uvm_page.c revision 1.93 1 1.93 simonb /* $NetBSD: uvm_page.c,v 1.93 2003/12/21 11:38:46 simonb Exp $ */
2 1.1 mrg
3 1.62 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.62 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.62 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 1.4 mrg * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.62 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.62 chs *
54 1.62 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.62 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.62 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_page.c: page ops.
71 1.1 mrg */
72 1.71 lukem
73 1.71 lukem #include <sys/cdefs.h>
74 1.93 simonb __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.93 2003/12/21 11:38:46 simonb Exp $");
75 1.6 mrg
76 1.44 chs #include "opt_uvmhist.h"
77 1.44 chs
78 1.1 mrg #include <sys/param.h>
79 1.1 mrg #include <sys/systm.h>
80 1.1 mrg #include <sys/malloc.h>
81 1.35 thorpej #include <sys/sched.h>
82 1.44 chs #include <sys/kernel.h>
83 1.51 chs #include <sys/vnode.h>
84 1.68 chs #include <sys/proc.h>
85 1.1 mrg
86 1.1 mrg #define UVM_PAGE /* pull in uvm_page.h functions */
87 1.1 mrg #include <uvm/uvm.h>
88 1.1 mrg
89 1.1 mrg /*
90 1.1 mrg * global vars... XXXCDC: move to uvm. structure.
91 1.1 mrg */
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * physical memory config is stored in vm_physmem.
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 1.1 mrg int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99 1.1 mrg
100 1.1 mrg /*
101 1.36 thorpej * Some supported CPUs in a given architecture don't support all
102 1.36 thorpej * of the things necessary to do idle page zero'ing efficiently.
103 1.36 thorpej * We therefore provide a way to disable it from machdep code here.
104 1.34 thorpej */
105 1.44 chs /*
106 1.44 chs * XXX disabled until we can find a way to do this without causing
107 1.44 chs * problems for either cpu caches or DMA latency.
108 1.44 chs */
109 1.44 chs boolean_t vm_page_zero_enable = FALSE;
110 1.34 thorpej
111 1.34 thorpej /*
112 1.1 mrg * local variables
113 1.1 mrg */
114 1.1 mrg
115 1.1 mrg /*
116 1.88 thorpej * these variables record the values returned by vm_page_bootstrap,
117 1.88 thorpej * for debugging purposes. The implementation of uvm_pageboot_alloc
118 1.88 thorpej * and pmap_startup here also uses them internally.
119 1.88 thorpej */
120 1.88 thorpej
121 1.88 thorpej static vaddr_t virtual_space_start;
122 1.88 thorpej static vaddr_t virtual_space_end;
123 1.88 thorpej
124 1.88 thorpej /*
125 1.1 mrg * we use a hash table with only one bucket during bootup. we will
126 1.30 thorpej * later rehash (resize) the hash table once the allocator is ready.
127 1.30 thorpej * we static allocate the one bootstrap bucket below...
128 1.1 mrg */
129 1.1 mrg
130 1.1 mrg static struct pglist uvm_bootbucket;
131 1.1 mrg
132 1.1 mrg /*
133 1.60 thorpej * we allocate an initial number of page colors in uvm_page_init(),
134 1.60 thorpej * and remember them. We may re-color pages as cache sizes are
135 1.60 thorpej * discovered during the autoconfiguration phase. But we can never
136 1.60 thorpej * free the initial set of buckets, since they are allocated using
137 1.60 thorpej * uvm_pageboot_alloc().
138 1.60 thorpej */
139 1.60 thorpej
140 1.60 thorpej static boolean_t have_recolored_pages /* = FALSE */;
141 1.83 thorpej
142 1.83 thorpej MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
143 1.60 thorpej
144 1.91 yamt #ifdef DEBUG
145 1.91 yamt vaddr_t uvm_zerocheckkva;
146 1.91 yamt #endif /* DEBUG */
147 1.91 yamt
148 1.60 thorpej /*
149 1.1 mrg * local prototypes
150 1.1 mrg */
151 1.1 mrg
152 1.1 mrg static void uvm_pageinsert __P((struct vm_page *));
153 1.44 chs static void uvm_pageremove __P((struct vm_page *));
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * inline functions
157 1.1 mrg */
158 1.1 mrg
159 1.1 mrg /*
160 1.1 mrg * uvm_pageinsert: insert a page in the object and the hash table
161 1.1 mrg *
162 1.1 mrg * => caller must lock object
163 1.1 mrg * => caller must lock page queues
164 1.1 mrg * => call should have already set pg's object and offset pointers
165 1.1 mrg * and bumped the version counter
166 1.1 mrg */
167 1.1 mrg
168 1.7 mrg __inline static void
169 1.7 mrg uvm_pageinsert(pg)
170 1.7 mrg struct vm_page *pg;
171 1.1 mrg {
172 1.7 mrg struct pglist *buck;
173 1.67 chs struct uvm_object *uobj = pg->uobject;
174 1.1 mrg
175 1.51 chs KASSERT((pg->flags & PG_TABLED) == 0);
176 1.67 chs buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
177 1.7 mrg simple_lock(&uvm.hashlock);
178 1.67 chs TAILQ_INSERT_TAIL(buck, pg, hashq);
179 1.7 mrg simple_unlock(&uvm.hashlock);
180 1.7 mrg
181 1.86 yamt if (UVM_OBJ_IS_VTEXT(uobj)) {
182 1.86 yamt uvmexp.execpages++;
183 1.86 yamt } else if (UVM_OBJ_IS_VNODE(uobj)) {
184 1.86 yamt uvmexp.filepages++;
185 1.86 yamt } else if (UVM_OBJ_IS_AOBJ(uobj)) {
186 1.78 chs uvmexp.anonpages++;
187 1.78 chs }
188 1.78 chs
189 1.67 chs TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
190 1.7 mrg pg->flags |= PG_TABLED;
191 1.67 chs uobj->uo_npages++;
192 1.1 mrg }
193 1.1 mrg
194 1.1 mrg /*
195 1.1 mrg * uvm_page_remove: remove page from object and hash
196 1.1 mrg *
197 1.1 mrg * => caller must lock object
198 1.1 mrg * => caller must lock page queues
199 1.1 mrg */
200 1.1 mrg
201 1.44 chs static __inline void
202 1.7 mrg uvm_pageremove(pg)
203 1.7 mrg struct vm_page *pg;
204 1.1 mrg {
205 1.7 mrg struct pglist *buck;
206 1.67 chs struct uvm_object *uobj = pg->uobject;
207 1.1 mrg
208 1.44 chs KASSERT(pg->flags & PG_TABLED);
209 1.80 simonb buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
210 1.7 mrg simple_lock(&uvm.hashlock);
211 1.7 mrg TAILQ_REMOVE(buck, pg, hashq);
212 1.7 mrg simple_unlock(&uvm.hashlock);
213 1.7 mrg
214 1.67 chs if (UVM_OBJ_IS_VTEXT(uobj)) {
215 1.72 chs uvmexp.execpages--;
216 1.67 chs } else if (UVM_OBJ_IS_VNODE(uobj)) {
217 1.72 chs uvmexp.filepages--;
218 1.78 chs } else if (UVM_OBJ_IS_AOBJ(uobj)) {
219 1.78 chs uvmexp.anonpages--;
220 1.51 chs }
221 1.44 chs
222 1.7 mrg /* object should be locked */
223 1.67 chs uobj->uo_npages--;
224 1.67 chs TAILQ_REMOVE(&uobj->memq, pg, listq);
225 1.7 mrg pg->flags &= ~PG_TABLED;
226 1.7 mrg pg->uobject = NULL;
227 1.1 mrg }
228 1.1 mrg
229 1.60 thorpej static void
230 1.60 thorpej uvm_page_init_buckets(struct pgfreelist *pgfl)
231 1.60 thorpej {
232 1.60 thorpej int color, i;
233 1.60 thorpej
234 1.60 thorpej for (color = 0; color < uvmexp.ncolors; color++) {
235 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
236 1.93 simonb TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
237 1.60 thorpej }
238 1.60 thorpej }
239 1.60 thorpej }
240 1.60 thorpej
241 1.1 mrg /*
242 1.1 mrg * uvm_page_init: init the page system. called from uvm_init().
243 1.62 chs *
244 1.1 mrg * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
245 1.1 mrg */
246 1.1 mrg
247 1.7 mrg void
248 1.88 thorpej uvm_page_init(kvm_startp, kvm_endp)
249 1.88 thorpej vaddr_t *kvm_startp, *kvm_endp;
250 1.1 mrg {
251 1.60 thorpej vsize_t freepages, pagecount, bucketcount, n;
252 1.60 thorpej struct pgflbucket *bucketarray;
253 1.63 chs struct vm_page *pagearray;
254 1.81 thorpej int lcv;
255 1.81 thorpej u_int i;
256 1.14 eeh paddr_t paddr;
257 1.7 mrg
258 1.7 mrg /*
259 1.60 thorpej * init the page queues and page queue locks, except the free
260 1.60 thorpej * list; we allocate that later (with the initial vm_page
261 1.60 thorpej * structures).
262 1.7 mrg */
263 1.51 chs
264 1.7 mrg TAILQ_INIT(&uvm.page_active);
265 1.61 ross TAILQ_INIT(&uvm.page_inactive);
266 1.7 mrg simple_lock_init(&uvm.pageqlock);
267 1.7 mrg simple_lock_init(&uvm.fpageqlock);
268 1.7 mrg
269 1.7 mrg /*
270 1.51 chs * init the <obj,offset> => <page> hash table. for now
271 1.51 chs * we just have one bucket (the bootstrap bucket). later on we
272 1.30 thorpej * will allocate new buckets as we dynamically resize the hash table.
273 1.7 mrg */
274 1.7 mrg
275 1.7 mrg uvm.page_nhash = 1; /* 1 bucket */
276 1.44 chs uvm.page_hashmask = 0; /* mask for hash function */
277 1.7 mrg uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
278 1.7 mrg TAILQ_INIT(uvm.page_hash); /* init hash table */
279 1.7 mrg simple_lock_init(&uvm.hashlock); /* init hash table lock */
280 1.7 mrg
281 1.62 chs /*
282 1.51 chs * allocate vm_page structures.
283 1.7 mrg */
284 1.7 mrg
285 1.7 mrg /*
286 1.7 mrg * sanity check:
287 1.7 mrg * before calling this function the MD code is expected to register
288 1.7 mrg * some free RAM with the uvm_page_physload() function. our job
289 1.7 mrg * now is to allocate vm_page structures for this memory.
290 1.7 mrg */
291 1.7 mrg
292 1.7 mrg if (vm_nphysseg == 0)
293 1.42 mrg panic("uvm_page_bootstrap: no memory pre-allocated");
294 1.62 chs
295 1.7 mrg /*
296 1.62 chs * first calculate the number of free pages...
297 1.7 mrg *
298 1.7 mrg * note that we use start/end rather than avail_start/avail_end.
299 1.7 mrg * this allows us to allocate extra vm_page structures in case we
300 1.7 mrg * want to return some memory to the pool after booting.
301 1.7 mrg */
302 1.62 chs
303 1.7 mrg freepages = 0;
304 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
305 1.7 mrg freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
306 1.7 mrg
307 1.7 mrg /*
308 1.60 thorpej * Let MD code initialize the number of colors, or default
309 1.60 thorpej * to 1 color if MD code doesn't care.
310 1.60 thorpej */
311 1.60 thorpej if (uvmexp.ncolors == 0)
312 1.60 thorpej uvmexp.ncolors = 1;
313 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
314 1.60 thorpej
315 1.60 thorpej /*
316 1.7 mrg * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
317 1.7 mrg * use. for each page of memory we use we need a vm_page structure.
318 1.7 mrg * thus, the total number of pages we can use is the total size of
319 1.7 mrg * the memory divided by the PAGE_SIZE plus the size of the vm_page
320 1.7 mrg * structure. we add one to freepages as a fudge factor to avoid
321 1.7 mrg * truncation errors (since we can only allocate in terms of whole
322 1.7 mrg * pages).
323 1.7 mrg */
324 1.62 chs
325 1.60 thorpej bucketcount = uvmexp.ncolors * VM_NFREELIST;
326 1.15 chs pagecount = ((freepages + 1) << PAGE_SHIFT) /
327 1.7 mrg (PAGE_SIZE + sizeof(struct vm_page));
328 1.60 thorpej
329 1.67 chs bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
330 1.60 thorpej sizeof(struct pgflbucket)) + (pagecount *
331 1.60 thorpej sizeof(struct vm_page)));
332 1.60 thorpej pagearray = (struct vm_page *)(bucketarray + bucketcount);
333 1.60 thorpej
334 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
335 1.60 thorpej uvm.page_free[lcv].pgfl_buckets =
336 1.60 thorpej (bucketarray + (lcv * uvmexp.ncolors));
337 1.60 thorpej uvm_page_init_buckets(&uvm.page_free[lcv]);
338 1.60 thorpej }
339 1.13 perry memset(pagearray, 0, pagecount * sizeof(struct vm_page));
340 1.62 chs
341 1.7 mrg /*
342 1.51 chs * init the vm_page structures and put them in the correct place.
343 1.7 mrg */
344 1.7 mrg
345 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
346 1.7 mrg n = vm_physmem[lcv].end - vm_physmem[lcv].start;
347 1.51 chs
348 1.7 mrg /* set up page array pointers */
349 1.7 mrg vm_physmem[lcv].pgs = pagearray;
350 1.7 mrg pagearray += n;
351 1.7 mrg pagecount -= n;
352 1.7 mrg vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
353 1.7 mrg
354 1.13 perry /* init and free vm_pages (we've already zeroed them) */
355 1.7 mrg paddr = ptoa(vm_physmem[lcv].start);
356 1.7 mrg for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
357 1.7 mrg vm_physmem[lcv].pgs[i].phys_addr = paddr;
358 1.56 thorpej #ifdef __HAVE_VM_PAGE_MD
359 1.55 thorpej VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
360 1.56 thorpej #endif
361 1.7 mrg if (atop(paddr) >= vm_physmem[lcv].avail_start &&
362 1.7 mrg atop(paddr) <= vm_physmem[lcv].avail_end) {
363 1.7 mrg uvmexp.npages++;
364 1.7 mrg /* add page to free pool */
365 1.7 mrg uvm_pagefree(&vm_physmem[lcv].pgs[i]);
366 1.7 mrg }
367 1.7 mrg }
368 1.7 mrg }
369 1.44 chs
370 1.7 mrg /*
371 1.88 thorpej * pass up the values of virtual_space_start and
372 1.88 thorpej * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
373 1.88 thorpej * layers of the VM.
374 1.88 thorpej */
375 1.88 thorpej
376 1.88 thorpej *kvm_startp = round_page(virtual_space_start);
377 1.88 thorpej *kvm_endp = trunc_page(virtual_space_end);
378 1.91 yamt #ifdef DEBUG
379 1.91 yamt /*
380 1.91 yamt * steal kva for uvm_pagezerocheck().
381 1.91 yamt */
382 1.91 yamt uvm_zerocheckkva = *kvm_startp;
383 1.91 yamt *kvm_startp += PAGE_SIZE;
384 1.91 yamt #endif /* DEBUG */
385 1.88 thorpej
386 1.88 thorpej /*
387 1.51 chs * init locks for kernel threads
388 1.7 mrg */
389 1.7 mrg
390 1.7 mrg simple_lock_init(&uvm.pagedaemon_lock);
391 1.44 chs simple_lock_init(&uvm.aiodoned_lock);
392 1.7 mrg
393 1.7 mrg /*
394 1.51 chs * init various thresholds.
395 1.7 mrg */
396 1.51 chs
397 1.7 mrg uvmexp.reserve_pagedaemon = 1;
398 1.7 mrg uvmexp.reserve_kernel = 5;
399 1.51 chs uvmexp.anonminpct = 10;
400 1.72 chs uvmexp.fileminpct = 10;
401 1.72 chs uvmexp.execminpct = 5;
402 1.72 chs uvmexp.anonmaxpct = 80;
403 1.72 chs uvmexp.filemaxpct = 50;
404 1.72 chs uvmexp.execmaxpct = 30;
405 1.51 chs uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
406 1.72 chs uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
407 1.72 chs uvmexp.execmin = uvmexp.execminpct * 256 / 100;
408 1.72 chs uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
409 1.72 chs uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
410 1.72 chs uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
411 1.7 mrg
412 1.7 mrg /*
413 1.51 chs * determine if we should zero pages in the idle loop.
414 1.34 thorpej */
415 1.51 chs
416 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
417 1.34 thorpej
418 1.34 thorpej /*
419 1.7 mrg * done!
420 1.7 mrg */
421 1.1 mrg
422 1.32 thorpej uvm.page_init_done = TRUE;
423 1.1 mrg }
424 1.1 mrg
425 1.1 mrg /*
426 1.1 mrg * uvm_setpagesize: set the page size
427 1.62 chs *
428 1.1 mrg * => sets page_shift and page_mask from uvmexp.pagesize.
429 1.62 chs */
430 1.1 mrg
431 1.7 mrg void
432 1.7 mrg uvm_setpagesize()
433 1.1 mrg {
434 1.85 thorpej
435 1.85 thorpej /*
436 1.85 thorpej * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
437 1.85 thorpej * to be a constant (indicated by being a non-zero value).
438 1.85 thorpej */
439 1.85 thorpej if (uvmexp.pagesize == 0) {
440 1.85 thorpej if (PAGE_SIZE == 0)
441 1.85 thorpej panic("uvm_setpagesize: uvmexp.pagesize not set");
442 1.85 thorpej uvmexp.pagesize = PAGE_SIZE;
443 1.85 thorpej }
444 1.7 mrg uvmexp.pagemask = uvmexp.pagesize - 1;
445 1.7 mrg if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
446 1.7 mrg panic("uvm_setpagesize: page size not a power of two");
447 1.7 mrg for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
448 1.7 mrg if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
449 1.7 mrg break;
450 1.1 mrg }
451 1.1 mrg
452 1.1 mrg /*
453 1.1 mrg * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
454 1.1 mrg */
455 1.1 mrg
456 1.14 eeh vaddr_t
457 1.7 mrg uvm_pageboot_alloc(size)
458 1.14 eeh vsize_t size;
459 1.1 mrg {
460 1.52 thorpej static boolean_t initialized = FALSE;
461 1.14 eeh vaddr_t addr;
462 1.52 thorpej #if !defined(PMAP_STEAL_MEMORY)
463 1.52 thorpej vaddr_t vaddr;
464 1.14 eeh paddr_t paddr;
465 1.52 thorpej #endif
466 1.1 mrg
467 1.7 mrg /*
468 1.19 thorpej * on first call to this function, initialize ourselves.
469 1.7 mrg */
470 1.19 thorpej if (initialized == FALSE) {
471 1.88 thorpej pmap_virtual_space(&virtual_space_start, &virtual_space_end);
472 1.1 mrg
473 1.7 mrg /* round it the way we like it */
474 1.88 thorpej virtual_space_start = round_page(virtual_space_start);
475 1.88 thorpej virtual_space_end = trunc_page(virtual_space_end);
476 1.19 thorpej
477 1.19 thorpej initialized = TRUE;
478 1.7 mrg }
479 1.52 thorpej
480 1.52 thorpej /* round to page size */
481 1.52 thorpej size = round_page(size);
482 1.52 thorpej
483 1.52 thorpej #if defined(PMAP_STEAL_MEMORY)
484 1.52 thorpej
485 1.62 chs /*
486 1.62 chs * defer bootstrap allocation to MD code (it may want to allocate
487 1.52 thorpej * from a direct-mapped segment). pmap_steal_memory should adjust
488 1.88 thorpej * virtual_space_start/virtual_space_end if necessary.
489 1.52 thorpej */
490 1.52 thorpej
491 1.88 thorpej addr = pmap_steal_memory(size, &virtual_space_start,
492 1.88 thorpej &virtual_space_end);
493 1.52 thorpej
494 1.52 thorpej return(addr);
495 1.52 thorpej
496 1.52 thorpej #else /* !PMAP_STEAL_MEMORY */
497 1.1 mrg
498 1.7 mrg /*
499 1.7 mrg * allocate virtual memory for this request
500 1.7 mrg */
501 1.88 thorpej if (virtual_space_start == virtual_space_end ||
502 1.88 thorpej (virtual_space_end - virtual_space_start) < size)
503 1.19 thorpej panic("uvm_pageboot_alloc: out of virtual space");
504 1.20 thorpej
505 1.88 thorpej addr = virtual_space_start;
506 1.20 thorpej
507 1.20 thorpej #ifdef PMAP_GROWKERNEL
508 1.20 thorpej /*
509 1.20 thorpej * If the kernel pmap can't map the requested space,
510 1.20 thorpej * then allocate more resources for it.
511 1.20 thorpej */
512 1.20 thorpej if (uvm_maxkaddr < (addr + size)) {
513 1.20 thorpej uvm_maxkaddr = pmap_growkernel(addr + size);
514 1.20 thorpej if (uvm_maxkaddr < (addr + size))
515 1.20 thorpej panic("uvm_pageboot_alloc: pmap_growkernel() failed");
516 1.19 thorpej }
517 1.20 thorpej #endif
518 1.1 mrg
519 1.88 thorpej virtual_space_start += size;
520 1.1 mrg
521 1.9 thorpej /*
522 1.7 mrg * allocate and mapin physical pages to back new virtual pages
523 1.7 mrg */
524 1.1 mrg
525 1.7 mrg for (vaddr = round_page(addr) ; vaddr < addr + size ;
526 1.7 mrg vaddr += PAGE_SIZE) {
527 1.1 mrg
528 1.7 mrg if (!uvm_page_physget(&paddr))
529 1.7 mrg panic("uvm_pageboot_alloc: out of memory");
530 1.1 mrg
531 1.23 thorpej /*
532 1.23 thorpej * Note this memory is no longer managed, so using
533 1.23 thorpej * pmap_kenter is safe.
534 1.23 thorpej */
535 1.7 mrg pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
536 1.7 mrg }
537 1.66 chris pmap_update(pmap_kernel());
538 1.7 mrg return(addr);
539 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
540 1.1 mrg }
541 1.1 mrg
542 1.1 mrg #if !defined(PMAP_STEAL_MEMORY)
543 1.1 mrg /*
544 1.1 mrg * uvm_page_physget: "steal" one page from the vm_physmem structure.
545 1.1 mrg *
546 1.1 mrg * => attempt to allocate it off the end of a segment in which the "avail"
547 1.1 mrg * values match the start/end values. if we can't do that, then we
548 1.1 mrg * will advance both values (making them equal, and removing some
549 1.1 mrg * vm_page structures from the non-avail area).
550 1.1 mrg * => return false if out of memory.
551 1.1 mrg */
552 1.1 mrg
553 1.28 drochner /* subroutine: try to allocate from memory chunks on the specified freelist */
554 1.28 drochner static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
555 1.28 drochner
556 1.28 drochner static boolean_t
557 1.28 drochner uvm_page_physget_freelist(paddrp, freelist)
558 1.14 eeh paddr_t *paddrp;
559 1.28 drochner int freelist;
560 1.1 mrg {
561 1.7 mrg int lcv, x;
562 1.1 mrg
563 1.7 mrg /* pass 1: try allocating from a matching end */
564 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
565 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
566 1.1 mrg #else
567 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
568 1.1 mrg #endif
569 1.7 mrg {
570 1.1 mrg
571 1.32 thorpej if (uvm.page_init_done == TRUE)
572 1.42 mrg panic("uvm_page_physget: called _after_ bootstrap");
573 1.1 mrg
574 1.28 drochner if (vm_physmem[lcv].free_list != freelist)
575 1.28 drochner continue;
576 1.28 drochner
577 1.7 mrg /* try from front */
578 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
579 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
580 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
581 1.7 mrg vm_physmem[lcv].avail_start++;
582 1.7 mrg vm_physmem[lcv].start++;
583 1.7 mrg /* nothing left? nuke it */
584 1.7 mrg if (vm_physmem[lcv].avail_start ==
585 1.7 mrg vm_physmem[lcv].end) {
586 1.7 mrg if (vm_nphysseg == 1)
587 1.89 wiz panic("uvm_page_physget: out of memory!");
588 1.7 mrg vm_nphysseg--;
589 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
590 1.7 mrg /* structure copy */
591 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
592 1.7 mrg }
593 1.7 mrg return (TRUE);
594 1.7 mrg }
595 1.7 mrg
596 1.7 mrg /* try from rear */
597 1.7 mrg if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
598 1.7 mrg vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
599 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
600 1.7 mrg vm_physmem[lcv].avail_end--;
601 1.7 mrg vm_physmem[lcv].end--;
602 1.7 mrg /* nothing left? nuke it */
603 1.7 mrg if (vm_physmem[lcv].avail_end ==
604 1.7 mrg vm_physmem[lcv].start) {
605 1.7 mrg if (vm_nphysseg == 1)
606 1.42 mrg panic("uvm_page_physget: out of memory!");
607 1.7 mrg vm_nphysseg--;
608 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
609 1.7 mrg /* structure copy */
610 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
611 1.7 mrg }
612 1.7 mrg return (TRUE);
613 1.7 mrg }
614 1.7 mrg }
615 1.1 mrg
616 1.7 mrg /* pass2: forget about matching ends, just allocate something */
617 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
618 1.7 mrg for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
619 1.1 mrg #else
620 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
621 1.1 mrg #endif
622 1.7 mrg {
623 1.1 mrg
624 1.7 mrg /* any room in this bank? */
625 1.7 mrg if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
626 1.7 mrg continue; /* nope */
627 1.7 mrg
628 1.7 mrg *paddrp = ptoa(vm_physmem[lcv].avail_start);
629 1.7 mrg vm_physmem[lcv].avail_start++;
630 1.7 mrg /* truncate! */
631 1.7 mrg vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
632 1.7 mrg
633 1.7 mrg /* nothing left? nuke it */
634 1.7 mrg if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
635 1.7 mrg if (vm_nphysseg == 1)
636 1.42 mrg panic("uvm_page_physget: out of memory!");
637 1.7 mrg vm_nphysseg--;
638 1.7 mrg for (x = lcv ; x < vm_nphysseg ; x++)
639 1.7 mrg /* structure copy */
640 1.7 mrg vm_physmem[x] = vm_physmem[x+1];
641 1.7 mrg }
642 1.7 mrg return (TRUE);
643 1.7 mrg }
644 1.1 mrg
645 1.7 mrg return (FALSE); /* whoops! */
646 1.28 drochner }
647 1.28 drochner
648 1.28 drochner boolean_t
649 1.28 drochner uvm_page_physget(paddrp)
650 1.28 drochner paddr_t *paddrp;
651 1.28 drochner {
652 1.28 drochner int i;
653 1.28 drochner
654 1.28 drochner /* try in the order of freelist preference */
655 1.28 drochner for (i = 0; i < VM_NFREELIST; i++)
656 1.28 drochner if (uvm_page_physget_freelist(paddrp, i) == TRUE)
657 1.28 drochner return (TRUE);
658 1.28 drochner return (FALSE);
659 1.1 mrg }
660 1.1 mrg #endif /* PMAP_STEAL_MEMORY */
661 1.1 mrg
662 1.1 mrg /*
663 1.1 mrg * uvm_page_physload: load physical memory into VM system
664 1.1 mrg *
665 1.1 mrg * => all args are PFs
666 1.1 mrg * => all pages in start/end get vm_page structures
667 1.1 mrg * => areas marked by avail_start/avail_end get added to the free page pool
668 1.1 mrg * => we are limited to VM_PHYSSEG_MAX physical memory segments
669 1.1 mrg */
670 1.1 mrg
671 1.7 mrg void
672 1.12 thorpej uvm_page_physload(start, end, avail_start, avail_end, free_list)
673 1.29 eeh paddr_t start, end, avail_start, avail_end;
674 1.12 thorpej int free_list;
675 1.1 mrg {
676 1.14 eeh int preload, lcv;
677 1.14 eeh psize_t npages;
678 1.7 mrg struct vm_page *pgs;
679 1.7 mrg struct vm_physseg *ps;
680 1.7 mrg
681 1.7 mrg if (uvmexp.pagesize == 0)
682 1.42 mrg panic("uvm_page_physload: page size not set!");
683 1.12 thorpej if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
684 1.79 provos panic("uvm_page_physload: bad free list %d", free_list);
685 1.26 drochner if (start >= end)
686 1.26 drochner panic("uvm_page_physload: start >= end");
687 1.12 thorpej
688 1.7 mrg /*
689 1.7 mrg * do we have room?
690 1.7 mrg */
691 1.67 chs
692 1.7 mrg if (vm_nphysseg == VM_PHYSSEG_MAX) {
693 1.42 mrg printf("uvm_page_physload: unable to load physical memory "
694 1.7 mrg "segment\n");
695 1.37 soda printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
696 1.37 soda VM_PHYSSEG_MAX, (long long)start, (long long)end);
697 1.43 christos printf("\tincrease VM_PHYSSEG_MAX\n");
698 1.7 mrg return;
699 1.7 mrg }
700 1.7 mrg
701 1.7 mrg /*
702 1.7 mrg * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
703 1.7 mrg * called yet, so malloc is not available).
704 1.7 mrg */
705 1.67 chs
706 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
707 1.7 mrg if (vm_physmem[lcv].pgs)
708 1.7 mrg break;
709 1.7 mrg }
710 1.7 mrg preload = (lcv == vm_nphysseg);
711 1.7 mrg
712 1.7 mrg /*
713 1.7 mrg * if VM is already running, attempt to malloc() vm_page structures
714 1.7 mrg */
715 1.67 chs
716 1.7 mrg if (!preload) {
717 1.1 mrg #if defined(VM_PHYSSEG_NOADD)
718 1.42 mrg panic("uvm_page_physload: tried to add RAM after vm_mem_init");
719 1.1 mrg #else
720 1.7 mrg /* XXXCDC: need some sort of lockout for this case */
721 1.14 eeh paddr_t paddr;
722 1.7 mrg npages = end - start; /* # of pages */
723 1.40 thorpej pgs = malloc(sizeof(struct vm_page) * npages,
724 1.40 thorpej M_VMPAGE, M_NOWAIT);
725 1.7 mrg if (pgs == NULL) {
726 1.42 mrg printf("uvm_page_physload: can not malloc vm_page "
727 1.7 mrg "structs for segment\n");
728 1.7 mrg printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
729 1.7 mrg return;
730 1.7 mrg }
731 1.12 thorpej /* zero data, init phys_addr and free_list, and free pages */
732 1.13 perry memset(pgs, 0, sizeof(struct vm_page) * npages);
733 1.7 mrg for (lcv = 0, paddr = ptoa(start) ;
734 1.7 mrg lcv < npages ; lcv++, paddr += PAGE_SIZE) {
735 1.7 mrg pgs[lcv].phys_addr = paddr;
736 1.12 thorpej pgs[lcv].free_list = free_list;
737 1.7 mrg if (atop(paddr) >= avail_start &&
738 1.7 mrg atop(paddr) <= avail_end)
739 1.8 chuck uvm_pagefree(&pgs[lcv]);
740 1.7 mrg }
741 1.7 mrg /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
742 1.7 mrg /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
743 1.1 mrg #endif
744 1.7 mrg } else {
745 1.7 mrg pgs = NULL;
746 1.7 mrg npages = 0;
747 1.7 mrg }
748 1.1 mrg
749 1.7 mrg /*
750 1.7 mrg * now insert us in the proper place in vm_physmem[]
751 1.7 mrg */
752 1.1 mrg
753 1.1 mrg #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
754 1.7 mrg /* random: put it at the end (easy!) */
755 1.7 mrg ps = &vm_physmem[vm_nphysseg];
756 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
757 1.7 mrg {
758 1.7 mrg int x;
759 1.7 mrg /* sort by address for binary search */
760 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
761 1.7 mrg if (start < vm_physmem[lcv].start)
762 1.7 mrg break;
763 1.7 mrg ps = &vm_physmem[lcv];
764 1.7 mrg /* move back other entries, if necessary ... */
765 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
766 1.7 mrg /* structure copy */
767 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
768 1.7 mrg }
769 1.1 mrg #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
770 1.7 mrg {
771 1.7 mrg int x;
772 1.7 mrg /* sort by largest segment first */
773 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
774 1.7 mrg if ((end - start) >
775 1.7 mrg (vm_physmem[lcv].end - vm_physmem[lcv].start))
776 1.7 mrg break;
777 1.7 mrg ps = &vm_physmem[lcv];
778 1.7 mrg /* move back other entries, if necessary ... */
779 1.7 mrg for (x = vm_nphysseg ; x > lcv ; x--)
780 1.7 mrg /* structure copy */
781 1.7 mrg vm_physmem[x] = vm_physmem[x - 1];
782 1.7 mrg }
783 1.1 mrg #else
784 1.42 mrg panic("uvm_page_physload: unknown physseg strategy selected!");
785 1.1 mrg #endif
786 1.1 mrg
787 1.7 mrg ps->start = start;
788 1.7 mrg ps->end = end;
789 1.7 mrg ps->avail_start = avail_start;
790 1.7 mrg ps->avail_end = avail_end;
791 1.7 mrg if (preload) {
792 1.7 mrg ps->pgs = NULL;
793 1.7 mrg } else {
794 1.7 mrg ps->pgs = pgs;
795 1.7 mrg ps->lastpg = pgs + npages - 1;
796 1.7 mrg }
797 1.12 thorpej ps->free_list = free_list;
798 1.7 mrg vm_nphysseg++;
799 1.7 mrg
800 1.7 mrg if (!preload)
801 1.7 mrg uvm_page_rehash();
802 1.1 mrg }
803 1.1 mrg
804 1.1 mrg /*
805 1.1 mrg * uvm_page_rehash: reallocate hash table based on number of free pages.
806 1.1 mrg */
807 1.1 mrg
808 1.7 mrg void
809 1.7 mrg uvm_page_rehash()
810 1.1 mrg {
811 1.67 chs int freepages, lcv, bucketcount, oldcount;
812 1.7 mrg struct pglist *newbuckets, *oldbuckets;
813 1.7 mrg struct vm_page *pg;
814 1.30 thorpej size_t newsize, oldsize;
815 1.7 mrg
816 1.7 mrg /*
817 1.7 mrg * compute number of pages that can go in the free pool
818 1.7 mrg */
819 1.7 mrg
820 1.7 mrg freepages = 0;
821 1.7 mrg for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
822 1.7 mrg freepages +=
823 1.7 mrg (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
824 1.7 mrg
825 1.7 mrg /*
826 1.7 mrg * compute number of buckets needed for this number of pages
827 1.7 mrg */
828 1.7 mrg
829 1.7 mrg bucketcount = 1;
830 1.7 mrg while (bucketcount < freepages)
831 1.7 mrg bucketcount = bucketcount * 2;
832 1.7 mrg
833 1.7 mrg /*
834 1.30 thorpej * compute the size of the current table and new table.
835 1.7 mrg */
836 1.7 mrg
837 1.30 thorpej oldbuckets = uvm.page_hash;
838 1.30 thorpej oldcount = uvm.page_nhash;
839 1.30 thorpej oldsize = round_page(sizeof(struct pglist) * oldcount);
840 1.30 thorpej newsize = round_page(sizeof(struct pglist) * bucketcount);
841 1.30 thorpej
842 1.30 thorpej /*
843 1.30 thorpej * allocate the new buckets
844 1.30 thorpej */
845 1.30 thorpej
846 1.30 thorpej newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
847 1.7 mrg if (newbuckets == NULL) {
848 1.30 thorpej printf("uvm_page_physrehash: WARNING: could not grow page "
849 1.7 mrg "hash table\n");
850 1.7 mrg return;
851 1.7 mrg }
852 1.7 mrg for (lcv = 0 ; lcv < bucketcount ; lcv++)
853 1.7 mrg TAILQ_INIT(&newbuckets[lcv]);
854 1.7 mrg
855 1.7 mrg /*
856 1.7 mrg * now replace the old buckets with the new ones and rehash everything
857 1.7 mrg */
858 1.7 mrg
859 1.7 mrg simple_lock(&uvm.hashlock);
860 1.7 mrg uvm.page_hash = newbuckets;
861 1.7 mrg uvm.page_nhash = bucketcount;
862 1.7 mrg uvm.page_hashmask = bucketcount - 1; /* power of 2 */
863 1.7 mrg
864 1.7 mrg /* ... and rehash */
865 1.7 mrg for (lcv = 0 ; lcv < oldcount ; lcv++) {
866 1.7 mrg while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
867 1.7 mrg TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
868 1.7 mrg TAILQ_INSERT_TAIL(
869 1.7 mrg &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
870 1.7 mrg pg, hashq);
871 1.7 mrg }
872 1.7 mrg }
873 1.7 mrg simple_unlock(&uvm.hashlock);
874 1.7 mrg
875 1.7 mrg /*
876 1.30 thorpej * free old bucket array if is not the boot-time table
877 1.7 mrg */
878 1.7 mrg
879 1.7 mrg if (oldbuckets != &uvm_bootbucket)
880 1.30 thorpej uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
881 1.1 mrg }
882 1.1 mrg
883 1.60 thorpej /*
884 1.60 thorpej * uvm_page_recolor: Recolor the pages if the new bucket count is
885 1.60 thorpej * larger than the old one.
886 1.60 thorpej */
887 1.60 thorpej
888 1.60 thorpej void
889 1.60 thorpej uvm_page_recolor(int newncolors)
890 1.60 thorpej {
891 1.60 thorpej struct pgflbucket *bucketarray, *oldbucketarray;
892 1.60 thorpej struct pgfreelist pgfl;
893 1.63 chs struct vm_page *pg;
894 1.60 thorpej vsize_t bucketcount;
895 1.60 thorpej int s, lcv, color, i, ocolors;
896 1.60 thorpej
897 1.60 thorpej if (newncolors <= uvmexp.ncolors)
898 1.60 thorpej return;
899 1.77 wrstuden
900 1.77 wrstuden if (uvm.page_init_done == FALSE) {
901 1.77 wrstuden uvmexp.ncolors = newncolors;
902 1.77 wrstuden return;
903 1.77 wrstuden }
904 1.60 thorpej
905 1.60 thorpej bucketcount = newncolors * VM_NFREELIST;
906 1.60 thorpej bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
907 1.60 thorpej M_VMPAGE, M_NOWAIT);
908 1.60 thorpej if (bucketarray == NULL) {
909 1.60 thorpej printf("WARNING: unable to allocate %ld page color buckets\n",
910 1.60 thorpej (long) bucketcount);
911 1.60 thorpej return;
912 1.60 thorpej }
913 1.60 thorpej
914 1.60 thorpej s = uvm_lock_fpageq();
915 1.60 thorpej
916 1.60 thorpej /* Make sure we should still do this. */
917 1.60 thorpej if (newncolors <= uvmexp.ncolors) {
918 1.60 thorpej uvm_unlock_fpageq(s);
919 1.60 thorpej free(bucketarray, M_VMPAGE);
920 1.60 thorpej return;
921 1.60 thorpej }
922 1.60 thorpej
923 1.60 thorpej oldbucketarray = uvm.page_free[0].pgfl_buckets;
924 1.60 thorpej ocolors = uvmexp.ncolors;
925 1.60 thorpej
926 1.60 thorpej uvmexp.ncolors = newncolors;
927 1.60 thorpej uvmexp.colormask = uvmexp.ncolors - 1;
928 1.60 thorpej
929 1.60 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
930 1.60 thorpej pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
931 1.60 thorpej uvm_page_init_buckets(&pgfl);
932 1.60 thorpej for (color = 0; color < ocolors; color++) {
933 1.60 thorpej for (i = 0; i < PGFL_NQUEUES; i++) {
934 1.60 thorpej while ((pg = TAILQ_FIRST(&uvm.page_free[
935 1.60 thorpej lcv].pgfl_buckets[color].pgfl_queues[i]))
936 1.60 thorpej != NULL) {
937 1.60 thorpej TAILQ_REMOVE(&uvm.page_free[
938 1.60 thorpej lcv].pgfl_buckets[
939 1.60 thorpej color].pgfl_queues[i], pg, pageq);
940 1.60 thorpej TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
941 1.60 thorpej VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
942 1.60 thorpej i], pg, pageq);
943 1.60 thorpej }
944 1.60 thorpej }
945 1.60 thorpej }
946 1.60 thorpej uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
947 1.60 thorpej }
948 1.60 thorpej
949 1.60 thorpej if (have_recolored_pages) {
950 1.60 thorpej uvm_unlock_fpageq(s);
951 1.60 thorpej free(oldbucketarray, M_VMPAGE);
952 1.60 thorpej return;
953 1.60 thorpej }
954 1.60 thorpej
955 1.60 thorpej have_recolored_pages = TRUE;
956 1.60 thorpej uvm_unlock_fpageq(s);
957 1.60 thorpej }
958 1.1 mrg
959 1.1 mrg /*
960 1.54 thorpej * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
961 1.54 thorpej */
962 1.54 thorpej
963 1.54 thorpej static __inline struct vm_page *
964 1.54 thorpej uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
965 1.69 simonb int *trycolorp)
966 1.54 thorpej {
967 1.54 thorpej struct pglist *freeq;
968 1.54 thorpej struct vm_page *pg;
969 1.58 enami int color, trycolor = *trycolorp;
970 1.54 thorpej
971 1.58 enami color = trycolor;
972 1.58 enami do {
973 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
974 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
975 1.54 thorpej goto gotit;
976 1.54 thorpej if ((pg = TAILQ_FIRST((freeq =
977 1.54 thorpej &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
978 1.54 thorpej goto gotit;
979 1.60 thorpej color = (color + 1) & uvmexp.colormask;
980 1.58 enami } while (color != trycolor);
981 1.54 thorpej
982 1.54 thorpej return (NULL);
983 1.54 thorpej
984 1.54 thorpej gotit:
985 1.54 thorpej TAILQ_REMOVE(freeq, pg, pageq);
986 1.54 thorpej uvmexp.free--;
987 1.54 thorpej
988 1.54 thorpej /* update zero'd page count */
989 1.54 thorpej if (pg->flags & PG_ZERO)
990 1.54 thorpej uvmexp.zeropages--;
991 1.54 thorpej
992 1.54 thorpej if (color == trycolor)
993 1.54 thorpej uvmexp.colorhit++;
994 1.54 thorpej else {
995 1.54 thorpej uvmexp.colormiss++;
996 1.54 thorpej *trycolorp = color;
997 1.54 thorpej }
998 1.54 thorpej
999 1.54 thorpej return (pg);
1000 1.54 thorpej }
1001 1.54 thorpej
1002 1.54 thorpej /*
1003 1.12 thorpej * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1004 1.1 mrg *
1005 1.1 mrg * => return null if no pages free
1006 1.1 mrg * => wake up pagedaemon if number of free pages drops below low water mark
1007 1.1 mrg * => if obj != NULL, obj must be locked (to put in hash)
1008 1.1 mrg * => if anon != NULL, anon must be locked (to put in anon)
1009 1.1 mrg * => only one of obj or anon can be non-null
1010 1.1 mrg * => caller must activate/deactivate page if it is not wired.
1011 1.12 thorpej * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1012 1.34 thorpej * => policy decision: it is more important to pull a page off of the
1013 1.34 thorpej * appropriate priority free list than it is to get a zero'd or
1014 1.34 thorpej * unknown contents page. This is because we live with the
1015 1.34 thorpej * consequences of a bad free list decision for the entire
1016 1.34 thorpej * lifetime of the page, e.g. if the page comes from memory that
1017 1.34 thorpej * is slower to access.
1018 1.1 mrg */
1019 1.1 mrg
1020 1.7 mrg struct vm_page *
1021 1.18 chs uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
1022 1.7 mrg struct uvm_object *obj;
1023 1.31 kleink voff_t off;
1024 1.18 chs int flags;
1025 1.7 mrg struct vm_anon *anon;
1026 1.12 thorpej int strat, free_list;
1027 1.1 mrg {
1028 1.54 thorpej int lcv, try1, try2, s, zeroit = 0, color;
1029 1.7 mrg struct vm_page *pg;
1030 1.18 chs boolean_t use_reserve;
1031 1.1 mrg
1032 1.44 chs KASSERT(obj == NULL || anon == NULL);
1033 1.44 chs KASSERT(off == trunc_page(off));
1034 1.48 thorpej LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1035 1.48 thorpej LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1036 1.48 thorpej
1037 1.44 chs s = uvm_lock_fpageq();
1038 1.1 mrg
1039 1.7 mrg /*
1040 1.54 thorpej * This implements a global round-robin page coloring
1041 1.54 thorpej * algorithm.
1042 1.54 thorpej *
1043 1.54 thorpej * XXXJRT: Should we make the `nextcolor' per-cpu?
1044 1.54 thorpej * XXXJRT: What about virtually-indexed caches?
1045 1.54 thorpej */
1046 1.67 chs
1047 1.54 thorpej color = uvm.page_free_nextcolor;
1048 1.54 thorpej
1049 1.54 thorpej /*
1050 1.7 mrg * check to see if we need to generate some free pages waking
1051 1.7 mrg * the pagedaemon.
1052 1.7 mrg */
1053 1.7 mrg
1054 1.64 thorpej UVM_KICK_PDAEMON();
1055 1.7 mrg
1056 1.7 mrg /*
1057 1.7 mrg * fail if any of these conditions is true:
1058 1.7 mrg * [1] there really are no free pages, or
1059 1.7 mrg * [2] only kernel "reserved" pages remain and
1060 1.7 mrg * the page isn't being allocated to a kernel object.
1061 1.7 mrg * [3] only pagedaemon "reserved" pages remain and
1062 1.7 mrg * the requestor isn't the pagedaemon.
1063 1.7 mrg */
1064 1.7 mrg
1065 1.18 chs use_reserve = (flags & UVM_PGA_USERESERVE) ||
1066 1.22 thorpej (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1067 1.18 chs if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1068 1.7 mrg (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1069 1.18 chs !(use_reserve && curproc == uvm.pagedaemon_proc)))
1070 1.12 thorpej goto fail;
1071 1.12 thorpej
1072 1.34 thorpej #if PGFL_NQUEUES != 2
1073 1.34 thorpej #error uvm_pagealloc_strat needs to be updated
1074 1.34 thorpej #endif
1075 1.34 thorpej
1076 1.34 thorpej /*
1077 1.34 thorpej * If we want a zero'd page, try the ZEROS queue first, otherwise
1078 1.34 thorpej * we try the UNKNOWN queue first.
1079 1.34 thorpej */
1080 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1081 1.34 thorpej try1 = PGFL_ZEROS;
1082 1.34 thorpej try2 = PGFL_UNKNOWN;
1083 1.34 thorpej } else {
1084 1.34 thorpej try1 = PGFL_UNKNOWN;
1085 1.34 thorpej try2 = PGFL_ZEROS;
1086 1.34 thorpej }
1087 1.34 thorpej
1088 1.12 thorpej again:
1089 1.12 thorpej switch (strat) {
1090 1.12 thorpej case UVM_PGA_STRAT_NORMAL:
1091 1.12 thorpej /* Check all freelists in descending priority order. */
1092 1.12 thorpej for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1093 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1094 1.54 thorpej try1, try2, &color);
1095 1.54 thorpej if (pg != NULL)
1096 1.12 thorpej goto gotit;
1097 1.12 thorpej }
1098 1.12 thorpej
1099 1.12 thorpej /* No pages free! */
1100 1.12 thorpej goto fail;
1101 1.12 thorpej
1102 1.12 thorpej case UVM_PGA_STRAT_ONLY:
1103 1.12 thorpej case UVM_PGA_STRAT_FALLBACK:
1104 1.12 thorpej /* Attempt to allocate from the specified free list. */
1105 1.44 chs KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1106 1.54 thorpej pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1107 1.54 thorpej try1, try2, &color);
1108 1.54 thorpej if (pg != NULL)
1109 1.12 thorpej goto gotit;
1110 1.12 thorpej
1111 1.12 thorpej /* Fall back, if possible. */
1112 1.12 thorpej if (strat == UVM_PGA_STRAT_FALLBACK) {
1113 1.12 thorpej strat = UVM_PGA_STRAT_NORMAL;
1114 1.12 thorpej goto again;
1115 1.12 thorpej }
1116 1.12 thorpej
1117 1.12 thorpej /* No pages free! */
1118 1.12 thorpej goto fail;
1119 1.12 thorpej
1120 1.12 thorpej default:
1121 1.12 thorpej panic("uvm_pagealloc_strat: bad strat %d", strat);
1122 1.12 thorpej /* NOTREACHED */
1123 1.7 mrg }
1124 1.7 mrg
1125 1.12 thorpej gotit:
1126 1.54 thorpej /*
1127 1.54 thorpej * We now know which color we actually allocated from; set
1128 1.54 thorpej * the next color accordingly.
1129 1.54 thorpej */
1130 1.67 chs
1131 1.60 thorpej uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1132 1.34 thorpej
1133 1.34 thorpej /*
1134 1.34 thorpej * update allocation statistics and remember if we have to
1135 1.34 thorpej * zero the page
1136 1.34 thorpej */
1137 1.67 chs
1138 1.34 thorpej if (flags & UVM_PGA_ZERO) {
1139 1.34 thorpej if (pg->flags & PG_ZERO) {
1140 1.34 thorpej uvmexp.pga_zerohit++;
1141 1.34 thorpej zeroit = 0;
1142 1.34 thorpej } else {
1143 1.34 thorpej uvmexp.pga_zeromiss++;
1144 1.34 thorpej zeroit = 1;
1145 1.34 thorpej }
1146 1.34 thorpej }
1147 1.67 chs uvm_unlock_fpageq(s);
1148 1.7 mrg
1149 1.7 mrg pg->offset = off;
1150 1.7 mrg pg->uobject = obj;
1151 1.7 mrg pg->uanon = anon;
1152 1.7 mrg pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1153 1.7 mrg if (anon) {
1154 1.7 mrg anon->u.an_page = pg;
1155 1.7 mrg pg->pqflags = PQ_ANON;
1156 1.45 simonb uvmexp.anonpages++;
1157 1.7 mrg } else {
1158 1.67 chs if (obj) {
1159 1.7 mrg uvm_pageinsert(pg);
1160 1.67 chs }
1161 1.7 mrg pg->pqflags = 0;
1162 1.7 mrg }
1163 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1164 1.7 mrg pg->owner_tag = NULL;
1165 1.1 mrg #endif
1166 1.7 mrg UVM_PAGE_OWN(pg, "new alloc");
1167 1.33 thorpej
1168 1.33 thorpej if (flags & UVM_PGA_ZERO) {
1169 1.33 thorpej /*
1170 1.34 thorpej * A zero'd page is not clean. If we got a page not already
1171 1.34 thorpej * zero'd, then we have to zero it ourselves.
1172 1.33 thorpej */
1173 1.33 thorpej pg->flags &= ~PG_CLEAN;
1174 1.34 thorpej if (zeroit)
1175 1.34 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1176 1.33 thorpej }
1177 1.1 mrg
1178 1.7 mrg return(pg);
1179 1.12 thorpej
1180 1.12 thorpej fail:
1181 1.21 thorpej uvm_unlock_fpageq(s);
1182 1.12 thorpej return (NULL);
1183 1.1 mrg }
1184 1.1 mrg
1185 1.1 mrg /*
1186 1.1 mrg * uvm_pagerealloc: reallocate a page from one object to another
1187 1.1 mrg *
1188 1.1 mrg * => both objects must be locked
1189 1.1 mrg */
1190 1.1 mrg
1191 1.7 mrg void
1192 1.7 mrg uvm_pagerealloc(pg, newobj, newoff)
1193 1.7 mrg struct vm_page *pg;
1194 1.7 mrg struct uvm_object *newobj;
1195 1.31 kleink voff_t newoff;
1196 1.1 mrg {
1197 1.7 mrg /*
1198 1.7 mrg * remove it from the old object
1199 1.7 mrg */
1200 1.7 mrg
1201 1.7 mrg if (pg->uobject) {
1202 1.7 mrg uvm_pageremove(pg);
1203 1.7 mrg }
1204 1.7 mrg
1205 1.7 mrg /*
1206 1.7 mrg * put it in the new object
1207 1.7 mrg */
1208 1.7 mrg
1209 1.7 mrg if (newobj) {
1210 1.7 mrg pg->uobject = newobj;
1211 1.7 mrg pg->offset = newoff;
1212 1.7 mrg uvm_pageinsert(pg);
1213 1.7 mrg }
1214 1.1 mrg }
1215 1.1 mrg
1216 1.91 yamt #ifdef DEBUG
1217 1.91 yamt /*
1218 1.91 yamt * check if page is zero-filled
1219 1.91 yamt *
1220 1.91 yamt * - called with free page queue lock held.
1221 1.91 yamt */
1222 1.91 yamt void
1223 1.91 yamt uvm_pagezerocheck(struct vm_page *pg)
1224 1.91 yamt {
1225 1.91 yamt int *p, *ep;
1226 1.91 yamt
1227 1.91 yamt KASSERT(uvm_zerocheckkva != 0);
1228 1.91 yamt LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
1229 1.91 yamt
1230 1.91 yamt /*
1231 1.91 yamt * XXX assuming pmap_kenter_pa and pmap_kremove never call
1232 1.91 yamt * uvm page allocator.
1233 1.91 yamt *
1234 1.91 yamt * it might be better to have "cpu-local temporary map" pmap interface.
1235 1.91 yamt */
1236 1.91 yamt pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1237 1.91 yamt p = (int *)uvm_zerocheckkva;
1238 1.91 yamt ep = (int *)((char *)p + PAGE_SIZE);
1239 1.92 yamt pmap_update(pmap_kernel());
1240 1.91 yamt while (p < ep) {
1241 1.91 yamt if (*p != 0)
1242 1.91 yamt panic("PG_ZERO page isn't zero-filled");
1243 1.91 yamt p++;
1244 1.91 yamt }
1245 1.91 yamt pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1246 1.91 yamt }
1247 1.91 yamt #endif /* DEBUG */
1248 1.91 yamt
1249 1.1 mrg /*
1250 1.1 mrg * uvm_pagefree: free page
1251 1.1 mrg *
1252 1.1 mrg * => erase page's identity (i.e. remove from hash/object)
1253 1.1 mrg * => put page on free list
1254 1.1 mrg * => caller must lock owning object (either anon or uvm_object)
1255 1.1 mrg * => caller must lock page queues
1256 1.1 mrg * => assumes all valid mappings of pg are gone
1257 1.1 mrg */
1258 1.1 mrg
1259 1.44 chs void
1260 1.44 chs uvm_pagefree(pg)
1261 1.44 chs struct vm_page *pg;
1262 1.1 mrg {
1263 1.7 mrg int s;
1264 1.90 yamt struct pglist *pgfl;
1265 1.90 yamt boolean_t iszero;
1266 1.67 chs
1267 1.67 chs KASSERT((pg->flags & PG_PAGEOUT) == 0);
1268 1.67 chs LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1269 1.67 chs (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1270 1.70 chs LOCK_ASSERT(pg->uobject == NULL ||
1271 1.70 chs simple_lock_held(&pg->uobject->vmobjlock));
1272 1.70 chs LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1273 1.70 chs simple_lock_held(&pg->uanon->an_lock));
1274 1.1 mrg
1275 1.44 chs #ifdef DEBUG
1276 1.44 chs if (pg->uobject == (void *)0xdeadbeef &&
1277 1.44 chs pg->uanon == (void *)0xdeadbeef) {
1278 1.79 provos panic("uvm_pagefree: freeing free page %p", pg);
1279 1.44 chs }
1280 1.91 yamt #endif /* DEBUG */
1281 1.44 chs
1282 1.7 mrg /*
1283 1.67 chs * if the page is loaned, resolve the loan instead of freeing.
1284 1.7 mrg */
1285 1.7 mrg
1286 1.67 chs if (pg->loan_count) {
1287 1.70 chs KASSERT(pg->wire_count == 0);
1288 1.7 mrg
1289 1.7 mrg /*
1290 1.67 chs * if the page is owned by an anon then we just want to
1291 1.70 chs * drop anon ownership. the kernel will free the page when
1292 1.70 chs * it is done with it. if the page is owned by an object,
1293 1.70 chs * remove it from the object and mark it dirty for the benefit
1294 1.70 chs * of possible anon owners.
1295 1.70 chs *
1296 1.70 chs * regardless of previous ownership, wakeup any waiters,
1297 1.70 chs * unbusy the page, and we're done.
1298 1.7 mrg */
1299 1.7 mrg
1300 1.73 chs if (pg->uobject != NULL) {
1301 1.70 chs uvm_pageremove(pg);
1302 1.67 chs pg->flags &= ~PG_CLEAN;
1303 1.73 chs } else if (pg->uanon != NULL) {
1304 1.73 chs if ((pg->pqflags & PQ_ANON) == 0) {
1305 1.73 chs pg->loan_count--;
1306 1.73 chs } else {
1307 1.73 chs pg->pqflags &= ~PQ_ANON;
1308 1.73 chs }
1309 1.73 chs pg->uanon = NULL;
1310 1.67 chs }
1311 1.70 chs if (pg->flags & PG_WANTED) {
1312 1.70 chs wakeup(pg);
1313 1.70 chs }
1314 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1315 1.70 chs #ifdef UVM_PAGE_TRKOWN
1316 1.70 chs pg->owner_tag = NULL;
1317 1.70 chs #endif
1318 1.73 chs if (pg->loan_count) {
1319 1.75 enami uvm_pagedequeue(pg);
1320 1.73 chs return;
1321 1.73 chs }
1322 1.67 chs }
1323 1.62 chs
1324 1.67 chs /*
1325 1.67 chs * remove page from its object or anon.
1326 1.67 chs */
1327 1.44 chs
1328 1.73 chs if (pg->uobject != NULL) {
1329 1.67 chs uvm_pageremove(pg);
1330 1.73 chs } else if (pg->uanon != NULL) {
1331 1.67 chs pg->uanon->u.an_page = NULL;
1332 1.73 chs uvmexp.anonpages--;
1333 1.7 mrg }
1334 1.1 mrg
1335 1.7 mrg /*
1336 1.70 chs * now remove the page from the queues.
1337 1.7 mrg */
1338 1.7 mrg
1339 1.67 chs uvm_pagedequeue(pg);
1340 1.7 mrg
1341 1.7 mrg /*
1342 1.7 mrg * if the page was wired, unwire it now.
1343 1.7 mrg */
1344 1.44 chs
1345 1.34 thorpej if (pg->wire_count) {
1346 1.7 mrg pg->wire_count = 0;
1347 1.7 mrg uvmexp.wired--;
1348 1.44 chs }
1349 1.7 mrg
1350 1.7 mrg /*
1351 1.44 chs * and put on free queue
1352 1.7 mrg */
1353 1.7 mrg
1354 1.90 yamt iszero = (pg->flags & PG_ZERO);
1355 1.90 yamt pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
1356 1.90 yamt pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
1357 1.90 yamt pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
1358 1.34 thorpej
1359 1.7 mrg pg->pqflags = PQ_FREE;
1360 1.3 chs #ifdef DEBUG
1361 1.7 mrg pg->uobject = (void *)0xdeadbeef;
1362 1.7 mrg pg->offset = 0xdeadbeef;
1363 1.7 mrg pg->uanon = (void *)0xdeadbeef;
1364 1.3 chs #endif
1365 1.90 yamt
1366 1.90 yamt s = uvm_lock_fpageq();
1367 1.91 yamt
1368 1.91 yamt #ifdef DEBUG
1369 1.91 yamt if (iszero)
1370 1.91 yamt uvm_pagezerocheck(pg);
1371 1.91 yamt #endif /* DEBUG */
1372 1.91 yamt
1373 1.90 yamt TAILQ_INSERT_TAIL(pgfl, pg, pageq);
1374 1.7 mrg uvmexp.free++;
1375 1.90 yamt if (iszero)
1376 1.90 yamt uvmexp.zeropages++;
1377 1.34 thorpej
1378 1.34 thorpej if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1379 1.34 thorpej uvm.page_idle_zero = vm_page_zero_enable;
1380 1.34 thorpej
1381 1.21 thorpej uvm_unlock_fpageq(s);
1382 1.44 chs }
1383 1.44 chs
1384 1.44 chs /*
1385 1.44 chs * uvm_page_unbusy: unbusy an array of pages.
1386 1.44 chs *
1387 1.44 chs * => pages must either all belong to the same object, or all belong to anons.
1388 1.44 chs * => if pages are object-owned, object must be locked.
1389 1.67 chs * => if pages are anon-owned, anons must be locked.
1390 1.76 enami * => caller must lock page queues if pages may be released.
1391 1.44 chs */
1392 1.44 chs
1393 1.44 chs void
1394 1.44 chs uvm_page_unbusy(pgs, npgs)
1395 1.44 chs struct vm_page **pgs;
1396 1.44 chs int npgs;
1397 1.44 chs {
1398 1.44 chs struct vm_page *pg;
1399 1.44 chs int i;
1400 1.44 chs UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1401 1.44 chs
1402 1.44 chs for (i = 0; i < npgs; i++) {
1403 1.44 chs pg = pgs[i];
1404 1.82 enami if (pg == NULL || pg == PGO_DONTCARE) {
1405 1.44 chs continue;
1406 1.44 chs }
1407 1.44 chs if (pg->flags & PG_WANTED) {
1408 1.44 chs wakeup(pg);
1409 1.44 chs }
1410 1.44 chs if (pg->flags & PG_RELEASED) {
1411 1.44 chs UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1412 1.67 chs pg->flags &= ~PG_RELEASED;
1413 1.67 chs uvm_pagefree(pg);
1414 1.44 chs } else {
1415 1.44 chs UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1416 1.44 chs pg->flags &= ~(PG_WANTED|PG_BUSY);
1417 1.44 chs UVM_PAGE_OWN(pg, NULL);
1418 1.44 chs }
1419 1.44 chs }
1420 1.1 mrg }
1421 1.1 mrg
1422 1.1 mrg #if defined(UVM_PAGE_TRKOWN)
1423 1.1 mrg /*
1424 1.1 mrg * uvm_page_own: set or release page ownership
1425 1.1 mrg *
1426 1.1 mrg * => this is a debugging function that keeps track of who sets PG_BUSY
1427 1.1 mrg * and where they do it. it can be used to track down problems
1428 1.1 mrg * such a process setting "PG_BUSY" and never releasing it.
1429 1.1 mrg * => page's object [if any] must be locked
1430 1.1 mrg * => if "tag" is NULL then we are releasing page ownership
1431 1.1 mrg */
1432 1.7 mrg void
1433 1.7 mrg uvm_page_own(pg, tag)
1434 1.7 mrg struct vm_page *pg;
1435 1.7 mrg char *tag;
1436 1.1 mrg {
1437 1.67 chs KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1438 1.67 chs
1439 1.7 mrg /* gain ownership? */
1440 1.7 mrg if (tag) {
1441 1.7 mrg if (pg->owner_tag) {
1442 1.7 mrg printf("uvm_page_own: page %p already owned "
1443 1.7 mrg "by proc %d [%s]\n", pg,
1444 1.74 enami pg->owner, pg->owner_tag);
1445 1.7 mrg panic("uvm_page_own");
1446 1.7 mrg }
1447 1.7 mrg pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1448 1.7 mrg pg->owner_tag = tag;
1449 1.7 mrg return;
1450 1.7 mrg }
1451 1.7 mrg
1452 1.7 mrg /* drop ownership */
1453 1.7 mrg if (pg->owner_tag == NULL) {
1454 1.7 mrg printf("uvm_page_own: dropping ownership of an non-owned "
1455 1.7 mrg "page (%p)\n", pg);
1456 1.7 mrg panic("uvm_page_own");
1457 1.7 mrg }
1458 1.74 enami KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1459 1.74 enami (pg->uanon == NULL && pg->uobject == NULL) ||
1460 1.74 enami pg->uobject == uvm.kernel_object ||
1461 1.74 enami pg->wire_count > 0 ||
1462 1.74 enami (pg->loan_count == 1 && pg->uanon == NULL) ||
1463 1.74 enami pg->loan_count > 1);
1464 1.7 mrg pg->owner_tag = NULL;
1465 1.1 mrg }
1466 1.1 mrg #endif
1467 1.34 thorpej
1468 1.34 thorpej /*
1469 1.34 thorpej * uvm_pageidlezero: zero free pages while the system is idle.
1470 1.34 thorpej *
1471 1.54 thorpej * => try to complete one color bucket at a time, to reduce our impact
1472 1.54 thorpej * on the CPU cache.
1473 1.34 thorpej * => we loop until we either reach the target or whichqs indicates that
1474 1.34 thorpej * there is a process ready to run.
1475 1.34 thorpej */
1476 1.34 thorpej void
1477 1.34 thorpej uvm_pageidlezero()
1478 1.34 thorpej {
1479 1.34 thorpej struct vm_page *pg;
1480 1.34 thorpej struct pgfreelist *pgfl;
1481 1.58 enami int free_list, s, firstbucket;
1482 1.54 thorpej static int nextbucket;
1483 1.54 thorpej
1484 1.54 thorpej s = uvm_lock_fpageq();
1485 1.58 enami firstbucket = nextbucket;
1486 1.58 enami do {
1487 1.54 thorpej if (sched_whichqs != 0) {
1488 1.34 thorpej uvm_unlock_fpageq(s);
1489 1.34 thorpej return;
1490 1.34 thorpej }
1491 1.54 thorpej if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1492 1.34 thorpej uvm.page_idle_zero = FALSE;
1493 1.34 thorpej uvm_unlock_fpageq(s);
1494 1.34 thorpej return;
1495 1.34 thorpej }
1496 1.54 thorpej for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1497 1.54 thorpej pgfl = &uvm.page_free[free_list];
1498 1.54 thorpej while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1499 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1500 1.54 thorpej if (sched_whichqs != 0) {
1501 1.54 thorpej uvm_unlock_fpageq(s);
1502 1.54 thorpej return;
1503 1.54 thorpej }
1504 1.54 thorpej
1505 1.54 thorpej TAILQ_REMOVE(&pgfl->pgfl_buckets[
1506 1.54 thorpej nextbucket].pgfl_queues[PGFL_UNKNOWN],
1507 1.54 thorpej pg, pageq);
1508 1.54 thorpej uvmexp.free--;
1509 1.54 thorpej uvm_unlock_fpageq(s);
1510 1.34 thorpej #ifdef PMAP_PAGEIDLEZERO
1511 1.67 chs if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1512 1.67 chs
1513 1.54 thorpej /*
1514 1.54 thorpej * The machine-dependent code detected
1515 1.54 thorpej * some reason for us to abort zeroing
1516 1.54 thorpej * pages, probably because there is a
1517 1.54 thorpej * process now ready to run.
1518 1.54 thorpej */
1519 1.67 chs
1520 1.54 thorpej s = uvm_lock_fpageq();
1521 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1522 1.54 thorpej nextbucket].pgfl_queues[
1523 1.54 thorpej PGFL_UNKNOWN], pg, pageq);
1524 1.54 thorpej uvmexp.free++;
1525 1.54 thorpej uvmexp.zeroaborts++;
1526 1.54 thorpej uvm_unlock_fpageq(s);
1527 1.54 thorpej return;
1528 1.54 thorpej }
1529 1.54 thorpej #else
1530 1.54 thorpej pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1531 1.54 thorpej #endif /* PMAP_PAGEIDLEZERO */
1532 1.54 thorpej pg->flags |= PG_ZERO;
1533 1.54 thorpej
1534 1.54 thorpej s = uvm_lock_fpageq();
1535 1.54 thorpej TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1536 1.54 thorpej nextbucket].pgfl_queues[PGFL_ZEROS],
1537 1.54 thorpej pg, pageq);
1538 1.54 thorpej uvmexp.free++;
1539 1.54 thorpej uvmexp.zeropages++;
1540 1.54 thorpej }
1541 1.41 thorpej }
1542 1.60 thorpej nextbucket = (nextbucket + 1) & uvmexp.colormask;
1543 1.58 enami } while (nextbucket != firstbucket);
1544 1.54 thorpej uvm_unlock_fpageq(s);
1545 1.34 thorpej }
1546