uvm_page.c revision 1.73 1 1.73 chs /* $NetBSD: uvm_page.c,v 1.73 2001/12/31 19:21:37 chs Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.73 chs __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.73 2001/12/31 19:21:37 chs Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.44 chs
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/systm.h>
80 1.1 mrg #include <sys/malloc.h>
81 1.35 thorpej #include <sys/sched.h>
82 1.44 chs #include <sys/kernel.h>
83 1.51 chs #include <sys/vnode.h>
84 1.68 chs #include <sys/proc.h>
85 1.1 mrg
86 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * physical memory config is stored in vm_physmem.
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99 1.1 mrg
100 1.1 mrg /*
101 1.36 thorpej * Some supported CPUs in a given architecture don't support all
102 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
103 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
104 1.34 thorpej */
105 1.44 chs /*
106 1.44 chs * XXX disabled until we can find a way to do this without causing
107 1.44 chs * problems for either cpu caches or DMA latency.
108 1.44 chs */
109 1.44 chs boolean_t vm_page_zero_enable = FALSE;
110 1.34 thorpej
111 1.34 thorpej /*
112 1.1 mrg * local variables
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
117 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
118 1.1 mrg * and pmap_startup here also uses them internally.
119 1.1 mrg */
120 1.1 mrg
121 1.14 eeh static vaddr_t virtual_space_start;
122 1.14 eeh static vaddr_t virtual_space_end;
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * we use a hash table with only one bucket during bootup. we will
126 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
127 1.30 thorpej * we static allocate the one bootstrap bucket below...
128 1.1 mrg */
129 1.1 mrg
130 1.1 mrg static struct pglist uvm_bootbucket;
131 1.1 mrg
132 1.1 mrg /*
133 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
134 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
135 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
136 1.60 thorpej * free the initial set of buckets, since they are allocated using
137 1.60 thorpej * uvm_pageboot_alloc().
138 1.60 thorpej */
139 1.60 thorpej
140 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
141 1.60 thorpej
142 1.60 thorpej /*
143 1.1 mrg * local prototypes
144 1.1 mrg */
145 1.1 mrg
146 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
147 1.44 chs static void uvm_pageremove __P((struct vm_page *));
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * inline functions
151 1.1 mrg */
152 1.1 mrg
153 1.1 mrg /*
154 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
155 1.1 mrg *
156 1.1 mrg * => caller must lock object
157 1.1 mrg * => caller must lock page queues
158 1.1 mrg * => call should have already set pg's object and offset pointers
159 1.1 mrg * and bumped the version counter
160 1.1 mrg */
161 1.1 mrg
162 1.7 mrg __inline static void
163 1.7 mrg uvm_pageinsert(pg)
164 1.7 mrg struct vm_page *pg;
165 1.1 mrg {
166 1.7 mrg struct pglist *buck;
167 1.67 chs struct uvm_object *uobj = pg->uobject;
168 1.1 mrg
169 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
170 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
171 1.7 mrg simple_lock(&uvm.hashlock);
172 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
173 1.7 mrg simple_unlock(&uvm.hashlock);
174 1.7 mrg
175 1.67 chs TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
176 1.7 mrg pg->flags |= PG_TABLED;
177 1.67 chs uobj->uo_npages++;
178 1.1 mrg }
179 1.1 mrg
180 1.1 mrg /*
181 1.1 mrg * uvm_page_remove: remove page from object and hash
182 1.1 mrg *
183 1.1 mrg * => caller must lock object
184 1.1 mrg * => caller must lock page queues
185 1.1 mrg */
186 1.1 mrg
187 1.44 chs static __inline void
188 1.7 mrg uvm_pageremove(pg)
189 1.7 mrg struct vm_page *pg;
190 1.1 mrg {
191 1.7 mrg struct pglist *buck;
192 1.67 chs struct uvm_object *uobj = pg->uobject;
193 1.1 mrg
194 1.44 chs KASSERT(pg->flags & PG_TABLED);
195 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
196 1.7 mrg simple_lock(&uvm.hashlock);
197 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
198 1.7 mrg simple_unlock(&uvm.hashlock);
199 1.7 mrg
200 1.67 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
201 1.72 chs uvmexp.execpages--;
202 1.67 chs } else if (UVM_OBJ_IS_VNODE(uobj)) {
203 1.72 chs uvmexp.filepages--;
204 1.51 chs }
205 1.44 chs
206 1.7 mrg /* object should be locked */
207 1.67 chs uobj->uo_npages--;
208 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
209 1.7 mrg pg->flags &= ~PG_TABLED;
210 1.7 mrg pg->uobject = NULL;
211 1.1 mrg }
212 1.1 mrg
213 1.60 thorpej static void
214 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
215 1.60 thorpej {
216 1.60 thorpej int color, i;
217 1.60 thorpej
218 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
219 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
220 1.60 thorpej TAILQ_INIT(&pgfl->pgfl_buckets[
221 1.60 thorpej color].pgfl_queues[i]);
222 1.60 thorpej }
223 1.60 thorpej }
224 1.60 thorpej }
225 1.60 thorpej
226 1.1 mrg /*
227 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
228 1.62 chs *
229 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
230 1.1 mrg */
231 1.1 mrg
232 1.7 mrg void
233 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
234 1.14 eeh vaddr_t *kvm_startp, *kvm_endp;
235 1.1 mrg {
236 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
237 1.60 thorpej struct pgflbucket *bucketarray;
238 1.63 chs struct vm_page *pagearray;
239 1.60 thorpej int lcv, i;
240 1.14 eeh paddr_t paddr;
241 1.7 mrg
242 1.7 mrg /*
243 1.60 thorpej * init the page queues and page queue locks, except the free
244 1.60 thorpej * list; we allocate that later (with the initial vm_page
245 1.60 thorpej * structures).
246 1.7 mrg */
247 1.51 chs
248 1.7 mrg TAILQ_INIT(&uvm.page_active);
249 1.61 ross TAILQ_INIT(&uvm.page_inactive);
250 1.7 mrg simple_lock_init(&uvm.pageqlock);
251 1.7 mrg simple_lock_init(&uvm.fpageqlock);
252 1.7 mrg
253 1.7 mrg /*
254 1.51 chs * init the <obj,offset> => <page> hash table. for now
255 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
256 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
257 1.7 mrg */
258 1.7 mrg
259 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
260 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
261 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
262 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
263 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
264 1.7 mrg
265 1.62 chs /*
266 1.51 chs * allocate vm_page structures.
267 1.7 mrg */
268 1.7 mrg
269 1.7 mrg /*
270 1.7 mrg * sanity check:
271 1.7 mrg * before calling this function the MD code is expected to register
272 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
273 1.7 mrg * now is to allocate vm_page structures for this memory.
274 1.7 mrg */
275 1.7 mrg
276 1.7 mrg if (vm_nphysseg == 0)
277 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
278 1.62 chs
279 1.7 mrg /*
280 1.62 chs * first calculate the number of free pages...
281 1.7 mrg *
282 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
283 1.7 mrg * this allows us to allocate extra vm_page structures in case we
284 1.7 mrg * want to return some memory to the pool after booting.
285 1.7 mrg */
286 1.62 chs
287 1.7 mrg freepages = 0;
288 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
289 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
290 1.7 mrg
291 1.7 mrg /*
292 1.60 thorpej * Let MD code initialize the number of colors, or default
293 1.60 thorpej * to 1 color if MD code doesn't care.
294 1.60 thorpej */
295 1.60 thorpej if (uvmexp.ncolors == 0)
296 1.60 thorpej uvmexp.ncolors = 1;
297 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
298 1.60 thorpej
299 1.60 thorpej /*
300 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
301 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
302 1.7 mrg * thus, the total number of pages we can use is the total size of
303 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
304 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
305 1.7 mrg * truncation errors (since we can only allocate in terms of whole
306 1.7 mrg * pages).
307 1.7 mrg */
308 1.62 chs
309 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
310 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
311 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
312 1.60 thorpej
313 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
314 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
315 1.60 thorpej sizeof(struct vm_page)));
316 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
317 1.60 thorpej
318 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
319 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
320 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
321 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
322 1.60 thorpej }
323 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
324 1.62 chs
325 1.7 mrg /*
326 1.51 chs * init the vm_page structures and put them in the correct place.
327 1.7 mrg */
328 1.7 mrg
329 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
330 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
331 1.51 chs
332 1.7 mrg /* set up page array pointers */
333 1.7 mrg vm_physmem[lcv].pgs = pagearray;
334 1.7 mrg pagearray += n;
335 1.7 mrg pagecount -= n;
336 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
337 1.7 mrg
338 1.13 perry /* init and free vm_pages (we've already zeroed them) */
339 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
340 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
341 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
342 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
343 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
344 1.56 thorpej #endif
345 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
346 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
347 1.7 mrg uvmexp.npages++;
348 1.7 mrg /* add page to free pool */
349 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
350 1.7 mrg }
351 1.7 mrg }
352 1.7 mrg }
353 1.44 chs
354 1.7 mrg /*
355 1.51 chs * pass up the values of virtual_space_start and
356 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
357 1.7 mrg * layers of the VM.
358 1.7 mrg */
359 1.7 mrg
360 1.7 mrg *kvm_startp = round_page(virtual_space_start);
361 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
362 1.7 mrg
363 1.7 mrg /*
364 1.51 chs * init locks for kernel threads
365 1.7 mrg */
366 1.7 mrg
367 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
368 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
369 1.7 mrg
370 1.7 mrg /*
371 1.51 chs * init various thresholds.
372 1.7 mrg */
373 1.51 chs
374 1.7 mrg uvmexp.reserve_pagedaemon = 1;
375 1.7 mrg uvmexp.reserve_kernel = 5;
376 1.51 chs uvmexp.anonminpct = 10;
377 1.72 chs uvmexp.fileminpct = 10;
378 1.72 chs uvmexp.execminpct = 5;
379 1.72 chs uvmexp.anonmaxpct = 80;
380 1.72 chs uvmexp.filemaxpct = 50;
381 1.72 chs uvmexp.execmaxpct = 30;
382 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
383 1.72 chs uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
384 1.72 chs uvmexp.execmin = uvmexp.execminpct * 256 / 100;
385 1.72 chs uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
386 1.72 chs uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
387 1.72 chs uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
388 1.7 mrg
389 1.7 mrg /*
390 1.51 chs * determine if we should zero pages in the idle loop.
391 1.34 thorpej */
392 1.51 chs
393 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
394 1.34 thorpej
395 1.34 thorpej /*
396 1.7 mrg * done!
397 1.7 mrg */
398 1.1 mrg
399 1.32 thorpej uvm.page_init_done = TRUE;
400 1.1 mrg }
401 1.1 mrg
402 1.1 mrg /*
403 1.1 mrg * uvm_setpagesize: set the page size
404 1.62 chs *
405 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
406 1.62 chs */
407 1.1 mrg
408 1.7 mrg void
409 1.7 mrg uvm_setpagesize()
410 1.1 mrg {
411 1.7 mrg if (uvmexp.pagesize == 0)
412 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
413 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
414 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
415 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
416 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
417 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
418 1.7 mrg break;
419 1.1 mrg }
420 1.1 mrg
421 1.1 mrg /*
422 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
423 1.1 mrg */
424 1.1 mrg
425 1.14 eeh vaddr_t
426 1.7 mrg uvm_pageboot_alloc(size)
427 1.14 eeh vsize_t size;
428 1.1 mrg {
429 1.52 thorpej static boolean_t initialized = FALSE;
430 1.14 eeh vaddr_t addr;
431 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
432 1.52 thorpej vaddr_t vaddr;
433 1.14 eeh paddr_t paddr;
434 1.52 thorpej #endif
435 1.1 mrg
436 1.7 mrg /*
437 1.19 thorpej * on first call to this function, initialize ourselves.
438 1.7 mrg */
439 1.19 thorpej if (initialized == FALSE) {
440 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
441 1.1 mrg
442 1.7 mrg /* round it the way we like it */
443 1.7 mrg virtual_space_start = round_page(virtual_space_start);
444 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
445 1.19 thorpej
446 1.19 thorpej initialized = TRUE;
447 1.7 mrg }
448 1.52 thorpej
449 1.52 thorpej /* round to page size */
450 1.52 thorpej size = round_page(size);
451 1.52 thorpej
452 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
453 1.52 thorpej
454 1.62 chs /*
455 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
456 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
457 1.52 thorpej * virtual_space_start/virtual_space_end if necessary.
458 1.52 thorpej */
459 1.52 thorpej
460 1.52 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
461 1.52 thorpej &virtual_space_end);
462 1.52 thorpej
463 1.52 thorpej return(addr);
464 1.52 thorpej
465 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
466 1.1 mrg
467 1.7 mrg /*
468 1.7 mrg * allocate virtual memory for this request
469 1.7 mrg */
470 1.19 thorpej if (virtual_space_start == virtual_space_end ||
471 1.20 thorpej (virtual_space_end - virtual_space_start) < size)
472 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
473 1.20 thorpej
474 1.20 thorpej addr = virtual_space_start;
475 1.20 thorpej
476 1.20 thorpej #ifdef PMAP_GROWKERNEL
477 1.20 thorpej /*
478 1.20 thorpej * If the kernel pmap can't map the requested space,
479 1.20 thorpej * then allocate more resources for it.
480 1.20 thorpej */
481 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
482 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
483 1.20 thorpej if (uvm_maxkaddr < (addr + size))
484 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
485 1.19 thorpej }
486 1.20 thorpej #endif
487 1.1 mrg
488 1.7 mrg virtual_space_start += size;
489 1.1 mrg
490 1.9 thorpej /*
491 1.7 mrg * allocate and mapin physical pages to back new virtual pages
492 1.7 mrg */
493 1.1 mrg
494 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
495 1.7 mrg vaddr += PAGE_SIZE) {
496 1.1 mrg
497 1.7 mrg if (!uvm_page_physget(&paddr))
498 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
499 1.1 mrg
500 1.23 thorpej /*
501 1.23 thorpej * Note this memory is no longer managed, so using
502 1.23 thorpej * pmap_kenter is safe.
503 1.23 thorpej */
504 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
505 1.7 mrg }
506 1.66 chris pmap_update(pmap_kernel());
507 1.7 mrg return(addr);
508 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
509 1.1 mrg }
510 1.1 mrg
511 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
512 1.1 mrg /*
513 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
514 1.1 mrg *
515 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
516 1.1 mrg * values match the start/end values. if we can't do that, then we
517 1.1 mrg * will advance both values (making them equal, and removing some
518 1.1 mrg * vm_page structures from the non-avail area).
519 1.1 mrg * => return false if out of memory.
520 1.1 mrg */
521 1.1 mrg
522 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
523 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
524 1.28 drochner
525 1.28 drochner static boolean_t
526 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
527 1.14 eeh paddr_t *paddrp;
528 1.28 drochner int freelist;
529 1.1 mrg {
530 1.7 mrg int lcv, x;
531 1.1 mrg
532 1.7 mrg /* pass 1: try allocating from a matching end */
533 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
534 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
535 1.1 mrg #else
536 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
537 1.1 mrg #endif
538 1.7 mrg {
539 1.1 mrg
540 1.32 thorpej if (uvm.page_init_done == TRUE)
541 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
542 1.1 mrg
543 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
544 1.28 drochner continue;
545 1.28 drochner
546 1.7 mrg /* try from front */
547 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
548 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
549 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
550 1.7 mrg vm_physmem[lcv].avail_start++;
551 1.7 mrg vm_physmem[lcv].start++;
552 1.7 mrg /* nothing left? nuke it */
553 1.7 mrg if (vm_physmem[lcv].avail_start ==
554 1.7 mrg vm_physmem[lcv].end) {
555 1.7 mrg if (vm_nphysseg == 1)
556 1.42 mrg panic("vum_page_physget: out of memory!");
557 1.7 mrg vm_nphysseg--;
558 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
559 1.7 mrg /* structure copy */
560 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
561 1.7 mrg }
562 1.7 mrg return (TRUE);
563 1.7 mrg }
564 1.7 mrg
565 1.7 mrg /* try from rear */
566 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
567 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
568 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
569 1.7 mrg vm_physmem[lcv].avail_end--;
570 1.7 mrg vm_physmem[lcv].end--;
571 1.7 mrg /* nothing left? nuke it */
572 1.7 mrg if (vm_physmem[lcv].avail_end ==
573 1.7 mrg vm_physmem[lcv].start) {
574 1.7 mrg if (vm_nphysseg == 1)
575 1.42 mrg panic("uvm_page_physget: out of memory!");
576 1.7 mrg vm_nphysseg--;
577 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
578 1.7 mrg /* structure copy */
579 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
580 1.7 mrg }
581 1.7 mrg return (TRUE);
582 1.7 mrg }
583 1.7 mrg }
584 1.1 mrg
585 1.7 mrg /* pass2: forget about matching ends, just allocate something */
586 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
587 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
588 1.1 mrg #else
589 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
590 1.1 mrg #endif
591 1.7 mrg {
592 1.1 mrg
593 1.7 mrg /* any room in this bank? */
594 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
595 1.7 mrg continue; /* nope */
596 1.7 mrg
597 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
598 1.7 mrg vm_physmem[lcv].avail_start++;
599 1.7 mrg /* truncate! */
600 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
601 1.7 mrg
602 1.7 mrg /* nothing left? nuke it */
603 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
604 1.7 mrg if (vm_nphysseg == 1)
605 1.42 mrg panic("uvm_page_physget: out of memory!");
606 1.7 mrg vm_nphysseg--;
607 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
608 1.7 mrg /* structure copy */
609 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
610 1.7 mrg }
611 1.7 mrg return (TRUE);
612 1.7 mrg }
613 1.1 mrg
614 1.7 mrg return (FALSE); /* whoops! */
615 1.28 drochner }
616 1.28 drochner
617 1.28 drochner boolean_t
618 1.28 drochner uvm_page_physget(paddrp)
619 1.28 drochner paddr_t *paddrp;
620 1.28 drochner {
621 1.28 drochner int i;
622 1.28 drochner
623 1.28 drochner /* try in the order of freelist preference */
624 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
625 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
626 1.28 drochner return (TRUE);
627 1.28 drochner return (FALSE);
628 1.1 mrg }
629 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
630 1.1 mrg
631 1.1 mrg /*
632 1.1 mrg * uvm_page_physload: load physical memory into VM system
633 1.1 mrg *
634 1.1 mrg * => all args are PFs
635 1.1 mrg * => all pages in start/end get vm_page structures
636 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
637 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
638 1.1 mrg */
639 1.1 mrg
640 1.7 mrg void
641 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
642 1.29 eeh paddr_t start, end, avail_start, avail_end;
643 1.12 thorpej int free_list;
644 1.1 mrg {
645 1.14 eeh int preload, lcv;
646 1.14 eeh psize_t npages;
647 1.7 mrg struct vm_page *pgs;
648 1.7 mrg struct vm_physseg *ps;
649 1.7 mrg
650 1.7 mrg if (uvmexp.pagesize == 0)
651 1.42 mrg panic("uvm_page_physload: page size not set!");
652 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
653 1.12 thorpej panic("uvm_page_physload: bad free list %d\n", free_list);
654 1.26 drochner if (start >= end)
655 1.26 drochner panic("uvm_page_physload: start >= end");
656 1.12 thorpej
657 1.7 mrg /*
658 1.7 mrg * do we have room?
659 1.7 mrg */
660 1.67 chs
661 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
662 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
663 1.7 mrg "segment\n");
664 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
665 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
666 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
667 1.7 mrg return;
668 1.7 mrg }
669 1.7 mrg
670 1.7 mrg /*
671 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
672 1.7 mrg * called yet, so malloc is not available).
673 1.7 mrg */
674 1.67 chs
675 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
676 1.7 mrg if (vm_physmem[lcv].pgs)
677 1.7 mrg break;
678 1.7 mrg }
679 1.7 mrg preload = (lcv == vm_nphysseg);
680 1.7 mrg
681 1.7 mrg /*
682 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
683 1.7 mrg */
684 1.67 chs
685 1.7 mrg if (!preload) {
686 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
687 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
688 1.1 mrg #else
689 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
690 1.14 eeh paddr_t paddr;
691 1.7 mrg npages = end - start; /* # of pages */
692 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
693 1.40 thorpej M_VMPAGE, M_NOWAIT);
694 1.7 mrg if (pgs == NULL) {
695 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
696 1.7 mrg "structs for segment\n");
697 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
698 1.7 mrg return;
699 1.7 mrg }
700 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
701 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
702 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
703 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
704 1.7 mrg pgs[lcv].phys_addr = paddr;
705 1.12 thorpej pgs[lcv].free_list = free_list;
706 1.7 mrg if (atop(paddr) >= avail_start &&
707 1.7 mrg atop(paddr) <= avail_end)
708 1.8 chuck uvm_pagefree(&pgs[lcv]);
709 1.7 mrg }
710 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
711 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
712 1.1 mrg #endif
713 1.7 mrg } else {
714 1.7 mrg pgs = NULL;
715 1.7 mrg npages = 0;
716 1.7 mrg }
717 1.1 mrg
718 1.7 mrg /*
719 1.7 mrg * now insert us in the proper place in vm_physmem[]
720 1.7 mrg */
721 1.1 mrg
722 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
723 1.7 mrg /* random: put it at the end (easy!) */
724 1.7 mrg ps = &vm_physmem[vm_nphysseg];
725 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
726 1.7 mrg {
727 1.7 mrg int x;
728 1.7 mrg /* sort by address for binary search */
729 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
730 1.7 mrg if (start < vm_physmem[lcv].start)
731 1.7 mrg break;
732 1.7 mrg ps = &vm_physmem[lcv];
733 1.7 mrg /* move back other entries, if necessary ... */
734 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
735 1.7 mrg /* structure copy */
736 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
737 1.7 mrg }
738 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
739 1.7 mrg {
740 1.7 mrg int x;
741 1.7 mrg /* sort by largest segment first */
742 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
743 1.7 mrg if ((end - start) >
744 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
745 1.7 mrg break;
746 1.7 mrg ps = &vm_physmem[lcv];
747 1.7 mrg /* move back other entries, if necessary ... */
748 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
749 1.7 mrg /* structure copy */
750 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
751 1.7 mrg }
752 1.1 mrg #else
753 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
754 1.1 mrg #endif
755 1.1 mrg
756 1.7 mrg ps->start = start;
757 1.7 mrg ps->end = end;
758 1.7 mrg ps->avail_start = avail_start;
759 1.7 mrg ps->avail_end = avail_end;
760 1.7 mrg if (preload) {
761 1.7 mrg ps->pgs = NULL;
762 1.7 mrg } else {
763 1.7 mrg ps->pgs = pgs;
764 1.7 mrg ps->lastpg = pgs + npages - 1;
765 1.7 mrg }
766 1.12 thorpej ps->free_list = free_list;
767 1.7 mrg vm_nphysseg++;
768 1.7 mrg
769 1.7 mrg if (!preload)
770 1.7 mrg uvm_page_rehash();
771 1.1 mrg }
772 1.1 mrg
773 1.1 mrg /*
774 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
775 1.1 mrg */
776 1.1 mrg
777 1.7 mrg void
778 1.7 mrg uvm_page_rehash()
779 1.1 mrg {
780 1.67 chs int freepages, lcv, bucketcount, oldcount;
781 1.7 mrg struct pglist *newbuckets, *oldbuckets;
782 1.7 mrg struct vm_page *pg;
783 1.30 thorpej size_t newsize, oldsize;
784 1.7 mrg
785 1.7 mrg /*
786 1.7 mrg * compute number of pages that can go in the free pool
787 1.7 mrg */
788 1.7 mrg
789 1.7 mrg freepages = 0;
790 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
791 1.7 mrg freepages +=
792 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
793 1.7 mrg
794 1.7 mrg /*
795 1.7 mrg * compute number of buckets needed for this number of pages
796 1.7 mrg */
797 1.7 mrg
798 1.7 mrg bucketcount = 1;
799 1.7 mrg while (bucketcount < freepages)
800 1.7 mrg bucketcount = bucketcount * 2;
801 1.7 mrg
802 1.7 mrg /*
803 1.30 thorpej * compute the size of the current table and new table.
804 1.7 mrg */
805 1.7 mrg
806 1.30 thorpej oldbuckets = uvm.page_hash;
807 1.30 thorpej oldcount = uvm.page_nhash;
808 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
809 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
810 1.30 thorpej
811 1.30 thorpej /*
812 1.30 thorpej * allocate the new buckets
813 1.30 thorpej */
814 1.30 thorpej
815 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
816 1.7 mrg if (newbuckets == NULL) {
817 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
818 1.7 mrg "hash table\n");
819 1.7 mrg return;
820 1.7 mrg }
821 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
822 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
823 1.7 mrg
824 1.7 mrg /*
825 1.7 mrg * now replace the old buckets with the new ones and rehash everything
826 1.7 mrg */
827 1.7 mrg
828 1.7 mrg simple_lock(&uvm.hashlock);
829 1.7 mrg uvm.page_hash = newbuckets;
830 1.7 mrg uvm.page_nhash = bucketcount;
831 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
832 1.7 mrg
833 1.7 mrg /* ... and rehash */
834 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
835 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
836 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
837 1.7 mrg TAILQ_INSERT_TAIL(
838 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
839 1.7 mrg pg, hashq);
840 1.7 mrg }
841 1.7 mrg }
842 1.7 mrg simple_unlock(&uvm.hashlock);
843 1.7 mrg
844 1.7 mrg /*
845 1.30 thorpej * free old bucket array if is not the boot-time table
846 1.7 mrg */
847 1.7 mrg
848 1.7 mrg if (oldbuckets != &uvm_bootbucket)
849 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
850 1.1 mrg }
851 1.1 mrg
852 1.60 thorpej /*
853 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
854 1.60 thorpej * larger than the old one.
855 1.60 thorpej */
856 1.60 thorpej
857 1.60 thorpej void
858 1.60 thorpej uvm_page_recolor(int newncolors)
859 1.60 thorpej {
860 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
861 1.60 thorpej struct pgfreelist pgfl;
862 1.63 chs struct vm_page *pg;
863 1.60 thorpej vsize_t bucketcount;
864 1.60 thorpej int s, lcv, color, i, ocolors;
865 1.60 thorpej
866 1.60 thorpej if (newncolors <= uvmexp.ncolors)
867 1.60 thorpej return;
868 1.60 thorpej
869 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
870 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
871 1.60 thorpej M_VMPAGE, M_NOWAIT);
872 1.60 thorpej if (bucketarray == NULL) {
873 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
874 1.60 thorpej (long) bucketcount);
875 1.60 thorpej return;
876 1.60 thorpej }
877 1.60 thorpej
878 1.60 thorpej s = uvm_lock_fpageq();
879 1.60 thorpej
880 1.60 thorpej /* Make sure we should still do this. */
881 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
882 1.60 thorpej uvm_unlock_fpageq(s);
883 1.60 thorpej free(bucketarray, M_VMPAGE);
884 1.60 thorpej return;
885 1.60 thorpej }
886 1.60 thorpej
887 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
888 1.60 thorpej ocolors = uvmexp.ncolors;
889 1.60 thorpej
890 1.60 thorpej uvmexp.ncolors = newncolors;
891 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
892 1.60 thorpej
893 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
894 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
895 1.60 thorpej uvm_page_init_buckets(&pgfl);
896 1.60 thorpej for (color = 0; color < ocolors; color++) {
897 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
898 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
899 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
900 1.60 thorpej != NULL) {
901 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
902 1.60 thorpej lcv].pgfl_buckets[
903 1.60 thorpej color].pgfl_queues[i], pg, pageq);
904 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
905 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
906 1.60 thorpej i], pg, pageq);
907 1.60 thorpej }
908 1.60 thorpej }
909 1.60 thorpej }
910 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
911 1.60 thorpej }
912 1.60 thorpej
913 1.60 thorpej if (have_recolored_pages) {
914 1.60 thorpej uvm_unlock_fpageq(s);
915 1.60 thorpej free(oldbucketarray, M_VMPAGE);
916 1.60 thorpej return;
917 1.60 thorpej }
918 1.60 thorpej
919 1.60 thorpej have_recolored_pages = TRUE;
920 1.60 thorpej uvm_unlock_fpageq(s);
921 1.60 thorpej }
922 1.1 mrg
923 1.1 mrg /*
924 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
925 1.54 thorpej */
926 1.54 thorpej
927 1.54 thorpej static __inline struct vm_page *
928 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
929 1.69 simonb int *trycolorp)
930 1.54 thorpej {
931 1.54 thorpej struct pglist *freeq;
932 1.54 thorpej struct vm_page *pg;
933 1.58 enami int color, trycolor = *trycolorp;
934 1.54 thorpej
935 1.58 enami color = trycolor;
936 1.58 enami do {
937 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
938 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
939 1.54 thorpej goto gotit;
940 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
941 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
942 1.54 thorpej goto gotit;
943 1.60 thorpej color = (color + 1) & uvmexp.colormask;
944 1.58 enami } while (color != trycolor);
945 1.54 thorpej
946 1.54 thorpej return (NULL);
947 1.54 thorpej
948 1.54 thorpej gotit:
949 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
950 1.54 thorpej uvmexp.free--;
951 1.54 thorpej
952 1.54 thorpej /* update zero'd page count */
953 1.54 thorpej if (pg->flags & PG_ZERO)
954 1.54 thorpej uvmexp.zeropages--;
955 1.54 thorpej
956 1.54 thorpej if (color == trycolor)
957 1.54 thorpej uvmexp.colorhit++;
958 1.54 thorpej else {
959 1.54 thorpej uvmexp.colormiss++;
960 1.54 thorpej *trycolorp = color;
961 1.54 thorpej }
962 1.54 thorpej
963 1.54 thorpej return (pg);
964 1.54 thorpej }
965 1.54 thorpej
966 1.54 thorpej /*
967 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
968 1.1 mrg *
969 1.1 mrg * => return null if no pages free
970 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
971 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
972 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
973 1.1 mrg * => only one of obj or anon can be non-null
974 1.1 mrg * => caller must activate/deactivate page if it is not wired.
975 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
976 1.34 thorpej * => policy decision: it is more important to pull a page off of the
977 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
978 1.34 thorpej * unknown contents page. This is because we live with the
979 1.34 thorpej * consequences of a bad free list decision for the entire
980 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
981 1.34 thorpej * is slower to access.
982 1.1 mrg */
983 1.1 mrg
984 1.7 mrg struct vm_page *
985 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
986 1.7 mrg struct uvm_object *obj;
987 1.31 kleink voff_t off;
988 1.18 chs int flags;
989 1.7 mrg struct vm_anon *anon;
990 1.12 thorpej int strat, free_list;
991 1.1 mrg {
992 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
993 1.7 mrg struct vm_page *pg;
994 1.18 chs boolean_t use_reserve;
995 1.1 mrg
996 1.44 chs KASSERT(obj == NULL || anon == NULL);
997 1.44 chs KASSERT(off == trunc_page(off));
998 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
999 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1000 1.48 thorpej
1001 1.44 chs s = uvm_lock_fpageq();
1002 1.1 mrg
1003 1.7 mrg /*
1004 1.54 thorpej * This implements a global round-robin page coloring
1005 1.54 thorpej * algorithm.
1006 1.54 thorpej *
1007 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
1008 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1009 1.54 thorpej */
1010 1.67 chs
1011 1.54 thorpej color = uvm.page_free_nextcolor;
1012 1.54 thorpej
1013 1.54 thorpej /*
1014 1.7 mrg * check to see if we need to generate some free pages waking
1015 1.7 mrg * the pagedaemon.
1016 1.7 mrg */
1017 1.7 mrg
1018 1.64 thorpej UVM_KICK_PDAEMON();
1019 1.7 mrg
1020 1.7 mrg /*
1021 1.7 mrg * fail if any of these conditions is true:
1022 1.7 mrg * [1] there really are no free pages, or
1023 1.7 mrg * [2] only kernel "reserved" pages remain and
1024 1.7 mrg * the page isn't being allocated to a kernel object.
1025 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1026 1.7 mrg * the requestor isn't the pagedaemon.
1027 1.7 mrg */
1028 1.7 mrg
1029 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1030 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1031 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1032 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1033 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1034 1.12 thorpej goto fail;
1035 1.12 thorpej
1036 1.34 thorpej #if PGFL_NQUEUES != 2
1037 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1038 1.34 thorpej #endif
1039 1.34 thorpej
1040 1.34 thorpej /*
1041 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1042 1.34 thorpej * we try the UNKNOWN queue first.
1043 1.34 thorpej */
1044 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1045 1.34 thorpej try1 = PGFL_ZEROS;
1046 1.34 thorpej try2 = PGFL_UNKNOWN;
1047 1.34 thorpej } else {
1048 1.34 thorpej try1 = PGFL_UNKNOWN;
1049 1.34 thorpej try2 = PGFL_ZEROS;
1050 1.34 thorpej }
1051 1.34 thorpej
1052 1.12 thorpej again:
1053 1.12 thorpej switch (strat) {
1054 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1055 1.12 thorpej /* Check all freelists in descending priority order. */
1056 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1057 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1058 1.54 thorpej try1, try2, &color);
1059 1.54 thorpej if (pg != NULL)
1060 1.12 thorpej goto gotit;
1061 1.12 thorpej }
1062 1.12 thorpej
1063 1.12 thorpej /* No pages free! */
1064 1.12 thorpej goto fail;
1065 1.12 thorpej
1066 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1067 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1068 1.12 thorpej /* Attempt to allocate from the specified free list. */
1069 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1070 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1071 1.54 thorpej try1, try2, &color);
1072 1.54 thorpej if (pg != NULL)
1073 1.12 thorpej goto gotit;
1074 1.12 thorpej
1075 1.12 thorpej /* Fall back, if possible. */
1076 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1077 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1078 1.12 thorpej goto again;
1079 1.12 thorpej }
1080 1.12 thorpej
1081 1.12 thorpej /* No pages free! */
1082 1.12 thorpej goto fail;
1083 1.12 thorpej
1084 1.12 thorpej default:
1085 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1086 1.12 thorpej /* NOTREACHED */
1087 1.7 mrg }
1088 1.7 mrg
1089 1.12 thorpej gotit:
1090 1.54 thorpej /*
1091 1.54 thorpej * We now know which color we actually allocated from; set
1092 1.54 thorpej * the next color accordingly.
1093 1.54 thorpej */
1094 1.67 chs
1095 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1096 1.34 thorpej
1097 1.34 thorpej /*
1098 1.34 thorpej * update allocation statistics and remember if we have to
1099 1.34 thorpej * zero the page
1100 1.34 thorpej */
1101 1.67 chs
1102 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1103 1.34 thorpej if (pg->flags & PG_ZERO) {
1104 1.34 thorpej uvmexp.pga_zerohit++;
1105 1.34 thorpej zeroit = 0;
1106 1.34 thorpej } else {
1107 1.34 thorpej uvmexp.pga_zeromiss++;
1108 1.34 thorpej zeroit = 1;
1109 1.34 thorpej }
1110 1.34 thorpej }
1111 1.67 chs uvm_unlock_fpageq(s);
1112 1.7 mrg
1113 1.7 mrg pg->offset = off;
1114 1.7 mrg pg->uobject = obj;
1115 1.7 mrg pg->uanon = anon;
1116 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1117 1.7 mrg if (anon) {
1118 1.7 mrg anon->u.an_page = pg;
1119 1.7 mrg pg->pqflags = PQ_ANON;
1120 1.45 simonb uvmexp.anonpages++;
1121 1.7 mrg } else {
1122 1.67 chs if (obj) {
1123 1.7 mrg uvm_pageinsert(pg);
1124 1.67 chs }
1125 1.7 mrg pg->pqflags = 0;
1126 1.7 mrg }
1127 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1128 1.7 mrg pg->owner_tag = NULL;
1129 1.1 mrg #endif
1130 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1131 1.33 thorpej
1132 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1133 1.33 thorpej /*
1134 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1135 1.34 thorpej * zero'd, then we have to zero it ourselves.
1136 1.33 thorpej */
1137 1.33 thorpej pg->flags &= ~PG_CLEAN;
1138 1.34 thorpej if (zeroit)
1139 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1140 1.33 thorpej }
1141 1.1 mrg
1142 1.7 mrg return(pg);
1143 1.12 thorpej
1144 1.12 thorpej fail:
1145 1.21 thorpej uvm_unlock_fpageq(s);
1146 1.12 thorpej return (NULL);
1147 1.1 mrg }
1148 1.1 mrg
1149 1.1 mrg /*
1150 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1151 1.1 mrg *
1152 1.1 mrg * => both objects must be locked
1153 1.1 mrg */
1154 1.1 mrg
1155 1.7 mrg void
1156 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1157 1.7 mrg struct vm_page *pg;
1158 1.7 mrg struct uvm_object *newobj;
1159 1.31 kleink voff_t newoff;
1160 1.1 mrg {
1161 1.7 mrg /*
1162 1.7 mrg * remove it from the old object
1163 1.7 mrg */
1164 1.7 mrg
1165 1.7 mrg if (pg->uobject) {
1166 1.7 mrg uvm_pageremove(pg);
1167 1.7 mrg }
1168 1.7 mrg
1169 1.7 mrg /*
1170 1.7 mrg * put it in the new object
1171 1.7 mrg */
1172 1.7 mrg
1173 1.7 mrg if (newobj) {
1174 1.7 mrg pg->uobject = newobj;
1175 1.7 mrg pg->offset = newoff;
1176 1.7 mrg uvm_pageinsert(pg);
1177 1.7 mrg }
1178 1.1 mrg }
1179 1.1 mrg
1180 1.1 mrg /*
1181 1.1 mrg * uvm_pagefree: free page
1182 1.1 mrg *
1183 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1184 1.1 mrg * => put page on free list
1185 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1186 1.1 mrg * => caller must lock page queues
1187 1.1 mrg * => assumes all valid mappings of pg are gone
1188 1.1 mrg */
1189 1.1 mrg
1190 1.44 chs void
1191 1.44 chs uvm_pagefree(pg)
1192 1.44 chs struct vm_page *pg;
1193 1.1 mrg {
1194 1.7 mrg int s;
1195 1.67 chs
1196 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1197 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1198 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1199 1.70 chs LOCK_ASSERT(pg->uobject == NULL ||
1200 1.70 chs simple_lock_held(&pg->uobject->vmobjlock));
1201 1.70 chs LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1202 1.70 chs simple_lock_held(&pg->uanon->an_lock));
1203 1.1 mrg
1204 1.44 chs #ifdef DEBUG
1205 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1206 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1207 1.44 chs panic("uvm_pagefree: freeing free page %p\n", pg);
1208 1.44 chs }
1209 1.44 chs #endif
1210 1.44 chs
1211 1.7 mrg /*
1212 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1213 1.7 mrg */
1214 1.7 mrg
1215 1.67 chs if (pg->loan_count) {
1216 1.70 chs KASSERT(pg->wire_count == 0);
1217 1.7 mrg
1218 1.7 mrg /*
1219 1.67 chs * if the page is owned by an anon then we just want to
1220 1.70 chs * drop anon ownership. the kernel will free the page when
1221 1.70 chs * it is done with it. if the page is owned by an object,
1222 1.70 chs * remove it from the object and mark it dirty for the benefit
1223 1.70 chs * of possible anon owners.
1224 1.70 chs *
1225 1.70 chs * regardless of previous ownership, wakeup any waiters,
1226 1.70 chs * unbusy the page, and we're done.
1227 1.7 mrg */
1228 1.7 mrg
1229 1.73 chs if (pg->uobject != NULL) {
1230 1.70 chs uvm_pageremove(pg);
1231 1.67 chs pg->flags &= ~PG_CLEAN;
1232 1.73 chs } else if (pg->uanon != NULL) {
1233 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1234 1.73 chs pg->loan_count--;
1235 1.73 chs } else {
1236 1.73 chs pg->pqflags &= ~PQ_ANON;
1237 1.73 chs }
1238 1.73 chs pg->uanon = NULL;
1239 1.67 chs }
1240 1.70 chs if (pg->flags & PG_WANTED) {
1241 1.70 chs wakeup(pg);
1242 1.70 chs }
1243 1.73 chs pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED);
1244 1.70 chs #ifdef UVM_PAGE_TRKOWN
1245 1.70 chs pg->owner_tag = NULL;
1246 1.70 chs #endif
1247 1.73 chs if (pg->loan_count) {
1248 1.73 chs return;
1249 1.73 chs }
1250 1.67 chs }
1251 1.62 chs
1252 1.67 chs /*
1253 1.67 chs * remove page from its object or anon.
1254 1.67 chs */
1255 1.44 chs
1256 1.73 chs if (pg->uobject != NULL) {
1257 1.67 chs uvm_pageremove(pg);
1258 1.73 chs } else if (pg->uanon != NULL) {
1259 1.67 chs pg->uanon->u.an_page = NULL;
1260 1.73 chs uvmexp.anonpages--;
1261 1.7 mrg }
1262 1.1 mrg
1263 1.7 mrg /*
1264 1.70 chs * now remove the page from the queues.
1265 1.7 mrg */
1266 1.7 mrg
1267 1.67 chs uvm_pagedequeue(pg);
1268 1.7 mrg
1269 1.7 mrg /*
1270 1.7 mrg * if the page was wired, unwire it now.
1271 1.7 mrg */
1272 1.44 chs
1273 1.34 thorpej if (pg->wire_count) {
1274 1.7 mrg pg->wire_count = 0;
1275 1.7 mrg uvmexp.wired--;
1276 1.44 chs }
1277 1.7 mrg
1278 1.7 mrg /*
1279 1.44 chs * and put on free queue
1280 1.7 mrg */
1281 1.7 mrg
1282 1.34 thorpej pg->flags &= ~PG_ZERO;
1283 1.34 thorpej
1284 1.21 thorpej s = uvm_lock_fpageq();
1285 1.34 thorpej TAILQ_INSERT_TAIL(&uvm.page_free[
1286 1.54 thorpej uvm_page_lookup_freelist(pg)].pgfl_buckets[
1287 1.54 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1288 1.7 mrg pg->pqflags = PQ_FREE;
1289 1.3 chs #ifdef DEBUG
1290 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1291 1.7 mrg pg->offset = 0xdeadbeef;
1292 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1293 1.3 chs #endif
1294 1.7 mrg uvmexp.free++;
1295 1.34 thorpej
1296 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1297 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1298 1.34 thorpej
1299 1.21 thorpej uvm_unlock_fpageq(s);
1300 1.44 chs }
1301 1.44 chs
1302 1.44 chs /*
1303 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1304 1.44 chs *
1305 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1306 1.44 chs * => if pages are object-owned, object must be locked.
1307 1.67 chs * => if pages are anon-owned, anons must be locked.
1308 1.44 chs */
1309 1.44 chs
1310 1.44 chs void
1311 1.44 chs uvm_page_unbusy(pgs, npgs)
1312 1.44 chs struct vm_page **pgs;
1313 1.44 chs int npgs;
1314 1.44 chs {
1315 1.44 chs struct vm_page *pg;
1316 1.44 chs int i;
1317 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1318 1.44 chs
1319 1.44 chs for (i = 0; i < npgs; i++) {
1320 1.44 chs pg = pgs[i];
1321 1.44 chs if (pg == NULL) {
1322 1.44 chs continue;
1323 1.44 chs }
1324 1.44 chs if (pg->flags & PG_WANTED) {
1325 1.44 chs wakeup(pg);
1326 1.44 chs }
1327 1.44 chs if (pg->flags & PG_RELEASED) {
1328 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1329 1.67 chs pg->flags &= ~PG_RELEASED;
1330 1.67 chs uvm_pagefree(pg);
1331 1.44 chs } else {
1332 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1333 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1334 1.44 chs UVM_PAGE_OWN(pg, NULL);
1335 1.44 chs }
1336 1.44 chs }
1337 1.1 mrg }
1338 1.1 mrg
1339 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1340 1.1 mrg /*
1341 1.1 mrg * uvm_page_own: set or release page ownership
1342 1.1 mrg *
1343 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1344 1.1 mrg * and where they do it. it can be used to track down problems
1345 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1346 1.1 mrg * => page's object [if any] must be locked
1347 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1348 1.1 mrg */
1349 1.7 mrg void
1350 1.7 mrg uvm_page_own(pg, tag)
1351 1.7 mrg struct vm_page *pg;
1352 1.7 mrg char *tag;
1353 1.1 mrg {
1354 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1355 1.67 chs
1356 1.7 mrg /* gain ownership? */
1357 1.7 mrg if (tag) {
1358 1.7 mrg if (pg->owner_tag) {
1359 1.7 mrg printf("uvm_page_own: page %p already owned "
1360 1.7 mrg "by proc %d [%s]\n", pg,
1361 1.7 mrg pg->owner, pg->owner_tag);
1362 1.7 mrg panic("uvm_page_own");
1363 1.7 mrg }
1364 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1365 1.7 mrg pg->owner_tag = tag;
1366 1.7 mrg return;
1367 1.7 mrg }
1368 1.7 mrg
1369 1.7 mrg /* drop ownership */
1370 1.7 mrg if (pg->owner_tag == NULL) {
1371 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1372 1.7 mrg "page (%p)\n", pg);
1373 1.7 mrg panic("uvm_page_own");
1374 1.7 mrg }
1375 1.7 mrg pg->owner_tag = NULL;
1376 1.70 chs KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1377 1.70 chs (pg->uanon == NULL && pg->uobject == NULL) ||
1378 1.67 chs pg->uobject == uvm.kernel_object ||
1379 1.70 chs pg->wire_count > 0 ||
1380 1.70 chs (pg->loan_count == 1 && pg->uanon == NULL) ||
1381 1.70 chs pg->loan_count > 1);
1382 1.7 mrg return;
1383 1.1 mrg }
1384 1.1 mrg #endif
1385 1.34 thorpej
1386 1.34 thorpej /*
1387 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1388 1.34 thorpej *
1389 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1390 1.54 thorpej * on the CPU cache.
1391 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1392 1.34 thorpej * there is a process ready to run.
1393 1.34 thorpej */
1394 1.34 thorpej void
1395 1.34 thorpej uvm_pageidlezero()
1396 1.34 thorpej {
1397 1.34 thorpej struct vm_page *pg;
1398 1.34 thorpej struct pgfreelist *pgfl;
1399 1.58 enami int free_list, s, firstbucket;
1400 1.54 thorpej static int nextbucket;
1401 1.54 thorpej
1402 1.54 thorpej s = uvm_lock_fpageq();
1403 1.58 enami firstbucket = nextbucket;
1404 1.58 enami do {
1405 1.54 thorpej if (sched_whichqs != 0) {
1406 1.34 thorpej uvm_unlock_fpageq(s);
1407 1.34 thorpej return;
1408 1.34 thorpej }
1409 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1410 1.34 thorpej uvm.page_idle_zero = FALSE;
1411 1.34 thorpej uvm_unlock_fpageq(s);
1412 1.34 thorpej return;
1413 1.34 thorpej }
1414 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1415 1.54 thorpej pgfl = &uvm.page_free[free_list];
1416 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1417 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1418 1.54 thorpej if (sched_whichqs != 0) {
1419 1.54 thorpej uvm_unlock_fpageq(s);
1420 1.54 thorpej return;
1421 1.54 thorpej }
1422 1.54 thorpej
1423 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1424 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1425 1.54 thorpej pg, pageq);
1426 1.54 thorpej uvmexp.free--;
1427 1.54 thorpej uvm_unlock_fpageq(s);
1428 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1429 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1430 1.67 chs
1431 1.54 thorpej /*
1432 1.54 thorpej * The machine-dependent code detected
1433 1.54 thorpej * some reason for us to abort zeroing
1434 1.54 thorpej * pages, probably because there is a
1435 1.54 thorpej * process now ready to run.
1436 1.54 thorpej */
1437 1.67 chs
1438 1.54 thorpej s = uvm_lock_fpageq();
1439 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1440 1.54 thorpej nextbucket].pgfl_queues[
1441 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1442 1.54 thorpej uvmexp.free++;
1443 1.54 thorpej uvmexp.zeroaborts++;
1444 1.54 thorpej uvm_unlock_fpageq(s);
1445 1.54 thorpej return;
1446 1.54 thorpej }
1447 1.54 thorpej #else
1448 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1449 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1450 1.54 thorpej pg->flags |= PG_ZERO;
1451 1.54 thorpej
1452 1.54 thorpej s = uvm_lock_fpageq();
1453 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1454 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1455 1.54 thorpej pg, pageq);
1456 1.54 thorpej uvmexp.free++;
1457 1.54 thorpej uvmexp.zeropages++;
1458 1.54 thorpej }
1459 1.41 thorpej }
1460 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1461 1.58 enami } while (nextbucket != firstbucket);
1462 1.54 thorpej uvm_unlock_fpageq(s);
1463 1.34 thorpej }
1464