.7 mrg if (pg->owner_tag) {
1348 1.7 mrg printf("uvm_page_own: page %p already owned "
1349 1.7 mrg "by proc %d [%s]\n", pg,
1350 1.7 mrg pg->owner, pg->owner_tag);
1351 1.7 mrg panic("uvm_page_own");
1352 1.7 mrg }
1353 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1354 1.7 mrg pg->owner_tag = tag;
1355 1.7 mrg return;
1356 1.7 mrg }
1357 1.7 mrg
1358 1.7 mrg /* drop ownership */
1359 1.7 mrg if (pg->owner_tag == NULL) {
1360 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1361 1.7 mrg "page (%p)\n", pg);
1362 1.7 mrg panic("uvm_page_own");
1363 1.7 mrg }
1364 1.7 mrg pg->owner_tag = NULL;
1365 1.70 chs KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1366 1.70 chs (pg->uanon == NULL && pg->uobject == NULL) ||
1367 1.67 chs pg->uobject == uvm.kernel_object ||
1368 1.70 chs pg->wire_count > 0 ||
1369 1.70 chs (pg->loan_count == 1 && pg->uanon == NULL) ||
1370 1.70 chs pg->loan_count > 1);
1371 1.7 mrg return;
1372 1.1 mrg }
1373 1.1 mrg #endif
1374 1.34 thorpej
1375 1.34 thorpej /*
1376 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1377 1.34 thorpej *
1378 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1379 1.54 thorpej * on the CPU cache.
1380 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1381 1.34 thorpej * there is a process ready to run.
1382 1.34 thorpej */
1383 1.34 thorpej void
1384 1.34 thorpej uvm_pageidlezero()
1385 1.34 thorpej {
1386 1.34 thorpej struct vm_page *pg;
1387 1.34 thorpej struct pgfreelist *pgfl;
1388 1.58 enami int free_list, s, firstbucket;
1389 1.54 thorpej static int nextbucket;
1390 1.54 thorpej
1391 1.54 thorpej s = uvm_lock_fpageq();
1392 1.58 enami firstbucket = nextbucket;
1393 1.58 enami do {
1394 1.54 thorpej if (sched_whichqs != 0) {
1395 1.34 thorpej uvm_unlock_fpageq(s);
1396 1.34 thorpej return;
1397 1.34 thorpej }
1398 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1399 1.34 thorpej uvm.page_idle_zero = FALSE;
1400 1.34 thorpej uvm_unlock_fpageq(s);
1401 1.34 thorpej return;
1402 1.34 thorpej }
1403 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1404 1.54 thorpej pgfl = &uvm.page_free[free_list];
1405 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1406 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1407 1.54 thorpej if (sched_whichqs != 0) {
1408 1.54 thorpej uvm_unlock_fpageq(s);
1409 1.54 thorpej return;
1410 1.54 thorpej }
1411 1.54 thorpej
1412 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1413 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1414 1.54 thorpej pg, pageq);
1415 1.54 thorpej uvmexp.free--;
1416 1.54 thorpej uvm_unlock_fpageq(s);
1417 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1418 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1419 1.67 chs
1420 1.54 thorpej /*
1421 1.54 thorpej * The machine-dependent code detected
1422 1.54 thorpej * some reason for us to abort zeroing
1423 1.54 thorpej * pages, probably because there is a
1424 1.54 thorpej * process now ready to run.
1425 1.54 thorpej */
1426 1.67 chs
1427 1.54 thorpej s = uvm_lock_fpageq();
1428 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1429 1.54 thorpej nextbucket].pgfl_queues[
1430 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1431 1.54 thorpej uvmexp.free++;
1432 1.54 thorpej uvmexp.zeroaborts++;
1433 1.54 thorpej uvm_unlock_fpageq(s);
1434 1.54 thorpej return;
1435 1.54 thorpej }
1436 1.54 thorpej #else
1437 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1438 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1439 1.54 thorpej pg->flags |= PG_ZERO;
1440 1.54 thorpej
1441 1.54 thorpej s = uvm_lock_fpageq();
1442 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1443 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1444 1.54 thorpej pg, pageq);
1445 1.54 thorpej uvmexp.free++;
1446 1.54 thorpej uvmexp.zeropages++;
1447 1.54 thorpej }
1448 1.41 thorpej }
1449 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1450 1.58 enami } while (nextbucket != firstbucket);
1451 1.54 thorpej uvm_unlock_fpageq(s);
1452 1.34 thorpej }
1453