Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.108
      1 /*	$NetBSD: uvm_page.c,v 1.108 2005/12/21 12:19:04 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.108 2005/12/21 12:19:04 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE_C              /* pull in uvm_page_i.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either CPU caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 #ifdef DEBUG
    145 vaddr_t uvm_zerocheckkva;
    146 #endif /* DEBUG */
    147 
    148 /*
    149  * local prototypes
    150  */
    151 
    152 static void uvm_pageinsert(struct vm_page *);
    153 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    154 static void uvm_pageremove(struct vm_page *);
    155 
    156 /*
    157  * inline functions
    158  */
    159 
    160 /*
    161  * uvm_pageinsert: insert a page in the object and the hash table
    162  * uvm_pageinsert_after: insert a page into the specified place in listq
    163  *
    164  * => caller must lock object
    165  * => caller must lock page queues
    166  * => call should have already set pg's object and offset pointers
    167  *    and bumped the version counter
    168  */
    169 
    170 __inline static void
    171 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    172 {
    173 	struct pglist *buck;
    174 	struct uvm_object *uobj = pg->uobject;
    175 
    176 	KASSERT((pg->flags & PG_TABLED) == 0);
    177 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    178 	KASSERT(where == NULL || (where->uobject == uobj));
    179 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    180 	simple_lock(&uvm.hashlock);
    181 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    182 	simple_unlock(&uvm.hashlock);
    183 
    184 	if (UVM_OBJ_IS_VNODE(uobj)) {
    185 		if (uobj->uo_npages == 0) {
    186 			struct vnode *vp = (struct vnode *)uobj;
    187 
    188 			vholdl(vp);
    189 		}
    190 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    191 			uvmexp.execpages++;
    192 		} else {
    193 			uvmexp.filepages++;
    194 		}
    195 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    196 		uvmexp.anonpages++;
    197 	}
    198 
    199 	if (where)
    200 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    201 	else
    202 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    203 	pg->flags |= PG_TABLED;
    204 	uobj->uo_npages++;
    205 }
    206 
    207 __inline static void
    208 uvm_pageinsert(struct vm_page *pg)
    209 {
    210 
    211 	uvm_pageinsert_after(pg, NULL);
    212 }
    213 
    214 /*
    215  * uvm_page_remove: remove page from object and hash
    216  *
    217  * => caller must lock object
    218  * => caller must lock page queues
    219  */
    220 
    221 static __inline void
    222 uvm_pageremove(struct vm_page *pg)
    223 {
    224 	struct pglist *buck;
    225 	struct uvm_object *uobj = pg->uobject;
    226 
    227 	KASSERT(pg->flags & PG_TABLED);
    228 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    229 	simple_lock(&uvm.hashlock);
    230 	TAILQ_REMOVE(buck, pg, hashq);
    231 	simple_unlock(&uvm.hashlock);
    232 
    233 	if (UVM_OBJ_IS_VNODE(uobj)) {
    234 		if (uobj->uo_npages == 1) {
    235 			struct vnode *vp = (struct vnode *)uobj;
    236 
    237 			holdrelel(vp);
    238 		}
    239 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    240 			uvmexp.execpages--;
    241 		} else {
    242 			uvmexp.filepages--;
    243 		}
    244 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    245 		uvmexp.anonpages--;
    246 	}
    247 
    248 	/* object should be locked */
    249 	uobj->uo_npages--;
    250 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    251 	pg->flags &= ~PG_TABLED;
    252 	pg->uobject = NULL;
    253 }
    254 
    255 static void
    256 uvm_page_init_buckets(struct pgfreelist *pgfl)
    257 {
    258 	int color, i;
    259 
    260 	for (color = 0; color < uvmexp.ncolors; color++) {
    261 		for (i = 0; i < PGFL_NQUEUES; i++) {
    262 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    263 		}
    264 	}
    265 }
    266 
    267 /*
    268  * uvm_page_init: init the page system.   called from uvm_init().
    269  *
    270  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    271  */
    272 
    273 void
    274 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    275 {
    276 	vsize_t freepages, pagecount, bucketcount, n;
    277 	struct pgflbucket *bucketarray;
    278 	struct vm_page *pagearray;
    279 	int lcv;
    280 	u_int i;
    281 	paddr_t paddr;
    282 
    283 	/*
    284 	 * init the page queues and page queue locks, except the free
    285 	 * list; we allocate that later (with the initial vm_page
    286 	 * structures).
    287 	 */
    288 
    289 	TAILQ_INIT(&uvm.page_active);
    290 	TAILQ_INIT(&uvm.page_inactive);
    291 	simple_lock_init(&uvm.pageqlock);
    292 	simple_lock_init(&uvm.fpageqlock);
    293 
    294 	/*
    295 	 * init the <obj,offset> => <page> hash table.  for now
    296 	 * we just have one bucket (the bootstrap bucket).  later on we
    297 	 * will allocate new buckets as we dynamically resize the hash table.
    298 	 */
    299 
    300 	uvm.page_nhash = 1;			/* 1 bucket */
    301 	uvm.page_hashmask = 0;			/* mask for hash function */
    302 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    303 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    304 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    305 
    306 	/*
    307 	 * allocate vm_page structures.
    308 	 */
    309 
    310 	/*
    311 	 * sanity check:
    312 	 * before calling this function the MD code is expected to register
    313 	 * some free RAM with the uvm_page_physload() function.   our job
    314 	 * now is to allocate vm_page structures for this memory.
    315 	 */
    316 
    317 	if (vm_nphysseg == 0)
    318 		panic("uvm_page_bootstrap: no memory pre-allocated");
    319 
    320 	/*
    321 	 * first calculate the number of free pages...
    322 	 *
    323 	 * note that we use start/end rather than avail_start/avail_end.
    324 	 * this allows us to allocate extra vm_page structures in case we
    325 	 * want to return some memory to the pool after booting.
    326 	 */
    327 
    328 	freepages = 0;
    329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    330 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    331 
    332 	/*
    333 	 * Let MD code initialize the number of colors, or default
    334 	 * to 1 color if MD code doesn't care.
    335 	 */
    336 	if (uvmexp.ncolors == 0)
    337 		uvmexp.ncolors = 1;
    338 	uvmexp.colormask = uvmexp.ncolors - 1;
    339 
    340 	/*
    341 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    342 	 * use.   for each page of memory we use we need a vm_page structure.
    343 	 * thus, the total number of pages we can use is the total size of
    344 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    345 	 * structure.   we add one to freepages as a fudge factor to avoid
    346 	 * truncation errors (since we can only allocate in terms of whole
    347 	 * pages).
    348 	 */
    349 
    350 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    351 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    352 	    (PAGE_SIZE + sizeof(struct vm_page));
    353 
    354 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    355 	    sizeof(struct pgflbucket)) + (pagecount *
    356 	    sizeof(struct vm_page)));
    357 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    358 
    359 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    360 		uvm.page_free[lcv].pgfl_buckets =
    361 		    (bucketarray + (lcv * uvmexp.ncolors));
    362 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    363 	}
    364 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    365 
    366 	/*
    367 	 * init the vm_page structures and put them in the correct place.
    368 	 */
    369 
    370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    371 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    372 
    373 		/* set up page array pointers */
    374 		vm_physmem[lcv].pgs = pagearray;
    375 		pagearray += n;
    376 		pagecount -= n;
    377 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    378 
    379 		/* init and free vm_pages (we've already zeroed them) */
    380 		paddr = ptoa(vm_physmem[lcv].start);
    381 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    382 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    383 #ifdef __HAVE_VM_PAGE_MD
    384 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    385 #endif
    386 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    387 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    388 				uvmexp.npages++;
    389 				/* add page to free pool */
    390 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    391 			}
    392 		}
    393 	}
    394 
    395 	/*
    396 	 * pass up the values of virtual_space_start and
    397 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    398 	 * layers of the VM.
    399 	 */
    400 
    401 	*kvm_startp = round_page(virtual_space_start);
    402 	*kvm_endp = trunc_page(virtual_space_end);
    403 #ifdef DEBUG
    404 	/*
    405 	 * steal kva for uvm_pagezerocheck().
    406 	 */
    407 	uvm_zerocheckkva = *kvm_startp;
    408 	*kvm_startp += PAGE_SIZE;
    409 #endif /* DEBUG */
    410 
    411 	/*
    412 	 * init locks for kernel threads
    413 	 */
    414 
    415 	simple_lock_init(&uvm.pagedaemon_lock);
    416 	simple_lock_init(&uvm.aiodoned_lock);
    417 
    418 	/*
    419 	 * init various thresholds.
    420 	 */
    421 
    422 	uvmexp.reserve_pagedaemon = 1;
    423 	uvmexp.reserve_kernel = 5;
    424 	uvmexp.anonminpct = 10;
    425 	uvmexp.fileminpct = 10;
    426 	uvmexp.execminpct = 5;
    427 	uvmexp.anonmaxpct = 80;
    428 	uvmexp.filemaxpct = 50;
    429 	uvmexp.execmaxpct = 30;
    430 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    431 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    432 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    433 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    434 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    435 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    436 	uvm_pctparam_set(&uvmexp.inactivepct, 33);
    437 
    438 	/*
    439 	 * determine if we should zero pages in the idle loop.
    440 	 */
    441 
    442 	uvm.page_idle_zero = vm_page_zero_enable;
    443 
    444 	/*
    445 	 * done!
    446 	 */
    447 
    448 	uvm.page_init_done = TRUE;
    449 }
    450 
    451 /*
    452  * uvm_setpagesize: set the page size
    453  *
    454  * => sets page_shift and page_mask from uvmexp.pagesize.
    455  */
    456 
    457 void
    458 uvm_setpagesize(void)
    459 {
    460 
    461 	/*
    462 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    463 	 * to be a constant (indicated by being a non-zero value).
    464 	 */
    465 	if (uvmexp.pagesize == 0) {
    466 		if (PAGE_SIZE == 0)
    467 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    468 		uvmexp.pagesize = PAGE_SIZE;
    469 	}
    470 	uvmexp.pagemask = uvmexp.pagesize - 1;
    471 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    472 		panic("uvm_setpagesize: page size not a power of two");
    473 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    474 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    475 			break;
    476 }
    477 
    478 /*
    479  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    480  */
    481 
    482 vaddr_t
    483 uvm_pageboot_alloc(vsize_t size)
    484 {
    485 	static boolean_t initialized = FALSE;
    486 	vaddr_t addr;
    487 #if !defined(PMAP_STEAL_MEMORY)
    488 	vaddr_t vaddr;
    489 	paddr_t paddr;
    490 #endif
    491 
    492 	/*
    493 	 * on first call to this function, initialize ourselves.
    494 	 */
    495 	if (initialized == FALSE) {
    496 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    497 
    498 		/* round it the way we like it */
    499 		virtual_space_start = round_page(virtual_space_start);
    500 		virtual_space_end = trunc_page(virtual_space_end);
    501 
    502 		initialized = TRUE;
    503 	}
    504 
    505 	/* round to page size */
    506 	size = round_page(size);
    507 
    508 #if defined(PMAP_STEAL_MEMORY)
    509 
    510 	/*
    511 	 * defer bootstrap allocation to MD code (it may want to allocate
    512 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    513 	 * virtual_space_start/virtual_space_end if necessary.
    514 	 */
    515 
    516 	addr = pmap_steal_memory(size, &virtual_space_start,
    517 	    &virtual_space_end);
    518 
    519 	return(addr);
    520 
    521 #else /* !PMAP_STEAL_MEMORY */
    522 
    523 	/*
    524 	 * allocate virtual memory for this request
    525 	 */
    526 	if (virtual_space_start == virtual_space_end ||
    527 	    (virtual_space_end - virtual_space_start) < size)
    528 		panic("uvm_pageboot_alloc: out of virtual space");
    529 
    530 	addr = virtual_space_start;
    531 
    532 #ifdef PMAP_GROWKERNEL
    533 	/*
    534 	 * If the kernel pmap can't map the requested space,
    535 	 * then allocate more resources for it.
    536 	 */
    537 	if (uvm_maxkaddr < (addr + size)) {
    538 		uvm_maxkaddr = pmap_growkernel(addr + size);
    539 		if (uvm_maxkaddr < (addr + size))
    540 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    541 	}
    542 #endif
    543 
    544 	virtual_space_start += size;
    545 
    546 	/*
    547 	 * allocate and mapin physical pages to back new virtual pages
    548 	 */
    549 
    550 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    551 	    vaddr += PAGE_SIZE) {
    552 
    553 		if (!uvm_page_physget(&paddr))
    554 			panic("uvm_pageboot_alloc: out of memory");
    555 
    556 		/*
    557 		 * Note this memory is no longer managed, so using
    558 		 * pmap_kenter is safe.
    559 		 */
    560 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    561 	}
    562 	pmap_update(pmap_kernel());
    563 	return(addr);
    564 #endif	/* PMAP_STEAL_MEMORY */
    565 }
    566 
    567 #if !defined(PMAP_STEAL_MEMORY)
    568 /*
    569  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    570  *
    571  * => attempt to allocate it off the end of a segment in which the "avail"
    572  *    values match the start/end values.   if we can't do that, then we
    573  *    will advance both values (making them equal, and removing some
    574  *    vm_page structures from the non-avail area).
    575  * => return false if out of memory.
    576  */
    577 
    578 /* subroutine: try to allocate from memory chunks on the specified freelist */
    579 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
    580 
    581 static boolean_t
    582 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    583 {
    584 	int lcv, x;
    585 
    586 	/* pass 1: try allocating from a matching end */
    587 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    588 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    589 #else
    590 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    591 #endif
    592 	{
    593 
    594 		if (uvm.page_init_done == TRUE)
    595 			panic("uvm_page_physget: called _after_ bootstrap");
    596 
    597 		if (vm_physmem[lcv].free_list != freelist)
    598 			continue;
    599 
    600 		/* try from front */
    601 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    602 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    603 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    604 			vm_physmem[lcv].avail_start++;
    605 			vm_physmem[lcv].start++;
    606 			/* nothing left?   nuke it */
    607 			if (vm_physmem[lcv].avail_start ==
    608 			    vm_physmem[lcv].end) {
    609 				if (vm_nphysseg == 1)
    610 				    panic("uvm_page_physget: out of memory!");
    611 				vm_nphysseg--;
    612 				for (x = lcv ; x < vm_nphysseg ; x++)
    613 					/* structure copy */
    614 					vm_physmem[x] = vm_physmem[x+1];
    615 			}
    616 			return (TRUE);
    617 		}
    618 
    619 		/* try from rear */
    620 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    621 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    622 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    623 			vm_physmem[lcv].avail_end--;
    624 			vm_physmem[lcv].end--;
    625 			/* nothing left?   nuke it */
    626 			if (vm_physmem[lcv].avail_end ==
    627 			    vm_physmem[lcv].start) {
    628 				if (vm_nphysseg == 1)
    629 				    panic("uvm_page_physget: out of memory!");
    630 				vm_nphysseg--;
    631 				for (x = lcv ; x < vm_nphysseg ; x++)
    632 					/* structure copy */
    633 					vm_physmem[x] = vm_physmem[x+1];
    634 			}
    635 			return (TRUE);
    636 		}
    637 	}
    638 
    639 	/* pass2: forget about matching ends, just allocate something */
    640 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    641 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    642 #else
    643 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    644 #endif
    645 	{
    646 
    647 		/* any room in this bank? */
    648 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    649 			continue;  /* nope */
    650 
    651 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    652 		vm_physmem[lcv].avail_start++;
    653 		/* truncate! */
    654 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    655 
    656 		/* nothing left?   nuke it */
    657 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    658 			if (vm_nphysseg == 1)
    659 				panic("uvm_page_physget: out of memory!");
    660 			vm_nphysseg--;
    661 			for (x = lcv ; x < vm_nphysseg ; x++)
    662 				/* structure copy */
    663 				vm_physmem[x] = vm_physmem[x+1];
    664 		}
    665 		return (TRUE);
    666 	}
    667 
    668 	return (FALSE);        /* whoops! */
    669 }
    670 
    671 boolean_t
    672 uvm_page_physget(paddr_t *paddrp)
    673 {
    674 	int i;
    675 
    676 	/* try in the order of freelist preference */
    677 	for (i = 0; i < VM_NFREELIST; i++)
    678 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    679 			return (TRUE);
    680 	return (FALSE);
    681 }
    682 #endif /* PMAP_STEAL_MEMORY */
    683 
    684 /*
    685  * uvm_page_physload: load physical memory into VM system
    686  *
    687  * => all args are PFs
    688  * => all pages in start/end get vm_page structures
    689  * => areas marked by avail_start/avail_end get added to the free page pool
    690  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    691  */
    692 
    693 void
    694 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    695     paddr_t avail_end, int free_list)
    696 {
    697 	int preload, lcv;
    698 	psize_t npages;
    699 	struct vm_page *pgs;
    700 	struct vm_physseg *ps;
    701 
    702 	if (uvmexp.pagesize == 0)
    703 		panic("uvm_page_physload: page size not set!");
    704 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    705 		panic("uvm_page_physload: bad free list %d", free_list);
    706 	if (start >= end)
    707 		panic("uvm_page_physload: start >= end");
    708 
    709 	/*
    710 	 * do we have room?
    711 	 */
    712 
    713 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    714 		printf("uvm_page_physload: unable to load physical memory "
    715 		    "segment\n");
    716 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    717 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    718 		printf("\tincrease VM_PHYSSEG_MAX\n");
    719 		return;
    720 	}
    721 
    722 	/*
    723 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    724 	 * called yet, so malloc is not available).
    725 	 */
    726 
    727 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    728 		if (vm_physmem[lcv].pgs)
    729 			break;
    730 	}
    731 	preload = (lcv == vm_nphysseg);
    732 
    733 	/*
    734 	 * if VM is already running, attempt to malloc() vm_page structures
    735 	 */
    736 
    737 	if (!preload) {
    738 #if defined(VM_PHYSSEG_NOADD)
    739 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    740 #else
    741 		/* XXXCDC: need some sort of lockout for this case */
    742 		paddr_t paddr;
    743 		npages = end - start;  /* # of pages */
    744 		pgs = malloc(sizeof(struct vm_page) * npages,
    745 		    M_VMPAGE, M_NOWAIT);
    746 		if (pgs == NULL) {
    747 			printf("uvm_page_physload: can not malloc vm_page "
    748 			    "structs for segment\n");
    749 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    750 			return;
    751 		}
    752 		/* zero data, init phys_addr and free_list, and free pages */
    753 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    754 		for (lcv = 0, paddr = ptoa(start) ;
    755 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    756 			pgs[lcv].phys_addr = paddr;
    757 			pgs[lcv].free_list = free_list;
    758 			if (atop(paddr) >= avail_start &&
    759 			    atop(paddr) <= avail_end)
    760 				uvm_pagefree(&pgs[lcv]);
    761 		}
    762 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    763 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    764 #endif
    765 	} else {
    766 		pgs = NULL;
    767 		npages = 0;
    768 	}
    769 
    770 	/*
    771 	 * now insert us in the proper place in vm_physmem[]
    772 	 */
    773 
    774 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    775 	/* random: put it at the end (easy!) */
    776 	ps = &vm_physmem[vm_nphysseg];
    777 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    778 	{
    779 		int x;
    780 		/* sort by address for binary search */
    781 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    782 			if (start < vm_physmem[lcv].start)
    783 				break;
    784 		ps = &vm_physmem[lcv];
    785 		/* move back other entries, if necessary ... */
    786 		for (x = vm_nphysseg ; x > lcv ; x--)
    787 			/* structure copy */
    788 			vm_physmem[x] = vm_physmem[x - 1];
    789 	}
    790 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    791 	{
    792 		int x;
    793 		/* sort by largest segment first */
    794 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    795 			if ((end - start) >
    796 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    797 				break;
    798 		ps = &vm_physmem[lcv];
    799 		/* move back other entries, if necessary ... */
    800 		for (x = vm_nphysseg ; x > lcv ; x--)
    801 			/* structure copy */
    802 			vm_physmem[x] = vm_physmem[x - 1];
    803 	}
    804 #else
    805 	panic("uvm_page_physload: unknown physseg strategy selected!");
    806 #endif
    807 
    808 	ps->start = start;
    809 	ps->end = end;
    810 	ps->avail_start = avail_start;
    811 	ps->avail_end = avail_end;
    812 	if (preload) {
    813 		ps->pgs = NULL;
    814 	} else {
    815 		ps->pgs = pgs;
    816 		ps->lastpg = pgs + npages - 1;
    817 	}
    818 	ps->free_list = free_list;
    819 	vm_nphysseg++;
    820 
    821 	if (!preload)
    822 		uvm_page_rehash();
    823 }
    824 
    825 /*
    826  * uvm_page_rehash: reallocate hash table based on number of free pages.
    827  */
    828 
    829 void
    830 uvm_page_rehash(void)
    831 {
    832 	int freepages, lcv, bucketcount, oldcount;
    833 	struct pglist *newbuckets, *oldbuckets;
    834 	struct vm_page *pg;
    835 	size_t newsize, oldsize;
    836 
    837 	/*
    838 	 * compute number of pages that can go in the free pool
    839 	 */
    840 
    841 	freepages = 0;
    842 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    843 		freepages +=
    844 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    845 
    846 	/*
    847 	 * compute number of buckets needed for this number of pages
    848 	 */
    849 
    850 	bucketcount = 1;
    851 	while (bucketcount < freepages)
    852 		bucketcount = bucketcount * 2;
    853 
    854 	/*
    855 	 * compute the size of the current table and new table.
    856 	 */
    857 
    858 	oldbuckets = uvm.page_hash;
    859 	oldcount = uvm.page_nhash;
    860 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    861 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    862 
    863 	/*
    864 	 * allocate the new buckets
    865 	 */
    866 
    867 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    868 	    0, UVM_KMF_WIRED);
    869 	if (newbuckets == NULL) {
    870 		printf("uvm_page_physrehash: WARNING: could not grow page "
    871 		    "hash table\n");
    872 		return;
    873 	}
    874 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    875 		TAILQ_INIT(&newbuckets[lcv]);
    876 
    877 	/*
    878 	 * now replace the old buckets with the new ones and rehash everything
    879 	 */
    880 
    881 	simple_lock(&uvm.hashlock);
    882 	uvm.page_hash = newbuckets;
    883 	uvm.page_nhash = bucketcount;
    884 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    885 
    886 	/* ... and rehash */
    887 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    888 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    889 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    890 			TAILQ_INSERT_TAIL(
    891 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    892 			  pg, hashq);
    893 		}
    894 	}
    895 	simple_unlock(&uvm.hashlock);
    896 
    897 	/*
    898 	 * free old bucket array if is not the boot-time table
    899 	 */
    900 
    901 	if (oldbuckets != &uvm_bootbucket)
    902 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    903 		    UVM_KMF_WIRED);
    904 }
    905 
    906 /*
    907  * uvm_page_recolor: Recolor the pages if the new bucket count is
    908  * larger than the old one.
    909  */
    910 
    911 void
    912 uvm_page_recolor(int newncolors)
    913 {
    914 	struct pgflbucket *bucketarray, *oldbucketarray;
    915 	struct pgfreelist pgfl;
    916 	struct vm_page *pg;
    917 	vsize_t bucketcount;
    918 	int s, lcv, color, i, ocolors;
    919 
    920 	if (newncolors <= uvmexp.ncolors)
    921 		return;
    922 
    923 	if (uvm.page_init_done == FALSE) {
    924 		uvmexp.ncolors = newncolors;
    925 		return;
    926 	}
    927 
    928 	bucketcount = newncolors * VM_NFREELIST;
    929 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    930 	    M_VMPAGE, M_NOWAIT);
    931 	if (bucketarray == NULL) {
    932 		printf("WARNING: unable to allocate %ld page color buckets\n",
    933 		    (long) bucketcount);
    934 		return;
    935 	}
    936 
    937 	s = uvm_lock_fpageq();
    938 
    939 	/* Make sure we should still do this. */
    940 	if (newncolors <= uvmexp.ncolors) {
    941 		uvm_unlock_fpageq(s);
    942 		free(bucketarray, M_VMPAGE);
    943 		return;
    944 	}
    945 
    946 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    947 	ocolors = uvmexp.ncolors;
    948 
    949 	uvmexp.ncolors = newncolors;
    950 	uvmexp.colormask = uvmexp.ncolors - 1;
    951 
    952 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    953 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    954 		uvm_page_init_buckets(&pgfl);
    955 		for (color = 0; color < ocolors; color++) {
    956 			for (i = 0; i < PGFL_NQUEUES; i++) {
    957 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    958 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    959 				    != NULL) {
    960 					TAILQ_REMOVE(&uvm.page_free[
    961 					    lcv].pgfl_buckets[
    962 					    color].pgfl_queues[i], pg, pageq);
    963 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    964 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    965 					    i], pg, pageq);
    966 				}
    967 			}
    968 		}
    969 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    970 	}
    971 
    972 	if (have_recolored_pages) {
    973 		uvm_unlock_fpageq(s);
    974 		free(oldbucketarray, M_VMPAGE);
    975 		return;
    976 	}
    977 
    978 	have_recolored_pages = TRUE;
    979 	uvm_unlock_fpageq(s);
    980 }
    981 
    982 /*
    983  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    984  */
    985 
    986 static __inline struct vm_page *
    987 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    988     int *trycolorp)
    989 {
    990 	struct pglist *freeq;
    991 	struct vm_page *pg;
    992 	int color, trycolor = *trycolorp;
    993 
    994 	color = trycolor;
    995 	do {
    996 		if ((pg = TAILQ_FIRST((freeq =
    997 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    998 			goto gotit;
    999 		if ((pg = TAILQ_FIRST((freeq =
   1000 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
   1001 			goto gotit;
   1002 		color = (color + 1) & uvmexp.colormask;
   1003 	} while (color != trycolor);
   1004 
   1005 	return (NULL);
   1006 
   1007  gotit:
   1008 	TAILQ_REMOVE(freeq, pg, pageq);
   1009 	uvmexp.free--;
   1010 
   1011 	/* update zero'd page count */
   1012 	if (pg->flags & PG_ZERO)
   1013 		uvmexp.zeropages--;
   1014 
   1015 	if (color == trycolor)
   1016 		uvmexp.colorhit++;
   1017 	else {
   1018 		uvmexp.colormiss++;
   1019 		*trycolorp = color;
   1020 	}
   1021 
   1022 	return (pg);
   1023 }
   1024 
   1025 /*
   1026  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1027  *
   1028  * => return null if no pages free
   1029  * => wake up pagedaemon if number of free pages drops below low water mark
   1030  * => if obj != NULL, obj must be locked (to put in hash)
   1031  * => if anon != NULL, anon must be locked (to put in anon)
   1032  * => only one of obj or anon can be non-null
   1033  * => caller must activate/deactivate page if it is not wired.
   1034  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1035  * => policy decision: it is more important to pull a page off of the
   1036  *	appropriate priority free list than it is to get a zero'd or
   1037  *	unknown contents page.  This is because we live with the
   1038  *	consequences of a bad free list decision for the entire
   1039  *	lifetime of the page, e.g. if the page comes from memory that
   1040  *	is slower to access.
   1041  */
   1042 
   1043 struct vm_page *
   1044 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1045     int flags, int strat, int free_list)
   1046 {
   1047 	int lcv, try1, try2, s, zeroit = 0, color;
   1048 	struct vm_page *pg;
   1049 	boolean_t use_reserve;
   1050 
   1051 	KASSERT(obj == NULL || anon == NULL);
   1052 	KASSERT(off == trunc_page(off));
   1053 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1054 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1055 
   1056 	s = uvm_lock_fpageq();
   1057 
   1058 	/*
   1059 	 * This implements a global round-robin page coloring
   1060 	 * algorithm.
   1061 	 *
   1062 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1063 	 * XXXJRT: What about virtually-indexed caches?
   1064 	 */
   1065 
   1066 	color = uvm.page_free_nextcolor;
   1067 
   1068 	/*
   1069 	 * check to see if we need to generate some free pages waking
   1070 	 * the pagedaemon.
   1071 	 */
   1072 
   1073 	UVM_KICK_PDAEMON();
   1074 
   1075 	/*
   1076 	 * fail if any of these conditions is true:
   1077 	 * [1]  there really are no free pages, or
   1078 	 * [2]  only kernel "reserved" pages remain and
   1079 	 *        the page isn't being allocated to a kernel object.
   1080 	 * [3]  only pagedaemon "reserved" pages remain and
   1081 	 *        the requestor isn't the pagedaemon.
   1082 	 */
   1083 
   1084 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1085 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1086 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1087 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1088 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1089 		goto fail;
   1090 
   1091 #if PGFL_NQUEUES != 2
   1092 #error uvm_pagealloc_strat needs to be updated
   1093 #endif
   1094 
   1095 	/*
   1096 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1097 	 * we try the UNKNOWN queue first.
   1098 	 */
   1099 	if (flags & UVM_PGA_ZERO) {
   1100 		try1 = PGFL_ZEROS;
   1101 		try2 = PGFL_UNKNOWN;
   1102 	} else {
   1103 		try1 = PGFL_UNKNOWN;
   1104 		try2 = PGFL_ZEROS;
   1105 	}
   1106 
   1107  again:
   1108 	switch (strat) {
   1109 	case UVM_PGA_STRAT_NORMAL:
   1110 		/* Check all freelists in descending priority order. */
   1111 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1112 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1113 			    try1, try2, &color);
   1114 			if (pg != NULL)
   1115 				goto gotit;
   1116 		}
   1117 
   1118 		/* No pages free! */
   1119 		goto fail;
   1120 
   1121 	case UVM_PGA_STRAT_ONLY:
   1122 	case UVM_PGA_STRAT_FALLBACK:
   1123 		/* Attempt to allocate from the specified free list. */
   1124 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1125 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1126 		    try1, try2, &color);
   1127 		if (pg != NULL)
   1128 			goto gotit;
   1129 
   1130 		/* Fall back, if possible. */
   1131 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1132 			strat = UVM_PGA_STRAT_NORMAL;
   1133 			goto again;
   1134 		}
   1135 
   1136 		/* No pages free! */
   1137 		goto fail;
   1138 
   1139 	default:
   1140 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1141 		/* NOTREACHED */
   1142 	}
   1143 
   1144  gotit:
   1145 	/*
   1146 	 * We now know which color we actually allocated from; set
   1147 	 * the next color accordingly.
   1148 	 */
   1149 
   1150 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1151 
   1152 	/*
   1153 	 * update allocation statistics and remember if we have to
   1154 	 * zero the page
   1155 	 */
   1156 
   1157 	if (flags & UVM_PGA_ZERO) {
   1158 		if (pg->flags & PG_ZERO) {
   1159 			uvmexp.pga_zerohit++;
   1160 			zeroit = 0;
   1161 		} else {
   1162 			uvmexp.pga_zeromiss++;
   1163 			zeroit = 1;
   1164 		}
   1165 	}
   1166 	uvm_unlock_fpageq(s);
   1167 
   1168 	pg->offset = off;
   1169 	pg->uobject = obj;
   1170 	pg->uanon = anon;
   1171 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1172 	if (anon) {
   1173 		anon->an_page = pg;
   1174 		pg->pqflags = PQ_ANON;
   1175 		uvmexp.anonpages++;
   1176 	} else {
   1177 		if (obj) {
   1178 			uvm_pageinsert(pg);
   1179 		}
   1180 		pg->pqflags = 0;
   1181 	}
   1182 #if defined(UVM_PAGE_TRKOWN)
   1183 	pg->owner_tag = NULL;
   1184 #endif
   1185 	UVM_PAGE_OWN(pg, "new alloc");
   1186 
   1187 	if (flags & UVM_PGA_ZERO) {
   1188 		/*
   1189 		 * A zero'd page is not clean.  If we got a page not already
   1190 		 * zero'd, then we have to zero it ourselves.
   1191 		 */
   1192 		pg->flags &= ~PG_CLEAN;
   1193 		if (zeroit)
   1194 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1195 	}
   1196 
   1197 	return(pg);
   1198 
   1199  fail:
   1200 	uvm_unlock_fpageq(s);
   1201 	return (NULL);
   1202 }
   1203 
   1204 /*
   1205  * uvm_pagereplace: replace a page with another
   1206  *
   1207  * => object must be locked
   1208  */
   1209 
   1210 void
   1211 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1212 {
   1213 
   1214 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1215 	KASSERT(oldpg->uobject != NULL);
   1216 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1217 	KASSERT(newpg->uobject == NULL);
   1218 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1219 
   1220 	newpg->uobject = oldpg->uobject;
   1221 	newpg->offset = oldpg->offset;
   1222 
   1223 	uvm_pageinsert_after(newpg, oldpg);
   1224 	uvm_pageremove(oldpg);
   1225 }
   1226 
   1227 /*
   1228  * uvm_pagerealloc: reallocate a page from one object to another
   1229  *
   1230  * => both objects must be locked
   1231  */
   1232 
   1233 void
   1234 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1235 {
   1236 	/*
   1237 	 * remove it from the old object
   1238 	 */
   1239 
   1240 	if (pg->uobject) {
   1241 		uvm_pageremove(pg);
   1242 	}
   1243 
   1244 	/*
   1245 	 * put it in the new object
   1246 	 */
   1247 
   1248 	if (newobj) {
   1249 		pg->uobject = newobj;
   1250 		pg->offset = newoff;
   1251 		uvm_pageinsert(pg);
   1252 	}
   1253 }
   1254 
   1255 #ifdef DEBUG
   1256 /*
   1257  * check if page is zero-filled
   1258  *
   1259  *  - called with free page queue lock held.
   1260  */
   1261 void
   1262 uvm_pagezerocheck(struct vm_page *pg)
   1263 {
   1264 	int *p, *ep;
   1265 
   1266 	KASSERT(uvm_zerocheckkva != 0);
   1267 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1268 
   1269 	/*
   1270 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1271 	 * uvm page allocator.
   1272 	 *
   1273 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1274 	 */
   1275 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1276 	p = (int *)uvm_zerocheckkva;
   1277 	ep = (int *)((char *)p + PAGE_SIZE);
   1278 	pmap_update(pmap_kernel());
   1279 	while (p < ep) {
   1280 		if (*p != 0)
   1281 			panic("PG_ZERO page isn't zero-filled");
   1282 		p++;
   1283 	}
   1284 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1285 }
   1286 #endif /* DEBUG */
   1287 
   1288 /*
   1289  * uvm_pagefree: free page
   1290  *
   1291  * => erase page's identity (i.e. remove from hash/object)
   1292  * => put page on free list
   1293  * => caller must lock owning object (either anon or uvm_object)
   1294  * => caller must lock page queues
   1295  * => assumes all valid mappings of pg are gone
   1296  */
   1297 
   1298 void
   1299 uvm_pagefree(struct vm_page *pg)
   1300 {
   1301 	int s;
   1302 	struct pglist *pgfl;
   1303 	boolean_t iszero;
   1304 
   1305 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1306 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1307 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1308 	LOCK_ASSERT(pg->uobject == NULL ||
   1309 		    simple_lock_held(&pg->uobject->vmobjlock));
   1310 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1311 		    simple_lock_held(&pg->uanon->an_lock));
   1312 
   1313 #ifdef DEBUG
   1314 	if (pg->uobject == (void *)0xdeadbeef &&
   1315 	    pg->uanon == (void *)0xdeadbeef) {
   1316 		panic("uvm_pagefree: freeing free page %p", pg);
   1317 	}
   1318 #endif /* DEBUG */
   1319 
   1320 	/*
   1321 	 * if the page is loaned, resolve the loan instead of freeing.
   1322 	 */
   1323 
   1324 	if (pg->loan_count) {
   1325 		KASSERT(pg->wire_count == 0);
   1326 
   1327 		/*
   1328 		 * if the page is owned by an anon then we just want to
   1329 		 * drop anon ownership.  the kernel will free the page when
   1330 		 * it is done with it.  if the page is owned by an object,
   1331 		 * remove it from the object and mark it dirty for the benefit
   1332 		 * of possible anon owners.
   1333 		 *
   1334 		 * regardless of previous ownership, wakeup any waiters,
   1335 		 * unbusy the page, and we're done.
   1336 		 */
   1337 
   1338 		if (pg->uobject != NULL) {
   1339 			uvm_pageremove(pg);
   1340 			pg->flags &= ~PG_CLEAN;
   1341 		} else if (pg->uanon != NULL) {
   1342 			if ((pg->pqflags & PQ_ANON) == 0) {
   1343 				pg->loan_count--;
   1344 			} else {
   1345 				pg->pqflags &= ~PQ_ANON;
   1346 				uvmexp.anonpages--;
   1347 			}
   1348 			pg->uanon->an_page = NULL;
   1349 			pg->uanon = NULL;
   1350 		}
   1351 		if (pg->flags & PG_WANTED) {
   1352 			wakeup(pg);
   1353 		}
   1354 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1355 #ifdef UVM_PAGE_TRKOWN
   1356 		pg->owner_tag = NULL;
   1357 #endif
   1358 		if (pg->loan_count) {
   1359 			uvm_pagedequeue(pg);
   1360 			return;
   1361 		}
   1362 	}
   1363 
   1364 	/*
   1365 	 * remove page from its object or anon.
   1366 	 */
   1367 
   1368 	if (pg->uobject != NULL) {
   1369 		uvm_pageremove(pg);
   1370 	} else if (pg->uanon != NULL) {
   1371 		pg->uanon->an_page = NULL;
   1372 		uvmexp.anonpages--;
   1373 	}
   1374 
   1375 	/*
   1376 	 * now remove the page from the queues.
   1377 	 */
   1378 
   1379 	uvm_pagedequeue(pg);
   1380 
   1381 	/*
   1382 	 * if the page was wired, unwire it now.
   1383 	 */
   1384 
   1385 	if (pg->wire_count) {
   1386 		pg->wire_count = 0;
   1387 		uvmexp.wired--;
   1388 	}
   1389 
   1390 	/*
   1391 	 * and put on free queue
   1392 	 */
   1393 
   1394 	iszero = (pg->flags & PG_ZERO);
   1395 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1396 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1397 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1398 
   1399 	pg->pqflags = PQ_FREE;
   1400 #ifdef DEBUG
   1401 	pg->uobject = (void *)0xdeadbeef;
   1402 	pg->offset = 0xdeadbeef;
   1403 	pg->uanon = (void *)0xdeadbeef;
   1404 #endif
   1405 
   1406 	s = uvm_lock_fpageq();
   1407 
   1408 #ifdef DEBUG
   1409 	if (iszero)
   1410 		uvm_pagezerocheck(pg);
   1411 #endif /* DEBUG */
   1412 
   1413 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1414 	uvmexp.free++;
   1415 	if (iszero)
   1416 		uvmexp.zeropages++;
   1417 
   1418 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1419 		uvm.page_idle_zero = vm_page_zero_enable;
   1420 
   1421 	uvm_unlock_fpageq(s);
   1422 }
   1423 
   1424 /*
   1425  * uvm_page_unbusy: unbusy an array of pages.
   1426  *
   1427  * => pages must either all belong to the same object, or all belong to anons.
   1428  * => if pages are object-owned, object must be locked.
   1429  * => if pages are anon-owned, anons must be locked.
   1430  * => caller must lock page queues if pages may be released.
   1431  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1432  */
   1433 
   1434 void
   1435 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1436 {
   1437 	struct vm_page *pg;
   1438 	int i;
   1439 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1440 
   1441 	for (i = 0; i < npgs; i++) {
   1442 		pg = pgs[i];
   1443 		if (pg == NULL || pg == PGO_DONTCARE) {
   1444 			continue;
   1445 		}
   1446 
   1447 		LOCK_ASSERT(pg->uobject == NULL ||
   1448 		    simple_lock_held(&pg->uobject->vmobjlock));
   1449 		LOCK_ASSERT(pg->uobject != NULL ||
   1450 		    (pg->uanon != NULL &&
   1451 		    simple_lock_held(&pg->uanon->an_lock)));
   1452 
   1453 		KASSERT(pg->flags & PG_BUSY);
   1454 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1455 		if (pg->flags & PG_WANTED) {
   1456 			wakeup(pg);
   1457 		}
   1458 		if (pg->flags & PG_RELEASED) {
   1459 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1460 			KASSERT(pg->uobject != NULL ||
   1461 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1462 			pg->flags &= ~PG_RELEASED;
   1463 			uvm_pagefree(pg);
   1464 		} else {
   1465 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1466 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1467 			UVM_PAGE_OWN(pg, NULL);
   1468 		}
   1469 	}
   1470 }
   1471 
   1472 #if defined(UVM_PAGE_TRKOWN)
   1473 /*
   1474  * uvm_page_own: set or release page ownership
   1475  *
   1476  * => this is a debugging function that keeps track of who sets PG_BUSY
   1477  *	and where they do it.   it can be used to track down problems
   1478  *	such a process setting "PG_BUSY" and never releasing it.
   1479  * => page's object [if any] must be locked
   1480  * => if "tag" is NULL then we are releasing page ownership
   1481  */
   1482 void
   1483 uvm_page_own(struct vm_page *pg, const char *tag)
   1484 {
   1485 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1486 
   1487 	/* gain ownership? */
   1488 	if (tag) {
   1489 		if (pg->owner_tag) {
   1490 			printf("uvm_page_own: page %p already owned "
   1491 			    "by proc %d [%s]\n", pg,
   1492 			    pg->owner, pg->owner_tag);
   1493 			panic("uvm_page_own");
   1494 		}
   1495 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1496 		pg->owner_tag = tag;
   1497 		return;
   1498 	}
   1499 
   1500 	/* drop ownership */
   1501 	if (pg->owner_tag == NULL) {
   1502 		printf("uvm_page_own: dropping ownership of an non-owned "
   1503 		    "page (%p)\n", pg);
   1504 		panic("uvm_page_own");
   1505 	}
   1506 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1507 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1508 	    pg->uobject == uvm.kernel_object ||
   1509 	    pg->wire_count > 0 ||
   1510 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1511 	    pg->loan_count > 1);
   1512 	pg->owner_tag = NULL;
   1513 }
   1514 #endif
   1515 
   1516 /*
   1517  * uvm_pageidlezero: zero free pages while the system is idle.
   1518  *
   1519  * => try to complete one color bucket at a time, to reduce our impact
   1520  *	on the CPU cache.
   1521  * => we loop until we either reach the target or whichqs indicates that
   1522  *	there is a process ready to run.
   1523  */
   1524 void
   1525 uvm_pageidlezero(void)
   1526 {
   1527 	struct vm_page *pg;
   1528 	struct pgfreelist *pgfl;
   1529 	int free_list, s, firstbucket;
   1530 	static int nextbucket;
   1531 
   1532 	KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1533 	s = uvm_lock_fpageq();
   1534 	firstbucket = nextbucket;
   1535 	do {
   1536 		if (sched_whichqs != 0)
   1537 			goto quit;
   1538 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1539 			uvm.page_idle_zero = FALSE;
   1540 			goto quit;
   1541 		}
   1542 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1543 			pgfl = &uvm.page_free[free_list];
   1544 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1545 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1546 				if (sched_whichqs != 0)
   1547 					goto quit;
   1548 
   1549 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1550 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1551 				    pg, pageq);
   1552 				uvmexp.free--;
   1553 				uvm_unlock_fpageq(s);
   1554 				KERNEL_UNLOCK();
   1555 #ifdef PMAP_PAGEIDLEZERO
   1556 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1557 
   1558 					/*
   1559 					 * The machine-dependent code detected
   1560 					 * some reason for us to abort zeroing
   1561 					 * pages, probably because there is a
   1562 					 * process now ready to run.
   1563 					 */
   1564 
   1565 					KERNEL_LOCK(
   1566 					    LK_EXCLUSIVE | LK_CANRECURSE);
   1567 					s = uvm_lock_fpageq();
   1568 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1569 					    nextbucket].pgfl_queues[
   1570 					    PGFL_UNKNOWN], pg, pageq);
   1571 					uvmexp.free++;
   1572 					uvmexp.zeroaborts++;
   1573 					goto quit;
   1574 				}
   1575 #else
   1576 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1577 #endif /* PMAP_PAGEIDLEZERO */
   1578 				pg->flags |= PG_ZERO;
   1579 
   1580 				KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1581 				s = uvm_lock_fpageq();
   1582 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1583 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1584 				    pg, pageq);
   1585 				uvmexp.free++;
   1586 				uvmexp.zeropages++;
   1587 			}
   1588 		}
   1589 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1590 	} while (nextbucket != firstbucket);
   1591 quit:
   1592 	uvm_unlock_fpageq(s);
   1593 	KERNEL_UNLOCK();
   1594 }
   1595