uvm_page.c revision 1.9 1 1.9 thorpej /* $NetBSD: uvm_page.c,v 1.9 1998/04/16 03:54:35 thorpej Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
46 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
47 1.1 mrg *
48 1.1 mrg *
49 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 1.1 mrg * All rights reserved.
51 1.1 mrg *
52 1.1 mrg * Permission to use, copy, modify and distribute this software and
53 1.1 mrg * its documentation is hereby granted, provided that both the copyright
54 1.1 mrg * notice and this permission notice appear in all copies of the
55 1.1 mrg * software, derivative works or modified versions, and any portions
56 1.1 mrg * thereof, and that both notices appear in supporting documentation.
57 1.1 mrg *
58 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 1.1 mrg *
62 1.1 mrg * Carnegie Mellon requests users of this software to return to
63 1.1 mrg *
64 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 1.1 mrg * School of Computer Science
66 1.1 mrg * Carnegie Mellon University
67 1.1 mrg * Pittsburgh PA 15213-3890
68 1.1 mrg *
69 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
70 1.1 mrg * rights to redistribute these changes.
71 1.1 mrg */
72 1.1 mrg
73 1.1 mrg /*
74 1.1 mrg * uvm_page.c: page ops.
75 1.1 mrg */
76 1.6 mrg
77 1.6 mrg #include "opt_pmap_new.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/systm.h>
81 1.1 mrg #include <sys/malloc.h>
82 1.1 mrg #include <sys/mount.h>
83 1.1 mrg #include <sys/proc.h>
84 1.1 mrg
85 1.1 mrg #include <vm/vm.h>
86 1.1 mrg #include <vm/vm_page.h>
87 1.1 mrg #include <vm/vm_kern.h>
88 1.1 mrg
89 1.1 mrg #include <sys/syscallargs.h>
90 1.1 mrg
91 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
92 1.1 mrg #include <uvm/uvm.h>
93 1.1 mrg
94 1.1 mrg /*
95 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
96 1.1 mrg */
97 1.1 mrg
98 1.1 mrg /*
99 1.1 mrg * physical memory config is stored in vm_physmem.
100 1.1 mrg */
101 1.1 mrg
102 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
103 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
104 1.1 mrg
105 1.1 mrg /*
106 1.1 mrg * local variables
107 1.1 mrg */
108 1.1 mrg
109 1.1 mrg /*
110 1.1 mrg * these variables record the values returned by vm_page_bootstrap,
111 1.1 mrg * for debugging purposes. The implementation of uvm_pageboot_alloc
112 1.1 mrg * and pmap_startup here also uses them internally.
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg static vm_offset_t virtual_space_start;
116 1.1 mrg static vm_offset_t virtual_space_end;
117 1.1 mrg
118 1.1 mrg /*
119 1.1 mrg * we use a hash table with only one bucket during bootup. we will
120 1.1 mrg * later rehash (resize) the hash table once malloc() is ready.
121 1.1 mrg * we static allocate the bootstrap bucket below...
122 1.1 mrg */
123 1.1 mrg
124 1.1 mrg static struct pglist uvm_bootbucket;
125 1.1 mrg
126 1.1 mrg /*
127 1.1 mrg * local prototypes
128 1.1 mrg */
129 1.1 mrg
130 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
131 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
132 1.1 mrg static boolean_t uvm_page_physget __P((vm_offset_t *));
133 1.1 mrg #endif
134 1.1 mrg
135 1.1 mrg
136 1.1 mrg /*
137 1.1 mrg * inline functions
138 1.1 mrg */
139 1.1 mrg
140 1.1 mrg /*
141 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
142 1.1 mrg *
143 1.1 mrg * => caller must lock object
144 1.1 mrg * => caller must lock page queues
145 1.1 mrg * => call should have already set pg's object and offset pointers
146 1.1 mrg * and bumped the version counter
147 1.1 mrg */
148 1.1 mrg
149 1.7 mrg __inline static void
150 1.7 mrg uvm_pageinsert(pg)
151 1.7 mrg struct vm_page *pg;
152 1.1 mrg {
153 1.7 mrg struct pglist *buck;
154 1.7 mrg int s;
155 1.1 mrg
156 1.1 mrg #ifdef DIAGNOSTIC
157 1.7 mrg if (pg->flags & PG_TABLED)
158 1.7 mrg panic("uvm_pageinsert: already inserted");
159 1.1 mrg #endif
160 1.1 mrg
161 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
162 1.7 mrg s = splimp();
163 1.7 mrg simple_lock(&uvm.hashlock);
164 1.7 mrg TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
165 1.7 mrg simple_unlock(&uvm.hashlock);
166 1.7 mrg splx(s);
167 1.7 mrg
168 1.7 mrg TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
169 1.7 mrg pg->flags |= PG_TABLED;
170 1.7 mrg pg->uobject->uo_npages++;
171 1.1 mrg
172 1.1 mrg }
173 1.1 mrg
174 1.1 mrg /*
175 1.1 mrg * uvm_page_remove: remove page from object and hash
176 1.1 mrg *
177 1.1 mrg * => caller must lock object
178 1.1 mrg * => caller must lock page queues
179 1.1 mrg */
180 1.1 mrg
181 1.7 mrg void __inline
182 1.7 mrg uvm_pageremove(pg)
183 1.7 mrg struct vm_page *pg;
184 1.1 mrg {
185 1.7 mrg struct pglist *buck;
186 1.7 mrg int s;
187 1.1 mrg
188 1.1 mrg #ifdef DIAGNOSTIC
189 1.7 mrg if ((pg->flags & (PG_FAULTING)) != 0)
190 1.7 mrg panic("uvm_pageremove: page is faulting");
191 1.1 mrg #endif
192 1.1 mrg
193 1.7 mrg if ((pg->flags & PG_TABLED) == 0)
194 1.7 mrg return; /* XXX: log */
195 1.1 mrg
196 1.7 mrg buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
197 1.7 mrg s = splimp();
198 1.7 mrg simple_lock(&uvm.hashlock);
199 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
200 1.7 mrg simple_unlock(&uvm.hashlock);
201 1.7 mrg splx(s);
202 1.7 mrg
203 1.7 mrg /* object should be locked */
204 1.7 mrg TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
205 1.7 mrg
206 1.7 mrg pg->flags &= ~PG_TABLED;
207 1.7 mrg pg->uobject->uo_npages--;
208 1.7 mrg pg->uobject = NULL;
209 1.7 mrg pg->version++;
210 1.1 mrg
211 1.1 mrg }
212 1.1 mrg
213 1.1 mrg /*
214 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
215 1.1 mrg *
216 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
217 1.1 mrg */
218 1.1 mrg
219 1.7 mrg void
220 1.7 mrg uvm_page_init(kvm_startp, kvm_endp)
221 1.7 mrg vm_offset_t *kvm_startp, *kvm_endp;
222 1.1 mrg {
223 1.7 mrg int freepages, pagecount;
224 1.7 mrg vm_page_t pagearray;
225 1.7 mrg int lcv, n, i;
226 1.7 mrg vm_offset_t paddr;
227 1.7 mrg
228 1.7 mrg
229 1.7 mrg /*
230 1.7 mrg * step 1: init the page queues and page queue locks
231 1.7 mrg */
232 1.7 mrg
233 1.7 mrg TAILQ_INIT(&uvm.page_free);
234 1.7 mrg TAILQ_INIT(&uvm.page_active);
235 1.7 mrg TAILQ_INIT(&uvm.page_inactive_swp);
236 1.7 mrg TAILQ_INIT(&uvm.page_inactive_obj);
237 1.7 mrg simple_lock_init(&uvm.pageqlock);
238 1.7 mrg simple_lock_init(&uvm.fpageqlock);
239 1.7 mrg
240 1.7 mrg /*
241 1.7 mrg * step 2: init the <obj,offset> => <page> hash table. for now
242 1.7 mrg * we just have one bucket (the bootstrap bucket). later on we
243 1.7 mrg * will malloc() new buckets as we dynamically resize the hash table.
244 1.7 mrg */
245 1.7 mrg
246 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
247 1.7 mrg uvm.page_hashmask = 0; /* mask for hash function */
248 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
249 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
250 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
251 1.7 mrg
252 1.7 mrg /*
253 1.7 mrg * step 3: allocate vm_page structures.
254 1.7 mrg */
255 1.7 mrg
256 1.7 mrg /*
257 1.7 mrg * sanity check:
258 1.7 mrg * before calling this function the MD code is expected to register
259 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
260 1.7 mrg * now is to allocate vm_page structures for this memory.
261 1.7 mrg */
262 1.7 mrg
263 1.7 mrg if (vm_nphysseg == 0)
264 1.7 mrg panic("vm_page_bootstrap: no memory pre-allocated");
265 1.7 mrg
266 1.7 mrg /*
267 1.7 mrg * first calculate the number of free pages...
268 1.7 mrg *
269 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
270 1.7 mrg * this allows us to allocate extra vm_page structures in case we
271 1.7 mrg * want to return some memory to the pool after booting.
272 1.7 mrg */
273 1.7 mrg
274 1.7 mrg freepages = 0;
275 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
276 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
277 1.7 mrg
278 1.7 mrg /*
279 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
280 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
281 1.7 mrg * thus, the total number of pages we can use is the total size of
282 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
283 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
284 1.7 mrg * truncation errors (since we can only allocate in terms of whole
285 1.7 mrg * pages).
286 1.7 mrg */
287 1.7 mrg
288 1.7 mrg pagecount = (PAGE_SIZE * (freepages + 1)) /
289 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
290 1.7 mrg pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
291 1.7 mrg sizeof(struct vm_page));
292 1.7 mrg bzero(pagearray, pagecount * sizeof(struct vm_page));
293 1.7 mrg
294 1.7 mrg /*
295 1.7 mrg * step 4: init the vm_page structures and put them in the correct
296 1.7 mrg * place...
297 1.7 mrg */
298 1.7 mrg
299 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
300 1.7 mrg
301 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
302 1.7 mrg if (n > pagecount) {
303 1.7 mrg printf("uvm_page_init: lost %d page(s) in init\n",
304 1.7 mrg n - pagecount);
305 1.7 mrg panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
306 1.7 mrg /* n = pagecount; */
307 1.7 mrg }
308 1.7 mrg /* set up page array pointers */
309 1.7 mrg vm_physmem[lcv].pgs = pagearray;
310 1.7 mrg pagearray += n;
311 1.7 mrg pagecount -= n;
312 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
313 1.7 mrg
314 1.7 mrg /* init and free vm_pages (we've already bzero'd them) */
315 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
316 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
317 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
318 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
319 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
320 1.7 mrg uvmexp.npages++;
321 1.7 mrg /* add page to free pool */
322 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
323 1.7 mrg }
324 1.7 mrg }
325 1.7 mrg }
326 1.7 mrg /*
327 1.7 mrg * step 5: pass up the values of virtual_space_start and
328 1.7 mrg * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
329 1.7 mrg * layers of the VM.
330 1.7 mrg */
331 1.7 mrg
332 1.7 mrg *kvm_startp = round_page(virtual_space_start);
333 1.7 mrg *kvm_endp = trunc_page(virtual_space_end);
334 1.7 mrg
335 1.7 mrg /*
336 1.7 mrg * step 6: init pagedaemon lock
337 1.7 mrg */
338 1.7 mrg
339 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
340 1.7 mrg
341 1.7 mrg /*
342 1.7 mrg * step 7: init reserve thresholds
343 1.7 mrg * XXXCDC - values may need adjusting
344 1.7 mrg */
345 1.7 mrg uvmexp.reserve_pagedaemon = 1;
346 1.7 mrg uvmexp.reserve_kernel = 5;
347 1.7 mrg
348 1.7 mrg /*
349 1.7 mrg * done!
350 1.7 mrg */
351 1.1 mrg
352 1.1 mrg }
353 1.1 mrg
354 1.1 mrg /*
355 1.1 mrg * uvm_setpagesize: set the page size
356 1.1 mrg *
357 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
358 1.1 mrg * => XXXCDC: move global vars.
359 1.1 mrg */
360 1.1 mrg
361 1.7 mrg void
362 1.7 mrg uvm_setpagesize()
363 1.1 mrg {
364 1.7 mrg if (uvmexp.pagesize == 0)
365 1.7 mrg uvmexp.pagesize = DEFAULT_PAGE_SIZE;
366 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
367 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
368 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
369 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
370 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
371 1.7 mrg break;
372 1.1 mrg }
373 1.1 mrg
374 1.1 mrg /*
375 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
376 1.1 mrg */
377 1.1 mrg
378 1.7 mrg vm_offset_t
379 1.7 mrg uvm_pageboot_alloc(size)
380 1.7 mrg vm_size_t size;
381 1.1 mrg {
382 1.1 mrg #if defined(PMAP_STEAL_MEMORY)
383 1.7 mrg vm_offset_t addr;
384 1.1 mrg
385 1.7 mrg /*
386 1.7 mrg * defer bootstrap allocation to MD code (it may want to allocate
387 1.7 mrg * from a direct-mapped segment). pmap_steal_memory should round
388 1.7 mrg * off virtual_space_start/virtual_space_end.
389 1.7 mrg */
390 1.1 mrg
391 1.7 mrg addr = pmap_steal_memory(size, &virtual_space_start,
392 1.7 mrg &virtual_space_end);
393 1.1 mrg
394 1.7 mrg return(addr);
395 1.1 mrg
396 1.1 mrg #else /* !PMAP_STEAL_MEMORY */
397 1.1 mrg
398 1.7 mrg vm_offset_t addr, vaddr, paddr;
399 1.1 mrg
400 1.7 mrg /* round to page size */
401 1.7 mrg size = round_page(size);
402 1.1 mrg
403 1.7 mrg /*
404 1.7 mrg * on first call to this function init ourselves. we detect this
405 1.7 mrg * by checking virtual_space_start/end which are in the zero'd BSS area.
406 1.7 mrg */
407 1.1 mrg
408 1.7 mrg if (virtual_space_start == virtual_space_end) {
409 1.7 mrg pmap_virtual_space(&virtual_space_start, &virtual_space_end);
410 1.1 mrg
411 1.7 mrg /* round it the way we like it */
412 1.7 mrg virtual_space_start = round_page(virtual_space_start);
413 1.7 mrg virtual_space_end = trunc_page(virtual_space_end);
414 1.7 mrg }
415 1.1 mrg
416 1.7 mrg /*
417 1.7 mrg * allocate virtual memory for this request
418 1.7 mrg */
419 1.1 mrg
420 1.7 mrg addr = virtual_space_start;
421 1.7 mrg virtual_space_start += size;
422 1.1 mrg
423 1.9 thorpej /*
424 1.7 mrg * allocate and mapin physical pages to back new virtual pages
425 1.7 mrg */
426 1.1 mrg
427 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
428 1.7 mrg vaddr += PAGE_SIZE) {
429 1.1 mrg
430 1.7 mrg if (!uvm_page_physget(&paddr))
431 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
432 1.1 mrg
433 1.7 mrg /* XXX: should be wired, but some pmaps don't like that ... */
434 1.1 mrg #if defined(PMAP_NEW)
435 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
436 1.1 mrg #else
437 1.7 mrg pmap_enter(pmap_kernel(), vaddr, paddr,
438 1.7 mrg VM_PROT_READ|VM_PROT_WRITE, FALSE);
439 1.1 mrg #endif
440 1.1 mrg
441 1.7 mrg }
442 1.1 mrg
443 1.7 mrg return(addr);
444 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
445 1.1 mrg }
446 1.1 mrg
447 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
448 1.1 mrg /*
449 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
450 1.1 mrg *
451 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
452 1.1 mrg * values match the start/end values. if we can't do that, then we
453 1.1 mrg * will advance both values (making them equal, and removing some
454 1.1 mrg * vm_page structures from the non-avail area).
455 1.1 mrg * => return false if out of memory.
456 1.1 mrg */
457 1.1 mrg
458 1.7 mrg static boolean_t
459 1.7 mrg uvm_page_physget(paddrp)
460 1.7 mrg vm_offset_t *paddrp;
461 1.1 mrg {
462 1.7 mrg int lcv, x;
463 1.1 mrg
464 1.7 mrg /* pass 1: try allocating from a matching end */
465 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
466 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
467 1.1 mrg #else
468 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
469 1.1 mrg #endif
470 1.7 mrg {
471 1.1 mrg
472 1.7 mrg if (vm_physmem[lcv].pgs)
473 1.7 mrg panic("vm_page_physget: called _after_ bootstrap");
474 1.1 mrg
475 1.7 mrg /* try from front */
476 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
477 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
478 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
479 1.7 mrg vm_physmem[lcv].avail_start++;
480 1.7 mrg vm_physmem[lcv].start++;
481 1.7 mrg /* nothing left? nuke it */
482 1.7 mrg if (vm_physmem[lcv].avail_start ==
483 1.7 mrg vm_physmem[lcv].end) {
484 1.7 mrg if (vm_nphysseg == 1)
485 1.7 mrg panic("vm_page_physget: out of memory!");
486 1.7 mrg vm_nphysseg--;
487 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
488 1.7 mrg /* structure copy */
489 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
490 1.7 mrg }
491 1.7 mrg return (TRUE);
492 1.7 mrg }
493 1.7 mrg
494 1.7 mrg /* try from rear */
495 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
496 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
497 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
498 1.7 mrg vm_physmem[lcv].avail_end--;
499 1.7 mrg vm_physmem[lcv].end--;
500 1.7 mrg /* nothing left? nuke it */
501 1.7 mrg if (vm_physmem[lcv].avail_end ==
502 1.7 mrg vm_physmem[lcv].start) {
503 1.7 mrg if (vm_nphysseg == 1)
504 1.7 mrg panic("vm_page_physget: out of memory!");
505 1.7 mrg vm_nphysseg--;
506 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
507 1.7 mrg /* structure copy */
508 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
509 1.7 mrg }
510 1.7 mrg return (TRUE);
511 1.7 mrg }
512 1.7 mrg }
513 1.1 mrg
514 1.7 mrg /* pass2: forget about matching ends, just allocate something */
515 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
516 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
517 1.1 mrg #else
518 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
519 1.1 mrg #endif
520 1.7 mrg {
521 1.1 mrg
522 1.7 mrg /* any room in this bank? */
523 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
524 1.7 mrg continue; /* nope */
525 1.7 mrg
526 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
527 1.7 mrg vm_physmem[lcv].avail_start++;
528 1.7 mrg /* truncate! */
529 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
530 1.7 mrg
531 1.7 mrg /* nothing left? nuke it */
532 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
533 1.7 mrg if (vm_nphysseg == 1)
534 1.7 mrg panic("vm_page_physget: out of memory!");
535 1.7 mrg vm_nphysseg--;
536 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
537 1.7 mrg /* structure copy */
538 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
539 1.7 mrg }
540 1.7 mrg return (TRUE);
541 1.7 mrg }
542 1.1 mrg
543 1.7 mrg return (FALSE); /* whoops! */
544 1.1 mrg }
545 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
546 1.1 mrg
547 1.1 mrg /*
548 1.1 mrg * uvm_page_physload: load physical memory into VM system
549 1.1 mrg *
550 1.1 mrg * => all args are PFs
551 1.1 mrg * => all pages in start/end get vm_page structures
552 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
553 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
554 1.1 mrg */
555 1.1 mrg
556 1.7 mrg void
557 1.7 mrg uvm_page_physload(start, end, avail_start, avail_end)
558 1.7 mrg vm_offset_t start, end, avail_start, avail_end;
559 1.1 mrg {
560 1.7 mrg int preload, lcv, npages;
561 1.7 mrg struct vm_page *pgs;
562 1.7 mrg struct vm_physseg *ps;
563 1.7 mrg
564 1.7 mrg if (uvmexp.pagesize == 0)
565 1.7 mrg panic("vm_page_physload: page size not set!");
566 1.7 mrg
567 1.7 mrg /*
568 1.7 mrg * do we have room?
569 1.7 mrg */
570 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
571 1.7 mrg printf("vm_page_physload: unable to load physical memory "
572 1.7 mrg "segment\n");
573 1.7 mrg printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
574 1.7 mrg VM_PHYSSEG_MAX, start, end);
575 1.7 mrg return;
576 1.7 mrg }
577 1.7 mrg
578 1.7 mrg /*
579 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
580 1.7 mrg * called yet, so malloc is not available).
581 1.7 mrg */
582 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
583 1.7 mrg if (vm_physmem[lcv].pgs)
584 1.7 mrg break;
585 1.7 mrg }
586 1.7 mrg preload = (lcv == vm_nphysseg);
587 1.7 mrg
588 1.7 mrg /*
589 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
590 1.7 mrg */
591 1.7 mrg if (!preload) {
592 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
593 1.7 mrg panic("vm_page_physload: tried to add RAM after vm_mem_init");
594 1.1 mrg #else
595 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
596 1.7 mrg vm_offset_t paddr;
597 1.7 mrg npages = end - start; /* # of pages */
598 1.7 mrg MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
599 1.7 mrg M_VMPAGE, M_NOWAIT);
600 1.7 mrg if (pgs == NULL) {
601 1.7 mrg printf("vm_page_physload: can not malloc vm_page "
602 1.7 mrg "structs for segment\n");
603 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
604 1.7 mrg return;
605 1.7 mrg }
606 1.7 mrg /* zero data, init phys_addr, and free pages */
607 1.7 mrg bzero(pgs, sizeof(struct vm_page) * npages);
608 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
609 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
610 1.7 mrg pgs[lcv].phys_addr = paddr;
611 1.7 mrg if (atop(paddr) >= avail_start &&
612 1.7 mrg atop(paddr) <= avail_end)
613 1.8 chuck uvm_pagefree(&pgs[lcv]);
614 1.7 mrg }
615 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
616 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
617 1.1 mrg #endif
618 1.7 mrg } else {
619 1.1 mrg
620 1.7 mrg /* gcc complains if these don't get init'd */
621 1.7 mrg pgs = NULL;
622 1.7 mrg npages = 0;
623 1.1 mrg
624 1.7 mrg }
625 1.1 mrg
626 1.7 mrg /*
627 1.7 mrg * now insert us in the proper place in vm_physmem[]
628 1.7 mrg */
629 1.1 mrg
630 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
631 1.1 mrg
632 1.7 mrg /* random: put it at the end (easy!) */
633 1.7 mrg ps = &vm_physmem[vm_nphysseg];
634 1.1 mrg
635 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
636 1.1 mrg
637 1.7 mrg {
638 1.7 mrg int x;
639 1.7 mrg /* sort by address for binary search */
640 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
641 1.7 mrg if (start < vm_physmem[lcv].start)
642 1.7 mrg break;
643 1.7 mrg ps = &vm_physmem[lcv];
644 1.7 mrg /* move back other entries, if necessary ... */
645 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
646 1.7 mrg /* structure copy */
647 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
648 1.7 mrg }
649 1.1 mrg
650 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
651 1.1 mrg
652 1.7 mrg {
653 1.7 mrg int x;
654 1.7 mrg /* sort by largest segment first */
655 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
656 1.7 mrg if ((end - start) >
657 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
658 1.7 mrg break;
659 1.7 mrg ps = &vm_physmem[lcv];
660 1.7 mrg /* move back other entries, if necessary ... */
661 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
662 1.7 mrg /* structure copy */
663 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
664 1.7 mrg }
665 1.1 mrg
666 1.1 mrg #else
667 1.1 mrg
668 1.7 mrg panic("vm_page_physload: unknown physseg strategy selected!");
669 1.1 mrg
670 1.1 mrg #endif
671 1.1 mrg
672 1.7 mrg ps->start = start;
673 1.7 mrg ps->end = end;
674 1.7 mrg ps->avail_start = avail_start;
675 1.7 mrg ps->avail_end = avail_end;
676 1.7 mrg if (preload) {
677 1.7 mrg ps->pgs = NULL;
678 1.7 mrg } else {
679 1.7 mrg ps->pgs = pgs;
680 1.7 mrg ps->lastpg = pgs + npages - 1;
681 1.7 mrg }
682 1.7 mrg vm_nphysseg++;
683 1.7 mrg
684 1.7 mrg /*
685 1.7 mrg * done!
686 1.7 mrg */
687 1.1 mrg
688 1.7 mrg if (!preload)
689 1.7 mrg uvm_page_rehash();
690 1.1 mrg
691 1.7 mrg return;
692 1.1 mrg }
693 1.1 mrg
694 1.1 mrg /*
695 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
696 1.1 mrg */
697 1.1 mrg
698 1.7 mrg void
699 1.7 mrg uvm_page_rehash()
700 1.1 mrg {
701 1.7 mrg int freepages, lcv, bucketcount, s, oldcount;
702 1.7 mrg struct pglist *newbuckets, *oldbuckets;
703 1.7 mrg struct vm_page *pg;
704 1.7 mrg
705 1.7 mrg /*
706 1.7 mrg * compute number of pages that can go in the free pool
707 1.7 mrg */
708 1.7 mrg
709 1.7 mrg freepages = 0;
710 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
711 1.7 mrg freepages +=
712 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
713 1.7 mrg
714 1.7 mrg /*
715 1.7 mrg * compute number of buckets needed for this number of pages
716 1.7 mrg */
717 1.7 mrg
718 1.7 mrg bucketcount = 1;
719 1.7 mrg while (bucketcount < freepages)
720 1.7 mrg bucketcount = bucketcount * 2;
721 1.7 mrg
722 1.7 mrg /*
723 1.7 mrg * malloc new buckets
724 1.7 mrg */
725 1.7 mrg
726 1.7 mrg MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
727 1.7 mrg M_VMPBUCKET, M_NOWAIT);
728 1.7 mrg if (newbuckets == NULL) {
729 1.7 mrg printf("vm_page_physrehash: WARNING: could not grow page "
730 1.7 mrg "hash table\n");
731 1.7 mrg return;
732 1.7 mrg }
733 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
734 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
735 1.7 mrg
736 1.7 mrg /*
737 1.7 mrg * now replace the old buckets with the new ones and rehash everything
738 1.7 mrg */
739 1.7 mrg
740 1.7 mrg s = splimp();
741 1.7 mrg simple_lock(&uvm.hashlock);
742 1.7 mrg /* swap old for new ... */
743 1.7 mrg oldbuckets = uvm.page_hash;
744 1.7 mrg oldcount = uvm.page_nhash;
745 1.7 mrg uvm.page_hash = newbuckets;
746 1.7 mrg uvm.page_nhash = bucketcount;
747 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
748 1.7 mrg
749 1.7 mrg /* ... and rehash */
750 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
751 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
752 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
753 1.7 mrg TAILQ_INSERT_TAIL(
754 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
755 1.7 mrg pg, hashq);
756 1.7 mrg }
757 1.7 mrg }
758 1.7 mrg simple_unlock(&uvm.hashlock);
759 1.7 mrg splx(s);
760 1.7 mrg
761 1.7 mrg /*
762 1.7 mrg * free old bucket array if we malloc'd it previously
763 1.7 mrg */
764 1.7 mrg
765 1.7 mrg if (oldbuckets != &uvm_bootbucket)
766 1.7 mrg FREE(oldbuckets, M_VMPBUCKET);
767 1.7 mrg
768 1.7 mrg /*
769 1.7 mrg * done
770 1.7 mrg */
771 1.7 mrg return;
772 1.1 mrg }
773 1.1 mrg
774 1.1 mrg
775 1.1 mrg #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
776 1.1 mrg
777 1.1 mrg void uvm_page_physdump __P((void)); /* SHUT UP GCC */
778 1.1 mrg
779 1.1 mrg /* call from DDB */
780 1.7 mrg void
781 1.7 mrg uvm_page_physdump()
782 1.7 mrg {
783 1.7 mrg int lcv;
784 1.7 mrg
785 1.7 mrg printf("rehash: physical memory config [segs=%d of %d]:\n",
786 1.7 mrg vm_nphysseg, VM_PHYSSEG_MAX);
787 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
788 1.7 mrg printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
789 1.7 mrg vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
790 1.7 mrg vm_physmem[lcv].avail_end);
791 1.7 mrg printf("STRATEGY = ");
792 1.7 mrg switch (VM_PHYSSEG_STRAT) {
793 1.7 mrg case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
794 1.7 mrg case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
795 1.7 mrg case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
796 1.7 mrg default: printf("<<UNKNOWN>>!!!!\n");
797 1.7 mrg }
798 1.7 mrg printf("number of buckets = %d\n", uvm.page_nhash);
799 1.1 mrg }
800 1.1 mrg #endif
801 1.1 mrg
802 1.1 mrg /*
803 1.1 mrg * uvm_pagealloc: allocate vm_page.
804 1.1 mrg *
805 1.1 mrg * => return null if no pages free
806 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
807 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
808 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
809 1.1 mrg * => only one of obj or anon can be non-null
810 1.1 mrg * => caller must activate/deactivate page if it is not wired.
811 1.1 mrg */
812 1.1 mrg
813 1.7 mrg struct vm_page *
814 1.7 mrg uvm_pagealloc(obj, off, anon)
815 1.7 mrg struct uvm_object *obj;
816 1.7 mrg vm_offset_t off;
817 1.7 mrg struct vm_anon *anon;
818 1.1 mrg {
819 1.7 mrg int s;
820 1.7 mrg struct vm_page *pg;
821 1.1 mrg
822 1.1 mrg #ifdef DIAGNOSTIC
823 1.7 mrg /* sanity check */
824 1.7 mrg if (obj && anon)
825 1.7 mrg panic("uvm_pagealloc: obj and anon != NULL");
826 1.1 mrg #endif
827 1.1 mrg
828 1.7 mrg s = splimp();
829 1.1 mrg
830 1.7 mrg uvm_lock_fpageq(); /* lock free page queue */
831 1.1 mrg
832 1.7 mrg /*
833 1.7 mrg * check to see if we need to generate some free pages waking
834 1.7 mrg * the pagedaemon.
835 1.7 mrg */
836 1.7 mrg
837 1.7 mrg if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
838 1.7 mrg uvmexp.inactive < uvmexp.inactarg))
839 1.7 mrg thread_wakeup(&uvm.pagedaemon);
840 1.7 mrg
841 1.7 mrg /*
842 1.7 mrg * fail if any of these conditions is true:
843 1.7 mrg * [1] there really are no free pages, or
844 1.7 mrg * [2] only kernel "reserved" pages remain and
845 1.7 mrg * the page isn't being allocated to a kernel object.
846 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
847 1.7 mrg * the requestor isn't the pagedaemon.
848 1.7 mrg */
849 1.7 mrg
850 1.7 mrg pg = uvm.page_free.tqh_first;
851 1.7 mrg if (pg == NULL ||
852 1.7 mrg (uvmexp.free <= uvmexp.reserve_kernel &&
853 1.7 mrg !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
854 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
855 1.7 mrg !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc))) {
856 1.7 mrg uvm_unlock_fpageq();
857 1.7 mrg splx(s);
858 1.7 mrg return(NULL);
859 1.7 mrg }
860 1.7 mrg
861 1.7 mrg TAILQ_REMOVE(&uvm.page_free, pg, pageq);
862 1.7 mrg uvmexp.free--;
863 1.7 mrg
864 1.7 mrg uvm_unlock_fpageq(); /* unlock free page queue */
865 1.7 mrg splx(s);
866 1.7 mrg
867 1.7 mrg pg->offset = off;
868 1.7 mrg pg->uobject = obj;
869 1.7 mrg pg->uanon = anon;
870 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
871 1.7 mrg pg->version++;
872 1.7 mrg pg->wire_count = 0;
873 1.7 mrg pg->loan_count = 0;
874 1.7 mrg if (anon) {
875 1.7 mrg anon->u.an_page = pg;
876 1.7 mrg pg->pqflags = PQ_ANON;
877 1.7 mrg } else {
878 1.7 mrg if (obj)
879 1.7 mrg uvm_pageinsert(pg);
880 1.7 mrg pg->pqflags = 0;
881 1.7 mrg }
882 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
883 1.7 mrg pg->owner_tag = NULL;
884 1.1 mrg #endif
885 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
886 1.1 mrg
887 1.7 mrg return(pg);
888 1.1 mrg }
889 1.1 mrg
890 1.1 mrg /*
891 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
892 1.1 mrg *
893 1.1 mrg * => both objects must be locked
894 1.1 mrg */
895 1.1 mrg
896 1.7 mrg void
897 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
898 1.7 mrg struct vm_page *pg;
899 1.7 mrg struct uvm_object *newobj;
900 1.7 mrg vm_offset_t newoff;
901 1.1 mrg {
902 1.7 mrg /*
903 1.7 mrg * remove it from the old object
904 1.7 mrg */
905 1.7 mrg
906 1.7 mrg if (pg->uobject) {
907 1.7 mrg uvm_pageremove(pg);
908 1.7 mrg }
909 1.7 mrg
910 1.7 mrg /*
911 1.7 mrg * put it in the new object
912 1.7 mrg */
913 1.7 mrg
914 1.7 mrg if (newobj) {
915 1.7 mrg pg->uobject = newobj;
916 1.7 mrg pg->offset = newoff;
917 1.7 mrg pg->version++;
918 1.7 mrg uvm_pageinsert(pg);
919 1.7 mrg }
920 1.1 mrg
921 1.7 mrg return;
922 1.1 mrg }
923 1.1 mrg
924 1.1 mrg
925 1.1 mrg /*
926 1.1 mrg * uvm_pagefree: free page
927 1.1 mrg *
928 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
929 1.1 mrg * => put page on free list
930 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
931 1.1 mrg * => caller must lock page queues
932 1.1 mrg * => assumes all valid mappings of pg are gone
933 1.1 mrg */
934 1.1 mrg
935 1.1 mrg void uvm_pagefree(pg)
936 1.1 mrg
937 1.1 mrg struct vm_page *pg;
938 1.1 mrg
939 1.1 mrg {
940 1.7 mrg int s;
941 1.7 mrg int saved_loan_count = pg->loan_count;
942 1.1 mrg
943 1.7 mrg /*
944 1.7 mrg * if the page was an object page (and thus "TABLED"), remove it
945 1.7 mrg * from the object.
946 1.7 mrg */
947 1.7 mrg
948 1.7 mrg if (pg->flags & PG_TABLED) {
949 1.7 mrg
950 1.7 mrg /*
951 1.7 mrg * if the object page is on loan we are going to drop ownership.
952 1.7 mrg * it is possible that an anon will take over as owner for this
953 1.7 mrg * page later on. the anon will want a !PG_CLEAN page so that
954 1.7 mrg * it knows it needs to allocate swap if it wants to page the
955 1.7 mrg * page out.
956 1.7 mrg */
957 1.7 mrg
958 1.7 mrg if (saved_loan_count)
959 1.7 mrg pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
960 1.7 mrg
961 1.7 mrg uvm_pageremove(pg);
962 1.7 mrg
963 1.7 mrg /*
964 1.7 mrg * if our page was on loan, then we just lost control over it
965 1.7 mrg * (in fact, if it was loaned to an anon, the anon may have
966 1.7 mrg * already taken over ownership of the page by now and thus
967 1.7 mrg * changed the loan_count [e.g. in uvmfault_anonget()]) we just
968 1.7 mrg * return (when the last loan is dropped, then the page can be
969 1.7 mrg * freed by whatever was holding the last loan).
970 1.7 mrg */
971 1.7 mrg if (saved_loan_count)
972 1.7 mrg return;
973 1.7 mrg
974 1.7 mrg } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
975 1.7 mrg
976 1.7 mrg /*
977 1.7 mrg * if our page is owned by an anon and is loaned out to the
978 1.7 mrg * kernel then we just want to drop ownership and return.
979 1.7 mrg * the kernel must free the page when all its loans clear ...
980 1.7 mrg * note that the kernel can't change the loan status of our
981 1.7 mrg * page as long as we are holding PQ lock.
982 1.7 mrg */
983 1.7 mrg pg->pqflags &= ~PQ_ANON;
984 1.7 mrg pg->uanon = NULL;
985 1.7 mrg return;
986 1.7 mrg }
987 1.1 mrg
988 1.1 mrg #ifdef DIAGNOSTIC
989 1.7 mrg if (saved_loan_count) {
990 1.7 mrg printf("uvm_pagefree: warning: freeing page with a loan "
991 1.7 mrg "count of %d\n", saved_loan_count);
992 1.7 mrg panic("uvm_pagefree: loan count");
993 1.7 mrg }
994 1.1 mrg #endif
995 1.7 mrg
996 1.1 mrg
997 1.7 mrg /*
998 1.7 mrg * now remove the page from the queues
999 1.7 mrg */
1000 1.7 mrg
1001 1.7 mrg if (pg->pqflags & PQ_ACTIVE) {
1002 1.7 mrg TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1003 1.7 mrg pg->pqflags &= ~PQ_ACTIVE;
1004 1.7 mrg uvmexp.active--;
1005 1.7 mrg }
1006 1.7 mrg if (pg->pqflags & PQ_INACTIVE) {
1007 1.7 mrg if (pg->pqflags & PQ_SWAPBACKED)
1008 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1009 1.7 mrg else
1010 1.7 mrg TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1011 1.7 mrg pg->pqflags &= ~PQ_INACTIVE;
1012 1.7 mrg uvmexp.inactive--;
1013 1.7 mrg }
1014 1.7 mrg
1015 1.7 mrg /*
1016 1.7 mrg * if the page was wired, unwire it now.
1017 1.7 mrg */
1018 1.7 mrg if (pg->wire_count)
1019 1.7 mrg {
1020 1.7 mrg pg->wire_count = 0;
1021 1.7 mrg uvmexp.wired--;
1022 1.7 mrg }
1023 1.7 mrg
1024 1.7 mrg /*
1025 1.7 mrg * and put on free queue
1026 1.7 mrg */
1027 1.7 mrg
1028 1.7 mrg s = splimp();
1029 1.7 mrg uvm_lock_fpageq();
1030 1.7 mrg TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
1031 1.7 mrg pg->pqflags = PQ_FREE;
1032 1.3 chs #ifdef DEBUG
1033 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1034 1.7 mrg pg->offset = 0xdeadbeef;
1035 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1036 1.3 chs #endif
1037 1.7 mrg uvmexp.free++;
1038 1.7 mrg uvm_unlock_fpageq();
1039 1.7 mrg splx(s);
1040 1.1 mrg }
1041 1.1 mrg
1042 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1043 1.1 mrg /*
1044 1.1 mrg * uvm_page_own: set or release page ownership
1045 1.1 mrg *
1046 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1047 1.1 mrg * and where they do it. it can be used to track down problems
1048 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1049 1.1 mrg * => page's object [if any] must be locked
1050 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1051 1.1 mrg */
1052 1.7 mrg void
1053 1.7 mrg uvm_page_own(pg, tag)
1054 1.7 mrg struct vm_page *pg;
1055 1.7 mrg char *tag;
1056 1.1 mrg {
1057 1.7 mrg /* gain ownership? */
1058 1.7 mrg if (tag) {
1059 1.7 mrg if (pg->owner_tag) {
1060 1.7 mrg printf("uvm_page_own: page %p already owned "
1061 1.7 mrg "by proc %d [%s]\n", pg,
1062 1.7 mrg pg->owner, pg->owner_tag);
1063 1.7 mrg panic("uvm_page_own");
1064 1.7 mrg }
1065 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1066 1.7 mrg pg->owner_tag = tag;
1067 1.7 mrg return;
1068 1.7 mrg }
1069 1.7 mrg
1070 1.7 mrg /* drop ownership */
1071 1.7 mrg if (pg->owner_tag == NULL) {
1072 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1073 1.7 mrg "page (%p)\n", pg);
1074 1.7 mrg panic("uvm_page_own");
1075 1.7 mrg }
1076 1.7 mrg pg->owner_tag = NULL;
1077 1.7 mrg return;
1078 1.1 mrg }
1079 1.1 mrg #endif
1080