Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.73
      1  1.73       chs /*	$NetBSD: uvm_page.c,v 1.73 2001/12/31 19:21:37 chs Exp $	*/
      2   1.1       mrg 
      3  1.62       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.62       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.62       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42   1.4       mrg  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.62       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.62       chs  *
     54  1.62       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.62       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.62       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_page.c: page ops.
     71   1.1       mrg  */
     72  1.71     lukem 
     73  1.71     lukem #include <sys/cdefs.h>
     74  1.73       chs __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.73 2001/12/31 19:21:37 chs Exp $");
     75   1.6       mrg 
     76  1.44       chs #include "opt_uvmhist.h"
     77  1.44       chs 
     78   1.1       mrg #include <sys/param.h>
     79   1.1       mrg #include <sys/systm.h>
     80   1.1       mrg #include <sys/malloc.h>
     81  1.35   thorpej #include <sys/sched.h>
     82  1.44       chs #include <sys/kernel.h>
     83  1.51       chs #include <sys/vnode.h>
     84  1.68       chs #include <sys/proc.h>
     85   1.1       mrg 
     86   1.1       mrg #define UVM_PAGE                /* pull in uvm_page.h functions */
     87   1.1       mrg #include <uvm/uvm.h>
     88   1.1       mrg 
     89   1.1       mrg /*
     90   1.1       mrg  * global vars... XXXCDC: move to uvm. structure.
     91   1.1       mrg  */
     92   1.1       mrg 
     93   1.1       mrg /*
     94   1.1       mrg  * physical memory config is stored in vm_physmem.
     95   1.1       mrg  */
     96   1.1       mrg 
     97   1.1       mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98   1.1       mrg int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99   1.1       mrg 
    100   1.1       mrg /*
    101  1.36   thorpej  * Some supported CPUs in a given architecture don't support all
    102  1.36   thorpej  * of the things necessary to do idle page zero'ing efficiently.
    103  1.36   thorpej  * We therefore provide a way to disable it from machdep code here.
    104  1.34   thorpej  */
    105  1.44       chs /*
    106  1.44       chs  * XXX disabled until we can find a way to do this without causing
    107  1.44       chs  * problems for either cpu caches or DMA latency.
    108  1.44       chs  */
    109  1.44       chs boolean_t vm_page_zero_enable = FALSE;
    110  1.34   thorpej 
    111  1.34   thorpej /*
    112   1.1       mrg  * local variables
    113   1.1       mrg  */
    114   1.1       mrg 
    115   1.1       mrg /*
    116   1.1       mrg  * these variables record the values returned by vm_page_bootstrap,
    117   1.1       mrg  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118   1.1       mrg  * and pmap_startup here also uses them internally.
    119   1.1       mrg  */
    120   1.1       mrg 
    121  1.14       eeh static vaddr_t      virtual_space_start;
    122  1.14       eeh static vaddr_t      virtual_space_end;
    123   1.1       mrg 
    124   1.1       mrg /*
    125   1.1       mrg  * we use a hash table with only one bucket during bootup.  we will
    126  1.30   thorpej  * later rehash (resize) the hash table once the allocator is ready.
    127  1.30   thorpej  * we static allocate the one bootstrap bucket below...
    128   1.1       mrg  */
    129   1.1       mrg 
    130   1.1       mrg static struct pglist uvm_bootbucket;
    131   1.1       mrg 
    132   1.1       mrg /*
    133  1.60   thorpej  * we allocate an initial number of page colors in uvm_page_init(),
    134  1.60   thorpej  * and remember them.  We may re-color pages as cache sizes are
    135  1.60   thorpej  * discovered during the autoconfiguration phase.  But we can never
    136  1.60   thorpej  * free the initial set of buckets, since they are allocated using
    137  1.60   thorpej  * uvm_pageboot_alloc().
    138  1.60   thorpej  */
    139  1.60   thorpej 
    140  1.60   thorpej static boolean_t have_recolored_pages /* = FALSE */;
    141  1.60   thorpej 
    142  1.60   thorpej /*
    143   1.1       mrg  * local prototypes
    144   1.1       mrg  */
    145   1.1       mrg 
    146   1.1       mrg static void uvm_pageinsert __P((struct vm_page *));
    147  1.44       chs static void uvm_pageremove __P((struct vm_page *));
    148   1.1       mrg 
    149   1.1       mrg /*
    150   1.1       mrg  * inline functions
    151   1.1       mrg  */
    152   1.1       mrg 
    153   1.1       mrg /*
    154   1.1       mrg  * uvm_pageinsert: insert a page in the object and the hash table
    155   1.1       mrg  *
    156   1.1       mrg  * => caller must lock object
    157   1.1       mrg  * => caller must lock page queues
    158   1.1       mrg  * => call should have already set pg's object and offset pointers
    159   1.1       mrg  *    and bumped the version counter
    160   1.1       mrg  */
    161   1.1       mrg 
    162   1.7       mrg __inline static void
    163   1.7       mrg uvm_pageinsert(pg)
    164   1.7       mrg 	struct vm_page *pg;
    165   1.1       mrg {
    166   1.7       mrg 	struct pglist *buck;
    167  1.67       chs 	struct uvm_object *uobj = pg->uobject;
    168   1.1       mrg 
    169  1.51       chs 	KASSERT((pg->flags & PG_TABLED) == 0);
    170  1.67       chs 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    171   1.7       mrg 	simple_lock(&uvm.hashlock);
    172  1.67       chs 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    173   1.7       mrg 	simple_unlock(&uvm.hashlock);
    174   1.7       mrg 
    175  1.67       chs 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    176   1.7       mrg 	pg->flags |= PG_TABLED;
    177  1.67       chs 	uobj->uo_npages++;
    178   1.1       mrg }
    179   1.1       mrg 
    180   1.1       mrg /*
    181   1.1       mrg  * uvm_page_remove: remove page from object and hash
    182   1.1       mrg  *
    183   1.1       mrg  * => caller must lock object
    184   1.1       mrg  * => caller must lock page queues
    185   1.1       mrg  */
    186   1.1       mrg 
    187  1.44       chs static __inline void
    188   1.7       mrg uvm_pageremove(pg)
    189   1.7       mrg 	struct vm_page *pg;
    190   1.1       mrg {
    191   1.7       mrg 	struct pglist *buck;
    192  1.67       chs 	struct uvm_object *uobj = pg->uobject;
    193   1.1       mrg 
    194  1.44       chs 	KASSERT(pg->flags & PG_TABLED);
    195  1.67       chs 	buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
    196   1.7       mrg 	simple_lock(&uvm.hashlock);
    197   1.7       mrg 	TAILQ_REMOVE(buck, pg, hashq);
    198   1.7       mrg 	simple_unlock(&uvm.hashlock);
    199   1.7       mrg 
    200  1.67       chs 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    201  1.72       chs 		uvmexp.execpages--;
    202  1.67       chs 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    203  1.72       chs 		uvmexp.filepages--;
    204  1.51       chs 	}
    205  1.44       chs 
    206   1.7       mrg 	/* object should be locked */
    207  1.67       chs 	uobj->uo_npages--;
    208  1.67       chs 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    209   1.7       mrg 	pg->flags &= ~PG_TABLED;
    210   1.7       mrg 	pg->uobject = NULL;
    211   1.1       mrg }
    212   1.1       mrg 
    213  1.60   thorpej static void
    214  1.60   thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
    215  1.60   thorpej {
    216  1.60   thorpej 	int color, i;
    217  1.60   thorpej 
    218  1.60   thorpej 	for (color = 0; color < uvmexp.ncolors; color++) {
    219  1.60   thorpej 		for (i = 0; i < PGFL_NQUEUES; i++) {
    220  1.60   thorpej 			TAILQ_INIT(&pgfl->pgfl_buckets[
    221  1.60   thorpej 			    color].pgfl_queues[i]);
    222  1.60   thorpej 		}
    223  1.60   thorpej 	}
    224  1.60   thorpej }
    225  1.60   thorpej 
    226   1.1       mrg /*
    227   1.1       mrg  * uvm_page_init: init the page system.   called from uvm_init().
    228  1.62       chs  *
    229   1.1       mrg  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    230   1.1       mrg  */
    231   1.1       mrg 
    232   1.7       mrg void
    233   1.7       mrg uvm_page_init(kvm_startp, kvm_endp)
    234  1.14       eeh 	vaddr_t *kvm_startp, *kvm_endp;
    235   1.1       mrg {
    236  1.60   thorpej 	vsize_t freepages, pagecount, bucketcount, n;
    237  1.60   thorpej 	struct pgflbucket *bucketarray;
    238  1.63       chs 	struct vm_page *pagearray;
    239  1.60   thorpej 	int lcv, i;
    240  1.14       eeh 	paddr_t paddr;
    241   1.7       mrg 
    242   1.7       mrg 	/*
    243  1.60   thorpej 	 * init the page queues and page queue locks, except the free
    244  1.60   thorpej 	 * list; we allocate that later (with the initial vm_page
    245  1.60   thorpej 	 * structures).
    246   1.7       mrg 	 */
    247  1.51       chs 
    248   1.7       mrg 	TAILQ_INIT(&uvm.page_active);
    249  1.61      ross 	TAILQ_INIT(&uvm.page_inactive);
    250   1.7       mrg 	simple_lock_init(&uvm.pageqlock);
    251   1.7       mrg 	simple_lock_init(&uvm.fpageqlock);
    252   1.7       mrg 
    253   1.7       mrg 	/*
    254  1.51       chs 	 * init the <obj,offset> => <page> hash table.  for now
    255  1.51       chs 	 * we just have one bucket (the bootstrap bucket).  later on we
    256  1.30   thorpej 	 * will allocate new buckets as we dynamically resize the hash table.
    257   1.7       mrg 	 */
    258   1.7       mrg 
    259   1.7       mrg 	uvm.page_nhash = 1;			/* 1 bucket */
    260  1.44       chs 	uvm.page_hashmask = 0;			/* mask for hash function */
    261   1.7       mrg 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    262   1.7       mrg 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    263   1.7       mrg 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    264   1.7       mrg 
    265  1.62       chs 	/*
    266  1.51       chs 	 * allocate vm_page structures.
    267   1.7       mrg 	 */
    268   1.7       mrg 
    269   1.7       mrg 	/*
    270   1.7       mrg 	 * sanity check:
    271   1.7       mrg 	 * before calling this function the MD code is expected to register
    272   1.7       mrg 	 * some free RAM with the uvm_page_physload() function.   our job
    273   1.7       mrg 	 * now is to allocate vm_page structures for this memory.
    274   1.7       mrg 	 */
    275   1.7       mrg 
    276   1.7       mrg 	if (vm_nphysseg == 0)
    277  1.42       mrg 		panic("uvm_page_bootstrap: no memory pre-allocated");
    278  1.62       chs 
    279   1.7       mrg 	/*
    280  1.62       chs 	 * first calculate the number of free pages...
    281   1.7       mrg 	 *
    282   1.7       mrg 	 * note that we use start/end rather than avail_start/avail_end.
    283   1.7       mrg 	 * this allows us to allocate extra vm_page structures in case we
    284   1.7       mrg 	 * want to return some memory to the pool after booting.
    285   1.7       mrg 	 */
    286  1.62       chs 
    287   1.7       mrg 	freepages = 0;
    288   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    289   1.7       mrg 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    290   1.7       mrg 
    291   1.7       mrg 	/*
    292  1.60   thorpej 	 * Let MD code initialize the number of colors, or default
    293  1.60   thorpej 	 * to 1 color if MD code doesn't care.
    294  1.60   thorpej 	 */
    295  1.60   thorpej 	if (uvmexp.ncolors == 0)
    296  1.60   thorpej 		uvmexp.ncolors = 1;
    297  1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    298  1.60   thorpej 
    299  1.60   thorpej 	/*
    300   1.7       mrg 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    301   1.7       mrg 	 * use.   for each page of memory we use we need a vm_page structure.
    302   1.7       mrg 	 * thus, the total number of pages we can use is the total size of
    303   1.7       mrg 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    304   1.7       mrg 	 * structure.   we add one to freepages as a fudge factor to avoid
    305   1.7       mrg 	 * truncation errors (since we can only allocate in terms of whole
    306   1.7       mrg 	 * pages).
    307   1.7       mrg 	 */
    308  1.62       chs 
    309  1.60   thorpej 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    310  1.15       chs 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    311   1.7       mrg 	    (PAGE_SIZE + sizeof(struct vm_page));
    312  1.60   thorpej 
    313  1.67       chs 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    314  1.60   thorpej 	    sizeof(struct pgflbucket)) + (pagecount *
    315  1.60   thorpej 	    sizeof(struct vm_page)));
    316  1.60   thorpej 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    317  1.60   thorpej 
    318  1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    319  1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets =
    320  1.60   thorpej 		    (bucketarray + (lcv * uvmexp.ncolors));
    321  1.60   thorpej 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    322  1.60   thorpej 	}
    323  1.13     perry 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    324  1.62       chs 
    325   1.7       mrg 	/*
    326  1.51       chs 	 * init the vm_page structures and put them in the correct place.
    327   1.7       mrg 	 */
    328   1.7       mrg 
    329   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    330   1.7       mrg 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    331  1.51       chs 
    332   1.7       mrg 		/* set up page array pointers */
    333   1.7       mrg 		vm_physmem[lcv].pgs = pagearray;
    334   1.7       mrg 		pagearray += n;
    335   1.7       mrg 		pagecount -= n;
    336   1.7       mrg 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    337   1.7       mrg 
    338  1.13     perry 		/* init and free vm_pages (we've already zeroed them) */
    339   1.7       mrg 		paddr = ptoa(vm_physmem[lcv].start);
    340   1.7       mrg 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    341   1.7       mrg 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    342  1.56   thorpej #ifdef __HAVE_VM_PAGE_MD
    343  1.55   thorpej 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    344  1.56   thorpej #endif
    345   1.7       mrg 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    346   1.7       mrg 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    347   1.7       mrg 				uvmexp.npages++;
    348   1.7       mrg 				/* add page to free pool */
    349   1.7       mrg 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    350   1.7       mrg 			}
    351   1.7       mrg 		}
    352   1.7       mrg 	}
    353  1.44       chs 
    354   1.7       mrg 	/*
    355  1.51       chs 	 * pass up the values of virtual_space_start and
    356   1.7       mrg 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    357   1.7       mrg 	 * layers of the VM.
    358   1.7       mrg 	 */
    359   1.7       mrg 
    360   1.7       mrg 	*kvm_startp = round_page(virtual_space_start);
    361   1.7       mrg 	*kvm_endp = trunc_page(virtual_space_end);
    362   1.7       mrg 
    363   1.7       mrg 	/*
    364  1.51       chs 	 * init locks for kernel threads
    365   1.7       mrg 	 */
    366   1.7       mrg 
    367   1.7       mrg 	simple_lock_init(&uvm.pagedaemon_lock);
    368  1.44       chs 	simple_lock_init(&uvm.aiodoned_lock);
    369   1.7       mrg 
    370   1.7       mrg 	/*
    371  1.51       chs 	 * init various thresholds.
    372   1.7       mrg 	 */
    373  1.51       chs 
    374   1.7       mrg 	uvmexp.reserve_pagedaemon = 1;
    375   1.7       mrg 	uvmexp.reserve_kernel = 5;
    376  1.51       chs 	uvmexp.anonminpct = 10;
    377  1.72       chs 	uvmexp.fileminpct = 10;
    378  1.72       chs 	uvmexp.execminpct = 5;
    379  1.72       chs 	uvmexp.anonmaxpct = 80;
    380  1.72       chs 	uvmexp.filemaxpct = 50;
    381  1.72       chs 	uvmexp.execmaxpct = 30;
    382  1.51       chs 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    383  1.72       chs 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    384  1.72       chs 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    385  1.72       chs 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    386  1.72       chs 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    387  1.72       chs 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    388   1.7       mrg 
    389   1.7       mrg 	/*
    390  1.51       chs 	 * determine if we should zero pages in the idle loop.
    391  1.34   thorpej 	 */
    392  1.51       chs 
    393  1.34   thorpej 	uvm.page_idle_zero = vm_page_zero_enable;
    394  1.34   thorpej 
    395  1.34   thorpej 	/*
    396   1.7       mrg 	 * done!
    397   1.7       mrg 	 */
    398   1.1       mrg 
    399  1.32   thorpej 	uvm.page_init_done = TRUE;
    400   1.1       mrg }
    401   1.1       mrg 
    402   1.1       mrg /*
    403   1.1       mrg  * uvm_setpagesize: set the page size
    404  1.62       chs  *
    405   1.1       mrg  * => sets page_shift and page_mask from uvmexp.pagesize.
    406  1.62       chs  */
    407   1.1       mrg 
    408   1.7       mrg void
    409   1.7       mrg uvm_setpagesize()
    410   1.1       mrg {
    411   1.7       mrg 	if (uvmexp.pagesize == 0)
    412   1.7       mrg 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    413   1.7       mrg 	uvmexp.pagemask = uvmexp.pagesize - 1;
    414   1.7       mrg 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    415   1.7       mrg 		panic("uvm_setpagesize: page size not a power of two");
    416   1.7       mrg 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    417   1.7       mrg 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    418   1.7       mrg 			break;
    419   1.1       mrg }
    420   1.1       mrg 
    421   1.1       mrg /*
    422   1.1       mrg  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    423   1.1       mrg  */
    424   1.1       mrg 
    425  1.14       eeh vaddr_t
    426   1.7       mrg uvm_pageboot_alloc(size)
    427  1.14       eeh 	vsize_t size;
    428   1.1       mrg {
    429  1.52   thorpej 	static boolean_t initialized = FALSE;
    430  1.14       eeh 	vaddr_t addr;
    431  1.52   thorpej #if !defined(PMAP_STEAL_MEMORY)
    432  1.52   thorpej 	vaddr_t vaddr;
    433  1.14       eeh 	paddr_t paddr;
    434  1.52   thorpej #endif
    435   1.1       mrg 
    436   1.7       mrg 	/*
    437  1.19   thorpej 	 * on first call to this function, initialize ourselves.
    438   1.7       mrg 	 */
    439  1.19   thorpej 	if (initialized == FALSE) {
    440   1.7       mrg 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    441   1.1       mrg 
    442   1.7       mrg 		/* round it the way we like it */
    443   1.7       mrg 		virtual_space_start = round_page(virtual_space_start);
    444   1.7       mrg 		virtual_space_end = trunc_page(virtual_space_end);
    445  1.19   thorpej 
    446  1.19   thorpej 		initialized = TRUE;
    447   1.7       mrg 	}
    448  1.52   thorpej 
    449  1.52   thorpej 	/* round to page size */
    450  1.52   thorpej 	size = round_page(size);
    451  1.52   thorpej 
    452  1.52   thorpej #if defined(PMAP_STEAL_MEMORY)
    453  1.52   thorpej 
    454  1.62       chs 	/*
    455  1.62       chs 	 * defer bootstrap allocation to MD code (it may want to allocate
    456  1.52   thorpej 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    457  1.52   thorpej 	 * virtual_space_start/virtual_space_end if necessary.
    458  1.52   thorpej 	 */
    459  1.52   thorpej 
    460  1.52   thorpej 	addr = pmap_steal_memory(size, &virtual_space_start,
    461  1.52   thorpej 	    &virtual_space_end);
    462  1.52   thorpej 
    463  1.52   thorpej 	return(addr);
    464  1.52   thorpej 
    465  1.52   thorpej #else /* !PMAP_STEAL_MEMORY */
    466   1.1       mrg 
    467   1.7       mrg 	/*
    468   1.7       mrg 	 * allocate virtual memory for this request
    469   1.7       mrg 	 */
    470  1.19   thorpej 	if (virtual_space_start == virtual_space_end ||
    471  1.20   thorpej 	    (virtual_space_end - virtual_space_start) < size)
    472  1.19   thorpej 		panic("uvm_pageboot_alloc: out of virtual space");
    473  1.20   thorpej 
    474  1.20   thorpej 	addr = virtual_space_start;
    475  1.20   thorpej 
    476  1.20   thorpej #ifdef PMAP_GROWKERNEL
    477  1.20   thorpej 	/*
    478  1.20   thorpej 	 * If the kernel pmap can't map the requested space,
    479  1.20   thorpej 	 * then allocate more resources for it.
    480  1.20   thorpej 	 */
    481  1.20   thorpej 	if (uvm_maxkaddr < (addr + size)) {
    482  1.20   thorpej 		uvm_maxkaddr = pmap_growkernel(addr + size);
    483  1.20   thorpej 		if (uvm_maxkaddr < (addr + size))
    484  1.20   thorpej 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    485  1.19   thorpej 	}
    486  1.20   thorpej #endif
    487   1.1       mrg 
    488   1.7       mrg 	virtual_space_start += size;
    489   1.1       mrg 
    490   1.9   thorpej 	/*
    491   1.7       mrg 	 * allocate and mapin physical pages to back new virtual pages
    492   1.7       mrg 	 */
    493   1.1       mrg 
    494   1.7       mrg 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    495   1.7       mrg 	    vaddr += PAGE_SIZE) {
    496   1.1       mrg 
    497   1.7       mrg 		if (!uvm_page_physget(&paddr))
    498   1.7       mrg 			panic("uvm_pageboot_alloc: out of memory");
    499   1.1       mrg 
    500  1.23   thorpej 		/*
    501  1.23   thorpej 		 * Note this memory is no longer managed, so using
    502  1.23   thorpej 		 * pmap_kenter is safe.
    503  1.23   thorpej 		 */
    504   1.7       mrg 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    505   1.7       mrg 	}
    506  1.66     chris 	pmap_update(pmap_kernel());
    507   1.7       mrg 	return(addr);
    508   1.1       mrg #endif	/* PMAP_STEAL_MEMORY */
    509   1.1       mrg }
    510   1.1       mrg 
    511   1.1       mrg #if !defined(PMAP_STEAL_MEMORY)
    512   1.1       mrg /*
    513   1.1       mrg  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    514   1.1       mrg  *
    515   1.1       mrg  * => attempt to allocate it off the end of a segment in which the "avail"
    516   1.1       mrg  *    values match the start/end values.   if we can't do that, then we
    517   1.1       mrg  *    will advance both values (making them equal, and removing some
    518   1.1       mrg  *    vm_page structures from the non-avail area).
    519   1.1       mrg  * => return false if out of memory.
    520   1.1       mrg  */
    521   1.1       mrg 
    522  1.28  drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
    523  1.28  drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    524  1.28  drochner 
    525  1.28  drochner static boolean_t
    526  1.28  drochner uvm_page_physget_freelist(paddrp, freelist)
    527  1.14       eeh 	paddr_t *paddrp;
    528  1.28  drochner 	int freelist;
    529   1.1       mrg {
    530   1.7       mrg 	int lcv, x;
    531   1.1       mrg 
    532   1.7       mrg 	/* pass 1: try allocating from a matching end */
    533   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    534   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    535   1.1       mrg #else
    536   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    537   1.1       mrg #endif
    538   1.7       mrg 	{
    539   1.1       mrg 
    540  1.32   thorpej 		if (uvm.page_init_done == TRUE)
    541  1.42       mrg 			panic("uvm_page_physget: called _after_ bootstrap");
    542   1.1       mrg 
    543  1.28  drochner 		if (vm_physmem[lcv].free_list != freelist)
    544  1.28  drochner 			continue;
    545  1.28  drochner 
    546   1.7       mrg 		/* try from front */
    547   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    548   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    549   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    550   1.7       mrg 			vm_physmem[lcv].avail_start++;
    551   1.7       mrg 			vm_physmem[lcv].start++;
    552   1.7       mrg 			/* nothing left?   nuke it */
    553   1.7       mrg 			if (vm_physmem[lcv].avail_start ==
    554   1.7       mrg 			    vm_physmem[lcv].end) {
    555   1.7       mrg 				if (vm_nphysseg == 1)
    556  1.42       mrg 				    panic("vum_page_physget: out of memory!");
    557   1.7       mrg 				vm_nphysseg--;
    558   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    559   1.7       mrg 					/* structure copy */
    560   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    561   1.7       mrg 			}
    562   1.7       mrg 			return (TRUE);
    563   1.7       mrg 		}
    564   1.7       mrg 
    565   1.7       mrg 		/* try from rear */
    566   1.7       mrg 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    567   1.7       mrg 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    568   1.7       mrg 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    569   1.7       mrg 			vm_physmem[lcv].avail_end--;
    570   1.7       mrg 			vm_physmem[lcv].end--;
    571   1.7       mrg 			/* nothing left?   nuke it */
    572   1.7       mrg 			if (vm_physmem[lcv].avail_end ==
    573   1.7       mrg 			    vm_physmem[lcv].start) {
    574   1.7       mrg 				if (vm_nphysseg == 1)
    575  1.42       mrg 				    panic("uvm_page_physget: out of memory!");
    576   1.7       mrg 				vm_nphysseg--;
    577   1.7       mrg 				for (x = lcv ; x < vm_nphysseg ; x++)
    578   1.7       mrg 					/* structure copy */
    579   1.7       mrg 					vm_physmem[x] = vm_physmem[x+1];
    580   1.7       mrg 			}
    581   1.7       mrg 			return (TRUE);
    582   1.7       mrg 		}
    583   1.7       mrg 	}
    584   1.1       mrg 
    585   1.7       mrg 	/* pass2: forget about matching ends, just allocate something */
    586   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    587   1.7       mrg 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    588   1.1       mrg #else
    589   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    590   1.1       mrg #endif
    591   1.7       mrg 	{
    592   1.1       mrg 
    593   1.7       mrg 		/* any room in this bank? */
    594   1.7       mrg 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    595   1.7       mrg 			continue;  /* nope */
    596   1.7       mrg 
    597   1.7       mrg 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    598   1.7       mrg 		vm_physmem[lcv].avail_start++;
    599   1.7       mrg 		/* truncate! */
    600   1.7       mrg 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    601   1.7       mrg 
    602   1.7       mrg 		/* nothing left?   nuke it */
    603   1.7       mrg 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    604   1.7       mrg 			if (vm_nphysseg == 1)
    605  1.42       mrg 				panic("uvm_page_physget: out of memory!");
    606   1.7       mrg 			vm_nphysseg--;
    607   1.7       mrg 			for (x = lcv ; x < vm_nphysseg ; x++)
    608   1.7       mrg 				/* structure copy */
    609   1.7       mrg 				vm_physmem[x] = vm_physmem[x+1];
    610   1.7       mrg 		}
    611   1.7       mrg 		return (TRUE);
    612   1.7       mrg 	}
    613   1.1       mrg 
    614   1.7       mrg 	return (FALSE);        /* whoops! */
    615  1.28  drochner }
    616  1.28  drochner 
    617  1.28  drochner boolean_t
    618  1.28  drochner uvm_page_physget(paddrp)
    619  1.28  drochner 	paddr_t *paddrp;
    620  1.28  drochner {
    621  1.28  drochner 	int i;
    622  1.28  drochner 
    623  1.28  drochner 	/* try in the order of freelist preference */
    624  1.28  drochner 	for (i = 0; i < VM_NFREELIST; i++)
    625  1.28  drochner 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    626  1.28  drochner 			return (TRUE);
    627  1.28  drochner 	return (FALSE);
    628   1.1       mrg }
    629   1.1       mrg #endif /* PMAP_STEAL_MEMORY */
    630   1.1       mrg 
    631   1.1       mrg /*
    632   1.1       mrg  * uvm_page_physload: load physical memory into VM system
    633   1.1       mrg  *
    634   1.1       mrg  * => all args are PFs
    635   1.1       mrg  * => all pages in start/end get vm_page structures
    636   1.1       mrg  * => areas marked by avail_start/avail_end get added to the free page pool
    637   1.1       mrg  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    638   1.1       mrg  */
    639   1.1       mrg 
    640   1.7       mrg void
    641  1.12   thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
    642  1.29       eeh 	paddr_t start, end, avail_start, avail_end;
    643  1.12   thorpej 	int free_list;
    644   1.1       mrg {
    645  1.14       eeh 	int preload, lcv;
    646  1.14       eeh 	psize_t npages;
    647   1.7       mrg 	struct vm_page *pgs;
    648   1.7       mrg 	struct vm_physseg *ps;
    649   1.7       mrg 
    650   1.7       mrg 	if (uvmexp.pagesize == 0)
    651  1.42       mrg 		panic("uvm_page_physload: page size not set!");
    652  1.12   thorpej 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    653  1.12   thorpej 		panic("uvm_page_physload: bad free list %d\n", free_list);
    654  1.26  drochner 	if (start >= end)
    655  1.26  drochner 		panic("uvm_page_physload: start >= end");
    656  1.12   thorpej 
    657   1.7       mrg 	/*
    658   1.7       mrg 	 * do we have room?
    659   1.7       mrg 	 */
    660  1.67       chs 
    661   1.7       mrg 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    662  1.42       mrg 		printf("uvm_page_physload: unable to load physical memory "
    663   1.7       mrg 		    "segment\n");
    664  1.37      soda 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    665  1.37      soda 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    666  1.43  christos 		printf("\tincrease VM_PHYSSEG_MAX\n");
    667   1.7       mrg 		return;
    668   1.7       mrg 	}
    669   1.7       mrg 
    670   1.7       mrg 	/*
    671   1.7       mrg 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    672   1.7       mrg 	 * called yet, so malloc is not available).
    673   1.7       mrg 	 */
    674  1.67       chs 
    675   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    676   1.7       mrg 		if (vm_physmem[lcv].pgs)
    677   1.7       mrg 			break;
    678   1.7       mrg 	}
    679   1.7       mrg 	preload = (lcv == vm_nphysseg);
    680   1.7       mrg 
    681   1.7       mrg 	/*
    682   1.7       mrg 	 * if VM is already running, attempt to malloc() vm_page structures
    683   1.7       mrg 	 */
    684  1.67       chs 
    685   1.7       mrg 	if (!preload) {
    686   1.1       mrg #if defined(VM_PHYSSEG_NOADD)
    687  1.42       mrg 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    688   1.1       mrg #else
    689   1.7       mrg 		/* XXXCDC: need some sort of lockout for this case */
    690  1.14       eeh 		paddr_t paddr;
    691   1.7       mrg 		npages = end - start;  /* # of pages */
    692  1.40   thorpej 		pgs = malloc(sizeof(struct vm_page) * npages,
    693  1.40   thorpej 		    M_VMPAGE, M_NOWAIT);
    694   1.7       mrg 		if (pgs == NULL) {
    695  1.42       mrg 			printf("uvm_page_physload: can not malloc vm_page "
    696   1.7       mrg 			    "structs for segment\n");
    697   1.7       mrg 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    698   1.7       mrg 			return;
    699   1.7       mrg 		}
    700  1.12   thorpej 		/* zero data, init phys_addr and free_list, and free pages */
    701  1.13     perry 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    702   1.7       mrg 		for (lcv = 0, paddr = ptoa(start) ;
    703   1.7       mrg 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    704   1.7       mrg 			pgs[lcv].phys_addr = paddr;
    705  1.12   thorpej 			pgs[lcv].free_list = free_list;
    706   1.7       mrg 			if (atop(paddr) >= avail_start &&
    707   1.7       mrg 			    atop(paddr) <= avail_end)
    708   1.8     chuck 				uvm_pagefree(&pgs[lcv]);
    709   1.7       mrg 		}
    710   1.7       mrg 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    711   1.7       mrg 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    712   1.1       mrg #endif
    713   1.7       mrg 	} else {
    714   1.7       mrg 		pgs = NULL;
    715   1.7       mrg 		npages = 0;
    716   1.7       mrg 	}
    717   1.1       mrg 
    718   1.7       mrg 	/*
    719   1.7       mrg 	 * now insert us in the proper place in vm_physmem[]
    720   1.7       mrg 	 */
    721   1.1       mrg 
    722   1.1       mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    723   1.7       mrg 	/* random: put it at the end (easy!) */
    724   1.7       mrg 	ps = &vm_physmem[vm_nphysseg];
    725   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    726   1.7       mrg 	{
    727   1.7       mrg 		int x;
    728   1.7       mrg 		/* sort by address for binary search */
    729   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    730   1.7       mrg 			if (start < vm_physmem[lcv].start)
    731   1.7       mrg 				break;
    732   1.7       mrg 		ps = &vm_physmem[lcv];
    733   1.7       mrg 		/* move back other entries, if necessary ... */
    734   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    735   1.7       mrg 			/* structure copy */
    736   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    737   1.7       mrg 	}
    738   1.1       mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    739   1.7       mrg 	{
    740   1.7       mrg 		int x;
    741   1.7       mrg 		/* sort by largest segment first */
    742   1.7       mrg 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    743   1.7       mrg 			if ((end - start) >
    744   1.7       mrg 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    745   1.7       mrg 				break;
    746   1.7       mrg 		ps = &vm_physmem[lcv];
    747   1.7       mrg 		/* move back other entries, if necessary ... */
    748   1.7       mrg 		for (x = vm_nphysseg ; x > lcv ; x--)
    749   1.7       mrg 			/* structure copy */
    750   1.7       mrg 			vm_physmem[x] = vm_physmem[x - 1];
    751   1.7       mrg 	}
    752   1.1       mrg #else
    753  1.42       mrg 	panic("uvm_page_physload: unknown physseg strategy selected!");
    754   1.1       mrg #endif
    755   1.1       mrg 
    756   1.7       mrg 	ps->start = start;
    757   1.7       mrg 	ps->end = end;
    758   1.7       mrg 	ps->avail_start = avail_start;
    759   1.7       mrg 	ps->avail_end = avail_end;
    760   1.7       mrg 	if (preload) {
    761   1.7       mrg 		ps->pgs = NULL;
    762   1.7       mrg 	} else {
    763   1.7       mrg 		ps->pgs = pgs;
    764   1.7       mrg 		ps->lastpg = pgs + npages - 1;
    765   1.7       mrg 	}
    766  1.12   thorpej 	ps->free_list = free_list;
    767   1.7       mrg 	vm_nphysseg++;
    768   1.7       mrg 
    769   1.7       mrg 	if (!preload)
    770   1.7       mrg 		uvm_page_rehash();
    771   1.1       mrg }
    772   1.1       mrg 
    773   1.1       mrg /*
    774   1.1       mrg  * uvm_page_rehash: reallocate hash table based on number of free pages.
    775   1.1       mrg  */
    776   1.1       mrg 
    777   1.7       mrg void
    778   1.7       mrg uvm_page_rehash()
    779   1.1       mrg {
    780  1.67       chs 	int freepages, lcv, bucketcount, oldcount;
    781   1.7       mrg 	struct pglist *newbuckets, *oldbuckets;
    782   1.7       mrg 	struct vm_page *pg;
    783  1.30   thorpej 	size_t newsize, oldsize;
    784   1.7       mrg 
    785   1.7       mrg 	/*
    786   1.7       mrg 	 * compute number of pages that can go in the free pool
    787   1.7       mrg 	 */
    788   1.7       mrg 
    789   1.7       mrg 	freepages = 0;
    790   1.7       mrg 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    791   1.7       mrg 		freepages +=
    792   1.7       mrg 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    793   1.7       mrg 
    794   1.7       mrg 	/*
    795   1.7       mrg 	 * compute number of buckets needed for this number of pages
    796   1.7       mrg 	 */
    797   1.7       mrg 
    798   1.7       mrg 	bucketcount = 1;
    799   1.7       mrg 	while (bucketcount < freepages)
    800   1.7       mrg 		bucketcount = bucketcount * 2;
    801   1.7       mrg 
    802   1.7       mrg 	/*
    803  1.30   thorpej 	 * compute the size of the current table and new table.
    804   1.7       mrg 	 */
    805   1.7       mrg 
    806  1.30   thorpej 	oldbuckets = uvm.page_hash;
    807  1.30   thorpej 	oldcount = uvm.page_nhash;
    808  1.30   thorpej 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    809  1.30   thorpej 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    810  1.30   thorpej 
    811  1.30   thorpej 	/*
    812  1.30   thorpej 	 * allocate the new buckets
    813  1.30   thorpej 	 */
    814  1.30   thorpej 
    815  1.30   thorpej 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    816   1.7       mrg 	if (newbuckets == NULL) {
    817  1.30   thorpej 		printf("uvm_page_physrehash: WARNING: could not grow page "
    818   1.7       mrg 		    "hash table\n");
    819   1.7       mrg 		return;
    820   1.7       mrg 	}
    821   1.7       mrg 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    822   1.7       mrg 		TAILQ_INIT(&newbuckets[lcv]);
    823   1.7       mrg 
    824   1.7       mrg 	/*
    825   1.7       mrg 	 * now replace the old buckets with the new ones and rehash everything
    826   1.7       mrg 	 */
    827   1.7       mrg 
    828   1.7       mrg 	simple_lock(&uvm.hashlock);
    829   1.7       mrg 	uvm.page_hash = newbuckets;
    830   1.7       mrg 	uvm.page_nhash = bucketcount;
    831   1.7       mrg 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    832   1.7       mrg 
    833   1.7       mrg 	/* ... and rehash */
    834   1.7       mrg 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    835   1.7       mrg 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    836   1.7       mrg 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    837   1.7       mrg 			TAILQ_INSERT_TAIL(
    838   1.7       mrg 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    839   1.7       mrg 			  pg, hashq);
    840   1.7       mrg 		}
    841   1.7       mrg 	}
    842   1.7       mrg 	simple_unlock(&uvm.hashlock);
    843   1.7       mrg 
    844   1.7       mrg 	/*
    845  1.30   thorpej 	 * free old bucket array if is not the boot-time table
    846   1.7       mrg 	 */
    847   1.7       mrg 
    848   1.7       mrg 	if (oldbuckets != &uvm_bootbucket)
    849  1.30   thorpej 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    850   1.1       mrg }
    851   1.1       mrg 
    852  1.60   thorpej /*
    853  1.60   thorpej  * uvm_page_recolor: Recolor the pages if the new bucket count is
    854  1.60   thorpej  * larger than the old one.
    855  1.60   thorpej  */
    856  1.60   thorpej 
    857  1.60   thorpej void
    858  1.60   thorpej uvm_page_recolor(int newncolors)
    859  1.60   thorpej {
    860  1.60   thorpej 	struct pgflbucket *bucketarray, *oldbucketarray;
    861  1.60   thorpej 	struct pgfreelist pgfl;
    862  1.63       chs 	struct vm_page *pg;
    863  1.60   thorpej 	vsize_t bucketcount;
    864  1.60   thorpej 	int s, lcv, color, i, ocolors;
    865  1.60   thorpej 
    866  1.60   thorpej 	if (newncolors <= uvmexp.ncolors)
    867  1.60   thorpej 		return;
    868  1.60   thorpej 
    869  1.60   thorpej 	bucketcount = newncolors * VM_NFREELIST;
    870  1.60   thorpej 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    871  1.60   thorpej 	    M_VMPAGE, M_NOWAIT);
    872  1.60   thorpej 	if (bucketarray == NULL) {
    873  1.60   thorpej 		printf("WARNING: unable to allocate %ld page color buckets\n",
    874  1.60   thorpej 		    (long) bucketcount);
    875  1.60   thorpej 		return;
    876  1.60   thorpej 	}
    877  1.60   thorpej 
    878  1.60   thorpej 	s = uvm_lock_fpageq();
    879  1.60   thorpej 
    880  1.60   thorpej 	/* Make sure we should still do this. */
    881  1.60   thorpej 	if (newncolors <= uvmexp.ncolors) {
    882  1.60   thorpej 		uvm_unlock_fpageq(s);
    883  1.60   thorpej 		free(bucketarray, M_VMPAGE);
    884  1.60   thorpej 		return;
    885  1.60   thorpej 	}
    886  1.60   thorpej 
    887  1.60   thorpej 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    888  1.60   thorpej 	ocolors = uvmexp.ncolors;
    889  1.60   thorpej 
    890  1.60   thorpej 	uvmexp.ncolors = newncolors;
    891  1.60   thorpej 	uvmexp.colormask = uvmexp.ncolors - 1;
    892  1.60   thorpej 
    893  1.60   thorpej 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    894  1.60   thorpej 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    895  1.60   thorpej 		uvm_page_init_buckets(&pgfl);
    896  1.60   thorpej 		for (color = 0; color < ocolors; color++) {
    897  1.60   thorpej 			for (i = 0; i < PGFL_NQUEUES; i++) {
    898  1.60   thorpej 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    899  1.60   thorpej 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    900  1.60   thorpej 				    != NULL) {
    901  1.60   thorpej 					TAILQ_REMOVE(&uvm.page_free[
    902  1.60   thorpej 					    lcv].pgfl_buckets[
    903  1.60   thorpej 					    color].pgfl_queues[i], pg, pageq);
    904  1.60   thorpej 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    905  1.60   thorpej 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    906  1.60   thorpej 					    i], pg, pageq);
    907  1.60   thorpej 				}
    908  1.60   thorpej 			}
    909  1.60   thorpej 		}
    910  1.60   thorpej 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    911  1.60   thorpej 	}
    912  1.60   thorpej 
    913  1.60   thorpej 	if (have_recolored_pages) {
    914  1.60   thorpej 		uvm_unlock_fpageq(s);
    915  1.60   thorpej 		free(oldbucketarray, M_VMPAGE);
    916  1.60   thorpej 		return;
    917  1.60   thorpej 	}
    918  1.60   thorpej 
    919  1.60   thorpej 	have_recolored_pages = TRUE;
    920  1.60   thorpej 	uvm_unlock_fpageq(s);
    921  1.60   thorpej }
    922   1.1       mrg 
    923   1.1       mrg /*
    924  1.54   thorpej  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    925  1.54   thorpej  */
    926  1.54   thorpej 
    927  1.54   thorpej static __inline struct vm_page *
    928  1.54   thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    929  1.69    simonb     int *trycolorp)
    930  1.54   thorpej {
    931  1.54   thorpej 	struct pglist *freeq;
    932  1.54   thorpej 	struct vm_page *pg;
    933  1.58     enami 	int color, trycolor = *trycolorp;
    934  1.54   thorpej 
    935  1.58     enami 	color = trycolor;
    936  1.58     enami 	do {
    937  1.54   thorpej 		if ((pg = TAILQ_FIRST((freeq =
    938  1.54   thorpej 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    939  1.54   thorpej 			goto gotit;
    940  1.54   thorpej 		if ((pg = TAILQ_FIRST((freeq =
    941  1.54   thorpej 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    942  1.54   thorpej 			goto gotit;
    943  1.60   thorpej 		color = (color + 1) & uvmexp.colormask;
    944  1.58     enami 	} while (color != trycolor);
    945  1.54   thorpej 
    946  1.54   thorpej 	return (NULL);
    947  1.54   thorpej 
    948  1.54   thorpej  gotit:
    949  1.54   thorpej 	TAILQ_REMOVE(freeq, pg, pageq);
    950  1.54   thorpej 	uvmexp.free--;
    951  1.54   thorpej 
    952  1.54   thorpej 	/* update zero'd page count */
    953  1.54   thorpej 	if (pg->flags & PG_ZERO)
    954  1.54   thorpej 		uvmexp.zeropages--;
    955  1.54   thorpej 
    956  1.54   thorpej 	if (color == trycolor)
    957  1.54   thorpej 		uvmexp.colorhit++;
    958  1.54   thorpej 	else {
    959  1.54   thorpej 		uvmexp.colormiss++;
    960  1.54   thorpej 		*trycolorp = color;
    961  1.54   thorpej 	}
    962  1.54   thorpej 
    963  1.54   thorpej 	return (pg);
    964  1.54   thorpej }
    965  1.54   thorpej 
    966  1.54   thorpej /*
    967  1.12   thorpej  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    968   1.1       mrg  *
    969   1.1       mrg  * => return null if no pages free
    970   1.1       mrg  * => wake up pagedaemon if number of free pages drops below low water mark
    971   1.1       mrg  * => if obj != NULL, obj must be locked (to put in hash)
    972   1.1       mrg  * => if anon != NULL, anon must be locked (to put in anon)
    973   1.1       mrg  * => only one of obj or anon can be non-null
    974   1.1       mrg  * => caller must activate/deactivate page if it is not wired.
    975  1.12   thorpej  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    976  1.34   thorpej  * => policy decision: it is more important to pull a page off of the
    977  1.34   thorpej  *	appropriate priority free list than it is to get a zero'd or
    978  1.34   thorpej  *	unknown contents page.  This is because we live with the
    979  1.34   thorpej  *	consequences of a bad free list decision for the entire
    980  1.34   thorpej  *	lifetime of the page, e.g. if the page comes from memory that
    981  1.34   thorpej  *	is slower to access.
    982   1.1       mrg  */
    983   1.1       mrg 
    984   1.7       mrg struct vm_page *
    985  1.18       chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    986   1.7       mrg 	struct uvm_object *obj;
    987  1.31    kleink 	voff_t off;
    988  1.18       chs 	int flags;
    989   1.7       mrg 	struct vm_anon *anon;
    990  1.12   thorpej 	int strat, free_list;
    991   1.1       mrg {
    992  1.54   thorpej 	int lcv, try1, try2, s, zeroit = 0, color;
    993   1.7       mrg 	struct vm_page *pg;
    994  1.18       chs 	boolean_t use_reserve;
    995   1.1       mrg 
    996  1.44       chs 	KASSERT(obj == NULL || anon == NULL);
    997  1.44       chs 	KASSERT(off == trunc_page(off));
    998  1.48   thorpej 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
    999  1.48   thorpej 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1000  1.48   thorpej 
   1001  1.44       chs 	s = uvm_lock_fpageq();
   1002   1.1       mrg 
   1003   1.7       mrg 	/*
   1004  1.54   thorpej 	 * This implements a global round-robin page coloring
   1005  1.54   thorpej 	 * algorithm.
   1006  1.54   thorpej 	 *
   1007  1.54   thorpej 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1008  1.54   thorpej 	 * XXXJRT: What about virtually-indexed caches?
   1009  1.54   thorpej 	 */
   1010  1.67       chs 
   1011  1.54   thorpej 	color = uvm.page_free_nextcolor;
   1012  1.54   thorpej 
   1013  1.54   thorpej 	/*
   1014   1.7       mrg 	 * check to see if we need to generate some free pages waking
   1015   1.7       mrg 	 * the pagedaemon.
   1016   1.7       mrg 	 */
   1017   1.7       mrg 
   1018  1.64   thorpej 	UVM_KICK_PDAEMON();
   1019   1.7       mrg 
   1020   1.7       mrg 	/*
   1021   1.7       mrg 	 * fail if any of these conditions is true:
   1022   1.7       mrg 	 * [1]  there really are no free pages, or
   1023   1.7       mrg 	 * [2]  only kernel "reserved" pages remain and
   1024   1.7       mrg 	 *        the page isn't being allocated to a kernel object.
   1025   1.7       mrg 	 * [3]  only pagedaemon "reserved" pages remain and
   1026   1.7       mrg 	 *        the requestor isn't the pagedaemon.
   1027   1.7       mrg 	 */
   1028   1.7       mrg 
   1029  1.18       chs 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1030  1.22   thorpej 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1031  1.18       chs 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1032   1.7       mrg 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1033  1.18       chs 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1034  1.12   thorpej 		goto fail;
   1035  1.12   thorpej 
   1036  1.34   thorpej #if PGFL_NQUEUES != 2
   1037  1.34   thorpej #error uvm_pagealloc_strat needs to be updated
   1038  1.34   thorpej #endif
   1039  1.34   thorpej 
   1040  1.34   thorpej 	/*
   1041  1.34   thorpej 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1042  1.34   thorpej 	 * we try the UNKNOWN queue first.
   1043  1.34   thorpej 	 */
   1044  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1045  1.34   thorpej 		try1 = PGFL_ZEROS;
   1046  1.34   thorpej 		try2 = PGFL_UNKNOWN;
   1047  1.34   thorpej 	} else {
   1048  1.34   thorpej 		try1 = PGFL_UNKNOWN;
   1049  1.34   thorpej 		try2 = PGFL_ZEROS;
   1050  1.34   thorpej 	}
   1051  1.34   thorpej 
   1052  1.12   thorpej  again:
   1053  1.12   thorpej 	switch (strat) {
   1054  1.12   thorpej 	case UVM_PGA_STRAT_NORMAL:
   1055  1.12   thorpej 		/* Check all freelists in descending priority order. */
   1056  1.12   thorpej 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1057  1.54   thorpej 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1058  1.54   thorpej 			    try1, try2, &color);
   1059  1.54   thorpej 			if (pg != NULL)
   1060  1.12   thorpej 				goto gotit;
   1061  1.12   thorpej 		}
   1062  1.12   thorpej 
   1063  1.12   thorpej 		/* No pages free! */
   1064  1.12   thorpej 		goto fail;
   1065  1.12   thorpej 
   1066  1.12   thorpej 	case UVM_PGA_STRAT_ONLY:
   1067  1.12   thorpej 	case UVM_PGA_STRAT_FALLBACK:
   1068  1.12   thorpej 		/* Attempt to allocate from the specified free list. */
   1069  1.44       chs 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1070  1.54   thorpej 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1071  1.54   thorpej 		    try1, try2, &color);
   1072  1.54   thorpej 		if (pg != NULL)
   1073  1.12   thorpej 			goto gotit;
   1074  1.12   thorpej 
   1075  1.12   thorpej 		/* Fall back, if possible. */
   1076  1.12   thorpej 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1077  1.12   thorpej 			strat = UVM_PGA_STRAT_NORMAL;
   1078  1.12   thorpej 			goto again;
   1079  1.12   thorpej 		}
   1080  1.12   thorpej 
   1081  1.12   thorpej 		/* No pages free! */
   1082  1.12   thorpej 		goto fail;
   1083  1.12   thorpej 
   1084  1.12   thorpej 	default:
   1085  1.12   thorpej 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1086  1.12   thorpej 		/* NOTREACHED */
   1087   1.7       mrg 	}
   1088   1.7       mrg 
   1089  1.12   thorpej  gotit:
   1090  1.54   thorpej 	/*
   1091  1.54   thorpej 	 * We now know which color we actually allocated from; set
   1092  1.54   thorpej 	 * the next color accordingly.
   1093  1.54   thorpej 	 */
   1094  1.67       chs 
   1095  1.60   thorpej 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1096  1.34   thorpej 
   1097  1.34   thorpej 	/*
   1098  1.34   thorpej 	 * update allocation statistics and remember if we have to
   1099  1.34   thorpej 	 * zero the page
   1100  1.34   thorpej 	 */
   1101  1.67       chs 
   1102  1.34   thorpej 	if (flags & UVM_PGA_ZERO) {
   1103  1.34   thorpej 		if (pg->flags & PG_ZERO) {
   1104  1.34   thorpej 			uvmexp.pga_zerohit++;
   1105  1.34   thorpej 			zeroit = 0;
   1106  1.34   thorpej 		} else {
   1107  1.34   thorpej 			uvmexp.pga_zeromiss++;
   1108  1.34   thorpej 			zeroit = 1;
   1109  1.34   thorpej 		}
   1110  1.34   thorpej 	}
   1111  1.67       chs 	uvm_unlock_fpageq(s);
   1112   1.7       mrg 
   1113   1.7       mrg 	pg->offset = off;
   1114   1.7       mrg 	pg->uobject = obj;
   1115   1.7       mrg 	pg->uanon = anon;
   1116   1.7       mrg 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1117   1.7       mrg 	if (anon) {
   1118   1.7       mrg 		anon->u.an_page = pg;
   1119   1.7       mrg 		pg->pqflags = PQ_ANON;
   1120  1.45    simonb 		uvmexp.anonpages++;
   1121   1.7       mrg 	} else {
   1122  1.67       chs 		if (obj) {
   1123   1.7       mrg 			uvm_pageinsert(pg);
   1124  1.67       chs 		}
   1125   1.7       mrg 		pg->pqflags = 0;
   1126   1.7       mrg 	}
   1127   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1128   1.7       mrg 	pg->owner_tag = NULL;
   1129   1.1       mrg #endif
   1130   1.7       mrg 	UVM_PAGE_OWN(pg, "new alloc");
   1131  1.33   thorpej 
   1132  1.33   thorpej 	if (flags & UVM_PGA_ZERO) {
   1133  1.33   thorpej 		/*
   1134  1.34   thorpej 		 * A zero'd page is not clean.  If we got a page not already
   1135  1.34   thorpej 		 * zero'd, then we have to zero it ourselves.
   1136  1.33   thorpej 		 */
   1137  1.33   thorpej 		pg->flags &= ~PG_CLEAN;
   1138  1.34   thorpej 		if (zeroit)
   1139  1.34   thorpej 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1140  1.33   thorpej 	}
   1141   1.1       mrg 
   1142   1.7       mrg 	return(pg);
   1143  1.12   thorpej 
   1144  1.12   thorpej  fail:
   1145  1.21   thorpej 	uvm_unlock_fpageq(s);
   1146  1.12   thorpej 	return (NULL);
   1147   1.1       mrg }
   1148   1.1       mrg 
   1149   1.1       mrg /*
   1150   1.1       mrg  * uvm_pagerealloc: reallocate a page from one object to another
   1151   1.1       mrg  *
   1152   1.1       mrg  * => both objects must be locked
   1153   1.1       mrg  */
   1154   1.1       mrg 
   1155   1.7       mrg void
   1156   1.7       mrg uvm_pagerealloc(pg, newobj, newoff)
   1157   1.7       mrg 	struct vm_page *pg;
   1158   1.7       mrg 	struct uvm_object *newobj;
   1159  1.31    kleink 	voff_t newoff;
   1160   1.1       mrg {
   1161   1.7       mrg 	/*
   1162   1.7       mrg 	 * remove it from the old object
   1163   1.7       mrg 	 */
   1164   1.7       mrg 
   1165   1.7       mrg 	if (pg->uobject) {
   1166   1.7       mrg 		uvm_pageremove(pg);
   1167   1.7       mrg 	}
   1168   1.7       mrg 
   1169   1.7       mrg 	/*
   1170   1.7       mrg 	 * put it in the new object
   1171   1.7       mrg 	 */
   1172   1.7       mrg 
   1173   1.7       mrg 	if (newobj) {
   1174   1.7       mrg 		pg->uobject = newobj;
   1175   1.7       mrg 		pg->offset = newoff;
   1176   1.7       mrg 		uvm_pageinsert(pg);
   1177   1.7       mrg 	}
   1178   1.1       mrg }
   1179   1.1       mrg 
   1180   1.1       mrg /*
   1181   1.1       mrg  * uvm_pagefree: free page
   1182   1.1       mrg  *
   1183   1.1       mrg  * => erase page's identity (i.e. remove from hash/object)
   1184   1.1       mrg  * => put page on free list
   1185   1.1       mrg  * => caller must lock owning object (either anon or uvm_object)
   1186   1.1       mrg  * => caller must lock page queues
   1187   1.1       mrg  * => assumes all valid mappings of pg are gone
   1188   1.1       mrg  */
   1189   1.1       mrg 
   1190  1.44       chs void
   1191  1.44       chs uvm_pagefree(pg)
   1192  1.44       chs 	struct vm_page *pg;
   1193   1.1       mrg {
   1194   1.7       mrg 	int s;
   1195  1.67       chs 
   1196  1.67       chs 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1197  1.67       chs 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1198  1.67       chs 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1199  1.70       chs 	LOCK_ASSERT(pg->uobject == NULL ||
   1200  1.70       chs 		    simple_lock_held(&pg->uobject->vmobjlock));
   1201  1.70       chs 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1202  1.70       chs 		    simple_lock_held(&pg->uanon->an_lock));
   1203   1.1       mrg 
   1204  1.44       chs #ifdef DEBUG
   1205  1.44       chs 	if (pg->uobject == (void *)0xdeadbeef &&
   1206  1.44       chs 	    pg->uanon == (void *)0xdeadbeef) {
   1207  1.44       chs 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1208  1.44       chs 	}
   1209  1.44       chs #endif
   1210  1.44       chs 
   1211   1.7       mrg 	/*
   1212  1.67       chs 	 * if the page is loaned, resolve the loan instead of freeing.
   1213   1.7       mrg 	 */
   1214   1.7       mrg 
   1215  1.67       chs 	if (pg->loan_count) {
   1216  1.70       chs 		KASSERT(pg->wire_count == 0);
   1217   1.7       mrg 
   1218   1.7       mrg 		/*
   1219  1.67       chs 		 * if the page is owned by an anon then we just want to
   1220  1.70       chs 		 * drop anon ownership.  the kernel will free the page when
   1221  1.70       chs 		 * it is done with it.  if the page is owned by an object,
   1222  1.70       chs 		 * remove it from the object and mark it dirty for the benefit
   1223  1.70       chs 		 * of possible anon owners.
   1224  1.70       chs 		 *
   1225  1.70       chs 		 * regardless of previous ownership, wakeup any waiters,
   1226  1.70       chs 		 * unbusy the page, and we're done.
   1227   1.7       mrg 		 */
   1228   1.7       mrg 
   1229  1.73       chs 		if (pg->uobject != NULL) {
   1230  1.70       chs 			uvm_pageremove(pg);
   1231  1.67       chs 			pg->flags &= ~PG_CLEAN;
   1232  1.73       chs 		} else if (pg->uanon != NULL) {
   1233  1.73       chs 			if ((pg->pqflags & PQ_ANON) == 0) {
   1234  1.73       chs 				pg->loan_count--;
   1235  1.73       chs 			} else {
   1236  1.73       chs 				pg->pqflags &= ~PQ_ANON;
   1237  1.73       chs 			}
   1238  1.73       chs 			pg->uanon = NULL;
   1239  1.67       chs 		}
   1240  1.70       chs 		if (pg->flags & PG_WANTED) {
   1241  1.70       chs 			wakeup(pg);
   1242  1.70       chs 		}
   1243  1.73       chs 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED);
   1244  1.70       chs #ifdef UVM_PAGE_TRKOWN
   1245  1.70       chs 		pg->owner_tag = NULL;
   1246  1.70       chs #endif
   1247  1.73       chs 		if (pg->loan_count) {
   1248  1.73       chs 			return;
   1249  1.73       chs 		}
   1250  1.67       chs 	}
   1251  1.62       chs 
   1252  1.67       chs 	/*
   1253  1.67       chs 	 * remove page from its object or anon.
   1254  1.67       chs 	 */
   1255  1.44       chs 
   1256  1.73       chs 	if (pg->uobject != NULL) {
   1257  1.67       chs 		uvm_pageremove(pg);
   1258  1.73       chs 	} else if (pg->uanon != NULL) {
   1259  1.67       chs 		pg->uanon->u.an_page = NULL;
   1260  1.73       chs 		uvmexp.anonpages--;
   1261   1.7       mrg 	}
   1262   1.1       mrg 
   1263   1.7       mrg 	/*
   1264  1.70       chs 	 * now remove the page from the queues.
   1265   1.7       mrg 	 */
   1266   1.7       mrg 
   1267  1.67       chs 	uvm_pagedequeue(pg);
   1268   1.7       mrg 
   1269   1.7       mrg 	/*
   1270   1.7       mrg 	 * if the page was wired, unwire it now.
   1271   1.7       mrg 	 */
   1272  1.44       chs 
   1273  1.34   thorpej 	if (pg->wire_count) {
   1274   1.7       mrg 		pg->wire_count = 0;
   1275   1.7       mrg 		uvmexp.wired--;
   1276  1.44       chs 	}
   1277   1.7       mrg 
   1278   1.7       mrg 	/*
   1279  1.44       chs 	 * and put on free queue
   1280   1.7       mrg 	 */
   1281   1.7       mrg 
   1282  1.34   thorpej 	pg->flags &= ~PG_ZERO;
   1283  1.34   thorpej 
   1284  1.21   thorpej 	s = uvm_lock_fpageq();
   1285  1.34   thorpej 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1286  1.54   thorpej 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1287  1.54   thorpej 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1288   1.7       mrg 	pg->pqflags = PQ_FREE;
   1289   1.3       chs #ifdef DEBUG
   1290   1.7       mrg 	pg->uobject = (void *)0xdeadbeef;
   1291   1.7       mrg 	pg->offset = 0xdeadbeef;
   1292   1.7       mrg 	pg->uanon = (void *)0xdeadbeef;
   1293   1.3       chs #endif
   1294   1.7       mrg 	uvmexp.free++;
   1295  1.34   thorpej 
   1296  1.34   thorpej 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1297  1.34   thorpej 		uvm.page_idle_zero = vm_page_zero_enable;
   1298  1.34   thorpej 
   1299  1.21   thorpej 	uvm_unlock_fpageq(s);
   1300  1.44       chs }
   1301  1.44       chs 
   1302  1.44       chs /*
   1303  1.44       chs  * uvm_page_unbusy: unbusy an array of pages.
   1304  1.44       chs  *
   1305  1.44       chs  * => pages must either all belong to the same object, or all belong to anons.
   1306  1.44       chs  * => if pages are object-owned, object must be locked.
   1307  1.67       chs  * => if pages are anon-owned, anons must be locked.
   1308  1.44       chs  */
   1309  1.44       chs 
   1310  1.44       chs void
   1311  1.44       chs uvm_page_unbusy(pgs, npgs)
   1312  1.44       chs 	struct vm_page **pgs;
   1313  1.44       chs 	int npgs;
   1314  1.44       chs {
   1315  1.44       chs 	struct vm_page *pg;
   1316  1.44       chs 	int i;
   1317  1.44       chs 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1318  1.44       chs 
   1319  1.44       chs 	for (i = 0; i < npgs; i++) {
   1320  1.44       chs 		pg = pgs[i];
   1321  1.44       chs 		if (pg == NULL) {
   1322  1.44       chs 			continue;
   1323  1.44       chs 		}
   1324  1.44       chs 		if (pg->flags & PG_WANTED) {
   1325  1.44       chs 			wakeup(pg);
   1326  1.44       chs 		}
   1327  1.44       chs 		if (pg->flags & PG_RELEASED) {
   1328  1.44       chs 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1329  1.67       chs 			pg->flags &= ~PG_RELEASED;
   1330  1.67       chs 			uvm_pagefree(pg);
   1331  1.44       chs 		} else {
   1332  1.44       chs 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1333  1.44       chs 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1334  1.44       chs 			UVM_PAGE_OWN(pg, NULL);
   1335  1.44       chs 		}
   1336  1.44       chs 	}
   1337   1.1       mrg }
   1338   1.1       mrg 
   1339   1.1       mrg #if defined(UVM_PAGE_TRKOWN)
   1340   1.1       mrg /*
   1341   1.1       mrg  * uvm_page_own: set or release page ownership
   1342   1.1       mrg  *
   1343   1.1       mrg  * => this is a debugging function that keeps track of who sets PG_BUSY
   1344   1.1       mrg  *	and where they do it.   it can be used to track down problems
   1345   1.1       mrg  *	such a process setting "PG_BUSY" and never releasing it.
   1346   1.1       mrg  * => page's object [if any] must be locked
   1347   1.1       mrg  * => if "tag" is NULL then we are releasing page ownership
   1348   1.1       mrg  */
   1349   1.7       mrg void
   1350   1.7       mrg uvm_page_own(pg, tag)
   1351   1.7       mrg 	struct vm_page *pg;
   1352   1.7       mrg 	char *tag;
   1353   1.1       mrg {
   1354  1.67       chs 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1355  1.67       chs 
   1356   1.7       mrg 	/* gain ownership? */
   1357   1.7       mrg 	if (tag) {
   1358   1.7       mrg 		if (pg->owner_tag) {
   1359   1.7       mrg 			printf("uvm_page_own: page %p already owned "
   1360   1.7       mrg 			    "by proc %d [%s]\n", pg,
   1361   1.7       mrg 			     pg->owner, pg->owner_tag);
   1362   1.7       mrg 			panic("uvm_page_own");
   1363   1.7       mrg 		}
   1364   1.7       mrg 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1365   1.7       mrg 		pg->owner_tag = tag;
   1366   1.7       mrg 		return;
   1367   1.7       mrg 	}
   1368   1.7       mrg 
   1369   1.7       mrg 	/* drop ownership */
   1370   1.7       mrg 	if (pg->owner_tag == NULL) {
   1371   1.7       mrg 		printf("uvm_page_own: dropping ownership of an non-owned "
   1372   1.7       mrg 		    "page (%p)\n", pg);
   1373   1.7       mrg 		panic("uvm_page_own");
   1374   1.7       mrg 	}
   1375   1.7       mrg 	pg->owner_tag = NULL;
   1376  1.70       chs 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1377  1.70       chs 		(pg->uanon == NULL && pg->uobject == NULL) ||
   1378  1.67       chs 		pg->uobject == uvm.kernel_object ||
   1379  1.70       chs 		pg->wire_count > 0 ||
   1380  1.70       chs 		(pg->loan_count == 1 && pg->uanon == NULL) ||
   1381  1.70       chs 		pg->loan_count > 1);
   1382   1.7       mrg 	return;
   1383   1.1       mrg }
   1384   1.1       mrg #endif
   1385  1.34   thorpej 
   1386  1.34   thorpej /*
   1387  1.34   thorpej  * uvm_pageidlezero: zero free pages while the system is idle.
   1388  1.34   thorpej  *
   1389  1.54   thorpej  * => try to complete one color bucket at a time, to reduce our impact
   1390  1.54   thorpej  *	on the CPU cache.
   1391  1.34   thorpej  * => we loop until we either reach the target or whichqs indicates that
   1392  1.34   thorpej  *	there is a process ready to run.
   1393  1.34   thorpej  */
   1394  1.34   thorpej void
   1395  1.34   thorpej uvm_pageidlezero()
   1396  1.34   thorpej {
   1397  1.34   thorpej 	struct vm_page *pg;
   1398  1.34   thorpej 	struct pgfreelist *pgfl;
   1399  1.58     enami 	int free_list, s, firstbucket;
   1400  1.54   thorpej 	static int nextbucket;
   1401  1.54   thorpej 
   1402  1.54   thorpej 	s = uvm_lock_fpageq();
   1403  1.58     enami 	firstbucket = nextbucket;
   1404  1.58     enami 	do {
   1405  1.54   thorpej 		if (sched_whichqs != 0) {
   1406  1.34   thorpej 			uvm_unlock_fpageq(s);
   1407  1.34   thorpej 			return;
   1408  1.34   thorpej 		}
   1409  1.54   thorpej 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1410  1.34   thorpej 			uvm.page_idle_zero = FALSE;
   1411  1.34   thorpej 			uvm_unlock_fpageq(s);
   1412  1.34   thorpej 			return;
   1413  1.34   thorpej 		}
   1414  1.54   thorpej 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1415  1.54   thorpej 			pgfl = &uvm.page_free[free_list];
   1416  1.54   thorpej 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1417  1.54   thorpej 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1418  1.54   thorpej 				if (sched_whichqs != 0) {
   1419  1.54   thorpej 					uvm_unlock_fpageq(s);
   1420  1.54   thorpej 					return;
   1421  1.54   thorpej 				}
   1422  1.54   thorpej 
   1423  1.54   thorpej 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1424  1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1425  1.54   thorpej 				    pg, pageq);
   1426  1.54   thorpej 				uvmexp.free--;
   1427  1.54   thorpej 				uvm_unlock_fpageq(s);
   1428  1.34   thorpej #ifdef PMAP_PAGEIDLEZERO
   1429  1.67       chs 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1430  1.67       chs 
   1431  1.54   thorpej 					/*
   1432  1.54   thorpej 					 * The machine-dependent code detected
   1433  1.54   thorpej 					 * some reason for us to abort zeroing
   1434  1.54   thorpej 					 * pages, probably because there is a
   1435  1.54   thorpej 					 * process now ready to run.
   1436  1.54   thorpej 					 */
   1437  1.67       chs 
   1438  1.54   thorpej 					s = uvm_lock_fpageq();
   1439  1.54   thorpej 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1440  1.54   thorpej 					    nextbucket].pgfl_queues[
   1441  1.54   thorpej 					    PGFL_UNKNOWN], pg, pageq);
   1442  1.54   thorpej 					uvmexp.free++;
   1443  1.54   thorpej 					uvmexp.zeroaborts++;
   1444  1.54   thorpej 					uvm_unlock_fpageq(s);
   1445  1.54   thorpej 					return;
   1446  1.54   thorpej 				}
   1447  1.54   thorpej #else
   1448  1.54   thorpej 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1449  1.54   thorpej #endif /* PMAP_PAGEIDLEZERO */
   1450  1.54   thorpej 				pg->flags |= PG_ZERO;
   1451  1.54   thorpej 
   1452  1.54   thorpej 				s = uvm_lock_fpageq();
   1453  1.54   thorpej 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1454  1.54   thorpej 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1455  1.54   thorpej 				    pg, pageq);
   1456  1.54   thorpej 				uvmexp.free++;
   1457  1.54   thorpej 				uvmexp.zeropages++;
   1458  1.54   thorpej 			}
   1459  1.41   thorpej 		}
   1460  1.60   thorpej 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1461  1.58     enami 	} while (nextbucket != firstbucket);
   1462  1.54   thorpej 	uvm_unlock_fpageq(s);
   1463  1.34   thorpej }
   1464