Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.113
      1 /*	$NetBSD: uvm_page.c,v 1.113 2006/09/15 15:51:13 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.113 2006/09/15 15:51:13 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 
     87 #include <uvm/uvm.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * global vars... XXXCDC: move to uvm. structure.
     92  */
     93 
     94 /*
     95  * physical memory config is stored in vm_physmem.
     96  */
     97 
     98 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     99 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    100 
    101 /*
    102  * Some supported CPUs in a given architecture don't support all
    103  * of the things necessary to do idle page zero'ing efficiently.
    104  * We therefore provide a way to disable it from machdep code here.
    105  */
    106 /*
    107  * XXX disabled until we can find a way to do this without causing
    108  * problems for either CPU caches or DMA latency.
    109  */
    110 boolean_t vm_page_zero_enable = FALSE;
    111 
    112 /*
    113  * local variables
    114  */
    115 
    116 /*
    117  * these variables record the values returned by vm_page_bootstrap,
    118  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    119  * and pmap_startup here also uses them internally.
    120  */
    121 
    122 static vaddr_t      virtual_space_start;
    123 static vaddr_t      virtual_space_end;
    124 
    125 /*
    126  * we use a hash table with only one bucket during bootup.  we will
    127  * later rehash (resize) the hash table once the allocator is ready.
    128  * we static allocate the one bootstrap bucket below...
    129  */
    130 
    131 static struct pglist uvm_bootbucket;
    132 
    133 /*
    134  * we allocate an initial number of page colors in uvm_page_init(),
    135  * and remember them.  We may re-color pages as cache sizes are
    136  * discovered during the autoconfiguration phase.  But we can never
    137  * free the initial set of buckets, since they are allocated using
    138  * uvm_pageboot_alloc().
    139  */
    140 
    141 static boolean_t have_recolored_pages /* = FALSE */;
    142 
    143 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    144 
    145 #ifdef DEBUG
    146 vaddr_t uvm_zerocheckkva;
    147 #endif /* DEBUG */
    148 
    149 /*
    150  * local prototypes
    151  */
    152 
    153 static void uvm_pageinsert(struct vm_page *);
    154 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    155 static void uvm_pageremove(struct vm_page *);
    156 
    157 /*
    158  * inline functions
    159  */
    160 
    161 /*
    162  * uvm_pageinsert: insert a page in the object and the hash table
    163  * uvm_pageinsert_after: insert a page into the specified place in listq
    164  *
    165  * => caller must lock object
    166  * => caller must lock page queues
    167  * => call should have already set pg's object and offset pointers
    168  *    and bumped the version counter
    169  */
    170 
    171 inline static void
    172 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    173 {
    174 	struct pglist *buck;
    175 	struct uvm_object *uobj = pg->uobject;
    176 
    177 	KASSERT((pg->flags & PG_TABLED) == 0);
    178 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    179 	KASSERT(where == NULL || (where->uobject == uobj));
    180 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    181 	simple_lock(&uvm.hashlock);
    182 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    183 	simple_unlock(&uvm.hashlock);
    184 
    185 	if (UVM_OBJ_IS_VNODE(uobj)) {
    186 		if (uobj->uo_npages == 0) {
    187 			struct vnode *vp = (struct vnode *)uobj;
    188 
    189 			vholdl(vp);
    190 		}
    191 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    192 			uvmexp.execpages++;
    193 		} else {
    194 			uvmexp.filepages++;
    195 		}
    196 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    197 		uvmexp.anonpages++;
    198 	}
    199 
    200 	if (where)
    201 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    202 	else
    203 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    204 	pg->flags |= PG_TABLED;
    205 	uobj->uo_npages++;
    206 }
    207 
    208 inline static void
    209 uvm_pageinsert(struct vm_page *pg)
    210 {
    211 
    212 	uvm_pageinsert_after(pg, NULL);
    213 }
    214 
    215 /*
    216  * uvm_page_remove: remove page from object and hash
    217  *
    218  * => caller must lock object
    219  * => caller must lock page queues
    220  */
    221 
    222 static inline void
    223 uvm_pageremove(struct vm_page *pg)
    224 {
    225 	struct pglist *buck;
    226 	struct uvm_object *uobj = pg->uobject;
    227 
    228 	KASSERT(pg->flags & PG_TABLED);
    229 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    230 	simple_lock(&uvm.hashlock);
    231 	TAILQ_REMOVE(buck, pg, hashq);
    232 	simple_unlock(&uvm.hashlock);
    233 
    234 	if (UVM_OBJ_IS_VNODE(uobj)) {
    235 		if (uobj->uo_npages == 1) {
    236 			struct vnode *vp = (struct vnode *)uobj;
    237 
    238 			holdrelel(vp);
    239 		}
    240 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    241 			uvmexp.execpages--;
    242 		} else {
    243 			uvmexp.filepages--;
    244 		}
    245 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    246 		uvmexp.anonpages--;
    247 	}
    248 
    249 	/* object should be locked */
    250 	uobj->uo_npages--;
    251 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    252 	pg->flags &= ~PG_TABLED;
    253 	pg->uobject = NULL;
    254 }
    255 
    256 static void
    257 uvm_page_init_buckets(struct pgfreelist *pgfl)
    258 {
    259 	int color, i;
    260 
    261 	for (color = 0; color < uvmexp.ncolors; color++) {
    262 		for (i = 0; i < PGFL_NQUEUES; i++) {
    263 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    264 		}
    265 	}
    266 }
    267 
    268 /*
    269  * uvm_page_init: init the page system.   called from uvm_init().
    270  *
    271  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    272  */
    273 
    274 void
    275 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    276 {
    277 	vsize_t freepages, pagecount, bucketcount, n;
    278 	struct pgflbucket *bucketarray;
    279 	struct vm_page *pagearray;
    280 	int lcv;
    281 	u_int i;
    282 	paddr_t paddr;
    283 
    284 	/*
    285 	 * init the page queues and page queue locks, except the free
    286 	 * list; we allocate that later (with the initial vm_page
    287 	 * structures).
    288 	 */
    289 
    290 	uvmpdpol_init();
    291 	simple_lock_init(&uvm.pageqlock);
    292 	simple_lock_init(&uvm.fpageqlock);
    293 
    294 	/*
    295 	 * init the <obj,offset> => <page> hash table.  for now
    296 	 * we just have one bucket (the bootstrap bucket).  later on we
    297 	 * will allocate new buckets as we dynamically resize the hash table.
    298 	 */
    299 
    300 	uvm.page_nhash = 1;			/* 1 bucket */
    301 	uvm.page_hashmask = 0;			/* mask for hash function */
    302 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    303 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    304 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    305 
    306 	/*
    307 	 * allocate vm_page structures.
    308 	 */
    309 
    310 	/*
    311 	 * sanity check:
    312 	 * before calling this function the MD code is expected to register
    313 	 * some free RAM with the uvm_page_physload() function.   our job
    314 	 * now is to allocate vm_page structures for this memory.
    315 	 */
    316 
    317 	if (vm_nphysseg == 0)
    318 		panic("uvm_page_bootstrap: no memory pre-allocated");
    319 
    320 	/*
    321 	 * first calculate the number of free pages...
    322 	 *
    323 	 * note that we use start/end rather than avail_start/avail_end.
    324 	 * this allows us to allocate extra vm_page structures in case we
    325 	 * want to return some memory to the pool after booting.
    326 	 */
    327 
    328 	freepages = 0;
    329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    330 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    331 
    332 	/*
    333 	 * Let MD code initialize the number of colors, or default
    334 	 * to 1 color if MD code doesn't care.
    335 	 */
    336 	if (uvmexp.ncolors == 0)
    337 		uvmexp.ncolors = 1;
    338 	uvmexp.colormask = uvmexp.ncolors - 1;
    339 
    340 	/*
    341 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    342 	 * use.   for each page of memory we use we need a vm_page structure.
    343 	 * thus, the total number of pages we can use is the total size of
    344 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    345 	 * structure.   we add one to freepages as a fudge factor to avoid
    346 	 * truncation errors (since we can only allocate in terms of whole
    347 	 * pages).
    348 	 */
    349 
    350 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    351 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    352 	    (PAGE_SIZE + sizeof(struct vm_page));
    353 
    354 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    355 	    sizeof(struct pgflbucket)) + (pagecount *
    356 	    sizeof(struct vm_page)));
    357 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    358 
    359 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    360 		uvm.page_free[lcv].pgfl_buckets =
    361 		    (bucketarray + (lcv * uvmexp.ncolors));
    362 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    363 	}
    364 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    365 
    366 	/*
    367 	 * init the vm_page structures and put them in the correct place.
    368 	 */
    369 
    370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    371 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    372 
    373 		/* set up page array pointers */
    374 		vm_physmem[lcv].pgs = pagearray;
    375 		pagearray += n;
    376 		pagecount -= n;
    377 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    378 
    379 		/* init and free vm_pages (we've already zeroed them) */
    380 		paddr = ptoa(vm_physmem[lcv].start);
    381 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    382 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    383 #ifdef __HAVE_VM_PAGE_MD
    384 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    385 #endif
    386 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    387 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    388 				uvmexp.npages++;
    389 				/* add page to free pool */
    390 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    391 			}
    392 		}
    393 	}
    394 
    395 	/*
    396 	 * pass up the values of virtual_space_start and
    397 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    398 	 * layers of the VM.
    399 	 */
    400 
    401 	*kvm_startp = round_page(virtual_space_start);
    402 	*kvm_endp = trunc_page(virtual_space_end);
    403 #ifdef DEBUG
    404 	/*
    405 	 * steal kva for uvm_pagezerocheck().
    406 	 */
    407 	uvm_zerocheckkva = *kvm_startp;
    408 	*kvm_startp += PAGE_SIZE;
    409 #endif /* DEBUG */
    410 
    411 	/*
    412 	 * init locks for kernel threads
    413 	 */
    414 
    415 	simple_lock_init(&uvm.pagedaemon_lock);
    416 	simple_lock_init(&uvm.aiodoned_lock);
    417 
    418 	/*
    419 	 * init various thresholds.
    420 	 */
    421 
    422 	uvmexp.reserve_pagedaemon = 1;
    423 	uvmexp.reserve_kernel = 5;
    424 
    425 	/*
    426 	 * determine if we should zero pages in the idle loop.
    427 	 */
    428 
    429 	uvm.page_idle_zero = vm_page_zero_enable;
    430 
    431 	/*
    432 	 * done!
    433 	 */
    434 
    435 	uvm.page_init_done = TRUE;
    436 }
    437 
    438 /*
    439  * uvm_setpagesize: set the page size
    440  *
    441  * => sets page_shift and page_mask from uvmexp.pagesize.
    442  */
    443 
    444 void
    445 uvm_setpagesize(void)
    446 {
    447 
    448 	/*
    449 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    450 	 * to be a constant (indicated by being a non-zero value).
    451 	 */
    452 	if (uvmexp.pagesize == 0) {
    453 		if (PAGE_SIZE == 0)
    454 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    455 		uvmexp.pagesize = PAGE_SIZE;
    456 	}
    457 	uvmexp.pagemask = uvmexp.pagesize - 1;
    458 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    459 		panic("uvm_setpagesize: page size not a power of two");
    460 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    461 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    462 			break;
    463 }
    464 
    465 /*
    466  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    467  */
    468 
    469 vaddr_t
    470 uvm_pageboot_alloc(vsize_t size)
    471 {
    472 	static boolean_t initialized = FALSE;
    473 	vaddr_t addr;
    474 #if !defined(PMAP_STEAL_MEMORY)
    475 	vaddr_t vaddr;
    476 	paddr_t paddr;
    477 #endif
    478 
    479 	/*
    480 	 * on first call to this function, initialize ourselves.
    481 	 */
    482 	if (initialized == FALSE) {
    483 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    484 
    485 		/* round it the way we like it */
    486 		virtual_space_start = round_page(virtual_space_start);
    487 		virtual_space_end = trunc_page(virtual_space_end);
    488 
    489 		initialized = TRUE;
    490 	}
    491 
    492 	/* round to page size */
    493 	size = round_page(size);
    494 
    495 #if defined(PMAP_STEAL_MEMORY)
    496 
    497 	/*
    498 	 * defer bootstrap allocation to MD code (it may want to allocate
    499 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    500 	 * virtual_space_start/virtual_space_end if necessary.
    501 	 */
    502 
    503 	addr = pmap_steal_memory(size, &virtual_space_start,
    504 	    &virtual_space_end);
    505 
    506 	return(addr);
    507 
    508 #else /* !PMAP_STEAL_MEMORY */
    509 
    510 	/*
    511 	 * allocate virtual memory for this request
    512 	 */
    513 	if (virtual_space_start == virtual_space_end ||
    514 	    (virtual_space_end - virtual_space_start) < size)
    515 		panic("uvm_pageboot_alloc: out of virtual space");
    516 
    517 	addr = virtual_space_start;
    518 
    519 #ifdef PMAP_GROWKERNEL
    520 	/*
    521 	 * If the kernel pmap can't map the requested space,
    522 	 * then allocate more resources for it.
    523 	 */
    524 	if (uvm_maxkaddr < (addr + size)) {
    525 		uvm_maxkaddr = pmap_growkernel(addr + size);
    526 		if (uvm_maxkaddr < (addr + size))
    527 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    528 	}
    529 #endif
    530 
    531 	virtual_space_start += size;
    532 
    533 	/*
    534 	 * allocate and mapin physical pages to back new virtual pages
    535 	 */
    536 
    537 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    538 	    vaddr += PAGE_SIZE) {
    539 
    540 		if (!uvm_page_physget(&paddr))
    541 			panic("uvm_pageboot_alloc: out of memory");
    542 
    543 		/*
    544 		 * Note this memory is no longer managed, so using
    545 		 * pmap_kenter is safe.
    546 		 */
    547 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    548 	}
    549 	pmap_update(pmap_kernel());
    550 	return(addr);
    551 #endif	/* PMAP_STEAL_MEMORY */
    552 }
    553 
    554 #if !defined(PMAP_STEAL_MEMORY)
    555 /*
    556  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    557  *
    558  * => attempt to allocate it off the end of a segment in which the "avail"
    559  *    values match the start/end values.   if we can't do that, then we
    560  *    will advance both values (making them equal, and removing some
    561  *    vm_page structures from the non-avail area).
    562  * => return false if out of memory.
    563  */
    564 
    565 /* subroutine: try to allocate from memory chunks on the specified freelist */
    566 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
    567 
    568 static boolean_t
    569 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    570 {
    571 	int lcv, x;
    572 
    573 	/* pass 1: try allocating from a matching end */
    574 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    575 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    576 #else
    577 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    578 #endif
    579 	{
    580 
    581 		if (uvm.page_init_done == TRUE)
    582 			panic("uvm_page_physget: called _after_ bootstrap");
    583 
    584 		if (vm_physmem[lcv].free_list != freelist)
    585 			continue;
    586 
    587 		/* try from front */
    588 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    589 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    590 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    591 			vm_physmem[lcv].avail_start++;
    592 			vm_physmem[lcv].start++;
    593 			/* nothing left?   nuke it */
    594 			if (vm_physmem[lcv].avail_start ==
    595 			    vm_physmem[lcv].end) {
    596 				if (vm_nphysseg == 1)
    597 				    panic("uvm_page_physget: out of memory!");
    598 				vm_nphysseg--;
    599 				for (x = lcv ; x < vm_nphysseg ; x++)
    600 					/* structure copy */
    601 					vm_physmem[x] = vm_physmem[x+1];
    602 			}
    603 			return (TRUE);
    604 		}
    605 
    606 		/* try from rear */
    607 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    608 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    609 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    610 			vm_physmem[lcv].avail_end--;
    611 			vm_physmem[lcv].end--;
    612 			/* nothing left?   nuke it */
    613 			if (vm_physmem[lcv].avail_end ==
    614 			    vm_physmem[lcv].start) {
    615 				if (vm_nphysseg == 1)
    616 				    panic("uvm_page_physget: out of memory!");
    617 				vm_nphysseg--;
    618 				for (x = lcv ; x < vm_nphysseg ; x++)
    619 					/* structure copy */
    620 					vm_physmem[x] = vm_physmem[x+1];
    621 			}
    622 			return (TRUE);
    623 		}
    624 	}
    625 
    626 	/* pass2: forget about matching ends, just allocate something */
    627 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    628 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    629 #else
    630 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    631 #endif
    632 	{
    633 
    634 		/* any room in this bank? */
    635 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    636 			continue;  /* nope */
    637 
    638 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    639 		vm_physmem[lcv].avail_start++;
    640 		/* truncate! */
    641 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    642 
    643 		/* nothing left?   nuke it */
    644 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    645 			if (vm_nphysseg == 1)
    646 				panic("uvm_page_physget: out of memory!");
    647 			vm_nphysseg--;
    648 			for (x = lcv ; x < vm_nphysseg ; x++)
    649 				/* structure copy */
    650 				vm_physmem[x] = vm_physmem[x+1];
    651 		}
    652 		return (TRUE);
    653 	}
    654 
    655 	return (FALSE);        /* whoops! */
    656 }
    657 
    658 boolean_t
    659 uvm_page_physget(paddr_t *paddrp)
    660 {
    661 	int i;
    662 
    663 	/* try in the order of freelist preference */
    664 	for (i = 0; i < VM_NFREELIST; i++)
    665 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    666 			return (TRUE);
    667 	return (FALSE);
    668 }
    669 #endif /* PMAP_STEAL_MEMORY */
    670 
    671 /*
    672  * uvm_page_physload: load physical memory into VM system
    673  *
    674  * => all args are PFs
    675  * => all pages in start/end get vm_page structures
    676  * => areas marked by avail_start/avail_end get added to the free page pool
    677  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    678  */
    679 
    680 void
    681 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    682     paddr_t avail_end, int free_list)
    683 {
    684 	int preload, lcv;
    685 	psize_t npages;
    686 	struct vm_page *pgs;
    687 	struct vm_physseg *ps;
    688 
    689 	if (uvmexp.pagesize == 0)
    690 		panic("uvm_page_physload: page size not set!");
    691 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    692 		panic("uvm_page_physload: bad free list %d", free_list);
    693 	if (start >= end)
    694 		panic("uvm_page_physload: start >= end");
    695 
    696 	/*
    697 	 * do we have room?
    698 	 */
    699 
    700 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    701 		printf("uvm_page_physload: unable to load physical memory "
    702 		    "segment\n");
    703 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    704 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    705 		printf("\tincrease VM_PHYSSEG_MAX\n");
    706 		return;
    707 	}
    708 
    709 	/*
    710 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    711 	 * called yet, so malloc is not available).
    712 	 */
    713 
    714 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    715 		if (vm_physmem[lcv].pgs)
    716 			break;
    717 	}
    718 	preload = (lcv == vm_nphysseg);
    719 
    720 	/*
    721 	 * if VM is already running, attempt to malloc() vm_page structures
    722 	 */
    723 
    724 	if (!preload) {
    725 #if defined(VM_PHYSSEG_NOADD)
    726 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    727 #else
    728 		/* XXXCDC: need some sort of lockout for this case */
    729 		paddr_t paddr;
    730 		npages = end - start;  /* # of pages */
    731 		pgs = malloc(sizeof(struct vm_page) * npages,
    732 		    M_VMPAGE, M_NOWAIT);
    733 		if (pgs == NULL) {
    734 			printf("uvm_page_physload: can not malloc vm_page "
    735 			    "structs for segment\n");
    736 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    737 			return;
    738 		}
    739 		/* zero data, init phys_addr and free_list, and free pages */
    740 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    741 		for (lcv = 0, paddr = ptoa(start) ;
    742 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    743 			pgs[lcv].phys_addr = paddr;
    744 			pgs[lcv].free_list = free_list;
    745 			if (atop(paddr) >= avail_start &&
    746 			    atop(paddr) <= avail_end)
    747 				uvm_pagefree(&pgs[lcv]);
    748 		}
    749 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    750 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    751 #endif
    752 	} else {
    753 		pgs = NULL;
    754 		npages = 0;
    755 	}
    756 
    757 	/*
    758 	 * now insert us in the proper place in vm_physmem[]
    759 	 */
    760 
    761 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    762 	/* random: put it at the end (easy!) */
    763 	ps = &vm_physmem[vm_nphysseg];
    764 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    765 	{
    766 		int x;
    767 		/* sort by address for binary search */
    768 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    769 			if (start < vm_physmem[lcv].start)
    770 				break;
    771 		ps = &vm_physmem[lcv];
    772 		/* move back other entries, if necessary ... */
    773 		for (x = vm_nphysseg ; x > lcv ; x--)
    774 			/* structure copy */
    775 			vm_physmem[x] = vm_physmem[x - 1];
    776 	}
    777 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    778 	{
    779 		int x;
    780 		/* sort by largest segment first */
    781 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    782 			if ((end - start) >
    783 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    784 				break;
    785 		ps = &vm_physmem[lcv];
    786 		/* move back other entries, if necessary ... */
    787 		for (x = vm_nphysseg ; x > lcv ; x--)
    788 			/* structure copy */
    789 			vm_physmem[x] = vm_physmem[x - 1];
    790 	}
    791 #else
    792 	panic("uvm_page_physload: unknown physseg strategy selected!");
    793 #endif
    794 
    795 	ps->start = start;
    796 	ps->end = end;
    797 	ps->avail_start = avail_start;
    798 	ps->avail_end = avail_end;
    799 	if (preload) {
    800 		ps->pgs = NULL;
    801 	} else {
    802 		ps->pgs = pgs;
    803 		ps->lastpg = pgs + npages - 1;
    804 	}
    805 	ps->free_list = free_list;
    806 	vm_nphysseg++;
    807 
    808 	if (!preload) {
    809 		uvm_page_rehash();
    810 		uvmpdpol_reinit();
    811 	}
    812 }
    813 
    814 /*
    815  * uvm_page_rehash: reallocate hash table based on number of free pages.
    816  */
    817 
    818 void
    819 uvm_page_rehash(void)
    820 {
    821 	int freepages, lcv, bucketcount, oldcount;
    822 	struct pglist *newbuckets, *oldbuckets;
    823 	struct vm_page *pg;
    824 	size_t newsize, oldsize;
    825 
    826 	/*
    827 	 * compute number of pages that can go in the free pool
    828 	 */
    829 
    830 	freepages = 0;
    831 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    832 		freepages +=
    833 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    834 
    835 	/*
    836 	 * compute number of buckets needed for this number of pages
    837 	 */
    838 
    839 	bucketcount = 1;
    840 	while (bucketcount < freepages)
    841 		bucketcount = bucketcount * 2;
    842 
    843 	/*
    844 	 * compute the size of the current table and new table.
    845 	 */
    846 
    847 	oldbuckets = uvm.page_hash;
    848 	oldcount = uvm.page_nhash;
    849 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    850 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    851 
    852 	/*
    853 	 * allocate the new buckets
    854 	 */
    855 
    856 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    857 	    0, UVM_KMF_WIRED);
    858 	if (newbuckets == NULL) {
    859 		printf("uvm_page_physrehash: WARNING: could not grow page "
    860 		    "hash table\n");
    861 		return;
    862 	}
    863 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    864 		TAILQ_INIT(&newbuckets[lcv]);
    865 
    866 	/*
    867 	 * now replace the old buckets with the new ones and rehash everything
    868 	 */
    869 
    870 	simple_lock(&uvm.hashlock);
    871 	uvm.page_hash = newbuckets;
    872 	uvm.page_nhash = bucketcount;
    873 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    874 
    875 	/* ... and rehash */
    876 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    877 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    878 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    879 			TAILQ_INSERT_TAIL(
    880 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    881 			  pg, hashq);
    882 		}
    883 	}
    884 	simple_unlock(&uvm.hashlock);
    885 
    886 	/*
    887 	 * free old bucket array if is not the boot-time table
    888 	 */
    889 
    890 	if (oldbuckets != &uvm_bootbucket)
    891 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    892 		    UVM_KMF_WIRED);
    893 }
    894 
    895 /*
    896  * uvm_page_recolor: Recolor the pages if the new bucket count is
    897  * larger than the old one.
    898  */
    899 
    900 void
    901 uvm_page_recolor(int newncolors)
    902 {
    903 	struct pgflbucket *bucketarray, *oldbucketarray;
    904 	struct pgfreelist pgfl;
    905 	struct vm_page *pg;
    906 	vsize_t bucketcount;
    907 	int s, lcv, color, i, ocolors;
    908 
    909 	if (newncolors <= uvmexp.ncolors)
    910 		return;
    911 
    912 	if (uvm.page_init_done == FALSE) {
    913 		uvmexp.ncolors = newncolors;
    914 		return;
    915 	}
    916 
    917 	bucketcount = newncolors * VM_NFREELIST;
    918 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    919 	    M_VMPAGE, M_NOWAIT);
    920 	if (bucketarray == NULL) {
    921 		printf("WARNING: unable to allocate %ld page color buckets\n",
    922 		    (long) bucketcount);
    923 		return;
    924 	}
    925 
    926 	s = uvm_lock_fpageq();
    927 
    928 	/* Make sure we should still do this. */
    929 	if (newncolors <= uvmexp.ncolors) {
    930 		uvm_unlock_fpageq(s);
    931 		free(bucketarray, M_VMPAGE);
    932 		return;
    933 	}
    934 
    935 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    936 	ocolors = uvmexp.ncolors;
    937 
    938 	uvmexp.ncolors = newncolors;
    939 	uvmexp.colormask = uvmexp.ncolors - 1;
    940 
    941 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    942 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    943 		uvm_page_init_buckets(&pgfl);
    944 		for (color = 0; color < ocolors; color++) {
    945 			for (i = 0; i < PGFL_NQUEUES; i++) {
    946 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    947 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    948 				    != NULL) {
    949 					TAILQ_REMOVE(&uvm.page_free[
    950 					    lcv].pgfl_buckets[
    951 					    color].pgfl_queues[i], pg, pageq);
    952 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    953 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    954 					    i], pg, pageq);
    955 				}
    956 			}
    957 		}
    958 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    959 	}
    960 
    961 	if (have_recolored_pages) {
    962 		uvm_unlock_fpageq(s);
    963 		free(oldbucketarray, M_VMPAGE);
    964 		return;
    965 	}
    966 
    967 	have_recolored_pages = TRUE;
    968 	uvm_unlock_fpageq(s);
    969 }
    970 
    971 /*
    972  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    973  */
    974 
    975 static inline struct vm_page *
    976 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    977     int *trycolorp)
    978 {
    979 	struct pglist *freeq;
    980 	struct vm_page *pg;
    981 	int color, trycolor = *trycolorp;
    982 
    983 	color = trycolor;
    984 	do {
    985 		if ((pg = TAILQ_FIRST((freeq =
    986 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    987 			goto gotit;
    988 		if ((pg = TAILQ_FIRST((freeq =
    989 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    990 			goto gotit;
    991 		color = (color + 1) & uvmexp.colormask;
    992 	} while (color != trycolor);
    993 
    994 	return (NULL);
    995 
    996  gotit:
    997 	TAILQ_REMOVE(freeq, pg, pageq);
    998 	uvmexp.free--;
    999 
   1000 	/* update zero'd page count */
   1001 	if (pg->flags & PG_ZERO)
   1002 		uvmexp.zeropages--;
   1003 
   1004 	if (color == trycolor)
   1005 		uvmexp.colorhit++;
   1006 	else {
   1007 		uvmexp.colormiss++;
   1008 		*trycolorp = color;
   1009 	}
   1010 
   1011 	return (pg);
   1012 }
   1013 
   1014 /*
   1015  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1016  *
   1017  * => return null if no pages free
   1018  * => wake up pagedaemon if number of free pages drops below low water mark
   1019  * => if obj != NULL, obj must be locked (to put in hash)
   1020  * => if anon != NULL, anon must be locked (to put in anon)
   1021  * => only one of obj or anon can be non-null
   1022  * => caller must activate/deactivate page if it is not wired.
   1023  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1024  * => policy decision: it is more important to pull a page off of the
   1025  *	appropriate priority free list than it is to get a zero'd or
   1026  *	unknown contents page.  This is because we live with the
   1027  *	consequences of a bad free list decision for the entire
   1028  *	lifetime of the page, e.g. if the page comes from memory that
   1029  *	is slower to access.
   1030  */
   1031 
   1032 struct vm_page *
   1033 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1034     int flags, int strat, int free_list)
   1035 {
   1036 	int lcv, try1, try2, s, zeroit = 0, color;
   1037 	struct vm_page *pg;
   1038 	boolean_t use_reserve;
   1039 
   1040 	KASSERT(obj == NULL || anon == NULL);
   1041 	KASSERT(anon == NULL || off == 0);
   1042 	KASSERT(off == trunc_page(off));
   1043 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1044 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1045 
   1046 	s = uvm_lock_fpageq();
   1047 
   1048 	/*
   1049 	 * This implements a global round-robin page coloring
   1050 	 * algorithm.
   1051 	 *
   1052 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1053 	 * XXXJRT: What about virtually-indexed caches?
   1054 	 */
   1055 
   1056 	color = uvm.page_free_nextcolor;
   1057 
   1058 	/*
   1059 	 * check to see if we need to generate some free pages waking
   1060 	 * the pagedaemon.
   1061 	 */
   1062 
   1063 	uvm_kick_pdaemon();
   1064 
   1065 	/*
   1066 	 * fail if any of these conditions is true:
   1067 	 * [1]  there really are no free pages, or
   1068 	 * [2]  only kernel "reserved" pages remain and
   1069 	 *        the page isn't being allocated to a kernel object.
   1070 	 * [3]  only pagedaemon "reserved" pages remain and
   1071 	 *        the requestor isn't the pagedaemon.
   1072 	 */
   1073 
   1074 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1075 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1076 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1077 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1078 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1079 		goto fail;
   1080 
   1081 #if PGFL_NQUEUES != 2
   1082 #error uvm_pagealloc_strat needs to be updated
   1083 #endif
   1084 
   1085 	/*
   1086 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1087 	 * we try the UNKNOWN queue first.
   1088 	 */
   1089 	if (flags & UVM_PGA_ZERO) {
   1090 		try1 = PGFL_ZEROS;
   1091 		try2 = PGFL_UNKNOWN;
   1092 	} else {
   1093 		try1 = PGFL_UNKNOWN;
   1094 		try2 = PGFL_ZEROS;
   1095 	}
   1096 
   1097  again:
   1098 	switch (strat) {
   1099 	case UVM_PGA_STRAT_NORMAL:
   1100 		/* Check all freelists in descending priority order. */
   1101 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1102 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1103 			    try1, try2, &color);
   1104 			if (pg != NULL)
   1105 				goto gotit;
   1106 		}
   1107 
   1108 		/* No pages free! */
   1109 		goto fail;
   1110 
   1111 	case UVM_PGA_STRAT_ONLY:
   1112 	case UVM_PGA_STRAT_FALLBACK:
   1113 		/* Attempt to allocate from the specified free list. */
   1114 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1115 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1116 		    try1, try2, &color);
   1117 		if (pg != NULL)
   1118 			goto gotit;
   1119 
   1120 		/* Fall back, if possible. */
   1121 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1122 			strat = UVM_PGA_STRAT_NORMAL;
   1123 			goto again;
   1124 		}
   1125 
   1126 		/* No pages free! */
   1127 		goto fail;
   1128 
   1129 	default:
   1130 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1131 		/* NOTREACHED */
   1132 	}
   1133 
   1134  gotit:
   1135 	/*
   1136 	 * We now know which color we actually allocated from; set
   1137 	 * the next color accordingly.
   1138 	 */
   1139 
   1140 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1141 
   1142 	/*
   1143 	 * update allocation statistics and remember if we have to
   1144 	 * zero the page
   1145 	 */
   1146 
   1147 	if (flags & UVM_PGA_ZERO) {
   1148 		if (pg->flags & PG_ZERO) {
   1149 			uvmexp.pga_zerohit++;
   1150 			zeroit = 0;
   1151 		} else {
   1152 			uvmexp.pga_zeromiss++;
   1153 			zeroit = 1;
   1154 		}
   1155 	}
   1156 	uvm_unlock_fpageq(s);
   1157 
   1158 	pg->offset = off;
   1159 	pg->uobject = obj;
   1160 	pg->uanon = anon;
   1161 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1162 	if (anon) {
   1163 		anon->an_page = pg;
   1164 		pg->pqflags = PQ_ANON;
   1165 		uvmexp.anonpages++;
   1166 	} else {
   1167 		if (obj) {
   1168 			uvm_pageinsert(pg);
   1169 		}
   1170 		pg->pqflags = 0;
   1171 	}
   1172 #if defined(UVM_PAGE_TRKOWN)
   1173 	pg->owner_tag = NULL;
   1174 #endif
   1175 	UVM_PAGE_OWN(pg, "new alloc");
   1176 
   1177 	if (flags & UVM_PGA_ZERO) {
   1178 		/*
   1179 		 * A zero'd page is not clean.  If we got a page not already
   1180 		 * zero'd, then we have to zero it ourselves.
   1181 		 */
   1182 		pg->flags &= ~PG_CLEAN;
   1183 		if (zeroit)
   1184 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1185 	}
   1186 
   1187 	return(pg);
   1188 
   1189  fail:
   1190 	uvm_unlock_fpageq(s);
   1191 	return (NULL);
   1192 }
   1193 
   1194 /*
   1195  * uvm_pagereplace: replace a page with another
   1196  *
   1197  * => object must be locked
   1198  */
   1199 
   1200 void
   1201 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1202 {
   1203 
   1204 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1205 	KASSERT(oldpg->uobject != NULL);
   1206 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1207 	KASSERT(newpg->uobject == NULL);
   1208 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1209 
   1210 	newpg->uobject = oldpg->uobject;
   1211 	newpg->offset = oldpg->offset;
   1212 
   1213 	uvm_pageinsert_after(newpg, oldpg);
   1214 	uvm_pageremove(oldpg);
   1215 }
   1216 
   1217 /*
   1218  * uvm_pagerealloc: reallocate a page from one object to another
   1219  *
   1220  * => both objects must be locked
   1221  */
   1222 
   1223 void
   1224 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1225 {
   1226 	/*
   1227 	 * remove it from the old object
   1228 	 */
   1229 
   1230 	if (pg->uobject) {
   1231 		uvm_pageremove(pg);
   1232 	}
   1233 
   1234 	/*
   1235 	 * put it in the new object
   1236 	 */
   1237 
   1238 	if (newobj) {
   1239 		pg->uobject = newobj;
   1240 		pg->offset = newoff;
   1241 		uvm_pageinsert(pg);
   1242 	}
   1243 }
   1244 
   1245 #ifdef DEBUG
   1246 /*
   1247  * check if page is zero-filled
   1248  *
   1249  *  - called with free page queue lock held.
   1250  */
   1251 void
   1252 uvm_pagezerocheck(struct vm_page *pg)
   1253 {
   1254 	int *p, *ep;
   1255 
   1256 	KASSERT(uvm_zerocheckkva != 0);
   1257 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1258 
   1259 	/*
   1260 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1261 	 * uvm page allocator.
   1262 	 *
   1263 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1264 	 */
   1265 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1266 	p = (int *)uvm_zerocheckkva;
   1267 	ep = (int *)((char *)p + PAGE_SIZE);
   1268 	pmap_update(pmap_kernel());
   1269 	while (p < ep) {
   1270 		if (*p != 0)
   1271 			panic("PG_ZERO page isn't zero-filled");
   1272 		p++;
   1273 	}
   1274 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1275 }
   1276 #endif /* DEBUG */
   1277 
   1278 /*
   1279  * uvm_pagefree: free page
   1280  *
   1281  * => erase page's identity (i.e. remove from hash/object)
   1282  * => put page on free list
   1283  * => caller must lock owning object (either anon or uvm_object)
   1284  * => caller must lock page queues
   1285  * => assumes all valid mappings of pg are gone
   1286  */
   1287 
   1288 void
   1289 uvm_pagefree(struct vm_page *pg)
   1290 {
   1291 	int s;
   1292 	struct pglist *pgfl;
   1293 	boolean_t iszero;
   1294 
   1295 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1296 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1297 		    !uvmpdpol_pageisqueued_p(pg));
   1298 	LOCK_ASSERT(pg->uobject == NULL ||
   1299 		    simple_lock_held(&pg->uobject->vmobjlock));
   1300 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1301 		    simple_lock_held(&pg->uanon->an_lock));
   1302 
   1303 #ifdef DEBUG
   1304 	if (pg->uobject == (void *)0xdeadbeef &&
   1305 	    pg->uanon == (void *)0xdeadbeef) {
   1306 		panic("uvm_pagefree: freeing free page %p", pg);
   1307 	}
   1308 #endif /* DEBUG */
   1309 
   1310 	/*
   1311 	 * if the page is loaned, resolve the loan instead of freeing.
   1312 	 */
   1313 
   1314 	if (pg->loan_count) {
   1315 		KASSERT(pg->wire_count == 0);
   1316 
   1317 		/*
   1318 		 * if the page is owned by an anon then we just want to
   1319 		 * drop anon ownership.  the kernel will free the page when
   1320 		 * it is done with it.  if the page is owned by an object,
   1321 		 * remove it from the object and mark it dirty for the benefit
   1322 		 * of possible anon owners.
   1323 		 *
   1324 		 * regardless of previous ownership, wakeup any waiters,
   1325 		 * unbusy the page, and we're done.
   1326 		 */
   1327 
   1328 		if (pg->uobject != NULL) {
   1329 			uvm_pageremove(pg);
   1330 			pg->flags &= ~PG_CLEAN;
   1331 		} else if (pg->uanon != NULL) {
   1332 			if ((pg->pqflags & PQ_ANON) == 0) {
   1333 				pg->loan_count--;
   1334 			} else {
   1335 				pg->pqflags &= ~PQ_ANON;
   1336 				uvmexp.anonpages--;
   1337 			}
   1338 			pg->uanon->an_page = NULL;
   1339 			pg->uanon = NULL;
   1340 		}
   1341 		if (pg->flags & PG_WANTED) {
   1342 			wakeup(pg);
   1343 		}
   1344 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1345 #ifdef UVM_PAGE_TRKOWN
   1346 		pg->owner_tag = NULL;
   1347 #endif
   1348 		if (pg->loan_count) {
   1349 			uvm_pagedequeue(pg);
   1350 			return;
   1351 		}
   1352 	}
   1353 
   1354 	/*
   1355 	 * remove page from its object or anon.
   1356 	 */
   1357 
   1358 	if (pg->uobject != NULL) {
   1359 		uvm_pageremove(pg);
   1360 	} else if (pg->uanon != NULL) {
   1361 		pg->uanon->an_page = NULL;
   1362 		uvmexp.anonpages--;
   1363 	}
   1364 
   1365 	/*
   1366 	 * now remove the page from the queues.
   1367 	 */
   1368 
   1369 	uvm_pagedequeue(pg);
   1370 
   1371 	/*
   1372 	 * if the page was wired, unwire it now.
   1373 	 */
   1374 
   1375 	if (pg->wire_count) {
   1376 		pg->wire_count = 0;
   1377 		uvmexp.wired--;
   1378 	}
   1379 
   1380 	/*
   1381 	 * and put on free queue
   1382 	 */
   1383 
   1384 	iszero = (pg->flags & PG_ZERO);
   1385 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1386 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1387 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1388 
   1389 	pg->pqflags = PQ_FREE;
   1390 #ifdef DEBUG
   1391 	pg->uobject = (void *)0xdeadbeef;
   1392 	pg->offset = 0xdeadbeef;
   1393 	pg->uanon = (void *)0xdeadbeef;
   1394 #endif
   1395 
   1396 	s = uvm_lock_fpageq();
   1397 
   1398 #ifdef DEBUG
   1399 	if (iszero)
   1400 		uvm_pagezerocheck(pg);
   1401 #endif /* DEBUG */
   1402 
   1403 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1404 	uvmexp.free++;
   1405 	if (iszero)
   1406 		uvmexp.zeropages++;
   1407 
   1408 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1409 		uvm.page_idle_zero = vm_page_zero_enable;
   1410 
   1411 	uvm_unlock_fpageq(s);
   1412 }
   1413 
   1414 /*
   1415  * uvm_page_unbusy: unbusy an array of pages.
   1416  *
   1417  * => pages must either all belong to the same object, or all belong to anons.
   1418  * => if pages are object-owned, object must be locked.
   1419  * => if pages are anon-owned, anons must be locked.
   1420  * => caller must lock page queues if pages may be released.
   1421  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1422  */
   1423 
   1424 void
   1425 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1426 {
   1427 	struct vm_page *pg;
   1428 	int i;
   1429 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1430 
   1431 	for (i = 0; i < npgs; i++) {
   1432 		pg = pgs[i];
   1433 		if (pg == NULL || pg == PGO_DONTCARE) {
   1434 			continue;
   1435 		}
   1436 
   1437 		LOCK_ASSERT(pg->uobject == NULL ||
   1438 		    simple_lock_held(&pg->uobject->vmobjlock));
   1439 		LOCK_ASSERT(pg->uobject != NULL ||
   1440 		    (pg->uanon != NULL &&
   1441 		    simple_lock_held(&pg->uanon->an_lock)));
   1442 
   1443 		KASSERT(pg->flags & PG_BUSY);
   1444 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1445 		if (pg->flags & PG_WANTED) {
   1446 			wakeup(pg);
   1447 		}
   1448 		if (pg->flags & PG_RELEASED) {
   1449 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1450 			KASSERT(pg->uobject != NULL ||
   1451 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1452 			pg->flags &= ~PG_RELEASED;
   1453 			uvm_pagefree(pg);
   1454 		} else {
   1455 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1456 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1457 			UVM_PAGE_OWN(pg, NULL);
   1458 		}
   1459 	}
   1460 }
   1461 
   1462 #if defined(UVM_PAGE_TRKOWN)
   1463 /*
   1464  * uvm_page_own: set or release page ownership
   1465  *
   1466  * => this is a debugging function that keeps track of who sets PG_BUSY
   1467  *	and where they do it.   it can be used to track down problems
   1468  *	such a process setting "PG_BUSY" and never releasing it.
   1469  * => page's object [if any] must be locked
   1470  * => if "tag" is NULL then we are releasing page ownership
   1471  */
   1472 void
   1473 uvm_page_own(struct vm_page *pg, const char *tag)
   1474 {
   1475 	struct uvm_object *uobj;
   1476 	struct vm_anon *anon;
   1477 
   1478 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1479 
   1480 	uobj = pg->uobject;
   1481 	anon = pg->uanon;
   1482 	if (uobj != NULL) {
   1483 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
   1484 	} else if (anon != NULL) {
   1485 		LOCK_ASSERT(simple_lock_held(&anon->an_lock));
   1486 	}
   1487 
   1488 	KASSERT((pg->flags & PG_WANTED) == 0);
   1489 
   1490 	/* gain ownership? */
   1491 	if (tag) {
   1492 		KASSERT((pg->flags & PG_BUSY) != 0);
   1493 		if (pg->owner_tag) {
   1494 			printf("uvm_page_own: page %p already owned "
   1495 			    "by proc %d [%s]\n", pg,
   1496 			    pg->owner, pg->owner_tag);
   1497 			panic("uvm_page_own");
   1498 		}
   1499 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1500 		pg->owner_tag = tag;
   1501 		return;
   1502 	}
   1503 
   1504 	/* drop ownership */
   1505 	KASSERT((pg->flags & PG_BUSY) == 0);
   1506 	if (pg->owner_tag == NULL) {
   1507 		printf("uvm_page_own: dropping ownership of an non-owned "
   1508 		    "page (%p)\n", pg);
   1509 		panic("uvm_page_own");
   1510 	}
   1511 	KASSERT(uvmpdpol_pageisqueued_p(pg) ||
   1512 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1513 	    pg->uobject == uvm.kernel_object ||
   1514 	    pg->wire_count > 0 ||
   1515 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1516 	    pg->loan_count > 1);
   1517 	pg->owner_tag = NULL;
   1518 }
   1519 #endif
   1520 
   1521 /*
   1522  * uvm_pageidlezero: zero free pages while the system is idle.
   1523  *
   1524  * => try to complete one color bucket at a time, to reduce our impact
   1525  *	on the CPU cache.
   1526  * => we loop until we either reach the target or whichqs indicates that
   1527  *	there is a process ready to run.
   1528  */
   1529 void
   1530 uvm_pageidlezero(void)
   1531 {
   1532 	struct vm_page *pg;
   1533 	struct pgfreelist *pgfl;
   1534 	int free_list, s, firstbucket;
   1535 	static int nextbucket;
   1536 
   1537 	KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1538 	s = uvm_lock_fpageq();
   1539 	firstbucket = nextbucket;
   1540 	do {
   1541 		if (sched_whichqs != 0)
   1542 			goto quit;
   1543 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1544 			uvm.page_idle_zero = FALSE;
   1545 			goto quit;
   1546 		}
   1547 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1548 			pgfl = &uvm.page_free[free_list];
   1549 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1550 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1551 				if (sched_whichqs != 0)
   1552 					goto quit;
   1553 
   1554 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1555 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1556 				    pg, pageq);
   1557 				uvmexp.free--;
   1558 				uvm_unlock_fpageq(s);
   1559 				KERNEL_UNLOCK();
   1560 #ifdef PMAP_PAGEIDLEZERO
   1561 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1562 
   1563 					/*
   1564 					 * The machine-dependent code detected
   1565 					 * some reason for us to abort zeroing
   1566 					 * pages, probably because there is a
   1567 					 * process now ready to run.
   1568 					 */
   1569 
   1570 					KERNEL_LOCK(
   1571 					    LK_EXCLUSIVE | LK_CANRECURSE);
   1572 					s = uvm_lock_fpageq();
   1573 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1574 					    nextbucket].pgfl_queues[
   1575 					    PGFL_UNKNOWN], pg, pageq);
   1576 					uvmexp.free++;
   1577 					uvmexp.zeroaborts++;
   1578 					goto quit;
   1579 				}
   1580 #else
   1581 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1582 #endif /* PMAP_PAGEIDLEZERO */
   1583 				pg->flags |= PG_ZERO;
   1584 
   1585 				KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
   1586 				s = uvm_lock_fpageq();
   1587 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1588 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1589 				    pg, pageq);
   1590 				uvmexp.free++;
   1591 				uvmexp.zeropages++;
   1592 			}
   1593 		}
   1594 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1595 	} while (nextbucket != firstbucket);
   1596 quit:
   1597 	uvm_unlock_fpageq(s);
   1598 	KERNEL_UNLOCK();
   1599 }
   1600 
   1601 /*
   1602  * uvm_lock_fpageq: lock the free page queue
   1603  *
   1604  * => free page queue can be accessed in interrupt context, so this
   1605  *	blocks all interrupts that can cause memory allocation, and
   1606  *	returns the previous interrupt level.
   1607  */
   1608 
   1609 int
   1610 uvm_lock_fpageq(void)
   1611 {
   1612 	int s;
   1613 
   1614 	s = splvm();
   1615 	simple_lock(&uvm.fpageqlock);
   1616 	return (s);
   1617 }
   1618 
   1619 /*
   1620  * uvm_unlock_fpageq: unlock the free page queue
   1621  *
   1622  * => caller must supply interrupt level returned by uvm_lock_fpageq()
   1623  *	so that it may be restored.
   1624  */
   1625 
   1626 void
   1627 uvm_unlock_fpageq(int s)
   1628 {
   1629 
   1630 	simple_unlock(&uvm.fpageqlock);
   1631 	splx(s);
   1632 }
   1633 
   1634 /*
   1635  * uvm_pagelookup: look up a page
   1636  *
   1637  * => caller should lock object to keep someone from pulling the page
   1638  *	out from under it
   1639  */
   1640 
   1641 struct vm_page *
   1642 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1643 {
   1644 	struct vm_page *pg;
   1645 	struct pglist *buck;
   1646 
   1647 	buck = &uvm.page_hash[uvm_pagehash(obj,off)];
   1648 	simple_lock(&uvm.hashlock);
   1649 	TAILQ_FOREACH(pg, buck, hashq) {
   1650 		if (pg->uobject == obj && pg->offset == off) {
   1651 			break;
   1652 		}
   1653 	}
   1654 	simple_unlock(&uvm.hashlock);
   1655 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1656 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1657 		(pg->flags & PG_BUSY) != 0);
   1658 	return(pg);
   1659 }
   1660 
   1661 /*
   1662  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1663  *
   1664  * => caller must lock page queues
   1665  */
   1666 
   1667 void
   1668 uvm_pagewire(struct vm_page *pg)
   1669 {
   1670 	UVM_LOCK_ASSERT_PAGEQ();
   1671 #if defined(READAHEAD_STATS)
   1672 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1673 		uvm_ra_hit.ev_count++;
   1674 		pg->pqflags &= ~PQ_READAHEAD;
   1675 	}
   1676 #endif /* defined(READAHEAD_STATS) */
   1677 	if (pg->wire_count == 0) {
   1678 		uvm_pagedequeue(pg);
   1679 		uvmexp.wired++;
   1680 	}
   1681 	pg->wire_count++;
   1682 }
   1683 
   1684 /*
   1685  * uvm_pageunwire: unwire the page.
   1686  *
   1687  * => activate if wire count goes to zero.
   1688  * => caller must lock page queues
   1689  */
   1690 
   1691 void
   1692 uvm_pageunwire(struct vm_page *pg)
   1693 {
   1694 	UVM_LOCK_ASSERT_PAGEQ();
   1695 	pg->wire_count--;
   1696 	if (pg->wire_count == 0) {
   1697 		uvm_pageactivate(pg);
   1698 		uvmexp.wired--;
   1699 	}
   1700 }
   1701 
   1702 /*
   1703  * uvm_pagedeactivate: deactivate page
   1704  *
   1705  * => caller must lock page queues
   1706  * => caller must check to make sure page is not wired
   1707  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1708  * => caller must clear the reference on the page before calling
   1709  */
   1710 
   1711 void
   1712 uvm_pagedeactivate(struct vm_page *pg)
   1713 {
   1714 
   1715 	UVM_LOCK_ASSERT_PAGEQ();
   1716 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1717 	uvmpdpol_pagedeactivate(pg);
   1718 }
   1719 
   1720 /*
   1721  * uvm_pageactivate: activate page
   1722  *
   1723  * => caller must lock page queues
   1724  */
   1725 
   1726 void
   1727 uvm_pageactivate(struct vm_page *pg)
   1728 {
   1729 
   1730 	UVM_LOCK_ASSERT_PAGEQ();
   1731 #if defined(READAHEAD_STATS)
   1732 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1733 		uvm_ra_hit.ev_count++;
   1734 		pg->pqflags &= ~PQ_READAHEAD;
   1735 	}
   1736 #endif /* defined(READAHEAD_STATS) */
   1737 	if (pg->wire_count != 0) {
   1738 		return;
   1739 	}
   1740 	uvmpdpol_pageactivate(pg);
   1741 }
   1742 
   1743 /*
   1744  * uvm_pagedequeue: remove a page from any paging queue
   1745  */
   1746 
   1747 void
   1748 uvm_pagedequeue(struct vm_page *pg)
   1749 {
   1750 
   1751 #if defined(LOCKDEBUG)
   1752 	if (uvmpdpol_pageisqueued_p(pg)) {
   1753 		UVM_LOCK_ASSERT_PAGEQ();
   1754 	}
   1755 #endif /* defined(LOCKDEBUG) */
   1756 	uvmpdpol_pagedequeue(pg);
   1757 }
   1758 
   1759 /*
   1760  * uvm_pageenqueue: add a page to a paging queue without activating.
   1761  * used where a page is not really demanded (yet).  eg. read-ahead
   1762  */
   1763 
   1764 void
   1765 uvm_pageenqueue(struct vm_page *pg)
   1766 {
   1767 
   1768 	UVM_LOCK_ASSERT_PAGEQ();
   1769 	if (pg->wire_count != 0) {
   1770 		return;
   1771 	}
   1772 	uvmpdpol_pageenqueue(pg);
   1773 }
   1774 
   1775 /*
   1776  * uvm_pagezero: zero fill a page
   1777  *
   1778  * => if page is part of an object then the object should be locked
   1779  *	to protect pg->flags.
   1780  */
   1781 
   1782 void
   1783 uvm_pagezero(struct vm_page *pg)
   1784 {
   1785 	pg->flags &= ~PG_CLEAN;
   1786 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1787 }
   1788 
   1789 /*
   1790  * uvm_pagecopy: copy a page
   1791  *
   1792  * => if page is part of an object then the object should be locked
   1793  *	to protect pg->flags.
   1794  */
   1795 
   1796 void
   1797 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1798 {
   1799 
   1800 	dst->flags &= ~PG_CLEAN;
   1801 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1802 }
   1803 
   1804 /*
   1805  * uvm_page_lookup_freelist: look up the free list for the specified page
   1806  */
   1807 
   1808 int
   1809 uvm_page_lookup_freelist(struct vm_page *pg)
   1810 {
   1811 	int lcv;
   1812 
   1813 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1814 	KASSERT(lcv != -1);
   1815 	return (vm_physmem[lcv].free_list);
   1816 }
   1817