Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.106
      1 /*	$NetBSD: uvm_page.c,v 1.106 2005/06/28 05:25:42 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.106 2005/06/28 05:25:42 thorpej Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE_C              /* pull in uvm_page_i.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either CPU caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 #ifdef DEBUG
    145 vaddr_t uvm_zerocheckkva;
    146 #endif /* DEBUG */
    147 
    148 /*
    149  * local prototypes
    150  */
    151 
    152 static void uvm_pageinsert(struct vm_page *);
    153 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    154 static void uvm_pageremove(struct vm_page *);
    155 
    156 /*
    157  * inline functions
    158  */
    159 
    160 /*
    161  * uvm_pageinsert: insert a page in the object and the hash table
    162  * uvm_pageinsert_after: insert a page into the specified place in listq
    163  *
    164  * => caller must lock object
    165  * => caller must lock page queues
    166  * => call should have already set pg's object and offset pointers
    167  *    and bumped the version counter
    168  */
    169 
    170 __inline static void
    171 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    172 {
    173 	struct pglist *buck;
    174 	struct uvm_object *uobj = pg->uobject;
    175 
    176 	KASSERT((pg->flags & PG_TABLED) == 0);
    177 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    178 	KASSERT(where == NULL || (where->uobject == uobj));
    179 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    180 	simple_lock(&uvm.hashlock);
    181 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    182 	simple_unlock(&uvm.hashlock);
    183 
    184 	if (UVM_OBJ_IS_VNODE(uobj)) {
    185 		if (uobj->uo_npages == 0) {
    186 			struct vnode *vp = (struct vnode *)uobj;
    187 
    188 			vholdl(vp);
    189 		}
    190 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    191 			uvmexp.execpages++;
    192 		} else {
    193 			uvmexp.filepages++;
    194 		}
    195 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    196 		uvmexp.anonpages++;
    197 	}
    198 
    199 	if (where)
    200 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    201 	else
    202 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    203 	pg->flags |= PG_TABLED;
    204 	uobj->uo_npages++;
    205 }
    206 
    207 __inline static void
    208 uvm_pageinsert(struct vm_page *pg)
    209 {
    210 
    211 	uvm_pageinsert_after(pg, NULL);
    212 }
    213 
    214 /*
    215  * uvm_page_remove: remove page from object and hash
    216  *
    217  * => caller must lock object
    218  * => caller must lock page queues
    219  */
    220 
    221 static __inline void
    222 uvm_pageremove(struct vm_page *pg)
    223 {
    224 	struct pglist *buck;
    225 	struct uvm_object *uobj = pg->uobject;
    226 
    227 	KASSERT(pg->flags & PG_TABLED);
    228 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    229 	simple_lock(&uvm.hashlock);
    230 	TAILQ_REMOVE(buck, pg, hashq);
    231 	simple_unlock(&uvm.hashlock);
    232 
    233 	if (UVM_OBJ_IS_VNODE(uobj)) {
    234 		if (uobj->uo_npages == 1) {
    235 			struct vnode *vp = (struct vnode *)uobj;
    236 
    237 			holdrelel(vp);
    238 		}
    239 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    240 			uvmexp.execpages--;
    241 		} else {
    242 			uvmexp.filepages--;
    243 		}
    244 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    245 		uvmexp.anonpages--;
    246 	}
    247 
    248 	/* object should be locked */
    249 	uobj->uo_npages--;
    250 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    251 	pg->flags &= ~PG_TABLED;
    252 	pg->uobject = NULL;
    253 }
    254 
    255 static void
    256 uvm_page_init_buckets(struct pgfreelist *pgfl)
    257 {
    258 	int color, i;
    259 
    260 	for (color = 0; color < uvmexp.ncolors; color++) {
    261 		for (i = 0; i < PGFL_NQUEUES; i++) {
    262 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    263 		}
    264 	}
    265 }
    266 
    267 /*
    268  * uvm_page_init: init the page system.   called from uvm_init().
    269  *
    270  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    271  */
    272 
    273 void
    274 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    275 {
    276 	vsize_t freepages, pagecount, bucketcount, n;
    277 	struct pgflbucket *bucketarray;
    278 	struct vm_page *pagearray;
    279 	int lcv;
    280 	u_int i;
    281 	paddr_t paddr;
    282 
    283 	/*
    284 	 * init the page queues and page queue locks, except the free
    285 	 * list; we allocate that later (with the initial vm_page
    286 	 * structures).
    287 	 */
    288 
    289 	TAILQ_INIT(&uvm.page_active);
    290 	TAILQ_INIT(&uvm.page_inactive);
    291 	simple_lock_init(&uvm.pageqlock);
    292 	simple_lock_init(&uvm.fpageqlock);
    293 
    294 	/*
    295 	 * init the <obj,offset> => <page> hash table.  for now
    296 	 * we just have one bucket (the bootstrap bucket).  later on we
    297 	 * will allocate new buckets as we dynamically resize the hash table.
    298 	 */
    299 
    300 	uvm.page_nhash = 1;			/* 1 bucket */
    301 	uvm.page_hashmask = 0;			/* mask for hash function */
    302 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    303 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    304 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    305 
    306 	/*
    307 	 * allocate vm_page structures.
    308 	 */
    309 
    310 	/*
    311 	 * sanity check:
    312 	 * before calling this function the MD code is expected to register
    313 	 * some free RAM with the uvm_page_physload() function.   our job
    314 	 * now is to allocate vm_page structures for this memory.
    315 	 */
    316 
    317 	if (vm_nphysseg == 0)
    318 		panic("uvm_page_bootstrap: no memory pre-allocated");
    319 
    320 	/*
    321 	 * first calculate the number of free pages...
    322 	 *
    323 	 * note that we use start/end rather than avail_start/avail_end.
    324 	 * this allows us to allocate extra vm_page structures in case we
    325 	 * want to return some memory to the pool after booting.
    326 	 */
    327 
    328 	freepages = 0;
    329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    330 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    331 
    332 	/*
    333 	 * Let MD code initialize the number of colors, or default
    334 	 * to 1 color if MD code doesn't care.
    335 	 */
    336 	if (uvmexp.ncolors == 0)
    337 		uvmexp.ncolors = 1;
    338 	uvmexp.colormask = uvmexp.ncolors - 1;
    339 
    340 	/*
    341 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    342 	 * use.   for each page of memory we use we need a vm_page structure.
    343 	 * thus, the total number of pages we can use is the total size of
    344 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    345 	 * structure.   we add one to freepages as a fudge factor to avoid
    346 	 * truncation errors (since we can only allocate in terms of whole
    347 	 * pages).
    348 	 */
    349 
    350 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    351 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    352 	    (PAGE_SIZE + sizeof(struct vm_page));
    353 
    354 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    355 	    sizeof(struct pgflbucket)) + (pagecount *
    356 	    sizeof(struct vm_page)));
    357 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    358 
    359 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    360 		uvm.page_free[lcv].pgfl_buckets =
    361 		    (bucketarray + (lcv * uvmexp.ncolors));
    362 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    363 	}
    364 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    365 
    366 	/*
    367 	 * init the vm_page structures and put them in the correct place.
    368 	 */
    369 
    370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    371 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    372 
    373 		/* set up page array pointers */
    374 		vm_physmem[lcv].pgs = pagearray;
    375 		pagearray += n;
    376 		pagecount -= n;
    377 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    378 
    379 		/* init and free vm_pages (we've already zeroed them) */
    380 		paddr = ptoa(vm_physmem[lcv].start);
    381 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    382 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    383 #ifdef __HAVE_VM_PAGE_MD
    384 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    385 #endif
    386 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    387 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    388 				uvmexp.npages++;
    389 				/* add page to free pool */
    390 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    391 			}
    392 		}
    393 	}
    394 
    395 	/*
    396 	 * pass up the values of virtual_space_start and
    397 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    398 	 * layers of the VM.
    399 	 */
    400 
    401 	*kvm_startp = round_page(virtual_space_start);
    402 	*kvm_endp = trunc_page(virtual_space_end);
    403 #ifdef DEBUG
    404 	/*
    405 	 * steal kva for uvm_pagezerocheck().
    406 	 */
    407 	uvm_zerocheckkva = *kvm_startp;
    408 	*kvm_startp += PAGE_SIZE;
    409 #endif /* DEBUG */
    410 
    411 	/*
    412 	 * init locks for kernel threads
    413 	 */
    414 
    415 	simple_lock_init(&uvm.pagedaemon_lock);
    416 	simple_lock_init(&uvm.aiodoned_lock);
    417 
    418 	/*
    419 	 * init various thresholds.
    420 	 */
    421 
    422 	uvmexp.reserve_pagedaemon = 1;
    423 	uvmexp.reserve_kernel = 5;
    424 	uvmexp.anonminpct = 10;
    425 	uvmexp.fileminpct = 10;
    426 	uvmexp.execminpct = 5;
    427 	uvmexp.anonmaxpct = 80;
    428 	uvmexp.filemaxpct = 50;
    429 	uvmexp.execmaxpct = 30;
    430 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    431 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    432 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    433 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    434 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    435 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    436 
    437 	/*
    438 	 * determine if we should zero pages in the idle loop.
    439 	 */
    440 
    441 	uvm.page_idle_zero = vm_page_zero_enable;
    442 
    443 	/*
    444 	 * done!
    445 	 */
    446 
    447 	uvm.page_init_done = TRUE;
    448 }
    449 
    450 /*
    451  * uvm_setpagesize: set the page size
    452  *
    453  * => sets page_shift and page_mask from uvmexp.pagesize.
    454  */
    455 
    456 void
    457 uvm_setpagesize(void)
    458 {
    459 
    460 	/*
    461 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    462 	 * to be a constant (indicated by being a non-zero value).
    463 	 */
    464 	if (uvmexp.pagesize == 0) {
    465 		if (PAGE_SIZE == 0)
    466 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    467 		uvmexp.pagesize = PAGE_SIZE;
    468 	}
    469 	uvmexp.pagemask = uvmexp.pagesize - 1;
    470 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    471 		panic("uvm_setpagesize: page size not a power of two");
    472 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    473 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    474 			break;
    475 }
    476 
    477 /*
    478  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    479  */
    480 
    481 vaddr_t
    482 uvm_pageboot_alloc(vsize_t size)
    483 {
    484 	static boolean_t initialized = FALSE;
    485 	vaddr_t addr;
    486 #if !defined(PMAP_STEAL_MEMORY)
    487 	vaddr_t vaddr;
    488 	paddr_t paddr;
    489 #endif
    490 
    491 	/*
    492 	 * on first call to this function, initialize ourselves.
    493 	 */
    494 	if (initialized == FALSE) {
    495 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    496 
    497 		/* round it the way we like it */
    498 		virtual_space_start = round_page(virtual_space_start);
    499 		virtual_space_end = trunc_page(virtual_space_end);
    500 
    501 		initialized = TRUE;
    502 	}
    503 
    504 	/* round to page size */
    505 	size = round_page(size);
    506 
    507 #if defined(PMAP_STEAL_MEMORY)
    508 
    509 	/*
    510 	 * defer bootstrap allocation to MD code (it may want to allocate
    511 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    512 	 * virtual_space_start/virtual_space_end if necessary.
    513 	 */
    514 
    515 	addr = pmap_steal_memory(size, &virtual_space_start,
    516 	    &virtual_space_end);
    517 
    518 	return(addr);
    519 
    520 #else /* !PMAP_STEAL_MEMORY */
    521 
    522 	/*
    523 	 * allocate virtual memory for this request
    524 	 */
    525 	if (virtual_space_start == virtual_space_end ||
    526 	    (virtual_space_end - virtual_space_start) < size)
    527 		panic("uvm_pageboot_alloc: out of virtual space");
    528 
    529 	addr = virtual_space_start;
    530 
    531 #ifdef PMAP_GROWKERNEL
    532 	/*
    533 	 * If the kernel pmap can't map the requested space,
    534 	 * then allocate more resources for it.
    535 	 */
    536 	if (uvm_maxkaddr < (addr + size)) {
    537 		uvm_maxkaddr = pmap_growkernel(addr + size);
    538 		if (uvm_maxkaddr < (addr + size))
    539 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    540 	}
    541 #endif
    542 
    543 	virtual_space_start += size;
    544 
    545 	/*
    546 	 * allocate and mapin physical pages to back new virtual pages
    547 	 */
    548 
    549 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    550 	    vaddr += PAGE_SIZE) {
    551 
    552 		if (!uvm_page_physget(&paddr))
    553 			panic("uvm_pageboot_alloc: out of memory");
    554 
    555 		/*
    556 		 * Note this memory is no longer managed, so using
    557 		 * pmap_kenter is safe.
    558 		 */
    559 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    560 	}
    561 	pmap_update(pmap_kernel());
    562 	return(addr);
    563 #endif	/* PMAP_STEAL_MEMORY */
    564 }
    565 
    566 #if !defined(PMAP_STEAL_MEMORY)
    567 /*
    568  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    569  *
    570  * => attempt to allocate it off the end of a segment in which the "avail"
    571  *    values match the start/end values.   if we can't do that, then we
    572  *    will advance both values (making them equal, and removing some
    573  *    vm_page structures from the non-avail area).
    574  * => return false if out of memory.
    575  */
    576 
    577 /* subroutine: try to allocate from memory chunks on the specified freelist */
    578 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
    579 
    580 static boolean_t
    581 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    582 {
    583 	int lcv, x;
    584 
    585 	/* pass 1: try allocating from a matching end */
    586 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    587 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    588 #else
    589 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    590 #endif
    591 	{
    592 
    593 		if (uvm.page_init_done == TRUE)
    594 			panic("uvm_page_physget: called _after_ bootstrap");
    595 
    596 		if (vm_physmem[lcv].free_list != freelist)
    597 			continue;
    598 
    599 		/* try from front */
    600 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    601 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    602 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    603 			vm_physmem[lcv].avail_start++;
    604 			vm_physmem[lcv].start++;
    605 			/* nothing left?   nuke it */
    606 			if (vm_physmem[lcv].avail_start ==
    607 			    vm_physmem[lcv].end) {
    608 				if (vm_nphysseg == 1)
    609 				    panic("uvm_page_physget: out of memory!");
    610 				vm_nphysseg--;
    611 				for (x = lcv ; x < vm_nphysseg ; x++)
    612 					/* structure copy */
    613 					vm_physmem[x] = vm_physmem[x+1];
    614 			}
    615 			return (TRUE);
    616 		}
    617 
    618 		/* try from rear */
    619 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    620 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    621 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    622 			vm_physmem[lcv].avail_end--;
    623 			vm_physmem[lcv].end--;
    624 			/* nothing left?   nuke it */
    625 			if (vm_physmem[lcv].avail_end ==
    626 			    vm_physmem[lcv].start) {
    627 				if (vm_nphysseg == 1)
    628 				    panic("uvm_page_physget: out of memory!");
    629 				vm_nphysseg--;
    630 				for (x = lcv ; x < vm_nphysseg ; x++)
    631 					/* structure copy */
    632 					vm_physmem[x] = vm_physmem[x+1];
    633 			}
    634 			return (TRUE);
    635 		}
    636 	}
    637 
    638 	/* pass2: forget about matching ends, just allocate something */
    639 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    640 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    641 #else
    642 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    643 #endif
    644 	{
    645 
    646 		/* any room in this bank? */
    647 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    648 			continue;  /* nope */
    649 
    650 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    651 		vm_physmem[lcv].avail_start++;
    652 		/* truncate! */
    653 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    654 
    655 		/* nothing left?   nuke it */
    656 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    657 			if (vm_nphysseg == 1)
    658 				panic("uvm_page_physget: out of memory!");
    659 			vm_nphysseg--;
    660 			for (x = lcv ; x < vm_nphysseg ; x++)
    661 				/* structure copy */
    662 				vm_physmem[x] = vm_physmem[x+1];
    663 		}
    664 		return (TRUE);
    665 	}
    666 
    667 	return (FALSE);        /* whoops! */
    668 }
    669 
    670 boolean_t
    671 uvm_page_physget(paddr_t *paddrp)
    672 {
    673 	int i;
    674 
    675 	/* try in the order of freelist preference */
    676 	for (i = 0; i < VM_NFREELIST; i++)
    677 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    678 			return (TRUE);
    679 	return (FALSE);
    680 }
    681 #endif /* PMAP_STEAL_MEMORY */
    682 
    683 /*
    684  * uvm_page_physload: load physical memory into VM system
    685  *
    686  * => all args are PFs
    687  * => all pages in start/end get vm_page structures
    688  * => areas marked by avail_start/avail_end get added to the free page pool
    689  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    690  */
    691 
    692 void
    693 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    694     paddr_t avail_end, int free_list)
    695 {
    696 	int preload, lcv;
    697 	psize_t npages;
    698 	struct vm_page *pgs;
    699 	struct vm_physseg *ps;
    700 
    701 	if (uvmexp.pagesize == 0)
    702 		panic("uvm_page_physload: page size not set!");
    703 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    704 		panic("uvm_page_physload: bad free list %d", free_list);
    705 	if (start >= end)
    706 		panic("uvm_page_physload: start >= end");
    707 
    708 	/*
    709 	 * do we have room?
    710 	 */
    711 
    712 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    713 		printf("uvm_page_physload: unable to load physical memory "
    714 		    "segment\n");
    715 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    716 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    717 		printf("\tincrease VM_PHYSSEG_MAX\n");
    718 		return;
    719 	}
    720 
    721 	/*
    722 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    723 	 * called yet, so malloc is not available).
    724 	 */
    725 
    726 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    727 		if (vm_physmem[lcv].pgs)
    728 			break;
    729 	}
    730 	preload = (lcv == vm_nphysseg);
    731 
    732 	/*
    733 	 * if VM is already running, attempt to malloc() vm_page structures
    734 	 */
    735 
    736 	if (!preload) {
    737 #if defined(VM_PHYSSEG_NOADD)
    738 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    739 #else
    740 		/* XXXCDC: need some sort of lockout for this case */
    741 		paddr_t paddr;
    742 		npages = end - start;  /* # of pages */
    743 		pgs = malloc(sizeof(struct vm_page) * npages,
    744 		    M_VMPAGE, M_NOWAIT);
    745 		if (pgs == NULL) {
    746 			printf("uvm_page_physload: can not malloc vm_page "
    747 			    "structs for segment\n");
    748 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    749 			return;
    750 		}
    751 		/* zero data, init phys_addr and free_list, and free pages */
    752 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    753 		for (lcv = 0, paddr = ptoa(start) ;
    754 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    755 			pgs[lcv].phys_addr = paddr;
    756 			pgs[lcv].free_list = free_list;
    757 			if (atop(paddr) >= avail_start &&
    758 			    atop(paddr) <= avail_end)
    759 				uvm_pagefree(&pgs[lcv]);
    760 		}
    761 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    762 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    763 #endif
    764 	} else {
    765 		pgs = NULL;
    766 		npages = 0;
    767 	}
    768 
    769 	/*
    770 	 * now insert us in the proper place in vm_physmem[]
    771 	 */
    772 
    773 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    774 	/* random: put it at the end (easy!) */
    775 	ps = &vm_physmem[vm_nphysseg];
    776 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    777 	{
    778 		int x;
    779 		/* sort by address for binary search */
    780 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    781 			if (start < vm_physmem[lcv].start)
    782 				break;
    783 		ps = &vm_physmem[lcv];
    784 		/* move back other entries, if necessary ... */
    785 		for (x = vm_nphysseg ; x > lcv ; x--)
    786 			/* structure copy */
    787 			vm_physmem[x] = vm_physmem[x - 1];
    788 	}
    789 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    790 	{
    791 		int x;
    792 		/* sort by largest segment first */
    793 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    794 			if ((end - start) >
    795 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    796 				break;
    797 		ps = &vm_physmem[lcv];
    798 		/* move back other entries, if necessary ... */
    799 		for (x = vm_nphysseg ; x > lcv ; x--)
    800 			/* structure copy */
    801 			vm_physmem[x] = vm_physmem[x - 1];
    802 	}
    803 #else
    804 	panic("uvm_page_physload: unknown physseg strategy selected!");
    805 #endif
    806 
    807 	ps->start = start;
    808 	ps->end = end;
    809 	ps->avail_start = avail_start;
    810 	ps->avail_end = avail_end;
    811 	if (preload) {
    812 		ps->pgs = NULL;
    813 	} else {
    814 		ps->pgs = pgs;
    815 		ps->lastpg = pgs + npages - 1;
    816 	}
    817 	ps->free_list = free_list;
    818 	vm_nphysseg++;
    819 
    820 	if (!preload)
    821 		uvm_page_rehash();
    822 }
    823 
    824 /*
    825  * uvm_page_rehash: reallocate hash table based on number of free pages.
    826  */
    827 
    828 void
    829 uvm_page_rehash(void)
    830 {
    831 	int freepages, lcv, bucketcount, oldcount;
    832 	struct pglist *newbuckets, *oldbuckets;
    833 	struct vm_page *pg;
    834 	size_t newsize, oldsize;
    835 
    836 	/*
    837 	 * compute number of pages that can go in the free pool
    838 	 */
    839 
    840 	freepages = 0;
    841 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    842 		freepages +=
    843 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    844 
    845 	/*
    846 	 * compute number of buckets needed for this number of pages
    847 	 */
    848 
    849 	bucketcount = 1;
    850 	while (bucketcount < freepages)
    851 		bucketcount = bucketcount * 2;
    852 
    853 	/*
    854 	 * compute the size of the current table and new table.
    855 	 */
    856 
    857 	oldbuckets = uvm.page_hash;
    858 	oldcount = uvm.page_nhash;
    859 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    860 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    861 
    862 	/*
    863 	 * allocate the new buckets
    864 	 */
    865 
    866 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    867 	    0, UVM_KMF_WIRED);
    868 	if (newbuckets == NULL) {
    869 		printf("uvm_page_physrehash: WARNING: could not grow page "
    870 		    "hash table\n");
    871 		return;
    872 	}
    873 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    874 		TAILQ_INIT(&newbuckets[lcv]);
    875 
    876 	/*
    877 	 * now replace the old buckets with the new ones and rehash everything
    878 	 */
    879 
    880 	simple_lock(&uvm.hashlock);
    881 	uvm.page_hash = newbuckets;
    882 	uvm.page_nhash = bucketcount;
    883 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    884 
    885 	/* ... and rehash */
    886 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    887 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    888 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    889 			TAILQ_INSERT_TAIL(
    890 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    891 			  pg, hashq);
    892 		}
    893 	}
    894 	simple_unlock(&uvm.hashlock);
    895 
    896 	/*
    897 	 * free old bucket array if is not the boot-time table
    898 	 */
    899 
    900 	if (oldbuckets != &uvm_bootbucket)
    901 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    902 		    UVM_KMF_WIRED);
    903 }
    904 
    905 /*
    906  * uvm_page_recolor: Recolor the pages if the new bucket count is
    907  * larger than the old one.
    908  */
    909 
    910 void
    911 uvm_page_recolor(int newncolors)
    912 {
    913 	struct pgflbucket *bucketarray, *oldbucketarray;
    914 	struct pgfreelist pgfl;
    915 	struct vm_page *pg;
    916 	vsize_t bucketcount;
    917 	int s, lcv, color, i, ocolors;
    918 
    919 	if (newncolors <= uvmexp.ncolors)
    920 		return;
    921 
    922 	if (uvm.page_init_done == FALSE) {
    923 		uvmexp.ncolors = newncolors;
    924 		return;
    925 	}
    926 
    927 	bucketcount = newncolors * VM_NFREELIST;
    928 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    929 	    M_VMPAGE, M_NOWAIT);
    930 	if (bucketarray == NULL) {
    931 		printf("WARNING: unable to allocate %ld page color buckets\n",
    932 		    (long) bucketcount);
    933 		return;
    934 	}
    935 
    936 	s = uvm_lock_fpageq();
    937 
    938 	/* Make sure we should still do this. */
    939 	if (newncolors <= uvmexp.ncolors) {
    940 		uvm_unlock_fpageq(s);
    941 		free(bucketarray, M_VMPAGE);
    942 		return;
    943 	}
    944 
    945 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    946 	ocolors = uvmexp.ncolors;
    947 
    948 	uvmexp.ncolors = newncolors;
    949 	uvmexp.colormask = uvmexp.ncolors - 1;
    950 
    951 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    952 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    953 		uvm_page_init_buckets(&pgfl);
    954 		for (color = 0; color < ocolors; color++) {
    955 			for (i = 0; i < PGFL_NQUEUES; i++) {
    956 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    957 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    958 				    != NULL) {
    959 					TAILQ_REMOVE(&uvm.page_free[
    960 					    lcv].pgfl_buckets[
    961 					    color].pgfl_queues[i], pg, pageq);
    962 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    963 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    964 					    i], pg, pageq);
    965 				}
    966 			}
    967 		}
    968 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    969 	}
    970 
    971 	if (have_recolored_pages) {
    972 		uvm_unlock_fpageq(s);
    973 		free(oldbucketarray, M_VMPAGE);
    974 		return;
    975 	}
    976 
    977 	have_recolored_pages = TRUE;
    978 	uvm_unlock_fpageq(s);
    979 }
    980 
    981 /*
    982  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    983  */
    984 
    985 static __inline struct vm_page *
    986 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    987     int *trycolorp)
    988 {
    989 	struct pglist *freeq;
    990 	struct vm_page *pg;
    991 	int color, trycolor = *trycolorp;
    992 
    993 	color = trycolor;
    994 	do {
    995 		if ((pg = TAILQ_FIRST((freeq =
    996 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    997 			goto gotit;
    998 		if ((pg = TAILQ_FIRST((freeq =
    999 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
   1000 			goto gotit;
   1001 		color = (color + 1) & uvmexp.colormask;
   1002 	} while (color != trycolor);
   1003 
   1004 	return (NULL);
   1005 
   1006  gotit:
   1007 	TAILQ_REMOVE(freeq, pg, pageq);
   1008 	uvmexp.free--;
   1009 
   1010 	/* update zero'd page count */
   1011 	if (pg->flags & PG_ZERO)
   1012 		uvmexp.zeropages--;
   1013 
   1014 	if (color == trycolor)
   1015 		uvmexp.colorhit++;
   1016 	else {
   1017 		uvmexp.colormiss++;
   1018 		*trycolorp = color;
   1019 	}
   1020 
   1021 	return (pg);
   1022 }
   1023 
   1024 /*
   1025  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1026  *
   1027  * => return null if no pages free
   1028  * => wake up pagedaemon if number of free pages drops below low water mark
   1029  * => if obj != NULL, obj must be locked (to put in hash)
   1030  * => if anon != NULL, anon must be locked (to put in anon)
   1031  * => only one of obj or anon can be non-null
   1032  * => caller must activate/deactivate page if it is not wired.
   1033  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1034  * => policy decision: it is more important to pull a page off of the
   1035  *	appropriate priority free list than it is to get a zero'd or
   1036  *	unknown contents page.  This is because we live with the
   1037  *	consequences of a bad free list decision for the entire
   1038  *	lifetime of the page, e.g. if the page comes from memory that
   1039  *	is slower to access.
   1040  */
   1041 
   1042 struct vm_page *
   1043 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1044     int flags, int strat, int free_list)
   1045 {
   1046 	int lcv, try1, try2, s, zeroit = 0, color;
   1047 	struct vm_page *pg;
   1048 	boolean_t use_reserve;
   1049 
   1050 	KASSERT(obj == NULL || anon == NULL);
   1051 	KASSERT(off == trunc_page(off));
   1052 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1053 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1054 
   1055 	s = uvm_lock_fpageq();
   1056 
   1057 	/*
   1058 	 * This implements a global round-robin page coloring
   1059 	 * algorithm.
   1060 	 *
   1061 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1062 	 * XXXJRT: What about virtually-indexed caches?
   1063 	 */
   1064 
   1065 	color = uvm.page_free_nextcolor;
   1066 
   1067 	/*
   1068 	 * check to see if we need to generate some free pages waking
   1069 	 * the pagedaemon.
   1070 	 */
   1071 
   1072 	UVM_KICK_PDAEMON();
   1073 
   1074 	/*
   1075 	 * fail if any of these conditions is true:
   1076 	 * [1]  there really are no free pages, or
   1077 	 * [2]  only kernel "reserved" pages remain and
   1078 	 *        the page isn't being allocated to a kernel object.
   1079 	 * [3]  only pagedaemon "reserved" pages remain and
   1080 	 *        the requestor isn't the pagedaemon.
   1081 	 */
   1082 
   1083 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1084 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1085 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1086 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1087 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1088 		goto fail;
   1089 
   1090 #if PGFL_NQUEUES != 2
   1091 #error uvm_pagealloc_strat needs to be updated
   1092 #endif
   1093 
   1094 	/*
   1095 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1096 	 * we try the UNKNOWN queue first.
   1097 	 */
   1098 	if (flags & UVM_PGA_ZERO) {
   1099 		try1 = PGFL_ZEROS;
   1100 		try2 = PGFL_UNKNOWN;
   1101 	} else {
   1102 		try1 = PGFL_UNKNOWN;
   1103 		try2 = PGFL_ZEROS;
   1104 	}
   1105 
   1106  again:
   1107 	switch (strat) {
   1108 	case UVM_PGA_STRAT_NORMAL:
   1109 		/* Check all freelists in descending priority order. */
   1110 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1111 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1112 			    try1, try2, &color);
   1113 			if (pg != NULL)
   1114 				goto gotit;
   1115 		}
   1116 
   1117 		/* No pages free! */
   1118 		goto fail;
   1119 
   1120 	case UVM_PGA_STRAT_ONLY:
   1121 	case UVM_PGA_STRAT_FALLBACK:
   1122 		/* Attempt to allocate from the specified free list. */
   1123 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1124 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1125 		    try1, try2, &color);
   1126 		if (pg != NULL)
   1127 			goto gotit;
   1128 
   1129 		/* Fall back, if possible. */
   1130 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1131 			strat = UVM_PGA_STRAT_NORMAL;
   1132 			goto again;
   1133 		}
   1134 
   1135 		/* No pages free! */
   1136 		goto fail;
   1137 
   1138 	default:
   1139 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1140 		/* NOTREACHED */
   1141 	}
   1142 
   1143  gotit:
   1144 	/*
   1145 	 * We now know which color we actually allocated from; set
   1146 	 * the next color accordingly.
   1147 	 */
   1148 
   1149 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1150 
   1151 	/*
   1152 	 * update allocation statistics and remember if we have to
   1153 	 * zero the page
   1154 	 */
   1155 
   1156 	if (flags & UVM_PGA_ZERO) {
   1157 		if (pg->flags & PG_ZERO) {
   1158 			uvmexp.pga_zerohit++;
   1159 			zeroit = 0;
   1160 		} else {
   1161 			uvmexp.pga_zeromiss++;
   1162 			zeroit = 1;
   1163 		}
   1164 	}
   1165 	uvm_unlock_fpageq(s);
   1166 
   1167 	pg->offset = off;
   1168 	pg->uobject = obj;
   1169 	pg->uanon = anon;
   1170 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1171 	if (anon) {
   1172 		anon->an_page = pg;
   1173 		pg->pqflags = PQ_ANON;
   1174 		uvmexp.anonpages++;
   1175 	} else {
   1176 		if (obj) {
   1177 			uvm_pageinsert(pg);
   1178 		}
   1179 		pg->pqflags = 0;
   1180 	}
   1181 #if defined(UVM_PAGE_TRKOWN)
   1182 	pg->owner_tag = NULL;
   1183 #endif
   1184 	UVM_PAGE_OWN(pg, "new alloc");
   1185 
   1186 	if (flags & UVM_PGA_ZERO) {
   1187 		/*
   1188 		 * A zero'd page is not clean.  If we got a page not already
   1189 		 * zero'd, then we have to zero it ourselves.
   1190 		 */
   1191 		pg->flags &= ~PG_CLEAN;
   1192 		if (zeroit)
   1193 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1194 	}
   1195 
   1196 	return(pg);
   1197 
   1198  fail:
   1199 	uvm_unlock_fpageq(s);
   1200 	return (NULL);
   1201 }
   1202 
   1203 /*
   1204  * uvm_pagereplace: replace a page with another
   1205  *
   1206  * => object must be locked
   1207  */
   1208 
   1209 void
   1210 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1211 {
   1212 
   1213 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1214 	KASSERT(oldpg->uobject != NULL);
   1215 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1216 	KASSERT(newpg->uobject == NULL);
   1217 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1218 
   1219 	newpg->uobject = oldpg->uobject;
   1220 	newpg->offset = oldpg->offset;
   1221 
   1222 	uvm_pageinsert_after(newpg, oldpg);
   1223 	uvm_pageremove(oldpg);
   1224 }
   1225 
   1226 /*
   1227  * uvm_pagerealloc: reallocate a page from one object to another
   1228  *
   1229  * => both objects must be locked
   1230  */
   1231 
   1232 void
   1233 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1234 {
   1235 	/*
   1236 	 * remove it from the old object
   1237 	 */
   1238 
   1239 	if (pg->uobject) {
   1240 		uvm_pageremove(pg);
   1241 	}
   1242 
   1243 	/*
   1244 	 * put it in the new object
   1245 	 */
   1246 
   1247 	if (newobj) {
   1248 		pg->uobject = newobj;
   1249 		pg->offset = newoff;
   1250 		uvm_pageinsert(pg);
   1251 	}
   1252 }
   1253 
   1254 #ifdef DEBUG
   1255 /*
   1256  * check if page is zero-filled
   1257  *
   1258  *  - called with free page queue lock held.
   1259  */
   1260 void
   1261 uvm_pagezerocheck(struct vm_page *pg)
   1262 {
   1263 	int *p, *ep;
   1264 
   1265 	KASSERT(uvm_zerocheckkva != 0);
   1266 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1267 
   1268 	/*
   1269 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1270 	 * uvm page allocator.
   1271 	 *
   1272 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1273 	 */
   1274 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1275 	p = (int *)uvm_zerocheckkva;
   1276 	ep = (int *)((char *)p + PAGE_SIZE);
   1277 	pmap_update(pmap_kernel());
   1278 	while (p < ep) {
   1279 		if (*p != 0)
   1280 			panic("PG_ZERO page isn't zero-filled");
   1281 		p++;
   1282 	}
   1283 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1284 }
   1285 #endif /* DEBUG */
   1286 
   1287 /*
   1288  * uvm_pagefree: free page
   1289  *
   1290  * => erase page's identity (i.e. remove from hash/object)
   1291  * => put page on free list
   1292  * => caller must lock owning object (either anon or uvm_object)
   1293  * => caller must lock page queues
   1294  * => assumes all valid mappings of pg are gone
   1295  */
   1296 
   1297 void
   1298 uvm_pagefree(struct vm_page *pg)
   1299 {
   1300 	int s;
   1301 	struct pglist *pgfl;
   1302 	boolean_t iszero;
   1303 
   1304 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1305 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1306 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1307 	LOCK_ASSERT(pg->uobject == NULL ||
   1308 		    simple_lock_held(&pg->uobject->vmobjlock));
   1309 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1310 		    simple_lock_held(&pg->uanon->an_lock));
   1311 
   1312 #ifdef DEBUG
   1313 	if (pg->uobject == (void *)0xdeadbeef &&
   1314 	    pg->uanon == (void *)0xdeadbeef) {
   1315 		panic("uvm_pagefree: freeing free page %p", pg);
   1316 	}
   1317 #endif /* DEBUG */
   1318 
   1319 	/*
   1320 	 * if the page is loaned, resolve the loan instead of freeing.
   1321 	 */
   1322 
   1323 	if (pg->loan_count) {
   1324 		KASSERT(pg->wire_count == 0);
   1325 
   1326 		/*
   1327 		 * if the page is owned by an anon then we just want to
   1328 		 * drop anon ownership.  the kernel will free the page when
   1329 		 * it is done with it.  if the page is owned by an object,
   1330 		 * remove it from the object and mark it dirty for the benefit
   1331 		 * of possible anon owners.
   1332 		 *
   1333 		 * regardless of previous ownership, wakeup any waiters,
   1334 		 * unbusy the page, and we're done.
   1335 		 */
   1336 
   1337 		if (pg->uobject != NULL) {
   1338 			uvm_pageremove(pg);
   1339 			pg->flags &= ~PG_CLEAN;
   1340 		} else if (pg->uanon != NULL) {
   1341 			if ((pg->pqflags & PQ_ANON) == 0) {
   1342 				pg->loan_count--;
   1343 			} else {
   1344 				pg->pqflags &= ~PQ_ANON;
   1345 				uvmexp.anonpages--;
   1346 			}
   1347 			pg->uanon->an_page = NULL;
   1348 			pg->uanon = NULL;
   1349 		}
   1350 		if (pg->flags & PG_WANTED) {
   1351 			wakeup(pg);
   1352 		}
   1353 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1354 #ifdef UVM_PAGE_TRKOWN
   1355 		pg->owner_tag = NULL;
   1356 #endif
   1357 		if (pg->loan_count) {
   1358 			uvm_pagedequeue(pg);
   1359 			return;
   1360 		}
   1361 	}
   1362 
   1363 	/*
   1364 	 * remove page from its object or anon.
   1365 	 */
   1366 
   1367 	if (pg->uobject != NULL) {
   1368 		uvm_pageremove(pg);
   1369 	} else if (pg->uanon != NULL) {
   1370 		pg->uanon->an_page = NULL;
   1371 		uvmexp.anonpages--;
   1372 	}
   1373 
   1374 	/*
   1375 	 * now remove the page from the queues.
   1376 	 */
   1377 
   1378 	uvm_pagedequeue(pg);
   1379 
   1380 	/*
   1381 	 * if the page was wired, unwire it now.
   1382 	 */
   1383 
   1384 	if (pg->wire_count) {
   1385 		pg->wire_count = 0;
   1386 		uvmexp.wired--;
   1387 	}
   1388 
   1389 	/*
   1390 	 * and put on free queue
   1391 	 */
   1392 
   1393 	iszero = (pg->flags & PG_ZERO);
   1394 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1395 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1396 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1397 
   1398 	pg->pqflags = PQ_FREE;
   1399 #ifdef DEBUG
   1400 	pg->uobject = (void *)0xdeadbeef;
   1401 	pg->offset = 0xdeadbeef;
   1402 	pg->uanon = (void *)0xdeadbeef;
   1403 #endif
   1404 
   1405 	s = uvm_lock_fpageq();
   1406 
   1407 #ifdef DEBUG
   1408 	if (iszero)
   1409 		uvm_pagezerocheck(pg);
   1410 #endif /* DEBUG */
   1411 
   1412 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1413 	uvmexp.free++;
   1414 	if (iszero)
   1415 		uvmexp.zeropages++;
   1416 
   1417 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1418 		uvm.page_idle_zero = vm_page_zero_enable;
   1419 
   1420 	uvm_unlock_fpageq(s);
   1421 }
   1422 
   1423 /*
   1424  * uvm_page_unbusy: unbusy an array of pages.
   1425  *
   1426  * => pages must either all belong to the same object, or all belong to anons.
   1427  * => if pages are object-owned, object must be locked.
   1428  * => if pages are anon-owned, anons must be locked.
   1429  * => caller must lock page queues if pages may be released.
   1430  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1431  */
   1432 
   1433 void
   1434 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1435 {
   1436 	struct vm_page *pg;
   1437 	int i;
   1438 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1439 
   1440 	for (i = 0; i < npgs; i++) {
   1441 		pg = pgs[i];
   1442 		if (pg == NULL || pg == PGO_DONTCARE) {
   1443 			continue;
   1444 		}
   1445 
   1446 		LOCK_ASSERT(pg->uobject == NULL ||
   1447 		    simple_lock_held(&pg->uobject->vmobjlock));
   1448 		LOCK_ASSERT(pg->uobject != NULL ||
   1449 		    (pg->uanon != NULL &&
   1450 		    simple_lock_held(&pg->uanon->an_lock)));
   1451 
   1452 		KASSERT(pg->flags & PG_BUSY);
   1453 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1454 		if (pg->flags & PG_WANTED) {
   1455 			wakeup(pg);
   1456 		}
   1457 		if (pg->flags & PG_RELEASED) {
   1458 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1459 			KASSERT(pg->uobject != NULL ||
   1460 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1461 			pg->flags &= ~PG_RELEASED;
   1462 			uvm_pagefree(pg);
   1463 		} else {
   1464 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1465 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1466 			UVM_PAGE_OWN(pg, NULL);
   1467 		}
   1468 	}
   1469 }
   1470 
   1471 #if defined(UVM_PAGE_TRKOWN)
   1472 /*
   1473  * uvm_page_own: set or release page ownership
   1474  *
   1475  * => this is a debugging function that keeps track of who sets PG_BUSY
   1476  *	and where they do it.   it can be used to track down problems
   1477  *	such a process setting "PG_BUSY" and never releasing it.
   1478  * => page's object [if any] must be locked
   1479  * => if "tag" is NULL then we are releasing page ownership
   1480  */
   1481 void
   1482 uvm_page_own(struct vm_page *pg, const char *tag)
   1483 {
   1484 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1485 
   1486 	/* gain ownership? */
   1487 	if (tag) {
   1488 		if (pg->owner_tag) {
   1489 			printf("uvm_page_own: page %p already owned "
   1490 			    "by proc %d [%s]\n", pg,
   1491 			    pg->owner, pg->owner_tag);
   1492 			panic("uvm_page_own");
   1493 		}
   1494 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1495 		pg->owner_tag = tag;
   1496 		return;
   1497 	}
   1498 
   1499 	/* drop ownership */
   1500 	if (pg->owner_tag == NULL) {
   1501 		printf("uvm_page_own: dropping ownership of an non-owned "
   1502 		    "page (%p)\n", pg);
   1503 		panic("uvm_page_own");
   1504 	}
   1505 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1506 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1507 	    pg->uobject == uvm.kernel_object ||
   1508 	    pg->wire_count > 0 ||
   1509 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1510 	    pg->loan_count > 1);
   1511 	pg->owner_tag = NULL;
   1512 }
   1513 #endif
   1514 
   1515 /*
   1516  * uvm_pageidlezero: zero free pages while the system is idle.
   1517  *
   1518  * => try to complete one color bucket at a time, to reduce our impact
   1519  *	on the CPU cache.
   1520  * => we loop until we either reach the target or whichqs indicates that
   1521  *	there is a process ready to run.
   1522  */
   1523 void
   1524 uvm_pageidlezero(void)
   1525 {
   1526 	struct vm_page *pg;
   1527 	struct pgfreelist *pgfl;
   1528 	int free_list, s, firstbucket;
   1529 	static int nextbucket;
   1530 
   1531 	KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1532 	s = uvm_lock_fpageq();
   1533 	firstbucket = nextbucket;
   1534 	do {
   1535 		if (sched_whichqs != 0)
   1536 			goto quit;
   1537 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1538 			uvm.page_idle_zero = FALSE;
   1539 			goto quit;
   1540 		}
   1541 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1542 			pgfl = &uvm.page_free[free_list];
   1543 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1544 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1545 				if (sched_whichqs != 0)
   1546 					goto quit;
   1547 
   1548 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1549 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1550 				    pg, pageq);
   1551 				uvmexp.free--;
   1552 				uvm_unlock_fpageq(s);
   1553 				KERNEL_UNLOCK();
   1554 #ifdef PMAP_PAGEIDLEZERO
   1555 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1556 
   1557 					/*
   1558 					 * The machine-dependent code detected
   1559 					 * some reason for us to abort zeroing
   1560 					 * pages, probably because there is a
   1561 					 * process now ready to run.
   1562 					 */
   1563 
   1564 					KERNEL_LOCK(
   1565 					    LK_EXCLUSIVE | LK_CANRECURSE);
   1566 					s = uvm_lock_fpageq();
   1567 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1568 					    nextbucket].pgfl_queues[
   1569 					    PGFL_UNKNOWN], pg, pageq);
   1570 					uvmexp.free++;
   1571 					uvmexp.zeroaborts++;
   1572 					goto quit;
   1573 				}
   1574 #else
   1575 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1576 #endif /* PMAP_PAGEIDLEZERO */
   1577 				pg->flags |= PG_ZERO;
   1578 
   1579 				KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1580 				s = uvm_lock_fpageq();
   1581 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1582 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1583 				    pg, pageq);
   1584 				uvmexp.free++;
   1585 				uvmexp.zeropages++;
   1586 			}
   1587 		}
   1588 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1589 	} while (nextbucket != firstbucket);
   1590 quit:
   1591 	uvm_unlock_fpageq(s);
   1592 	KERNEL_UNLOCK();
   1593 }
   1594