uvm_page.c revision 1.71 1 1.71 lukem /* $NetBSD: uvm_page.c,v 1.71 2001/11/10 07:37:00 lukem Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.71 lukem __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.71 2001/11/10 07:37:00 lukem Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.44 chs
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/systm.h>
80 1.1 mrg #include <sys/malloc.h>
81 1.35 thorpej #include <sys/sched.h>
82 1.44 chs #include <sys/kernel.h>
83 1.51 chs #include <sys/vnode.h>
84 1.68 chs #include <sys/proc.h>
85 1.1 mrg
86 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * physical memory config is stored in vm_physmem.
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99 1.1 mrg
100 1.1 mrg /*
101 1.36 thorpej * Some supported CPUs in a given architecture don't support all
102 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
103 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
104 1.34 thorpej */
105 1.44 chs /*
106 1.44 chs * XXX disabled until we can find a way to do this without causing
107 1.44 chs * problems for either cpu caches or DMA latency.
108 1.44 chs */
109 1.44 chs boolean_t vm_page_zero_enable = FALSE;
110 1.34 thorpej
111 1.34 thorpej /*
112 1.1 mrg * local variables
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
117 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
118 1.1 mrg * and pmap_startup here also uses them internally.
119 1.1 mrg */
120 1.1 mrg
121 1.14 eeh static vaddr_t virtual_space_start;
122 1.14 eeh static vaddr_t virtual_space_end;
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * we use a hash table with only one bucket during bootup. we will
126 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
127 1.30 thorpej * we static allocate the one bootstrap bucket below...
128 1.1 mrg */
129 1.1 mrg
130 1.1 mrg static struct pglist uvm_bootbucket;
131 1.1 mrg
132 1.1 mrg /*
133 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
134 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
135 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
136 1.60 thorpej * free the initial set of buckets, since they are allocated using
137 1.60 thorpej * uvm_pageboot_alloc().
138 1.60 thorpej */
139 1.60 thorpej
140 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
141 1.60 thorpej
142 1.60 thorpej /*
143 1.1 mrg * local prototypes
144 1.1 mrg */
145 1.1 mrg
146 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
147 1.44 chs static void uvm_pageremove __P((struct vm_page *));
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * inline functions
151 1.1 mrg */
152 1.1 mrg
153 1.1 mrg /*
154 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
155 1.1 mrg *
156 1.1 mrg * => caller must lock object
157 1.1 mrg * => caller must lock page queues
158 1.1 mrg * => call should have already set pg's object and offset pointers
159 1.1 mrg * and bumped the version counter
160 1.1 mrg */
161 1.1 mrg
162 1.7 mrg __inline static void
163 1.7 mrg uvm_pageinsert(pg)
164 1.7 mrg struct vm_page *pg;
165 1.1 mrg {
166 1.7 mrg struct pglist *buck;
167 1.67 chs struct uvm_object *uobj = pg->uobject;
168 1.1 mrg
169 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
170 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
171 1.7 mrg simple_lock(&uvm.hashlock);
172 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
173 1.7 mrg simple_unlock(&uvm.hashlock);
174 1.7 mrg
175 1.67 chs TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
176 1.7 mrg pg->flags |= PG_TABLED;
177 1.67 chs uobj->uo_npages++;
178 1.1 mrg }
179 1.1 mrg
180 1.1 mrg /*
181 1.1 mrg * uvm_page_remove: remove page from object and hash
182 1.1 mrg *
183 1.1 mrg * => caller must lock object
184 1.1 mrg * => caller must lock page queues
185 1.1 mrg */
186 1.1 mrg
187 1.44 chs static __inline void
188 1.7 mrg uvm_pageremove(pg)
189 1.7 mrg struct vm_page *pg;
190 1.1 mrg {
191 1.7 mrg struct pglist *buck;
192 1.67 chs struct uvm_object *uobj = pg->uobject;
193 1.1 mrg
194 1.44 chs KASSERT(pg->flags & PG_TABLED);
195 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
196 1.7 mrg simple_lock(&uvm.hashlock);
197 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
198 1.7 mrg simple_unlock(&uvm.hashlock);
199 1.7 mrg
200 1.67 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
201 1.51 chs uvmexp.vtextpages--;
202 1.67 chs } else if (UVM_OBJ_IS_VNODE(uobj)) {
203 1.45 simonb uvmexp.vnodepages--;
204 1.51 chs }
205 1.44 chs
206 1.7 mrg /* object should be locked */
207 1.67 chs uobj->uo_npages--;
208 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
209 1.7 mrg pg->flags &= ~PG_TABLED;
210 1.7 mrg pg->uobject = NULL;
211 1.1 mrg }
212 1.1 mrg
213 1.60 thorpej static void
214 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
215 1.60 thorpej {
216 1.60 thorpej int color, i;
217 1.60 thorpej
218 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
219 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
220 1.60 thorpej TAILQ_INIT(&pgfl->pgfl_buckets[
221 1.60 thorpej color].pgfl_queues[i]);
222 1.60 thorpej }
223 1.60 thorpej }
224 1.60 thorpej }
225 1.60 thorpej
226 1.1 mrg /*
227 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
228 1.62 chs *
229 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
230 1.1 mrg */
231 1.1 mrg
232 1.7 mrg void
233 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
234 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
235 1.1 mrg {
236 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
237 1.60 thorpej struct pgflbucket *bucketarray;
238 1.63 chs struct vm_page *pagearray;
239 1.60 thorpej int lcv, i;
240 1.14 eeh paddr_t paddr;
241 1.7 mrg
242 1.7 mrg /*
243 1.60 thorpej * init the page queues and page queue locks, except the free
244 1.60 thorpej * list; we allocate that later (with the initial vm_page
245 1.60 thorpej * structures).
246 1.7 mrg */
247 1.51 chs
248 1.7 mrg TAILQ_INIT(&uvm.page_active);
249 1.61 ross TAILQ_INIT(&uvm.page_inactive);
250 1.7 mrg simple_lock_init(&uvm.pageqlock);
251 1.7 mrg simple_lock_init(&uvm.fpageqlock);
252 1.7 mrg
253 1.7 mrg /*
254 1.51 chs * init the <obj,offset> => <page> hash table. for now
255 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
256 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
257 1.7 mrg */
258 1.7 mrg
259 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
260 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
261 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
262 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
263 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
264 1.7 mrg
265 1.62 chs /*
266 1.51 chs * allocate vm_page structures.
267 1.7 mrg */
268 1.7 mrg
269 1.7 mrg /*
270 1.7 mrg * sanity check:
271 1.7 mrg * before calling this function the MD code is expected to register
272 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
273 1.7 mrg * now is to allocate vm_page structures for this memory.
274 1.7 mrg */
275 1.7 mrg
276 1.7 mrg if (vm_nphysseg == 0)
277 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
278 1.62 chs
279 1.7 mrg /*
280 1.62 chs * first calculate the number of free pages...
281 1.7 mrg *
282 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
283 1.7 mrg * this allows us to allocate extra vm_page structures in case we
284 1.7 mrg * want to return some memory to the pool after booting.
285 1.7 mrg */
286 1.62 chs
287 1.7 mrg freepages = 0;
288 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
289 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
290 1.7 mrg
291 1.7 mrg /*
292 1.60 thorpej * Let MD code initialize the number of colors, or default
293 1.60 thorpej * to 1 color if MD code doesn't care.
294 1.60 thorpej */
295 1.60 thorpej if (uvmexp.ncolors == 0)
296 1.60 thorpej uvmexp.ncolors = 1;
297 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
298 1.60 thorpej
299 1.60 thorpej /*
300 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
301 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
302 1.7 mrg * thus, the total number of pages we can use is the total size of
303 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
304 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
305 1.7 mrg * truncation errors (since we can only allocate in terms of whole
306 1.7 mrg * pages).
307 1.7 mrg */
308 1.62 chs
309 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
310 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
311 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
312 1.60 thorpej
313 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
314 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
315 1.60 thorpej sizeof(struct vm_page)));
316 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
317 1.60 thorpej
318 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
319 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
320 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
321 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
322 1.60 thorpej }
323 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
324 1.62 chs
325 1.7 mrg /*
326 1.51 chs * init the vm_page structures and put them in the correct place.
327 1.7 mrg */
328 1.7 mrg
329 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
330 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
331 1.51 chs
332 1.7 mrg /* set up page array pointers */
333 1.7 mrg vm_physmem[lcv].pgs = pagearray;
334 1.7 mrg pagearray += n;
335 1.7 mrg pagecount -= n;
336 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
337 1.7 mrg
338 1.13 perry /* init and free vm_pages (we've already zeroed them) */
339 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
340 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
341 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
342 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
343 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
344 1.56 thorpej #endif
345 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
346 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
347 1.7 mrg uvmexp.npages++;
348 1.7 mrg /* add page to free pool */
349 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
350 1.7 mrg }
351 1.7 mrg }
352 1.7 mrg }
353 1.44 chs
354 1.7 mrg /*
355 1.51 chs * pass up the values of virtual_space_start and
356 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
357 1.7 mrg * layers of the VM.
358 1.7 mrg */
359 1.7 mrg
360 1.7 mrg *kvm_startp = round_page(virtual_space_start);
361 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
362 1.7 mrg
363 1.7 mrg /*
364 1.51 chs * init locks for kernel threads
365 1.7 mrg */
366 1.7 mrg
367 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
368 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
369 1.7 mrg
370 1.7 mrg /*
371 1.51 chs * init various thresholds.
372 1.7 mrg * XXXCDC - values may need adjusting
373 1.7 mrg */
374 1.51 chs
375 1.7 mrg uvmexp.reserve_pagedaemon = 1;
376 1.7 mrg uvmexp.reserve_kernel = 5;
377 1.51 chs uvmexp.anonminpct = 10;
378 1.51 chs uvmexp.vnodeminpct = 10;
379 1.51 chs uvmexp.vtextminpct = 5;
380 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
381 1.51 chs uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
382 1.51 chs uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
383 1.7 mrg
384 1.7 mrg /*
385 1.51 chs * determine if we should zero pages in the idle loop.
386 1.34 thorpej */
387 1.51 chs
388 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
389 1.34 thorpej
390 1.34 thorpej /*
391 1.7 mrg * done!
392 1.7 mrg */
393 1.1 mrg
394 1.32 thorpej uvm.page_init_done = TRUE;
395 1.1 mrg }
396 1.1 mrg
397 1.1 mrg /*
398 1.1 mrg * uvm_setpagesize: set the page size
399 1.62 chs *
400 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
401 1.62 chs */
402 1.1 mrg
403 1.7 mrg void
404 1.7 mrg uvm_setpagesize()
405 1.1 mrg {
406 1.7 mrg if (uvmexp.pagesize == 0)
407 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
408 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
409 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
410 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
411 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
412 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
413 1.7 mrg break;
414 1.1 mrg }
415 1.1 mrg
416 1.1 mrg /*
417 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
418 1.1 mrg */
419 1.1 mrg
420 1.14 eeh vaddr_t
421 1.7 mrg uvm_pageboot_alloc(size)
422 1.14 eeh vsize_t size;
423 1.1 mrg {
424 1.52 thorpej static boolean_t initialized = FALSE;
425 1.14 eeh vaddr_t addr;
426 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
427 1.52 thorpej vaddr_t vaddr;
428 1.14 eeh paddr_t paddr;
429 1.52 thorpej #endif
430 1.1 mrg
431 1.7 mrg /*
432 1.19 thorpej * on first call to this function, initialize ourselves.
433 1.7 mrg */
434 1.19 thorpej if (initialized == FALSE) {
435 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
436 1.1 mrg
437 1.7 mrg /* round it the way we like it */
438 1.7 mrg virtual_space_start = round_page(virtual_space_start);
439 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
440 1.19 thorpej
441 1.19 thorpej initialized = TRUE;
442 1.7 mrg }
443 1.52 thorpej
444 1.52 thorpej /* round to page size */
445 1.52 thorpej size = round_page(size);
446 1.52 thorpej
447 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
448 1.52 thorpej
449 1.62 chs /*
450 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
451 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
452 1.52 thorpej * virtual_space_start/virtual_space_end if necessary.
453 1.52 thorpej */
454 1.52 thorpej
455 1.52 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
456 1.52 thorpej &virtual_space_end);
457 1.52 thorpej
458 1.52 thorpej return(addr);
459 1.52 thorpej
460 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
461 1.1 mrg
462 1.7 mrg /*
463 1.7 mrg * allocate virtual memory for this request
464 1.7 mrg */
465 1.19 thorpej if (virtual_space_start == virtual_space_end ||
466 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
467 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
468 1.20 thorpej
469 1.20 thorpej addr = virtual_space_start;
470 1.20 thorpej
471 1.20 thorpej #ifdef PMAP_GROWKERNEL
472 1.20 thorpej /*
473 1.20 thorpej * If the kernel pmap can't map the requested space,
474 1.20 thorpej * then allocate more resources for it.
475 1.20 thorpej */
476 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
477 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
478 1.20 thorpej if (uvm_maxkaddr < (addr + size))
479 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
480 1.19 thorpej }
481 1.20 thorpej #endif
482 1.1 mrg
483 1.7 mrg virtual_space_start += size;
484 1.1 mrg
485 1.9 thorpej /*
486 1.7 mrg * allocate and mapin physical pages to back new virtual pages
487 1.7 mrg */
488 1.1 mrg
489 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
490 1.7 mrg vaddr += PAGE_SIZE) {
491 1.1 mrg
492 1.7 mrg if (!uvm_page_physget(&paddr))
493 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
494 1.1 mrg
495 1.23 thorpej /*
496 1.23 thorpej * Note this memory is no longer managed, so using
497 1.23 thorpej * pmap_kenter is safe.
498 1.23 thorpej */
499 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
500 1.7 mrg }
501 1.66 chris pmap_update(pmap_kernel());
502 1.7 mrg return(addr);
503 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
504 1.1 mrg }
505 1.1 mrg
506 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
507 1.1 mrg /*
508 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
509 1.1 mrg *
510 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
511 1.1 mrg * values match the start/end values. if we can't do that, then we
512 1.1 mrg * will advance both values (making them equal, and removing some
513 1.1 mrg * vm_page structures from the non-avail area).
514 1.1 mrg * => return false if out of memory.
515 1.1 mrg */
516 1.1 mrg
517 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
518 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
519 1.28 drochner
520 1.28 drochner static boolean_t
521 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
522 1.14 eeh paddr_t *paddrp;
523 1.28 drochner int freelist;
524 1.1 mrg {
525 1.7 mrg int lcv, x;
526 1.1 mrg
527 1.7 mrg /* pass 1: try allocating from a matching end */
528 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
529 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
530 1.1 mrg #else
531 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
532 1.1 mrg #endif
533 1.7 mrg {
534 1.1 mrg
535 1.32 thorpej if (uvm.page_init_done == TRUE)
536 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
537 1.1 mrg
538 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
539 1.28 drochner continue;
540 1.28 drochner
541 1.7 mrg /* try from front */
542 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
543 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
544 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
545 1.7 mrg vm_physmem[lcv].avail_start++;
546 1.7 mrg vm_physmem[lcv].start++;
547 1.7 mrg /* nothing left? nuke it */
548 1.7 mrg if (vm_physmem[lcv].avail_start ==
549 1.7 mrg vm_physmem[lcv].end) {
550 1.7 mrg if (vm_nphysseg == 1)
551 1.42 mrg panic("vum_page_physget: out of memory!");
552 1.7 mrg vm_nphysseg--;
553 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
554 1.7 mrg /* structure copy */
555 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
556 1.7 mrg }
557 1.7 mrg return (TRUE);
558 1.7 mrg }
559 1.7 mrg
560 1.7 mrg /* try from rear */
561 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
562 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
563 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
564 1.7 mrg vm_physmem[lcv].avail_end--;
565 1.7 mrg vm_physmem[lcv].end--;
566 1.7 mrg /* nothing left? nuke it */
567 1.7 mrg if (vm_physmem[lcv].avail_end ==
568 1.7 mrg vm_physmem[lcv].start) {
569 1.7 mrg if (vm_nphysseg == 1)
570 1.42 mrg panic("uvm_page_physget: out of memory!");
571 1.7 mrg vm_nphysseg--;
572 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
573 1.7 mrg /* structure copy */
574 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
575 1.7 mrg }
576 1.7 mrg return (TRUE);
577 1.7 mrg }
578 1.7 mrg }
579 1.1 mrg
580 1.7 mrg /* pass2: forget about matching ends, just allocate something */
581 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
582 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
583 1.1 mrg #else
584 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
585 1.1 mrg #endif
586 1.7 mrg {
587 1.1 mrg
588 1.7 mrg /* any room in this bank? */
589 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
590 1.7 mrg continue; /* nope */
591 1.7 mrg
592 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
593 1.7 mrg vm_physmem[lcv].avail_start++;
594 1.7 mrg /* truncate! */
595 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
596 1.7 mrg
597 1.7 mrg /* nothing left? nuke it */
598 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
599 1.7 mrg if (vm_nphysseg == 1)
600 1.42 mrg panic("uvm_page_physget: out of memory!");
601 1.7 mrg vm_nphysseg--;
602 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
603 1.7 mrg /* structure copy */
604 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
605 1.7 mrg }
606 1.7 mrg return (TRUE);
607 1.7 mrg }
608 1.1 mrg
609 1.7 mrg return (FALSE); /* whoops! */
610 1.28 drochner }
611 1.28 drochner
612 1.28 drochner boolean_t
613 1.28 drochner uvm_page_physget(paddrp)
614 1.28 drochner paddr_t *paddrp;
615 1.28 drochner {
616 1.28 drochner int i;
617 1.28 drochner
618 1.28 drochner /* try in the order of freelist preference */
619 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
620 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
621 1.28 drochner return (TRUE);
622 1.28 drochner return (FALSE);
623 1.1 mrg }
624 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
625 1.1 mrg
626 1.1 mrg /*
627 1.1 mrg * uvm_page_physload: load physical memory into VM system
628 1.1 mrg *
629 1.1 mrg * => all args are PFs
630 1.1 mrg * => all pages in start/end get vm_page structures
631 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
632 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
633 1.1 mrg */
634 1.1 mrg
635 1.7 mrg void
636 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
637 1.29 eeh paddr_t start, end, avail_start, avail_end;
638 1.12 thorpej int free_list;
639 1.1 mrg {
640 1.14 eeh int preload, lcv;
641 1.14 eeh psize_t npages;
642 1.7 mrg struct vm_page *pgs;
643 1.7 mrg struct vm_physseg *ps;
644 1.7 mrg
645 1.7 mrg if (uvmexp.pagesize == 0)
646 1.42 mrg panic("uvm_page_physload: page size not set!");
647 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
648 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
649 1.26 drochner if (start >= end)
650 1.26 drochner panic("uvm_page_physload: start >= end");
651 1.12 thorpej
652 1.7 mrg /*
653 1.7 mrg * do we have room?
654 1.7 mrg */
655 1.67 chs
656 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
657 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
658 1.7 mrg "segment\n");
659 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
660 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
661 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
662 1.7 mrg return;
663 1.7 mrg }
664 1.7 mrg
665 1.7 mrg /*
666 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
667 1.7 mrg * called yet, so malloc is not available).
668 1.7 mrg */
669 1.67 chs
670 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
671 1.7 mrg if (vm_physmem[lcv].pgs)
672 1.7 mrg break;
673 1.7 mrg }
674 1.7 mrg preload = (lcv == vm_nphysseg);
675 1.7 mrg
676 1.7 mrg /*
677 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
678 1.7 mrg */
679 1.67 chs
680 1.7 mrg if (!preload) {
681 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
682 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
683 1.1 mrg #else
684 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
685 1.14 eeh paddr_t paddr;
686 1.7 mrg npages = end - start; /* # of pages */
687 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
688 1.40 thorpej M_VMPAGE, M_NOWAIT);
689 1.7 mrg if (pgs == NULL) {
690 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
691 1.7 mrg "structs for segment\n");
692 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
693 1.7 mrg return;
694 1.7 mrg }
695 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
696 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
697 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
698 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
699 1.7 mrg pgs[lcv].phys_addr = paddr;
700 1.12 thorpej pgs[lcv].free_list = free_list;
701 1.7 mrg if (atop(paddr) >= avail_start &&
702 1.7 mrg atop(paddr) <= avail_end)
703 1.8 chuck uvm_pagefree(&pgs[lcv]);
704 1.7 mrg }
705 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
706 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
707 1.1 mrg #endif
708 1.7 mrg } else {
709 1.7 mrg pgs = NULL;
710 1.7 mrg npages = 0;
711 1.7 mrg }
712 1.1 mrg
713 1.7 mrg /*
714 1.7 mrg * now insert us in the proper place in vm_physmem[]
715 1.7 mrg */
716 1.1 mrg
717 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
718 1.7 mrg /* random: put it at the end (easy!) */
719 1.7 mrg ps = &vm_physmem[vm_nphysseg];
720 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
721 1.7 mrg {
722 1.7 mrg int x;
723 1.7 mrg /* sort by address for binary search */
724 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
725 1.7 mrg if (start < vm_physmem[lcv].start)
726 1.7 mrg break;
727 1.7 mrg ps = &vm_physmem[lcv];
728 1.7 mrg /* move back other entries, if necessary ... */
729 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
730 1.7 mrg /* structure copy */
731 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
732 1.7 mrg }
733 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
734 1.7 mrg {
735 1.7 mrg int x;
736 1.7 mrg /* sort by largest segment first */
737 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
738 1.7 mrg if ((end - start) >
739 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
740 1.7 mrg break;
741 1.7 mrg ps = &vm_physmem[lcv];
742 1.7 mrg /* move back other entries, if necessary ... */
743 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
744 1.7 mrg /* structure copy */
745 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
746 1.7 mrg }
747 1.1 mrg #else
748 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
749 1.1 mrg #endif
750 1.1 mrg
751 1.7 mrg ps->start = start;
752 1.7 mrg ps->end = end;
753 1.7 mrg ps->avail_start = avail_start;
754 1.7 mrg ps->avail_end = avail_end;
755 1.7 mrg if (preload) {
756 1.7 mrg ps->pgs = NULL;
757 1.7 mrg } else {
758 1.7 mrg ps->pgs = pgs;
759 1.7 mrg ps->lastpg = pgs + npages - 1;
760 1.7 mrg }
761 1.12 thorpej ps->free_list = free_list;
762 1.7 mrg vm_nphysseg++;
763 1.7 mrg
764 1.7 mrg if (!preload)
765 1.7 mrg uvm_page_rehash();
766 1.1 mrg }
767 1.1 mrg
768 1.1 mrg /*
769 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
770 1.1 mrg */
771 1.1 mrg
772 1.7 mrg void
773 1.7 mrg uvm_page_rehash()
774 1.1 mrg {
775 1.67 chs int freepages, lcv, bucketcount, oldcount;
776 1.7 mrg struct pglist *newbuckets, *oldbuckets;
777 1.7 mrg struct vm_page *pg;
778 1.30 thorpej size_t newsize, oldsize;
779 1.7 mrg
780 1.7 mrg /*
781 1.7 mrg * compute number of pages that can go in the free pool
782 1.7 mrg */
783 1.7 mrg
784 1.7 mrg freepages = 0;
785 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
786 1.7 mrg freepages +=
787 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
788 1.7 mrg
789 1.7 mrg /*
790 1.7 mrg * compute number of buckets needed for this number of pages
791 1.7 mrg */
792 1.7 mrg
793 1.7 mrg bucketcount = 1;
794 1.7 mrg while (bucketcount < freepages)
795 1.7 mrg bucketcount = bucketcount * 2;
796 1.7 mrg
797 1.7 mrg /*
798 1.30 thorpej * compute the size of the current table and new table.
799 1.7 mrg */
800 1.7 mrg
801 1.30 thorpej oldbuckets = uvm.page_hash;
802 1.30 thorpej oldcount = uvm.page_nhash;
803 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
804 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
805 1.30 thorpej
806 1.30 thorpej /*
807 1.30 thorpej * allocate the new buckets
808 1.30 thorpej */
809 1.30 thorpej
810 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
811 1.7 mrg if (newbuckets == NULL) {
812 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
813 1.7 mrg "hash table\n");
814 1.7 mrg return;
815 1.7 mrg }
816 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
817 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
818 1.7 mrg
819 1.7 mrg /*
820 1.7 mrg * now replace the old buckets with the new ones and rehash everything
821 1.7 mrg */
822 1.7 mrg
823 1.7 mrg simple_lock(&uvm.hashlock);
824 1.7 mrg uvm.page_hash = newbuckets;
825 1.7 mrg uvm.page_nhash = bucketcount;
826 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
827 1.7 mrg
828 1.7 mrg /* ... and rehash */
829 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
830 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
831 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
832 1.7 mrg TAILQ_INSERT_TAIL(
833 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
834 1.7 mrg pg, hashq);
835 1.7 mrg }
836 1.7 mrg }
837 1.7 mrg simple_unlock(&uvm.hashlock);
838 1.7 mrg
839 1.7 mrg /*
840 1.30 thorpej * free old bucket array if is not the boot-time table
841 1.7 mrg */
842 1.7 mrg
843 1.7 mrg if (oldbuckets != &uvm_bootbucket)
844 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
845 1.1 mrg }
846 1.1 mrg
847 1.60 thorpej /*
848 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
849 1.60 thorpej * larger than the old one.
850 1.60 thorpej */
851 1.60 thorpej
852 1.60 thorpej void
853 1.60 thorpej uvm_page_recolor(int newncolors)
854 1.60 thorpej {
855 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
856 1.60 thorpej struct pgfreelist pgfl;
857 1.63 chs struct vm_page *pg;
858 1.60 thorpej vsize_t bucketcount;
859 1.60 thorpej int s, lcv, color, i, ocolors;
860 1.60 thorpej
861 1.60 thorpej if (newncolors <= uvmexp.ncolors)
862 1.60 thorpej return;
863 1.60 thorpej
864 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
865 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
866 1.60 thorpej M_VMPAGE, M_NOWAIT);
867 1.60 thorpej if (bucketarray == NULL) {
868 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
869 1.60 thorpej (long) bucketcount);
870 1.60 thorpej return;
871 1.60 thorpej }
872 1.60 thorpej
873 1.60 thorpej s = uvm_lock_fpageq();
874 1.60 thorpej
875 1.60 thorpej /* Make sure we should still do this. */
876 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
877 1.60 thorpej uvm_unlock_fpageq(s);
878 1.60 thorpej free(bucketarray, M_VMPAGE);
879 1.60 thorpej return;
880 1.60 thorpej }
881 1.60 thorpej
882 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
883 1.60 thorpej ocolors = uvmexp.ncolors;
884 1.60 thorpej
885 1.60 thorpej uvmexp.ncolors = newncolors;
886 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
887 1.60 thorpej
888 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
889 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
890 1.60 thorpej uvm_page_init_buckets(&pgfl);
891 1.60 thorpej for (color = 0; color < ocolors; color++) {
892 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
893 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
894 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
895 1.60 thorpej != NULL) {
896 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
897 1.60 thorpej lcv].pgfl_buckets[
898 1.60 thorpej color].pgfl_queues[i], pg, pageq);
899 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
900 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
901 1.60 thorpej i], pg, pageq);
902 1.60 thorpej }
903 1.60 thorpej }
904 1.60 thorpej }
905 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
906 1.60 thorpej }
907 1.60 thorpej
908 1.60 thorpej if (have_recolored_pages) {
909 1.60 thorpej uvm_unlock_fpageq(s);
910 1.60 thorpej free(oldbucketarray, M_VMPAGE);
911 1.60 thorpej return;
912 1.60 thorpej }
913 1.60 thorpej
914 1.60 thorpej have_recolored_pages = TRUE;
915 1.60 thorpej uvm_unlock_fpageq(s);
916 1.60 thorpej }
917 1.1 mrg
918 1.1 mrg /*
919 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
920 1.54 thorpej */
921 1.54 thorpej
922 1.54 thorpej static __inline struct vm_page *
923 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
924 1.69 simonb int *trycolorp)
925 1.54 thorpej {
926 1.54 thorpej struct pglist *freeq;
927 1.54 thorpej struct vm_page *pg;
928 1.58 enami int color, trycolor = *trycolorp;
929 1.54 thorpej
930 1.58 enami color = trycolor;
931 1.58 enami do {
932 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
933 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
934 1.54 thorpej goto gotit;
935 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
936 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
937 1.54 thorpej goto gotit;
938 1.60 thorpej color = (color + 1) & uvmexp.colormask;
939 1.58 enami } while (color != trycolor);
940 1.54 thorpej
941 1.54 thorpej return (NULL);
942 1.54 thorpej
943 1.54 thorpej gotit:
944 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
945 1.54 thorpej uvmexp.free--;
946 1.54 thorpej
947 1.54 thorpej /* update zero'd page count */
948 1.54 thorpej if (pg->flags & PG_ZERO)
949 1.54 thorpej uvmexp.zeropages--;
950 1.54 thorpej
951 1.54 thorpej if (color == trycolor)
952 1.54 thorpej uvmexp.colorhit++;
953 1.54 thorpej else {
954 1.54 thorpej uvmexp.colormiss++;
955 1.54 thorpej *trycolorp = color;
956 1.54 thorpej }
957 1.54 thorpej
958 1.54 thorpej return (pg);
959 1.54 thorpej }
960 1.54 thorpej
961 1.54 thorpej /*
962 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
963 1.1 mrg *
964 1.1 mrg * => return null if no pages free
965 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
966 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
967 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
968 1.1 mrg * => only one of obj or anon can be non-null
969 1.1 mrg * => caller must activate/deactivate page if it is not wired.
970 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
971 1.34 thorpej * => policy decision: it is more important to pull a page off of the
972 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
973 1.34 thorpej * unknown contents page. This is because we live with the
974 1.34 thorpej * consequences of a bad free list decision for the entire
975 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
976 1.34 thorpej * is slower to access.
977 1.1 mrg */
978 1.1 mrg
979 1.7 mrg struct vm_page *
980 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
981 1.7 mrg struct uvm_object *obj;
982 1.31 kleink voff_t off;
983 1.18 chs int flags;
984 1.7 mrg struct vm_anon *anon;
985 1.12 thorpej int strat, free_list;
986 1.1 mrg {
987 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
988 1.7 mrg struct vm_page *pg;
989 1.18 chs boolean_t use_reserve;
990 1.1 mrg
991 1.44 chs KASSERT(obj == NULL || anon == NULL);
992 1.44 chs KASSERT(off == trunc_page(off));
993 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
994 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
995 1.48 thorpej
996 1.44 chs s = uvm_lock_fpageq();
997 1.1 mrg
998 1.7 mrg /*
999 1.54 thorpej * This implements a global round-robin page coloring
1000 1.54 thorpej * algorithm.
1001 1.54 thorpej *
1002 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
1003 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1004 1.54 thorpej */
1005 1.67 chs
1006 1.54 thorpej color = uvm.page_free_nextcolor;
1007 1.54 thorpej
1008 1.54 thorpej /*
1009 1.7 mrg * check to see if we need to generate some free pages waking
1010 1.7 mrg * the pagedaemon.
1011 1.7 mrg */
1012 1.7 mrg
1013 1.64 thorpej UVM_KICK_PDAEMON();
1014 1.7 mrg
1015 1.7 mrg /*
1016 1.7 mrg * fail if any of these conditions is true:
1017 1.7 mrg * [1] there really are no free pages, or
1018 1.7 mrg * [2] only kernel "reserved" pages remain and
1019 1.7 mrg * the page isn't being allocated to a kernel object.
1020 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1021 1.7 mrg * the requestor isn't the pagedaemon.
1022 1.7 mrg */
1023 1.7 mrg
1024 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1025 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1026 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1027 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1028 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1029 1.12 thorpej goto fail;
1030 1.12 thorpej
1031 1.34 thorpej #if PGFL_NQUEUES != 2
1032 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1033 1.34 thorpej #endif
1034 1.34 thorpej
1035 1.34 thorpej /*
1036 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1037 1.34 thorpej * we try the UNKNOWN queue first.
1038 1.34 thorpej */
1039 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1040 1.34 thorpej try1 = PGFL_ZEROS;
1041 1.34 thorpej try2 = PGFL_UNKNOWN;
1042 1.34 thorpej } else {
1043 1.34 thorpej try1 = PGFL_UNKNOWN;
1044 1.34 thorpej try2 = PGFL_ZEROS;
1045 1.34 thorpej }
1046 1.34 thorpej
1047 1.12 thorpej again:
1048 1.12 thorpej switch (strat) {
1049 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1050 1.12 thorpej /* Check all freelists in descending priority order. */
1051 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1052 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1053 1.54 thorpej try1, try2, &color);
1054 1.54 thorpej if (pg != NULL)
1055 1.12 thorpej goto gotit;
1056 1.12 thorpej }
1057 1.12 thorpej
1058 1.12 thorpej /* No pages free! */
1059 1.12 thorpej goto fail;
1060 1.12 thorpej
1061 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1062 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1063 1.12 thorpej /* Attempt to allocate from the specified free list. */
1064 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1065 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1066 1.54 thorpej try1, try2, &color);
1067 1.54 thorpej if (pg != NULL)
1068 1.12 thorpej goto gotit;
1069 1.12 thorpej
1070 1.12 thorpej /* Fall back, if possible. */
1071 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1072 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1073 1.12 thorpej goto again;
1074 1.12 thorpej }
1075 1.12 thorpej
1076 1.12 thorpej /* No pages free! */
1077 1.12 thorpej goto fail;
1078 1.12 thorpej
1079 1.12 thorpej default:
1080 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1081 1.12 thorpej /* NOTREACHED */
1082 1.7 mrg }
1083 1.7 mrg
1084 1.12 thorpej gotit:
1085 1.54 thorpej /*
1086 1.54 thorpej * We now know which color we actually allocated from; set
1087 1.54 thorpej * the next color accordingly.
1088 1.54 thorpej */
1089 1.67 chs
1090 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1091 1.34 thorpej
1092 1.34 thorpej /*
1093 1.34 thorpej * update allocation statistics and remember if we have to
1094 1.34 thorpej * zero the page
1095 1.34 thorpej */
1096 1.67 chs
1097 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1098 1.34 thorpej if (pg->flags & PG_ZERO) {
1099 1.34 thorpej uvmexp.pga_zerohit++;
1100 1.34 thorpej zeroit = 0;
1101 1.34 thorpej } else {
1102 1.34 thorpej uvmexp.pga_zeromiss++;
1103 1.34 thorpej zeroit = 1;
1104 1.34 thorpej }
1105 1.34 thorpej }
1106 1.67 chs uvm_unlock_fpageq(s);
1107 1.7 mrg
1108 1.7 mrg pg->offset = off;
1109 1.7 mrg pg->uobject = obj;
1110 1.7 mrg pg->uanon = anon;
1111 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1112 1.7 mrg if (anon) {
1113 1.7 mrg anon->u.an_page = pg;
1114 1.7 mrg pg->pqflags = PQ_ANON;
1115 1.45 simonb uvmexp.anonpages++;
1116 1.7 mrg } else {
1117 1.67 chs if (obj) {
1118 1.7 mrg uvm_pageinsert(pg);
1119 1.67 chs }
1120 1.7 mrg pg->pqflags = 0;
1121 1.7 mrg }
1122 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1123 1.7 mrg pg->owner_tag = NULL;
1124 1.1 mrg #endif
1125 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1126 1.33 thorpej
1127 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1128 1.33 thorpej /*
1129 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1130 1.34 thorpej * zero'd, then we have to zero it ourselves.
1131 1.33 thorpej */
1132 1.33 thorpej pg->flags &= ~PG_CLEAN;
1133 1.34 thorpej if (zeroit)
1134 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1135 1.33 thorpej }
1136 1.1 mrg
1137 1.7 mrg return(pg);
1138 1.12 thorpej
1139 1.12 thorpej fail:
1140 1.21 thorpej uvm_unlock_fpageq(s);
1141 1.12 thorpej return (NULL);
1142 1.1 mrg }
1143 1.1 mrg
1144 1.1 mrg /*
1145 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1146 1.1 mrg *
1147 1.1 mrg * => both objects must be locked
1148 1.1 mrg */
1149 1.1 mrg
1150 1.7 mrg void
1151 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1152 1.7 mrg struct vm_page *pg;
1153 1.7 mrg struct uvm_object *newobj;
1154 1.31 kleink voff_t newoff;
1155 1.1 mrg {
1156 1.7 mrg /*
1157 1.7 mrg * remove it from the old object
1158 1.7 mrg */
1159 1.7 mrg
1160 1.7 mrg if (pg->uobject) {
1161 1.7 mrg uvm_pageremove(pg);
1162 1.7 mrg }
1163 1.7 mrg
1164 1.7 mrg /*
1165 1.7 mrg * put it in the new object
1166 1.7 mrg */
1167 1.7 mrg
1168 1.7 mrg if (newobj) {
1169 1.7 mrg pg->uobject = newobj;
1170 1.7 mrg pg->offset = newoff;
1171 1.7 mrg uvm_pageinsert(pg);
1172 1.7 mrg }
1173 1.1 mrg }
1174 1.1 mrg
1175 1.1 mrg /*
1176 1.1 mrg * uvm_pagefree: free page
1177 1.1 mrg *
1178 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1179 1.1 mrg * => put page on free list
1180 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1181 1.1 mrg * => caller must lock page queues
1182 1.1 mrg * => assumes all valid mappings of pg are gone
1183 1.1 mrg */
1184 1.1 mrg
1185 1.44 chs void
1186 1.44 chs uvm_pagefree(pg)
1187 1.44 chs struct vm_page *pg;
1188 1.1 mrg {
1189 1.7 mrg int s;
1190 1.67 chs
1191 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1192 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1193 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1194 1.70 chs LOCK_ASSERT(pg->uobject == NULL ||
1195 1.70 chs simple_lock_held(&pg->uobject->vmobjlock));
1196 1.70 chs LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1197 1.70 chs simple_lock_held(&pg->uanon->an_lock));
1198 1.1 mrg
1199 1.44 chs #ifdef DEBUG
1200 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1201 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1202 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1203 1.44 chs }
1204 1.44 chs #endif
1205 1.44 chs
1206 1.7 mrg /*
1207 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1208 1.7 mrg */
1209 1.7 mrg
1210 1.67 chs if (pg->loan_count) {
1211 1.70 chs KASSERT(pg->wire_count == 0);
1212 1.7 mrg
1213 1.7 mrg /*
1214 1.67 chs * if the page is owned by an anon then we just want to
1215 1.70 chs * drop anon ownership. the kernel will free the page when
1216 1.70 chs * it is done with it. if the page is owned by an object,
1217 1.70 chs * remove it from the object and mark it dirty for the benefit
1218 1.70 chs * of possible anon owners.
1219 1.70 chs *
1220 1.70 chs * regardless of previous ownership, wakeup any waiters,
1221 1.70 chs * unbusy the page, and we're done.
1222 1.7 mrg */
1223 1.7 mrg
1224 1.67 chs if (pg->pqflags & PQ_ANON) {
1225 1.67 chs pg->pqflags &= ~PQ_ANON;
1226 1.67 chs pg->uanon = NULL;
1227 1.67 chs } else if (pg->flags & PG_TABLED) {
1228 1.70 chs uvm_pageremove(pg);
1229 1.67 chs pg->flags &= ~PG_CLEAN;
1230 1.67 chs }
1231 1.70 chs if (pg->flags & PG_WANTED) {
1232 1.70 chs wakeup(pg);
1233 1.70 chs }
1234 1.70 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1235 1.70 chs #ifdef UVM_PAGE_TRKOWN
1236 1.70 chs pg->owner_tag = NULL;
1237 1.70 chs #endif
1238 1.67 chs return;
1239 1.67 chs }
1240 1.62 chs
1241 1.67 chs /*
1242 1.67 chs * remove page from its object or anon.
1243 1.67 chs * adjust swpgonly if the page is swap-backed.
1244 1.67 chs */
1245 1.44 chs
1246 1.67 chs if (pg->flags & PG_TABLED) {
1247 1.67 chs uvm_pageremove(pg);
1248 1.67 chs } else if (pg->pqflags & PQ_ANON) {
1249 1.67 chs pg->uanon->u.an_page = NULL;
1250 1.7 mrg }
1251 1.1 mrg
1252 1.7 mrg /*
1253 1.70 chs * now remove the page from the queues.
1254 1.7 mrg */
1255 1.7 mrg
1256 1.67 chs uvm_pagedequeue(pg);
1257 1.7 mrg
1258 1.7 mrg /*
1259 1.7 mrg * if the page was wired, unwire it now.
1260 1.7 mrg */
1261 1.44 chs
1262 1.34 thorpej if (pg->wire_count) {
1263 1.7 mrg pg->wire_count = 0;
1264 1.7 mrg uvmexp.wired--;
1265 1.7 mrg }
1266 1.67 chs if (pg->pqflags & PQ_ANON) {
1267 1.45 simonb uvmexp.anonpages--;
1268 1.44 chs }
1269 1.7 mrg
1270 1.7 mrg /*
1271 1.44 chs * and put on free queue
1272 1.7 mrg */
1273 1.7 mrg
1274 1.34 thorpej pg->flags &= ~PG_ZERO;
1275 1.34 thorpej
1276 1.21 thorpej s = uvm_lock_fpageq();
1277 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1278 1.54 thorpej uvm_page_lookup_freelist(pg)].pgfl_buckets[
1279 1.54 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1280 1.7 mrg pg->pqflags = PQ_FREE;
1281 1.3 chs #ifdef DEBUG
1282 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1283 1.7 mrg pg->offset = 0xdeadbeef;
1284 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1285 1.3 chs #endif
1286 1.7 mrg uvmexp.free++;
1287 1.34 thorpej
1288 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1289 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1290 1.34 thorpej
1291 1.21 thorpej uvm_unlock_fpageq(s);
1292 1.44 chs }
1293 1.44 chs
1294 1.44 chs /*
1295 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1296 1.44 chs *
1297 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1298 1.44 chs * => if pages are object-owned, object must be locked.
1299 1.67 chs * => if pages are anon-owned, anons must be locked.
1300 1.44 chs */
1301 1.44 chs
1302 1.44 chs void
1303 1.44 chs uvm_page_unbusy(pgs, npgs)
1304 1.44 chs struct vm_page **pgs;
1305 1.44 chs int npgs;
1306 1.44 chs {
1307 1.44 chs struct vm_page *pg;
1308 1.44 chs int i;
1309 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1310 1.44 chs
1311 1.44 chs for (i = 0; i < npgs; i++) {
1312 1.44 chs pg = pgs[i];
1313 1.44 chs if (pg == NULL) {
1314 1.44 chs continue;
1315 1.44 chs }
1316 1.44 chs if (pg->flags & PG_WANTED) {
1317 1.44 chs wakeup(pg);
1318 1.44 chs }
1319 1.44 chs if (pg->flags & PG_RELEASED) {
1320 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1321 1.67 chs pg->flags &= ~PG_RELEASED;
1322 1.67 chs uvm_pagefree(pg);
1323 1.44 chs } else {
1324 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1325 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1326 1.44 chs UVM_PAGE_OWN(pg, NULL);
1327 1.44 chs }
1328 1.44 chs }
1329 1.1 mrg }
1330 1.1 mrg
1331 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1332 1.1 mrg /*
1333 1.1 mrg * uvm_page_own: set or release page ownership
1334 1.1 mrg *
1335 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1336 1.1 mrg * and where they do it. it can be used to track down problems
1337 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1338 1.1 mrg * => page's object [if any] must be locked
1339 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1340 1.1 mrg */
1341 1.7 mrg void
1342 1.7 mrg uvm_page_own(pg, tag)
1343 1.7 mrg struct vm_page *pg;
1344 1.7 mrg char *tag;
1345 1.1 mrg {
1346 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1347 1.67 chs
1348 1.7 mrg /* gain ownership? */
1349 1.7 mrg if (tag) {
1350 1.7 mrg if (pg->owner_tag) {
1351 1.7 mrg printf("uvm_page_own: page %p already owned "
1352 1.7 mrg "by proc %d [%s]\n", pg,
1353 1.7 mrg pg->owner, pg->owner_tag);
1354 1.7 mrg panic("uvm_page_own");
1355 1.7 mrg }
1356 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1357 1.7 mrg pg->owner_tag = tag;
1358 1.7 mrg return;
1359 1.7 mrg }
1360 1.7 mrg
1361 1.7 mrg /* drop ownership */
1362 1.7 mrg if (pg->owner_tag == NULL) {
1363 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1364 1.7 mrg "page (%p)\n", pg);
1365 1.7 mrg panic("uvm_page_own");
1366 1.7 mrg }
1367 1.7 mrg pg->owner_tag = NULL;
1368 1.70 chs KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1369 1.70 chs (pg->uanon == NULL && pg->uobject == NULL) ||
1370 1.67 chs pg->uobject == uvm.kernel_object ||
1371 1.70 chs pg->wire_count > 0 ||
1372 1.70 chs (pg->loan_count == 1 && pg->uanon == NULL) ||
1373 1.70 chs pg->loan_count > 1);
1374 1.7 mrg return;
1375 1.1 mrg }
1376 1.1 mrg #endif
1377 1.34 thorpej
1378 1.34 thorpej /*
1379 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1380 1.34 thorpej *
1381 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1382 1.54 thorpej * on the CPU cache.
1383 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1384 1.34 thorpej * there is a process ready to run.
1385 1.34 thorpej */
1386 1.34 thorpej void
1387 1.34 thorpej uvm_pageidlezero()
1388 1.34 thorpej {
1389 1.34 thorpej struct vm_page *pg;
1390 1.34 thorpej struct pgfreelist *pgfl;
1391 1.58 enami int free_list, s, firstbucket;
1392 1.54 thorpej static int nextbucket;
1393 1.54 thorpej
1394 1.54 thorpej s = uvm_lock_fpageq();
1395 1.58 enami firstbucket = nextbucket;
1396 1.58 enami do {
1397 1.54 thorpej if (sched_whichqs != 0) {
1398 1.34 thorpej uvm_unlock_fpageq(s);
1399 1.34 thorpej return;
1400 1.34 thorpej }
1401 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1402 1.34 thorpej uvm.page_idle_zero = FALSE;
1403 1.34 thorpej uvm_unlock_fpageq(s);
1404 1.34 thorpej return;
1405 1.34 thorpej }
1406 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1407 1.54 thorpej pgfl = &uvm.page_free[free_list];
1408 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1409 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1410 1.54 thorpej if (sched_whichqs != 0) {
1411 1.54 thorpej uvm_unlock_fpageq(s);
1412 1.54 thorpej return;
1413 1.54 thorpej }
1414 1.54 thorpej
1415 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1416 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1417 1.54 thorpej pg, pageq);
1418 1.54 thorpej uvmexp.free--;
1419 1.54 thorpej uvm_unlock_fpageq(s);
1420 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1421 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1422 1.67 chs
1423 1.54 thorpej /*
1424 1.54 thorpej * The machine-dependent code detected
1425 1.54 thorpej * some reason for us to abort zeroing
1426 1.54 thorpej * pages, probably because there is a
1427 1.54 thorpej * process now ready to run.
1428 1.54 thorpej */
1429 1.67 chs
1430 1.54 thorpej s = uvm_lock_fpageq();
1431 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1432 1.54 thorpej nextbucket].pgfl_queues[
1433 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1434 1.54 thorpej uvmexp.free++;
1435 1.54 thorpej uvmexp.zeroaborts++;
1436 1.54 thorpej uvm_unlock_fpageq(s);
1437 1.54 thorpej return;
1438 1.54 thorpej }
1439 1.54 thorpej #else
1440 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1441 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1442 1.54 thorpej pg->flags |= PG_ZERO;
1443 1.54 thorpej
1444 1.54 thorpej s = uvm_lock_fpageq();
1445 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1446 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1447 1.54 thorpej pg, pageq);
1448 1.54 thorpej uvmexp.free++;
1449 1.54 thorpej uvmexp.zeropages++;
1450 1.54 thorpej }
1451 1.41 thorpej }
1452 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1453 1.58 enami } while (nextbucket != firstbucket);
1454 1.54 thorpej uvm_unlock_fpageq(s);
1455 1.34 thorpej }
1456