Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.117
      1 /*	$NetBSD: uvm_page.c,v 1.117 2007/02/09 21:55:43 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.117 2007/02/09 21:55:43 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 
     87 #include <uvm/uvm.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * global vars... XXXCDC: move to uvm. structure.
     92  */
     93 
     94 /*
     95  * physical memory config is stored in vm_physmem.
     96  */
     97 
     98 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     99 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    100 
    101 /*
    102  * Some supported CPUs in a given architecture don't support all
    103  * of the things necessary to do idle page zero'ing efficiently.
    104  * We therefore provide a way to disable it from machdep code here.
    105  */
    106 /*
    107  * XXX disabled until we can find a way to do this without causing
    108  * problems for either CPU caches or DMA latency.
    109  */
    110 boolean_t vm_page_zero_enable = FALSE;
    111 
    112 /*
    113  * local variables
    114  */
    115 
    116 /*
    117  * these variables record the values returned by vm_page_bootstrap,
    118  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    119  * and pmap_startup here also uses them internally.
    120  */
    121 
    122 static vaddr_t      virtual_space_start;
    123 static vaddr_t      virtual_space_end;
    124 
    125 /*
    126  * we use a hash table with only one bucket during bootup.  we will
    127  * later rehash (resize) the hash table once the allocator is ready.
    128  * we static allocate the one bootstrap bucket below...
    129  */
    130 
    131 static struct pglist uvm_bootbucket;
    132 
    133 /*
    134  * we allocate an initial number of page colors in uvm_page_init(),
    135  * and remember them.  We may re-color pages as cache sizes are
    136  * discovered during the autoconfiguration phase.  But we can never
    137  * free the initial set of buckets, since they are allocated using
    138  * uvm_pageboot_alloc().
    139  */
    140 
    141 static boolean_t have_recolored_pages /* = FALSE */;
    142 
    143 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    144 
    145 #ifdef DEBUG
    146 vaddr_t uvm_zerocheckkva;
    147 #endif /* DEBUG */
    148 
    149 /*
    150  * local prototypes
    151  */
    152 
    153 static void uvm_pageinsert(struct vm_page *);
    154 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    155 static void uvm_pageremove(struct vm_page *);
    156 
    157 /*
    158  * inline functions
    159  */
    160 
    161 /*
    162  * uvm_pageinsert: insert a page in the object and the hash table
    163  * uvm_pageinsert_after: insert a page into the specified place in listq
    164  *
    165  * => caller must lock object
    166  * => caller must lock page queues
    167  * => call should have already set pg's object and offset pointers
    168  *    and bumped the version counter
    169  */
    170 
    171 inline static void
    172 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    173 {
    174 	struct pglist *buck;
    175 	struct uvm_object *uobj = pg->uobject;
    176 
    177 	KASSERT((pg->flags & PG_TABLED) == 0);
    178 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    179 	KASSERT(where == NULL || (where->uobject == uobj));
    180 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    181 	simple_lock(&uvm.hashlock);
    182 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    183 	simple_unlock(&uvm.hashlock);
    184 
    185 	if (UVM_OBJ_IS_VNODE(uobj)) {
    186 		if (uobj->uo_npages == 0) {
    187 			struct vnode *vp = (struct vnode *)uobj;
    188 
    189 			vholdl(vp);
    190 		}
    191 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    192 			uvmexp.execpages++;
    193 		} else {
    194 			uvmexp.filepages++;
    195 		}
    196 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    197 		uvmexp.anonpages++;
    198 	}
    199 
    200 	if (where)
    201 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    202 	else
    203 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    204 	pg->flags |= PG_TABLED;
    205 	uobj->uo_npages++;
    206 }
    207 
    208 inline static void
    209 uvm_pageinsert(struct vm_page *pg)
    210 {
    211 
    212 	uvm_pageinsert_after(pg, NULL);
    213 }
    214 
    215 /*
    216  * uvm_page_remove: remove page from object and hash
    217  *
    218  * => caller must lock object
    219  * => caller must lock page queues
    220  */
    221 
    222 static inline void
    223 uvm_pageremove(struct vm_page *pg)
    224 {
    225 	struct pglist *buck;
    226 	struct uvm_object *uobj = pg->uobject;
    227 
    228 	KASSERT(pg->flags & PG_TABLED);
    229 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    230 	simple_lock(&uvm.hashlock);
    231 	TAILQ_REMOVE(buck, pg, hashq);
    232 	simple_unlock(&uvm.hashlock);
    233 
    234 	if (UVM_OBJ_IS_VNODE(uobj)) {
    235 		if (uobj->uo_npages == 1) {
    236 			struct vnode *vp = (struct vnode *)uobj;
    237 
    238 			holdrelel(vp);
    239 		}
    240 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    241 			uvmexp.execpages--;
    242 		} else {
    243 			uvmexp.filepages--;
    244 		}
    245 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    246 		uvmexp.anonpages--;
    247 	}
    248 
    249 	/* object should be locked */
    250 	uobj->uo_npages--;
    251 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    252 	pg->flags &= ~PG_TABLED;
    253 	pg->uobject = NULL;
    254 }
    255 
    256 static void
    257 uvm_page_init_buckets(struct pgfreelist *pgfl)
    258 {
    259 	int color, i;
    260 
    261 	for (color = 0; color < uvmexp.ncolors; color++) {
    262 		for (i = 0; i < PGFL_NQUEUES; i++) {
    263 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    264 		}
    265 	}
    266 }
    267 
    268 /*
    269  * uvm_page_init: init the page system.   called from uvm_init().
    270  *
    271  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    272  */
    273 
    274 void
    275 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    276 {
    277 	vsize_t freepages, pagecount, bucketcount, n;
    278 	struct pgflbucket *bucketarray;
    279 	struct vm_page *pagearray;
    280 	int lcv;
    281 	u_int i;
    282 	paddr_t paddr;
    283 
    284 	/*
    285 	 * init the page queues and page queue locks, except the free
    286 	 * list; we allocate that later (with the initial vm_page
    287 	 * structures).
    288 	 */
    289 
    290 	uvmpdpol_init();
    291 	simple_lock_init(&uvm.pageqlock);
    292 	simple_lock_init(&uvm.fpageqlock);
    293 
    294 	/*
    295 	 * init the <obj,offset> => <page> hash table.  for now
    296 	 * we just have one bucket (the bootstrap bucket).  later on we
    297 	 * will allocate new buckets as we dynamically resize the hash table.
    298 	 */
    299 
    300 	uvm.page_nhash = 1;			/* 1 bucket */
    301 	uvm.page_hashmask = 0;			/* mask for hash function */
    302 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    303 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    304 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    305 
    306 	/*
    307 	 * allocate vm_page structures.
    308 	 */
    309 
    310 	/*
    311 	 * sanity check:
    312 	 * before calling this function the MD code is expected to register
    313 	 * some free RAM with the uvm_page_physload() function.   our job
    314 	 * now is to allocate vm_page structures for this memory.
    315 	 */
    316 
    317 	if (vm_nphysseg == 0)
    318 		panic("uvm_page_bootstrap: no memory pre-allocated");
    319 
    320 	/*
    321 	 * first calculate the number of free pages...
    322 	 *
    323 	 * note that we use start/end rather than avail_start/avail_end.
    324 	 * this allows us to allocate extra vm_page structures in case we
    325 	 * want to return some memory to the pool after booting.
    326 	 */
    327 
    328 	freepages = 0;
    329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    330 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    331 
    332 	/*
    333 	 * Let MD code initialize the number of colors, or default
    334 	 * to 1 color if MD code doesn't care.
    335 	 */
    336 	if (uvmexp.ncolors == 0)
    337 		uvmexp.ncolors = 1;
    338 	uvmexp.colormask = uvmexp.ncolors - 1;
    339 
    340 	/*
    341 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    342 	 * use.   for each page of memory we use we need a vm_page structure.
    343 	 * thus, the total number of pages we can use is the total size of
    344 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    345 	 * structure.   we add one to freepages as a fudge factor to avoid
    346 	 * truncation errors (since we can only allocate in terms of whole
    347 	 * pages).
    348 	 */
    349 
    350 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    351 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    352 	    (PAGE_SIZE + sizeof(struct vm_page));
    353 
    354 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    355 	    sizeof(struct pgflbucket)) + (pagecount *
    356 	    sizeof(struct vm_page)));
    357 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    358 
    359 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    360 		uvm.page_free[lcv].pgfl_buckets =
    361 		    (bucketarray + (lcv * uvmexp.ncolors));
    362 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    363 	}
    364 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    365 
    366 	/*
    367 	 * init the vm_page structures and put them in the correct place.
    368 	 */
    369 
    370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    371 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    372 
    373 		/* set up page array pointers */
    374 		vm_physmem[lcv].pgs = pagearray;
    375 		pagearray += n;
    376 		pagecount -= n;
    377 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    378 
    379 		/* init and free vm_pages (we've already zeroed them) */
    380 		paddr = ptoa(vm_physmem[lcv].start);
    381 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    382 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    383 #ifdef __HAVE_VM_PAGE_MD
    384 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    385 #endif
    386 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    387 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    388 				uvmexp.npages++;
    389 				/* add page to free pool */
    390 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    391 			}
    392 		}
    393 	}
    394 
    395 	/*
    396 	 * pass up the values of virtual_space_start and
    397 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    398 	 * layers of the VM.
    399 	 */
    400 
    401 	*kvm_startp = round_page(virtual_space_start);
    402 	*kvm_endp = trunc_page(virtual_space_end);
    403 #ifdef DEBUG
    404 	/*
    405 	 * steal kva for uvm_pagezerocheck().
    406 	 */
    407 	uvm_zerocheckkva = *kvm_startp;
    408 	*kvm_startp += PAGE_SIZE;
    409 #endif /* DEBUG */
    410 
    411 	/*
    412 	 * init locks for kernel threads
    413 	 */
    414 
    415 	simple_lock_init(&uvm.pagedaemon_lock);
    416 
    417 	/*
    418 	 * init various thresholds.
    419 	 */
    420 
    421 	uvmexp.reserve_pagedaemon = 1;
    422 	uvmexp.reserve_kernel = 5;
    423 
    424 	/*
    425 	 * determine if we should zero pages in the idle loop.
    426 	 */
    427 
    428 	uvm.page_idle_zero = vm_page_zero_enable;
    429 
    430 	/*
    431 	 * done!
    432 	 */
    433 
    434 	uvm.page_init_done = TRUE;
    435 }
    436 
    437 /*
    438  * uvm_setpagesize: set the page size
    439  *
    440  * => sets page_shift and page_mask from uvmexp.pagesize.
    441  */
    442 
    443 void
    444 uvm_setpagesize(void)
    445 {
    446 
    447 	/*
    448 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    449 	 * to be a constant (indicated by being a non-zero value).
    450 	 */
    451 	if (uvmexp.pagesize == 0) {
    452 		if (PAGE_SIZE == 0)
    453 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    454 		uvmexp.pagesize = PAGE_SIZE;
    455 	}
    456 	uvmexp.pagemask = uvmexp.pagesize - 1;
    457 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    458 		panic("uvm_setpagesize: page size not a power of two");
    459 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    460 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    461 			break;
    462 }
    463 
    464 /*
    465  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    466  */
    467 
    468 vaddr_t
    469 uvm_pageboot_alloc(vsize_t size)
    470 {
    471 	static boolean_t initialized = FALSE;
    472 	vaddr_t addr;
    473 #if !defined(PMAP_STEAL_MEMORY)
    474 	vaddr_t vaddr;
    475 	paddr_t paddr;
    476 #endif
    477 
    478 	/*
    479 	 * on first call to this function, initialize ourselves.
    480 	 */
    481 	if (initialized == FALSE) {
    482 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    483 
    484 		/* round it the way we like it */
    485 		virtual_space_start = round_page(virtual_space_start);
    486 		virtual_space_end = trunc_page(virtual_space_end);
    487 
    488 		initialized = TRUE;
    489 	}
    490 
    491 	/* round to page size */
    492 	size = round_page(size);
    493 
    494 #if defined(PMAP_STEAL_MEMORY)
    495 
    496 	/*
    497 	 * defer bootstrap allocation to MD code (it may want to allocate
    498 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    499 	 * virtual_space_start/virtual_space_end if necessary.
    500 	 */
    501 
    502 	addr = pmap_steal_memory(size, &virtual_space_start,
    503 	    &virtual_space_end);
    504 
    505 	return(addr);
    506 
    507 #else /* !PMAP_STEAL_MEMORY */
    508 
    509 	/*
    510 	 * allocate virtual memory for this request
    511 	 */
    512 	if (virtual_space_start == virtual_space_end ||
    513 	    (virtual_space_end - virtual_space_start) < size)
    514 		panic("uvm_pageboot_alloc: out of virtual space");
    515 
    516 	addr = virtual_space_start;
    517 
    518 #ifdef PMAP_GROWKERNEL
    519 	/*
    520 	 * If the kernel pmap can't map the requested space,
    521 	 * then allocate more resources for it.
    522 	 */
    523 	if (uvm_maxkaddr < (addr + size)) {
    524 		uvm_maxkaddr = pmap_growkernel(addr + size);
    525 		if (uvm_maxkaddr < (addr + size))
    526 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    527 	}
    528 #endif
    529 
    530 	virtual_space_start += size;
    531 
    532 	/*
    533 	 * allocate and mapin physical pages to back new virtual pages
    534 	 */
    535 
    536 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    537 	    vaddr += PAGE_SIZE) {
    538 
    539 		if (!uvm_page_physget(&paddr))
    540 			panic("uvm_pageboot_alloc: out of memory");
    541 
    542 		/*
    543 		 * Note this memory is no longer managed, so using
    544 		 * pmap_kenter is safe.
    545 		 */
    546 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    547 	}
    548 	pmap_update(pmap_kernel());
    549 	return(addr);
    550 #endif	/* PMAP_STEAL_MEMORY */
    551 }
    552 
    553 #if !defined(PMAP_STEAL_MEMORY)
    554 /*
    555  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    556  *
    557  * => attempt to allocate it off the end of a segment in which the "avail"
    558  *    values match the start/end values.   if we can't do that, then we
    559  *    will advance both values (making them equal, and removing some
    560  *    vm_page structures from the non-avail area).
    561  * => return false if out of memory.
    562  */
    563 
    564 /* subroutine: try to allocate from memory chunks on the specified freelist */
    565 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
    566 
    567 static boolean_t
    568 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    569 {
    570 	int lcv, x;
    571 
    572 	/* pass 1: try allocating from a matching end */
    573 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    574 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    575 #else
    576 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    577 #endif
    578 	{
    579 
    580 		if (uvm.page_init_done == TRUE)
    581 			panic("uvm_page_physget: called _after_ bootstrap");
    582 
    583 		if (vm_physmem[lcv].free_list != freelist)
    584 			continue;
    585 
    586 		/* try from front */
    587 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    588 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    589 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    590 			vm_physmem[lcv].avail_start++;
    591 			vm_physmem[lcv].start++;
    592 			/* nothing left?   nuke it */
    593 			if (vm_physmem[lcv].avail_start ==
    594 			    vm_physmem[lcv].end) {
    595 				if (vm_nphysseg == 1)
    596 				    panic("uvm_page_physget: out of memory!");
    597 				vm_nphysseg--;
    598 				for (x = lcv ; x < vm_nphysseg ; x++)
    599 					/* structure copy */
    600 					vm_physmem[x] = vm_physmem[x+1];
    601 			}
    602 			return (TRUE);
    603 		}
    604 
    605 		/* try from rear */
    606 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    607 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    608 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    609 			vm_physmem[lcv].avail_end--;
    610 			vm_physmem[lcv].end--;
    611 			/* nothing left?   nuke it */
    612 			if (vm_physmem[lcv].avail_end ==
    613 			    vm_physmem[lcv].start) {
    614 				if (vm_nphysseg == 1)
    615 				    panic("uvm_page_physget: out of memory!");
    616 				vm_nphysseg--;
    617 				for (x = lcv ; x < vm_nphysseg ; x++)
    618 					/* structure copy */
    619 					vm_physmem[x] = vm_physmem[x+1];
    620 			}
    621 			return (TRUE);
    622 		}
    623 	}
    624 
    625 	/* pass2: forget about matching ends, just allocate something */
    626 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    627 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    628 #else
    629 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    630 #endif
    631 	{
    632 
    633 		/* any room in this bank? */
    634 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    635 			continue;  /* nope */
    636 
    637 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    638 		vm_physmem[lcv].avail_start++;
    639 		/* truncate! */
    640 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    641 
    642 		/* nothing left?   nuke it */
    643 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    644 			if (vm_nphysseg == 1)
    645 				panic("uvm_page_physget: out of memory!");
    646 			vm_nphysseg--;
    647 			for (x = lcv ; x < vm_nphysseg ; x++)
    648 				/* structure copy */
    649 				vm_physmem[x] = vm_physmem[x+1];
    650 		}
    651 		return (TRUE);
    652 	}
    653 
    654 	return (FALSE);        /* whoops! */
    655 }
    656 
    657 boolean_t
    658 uvm_page_physget(paddr_t *paddrp)
    659 {
    660 	int i;
    661 
    662 	/* try in the order of freelist preference */
    663 	for (i = 0; i < VM_NFREELIST; i++)
    664 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    665 			return (TRUE);
    666 	return (FALSE);
    667 }
    668 #endif /* PMAP_STEAL_MEMORY */
    669 
    670 /*
    671  * uvm_page_physload: load physical memory into VM system
    672  *
    673  * => all args are PFs
    674  * => all pages in start/end get vm_page structures
    675  * => areas marked by avail_start/avail_end get added to the free page pool
    676  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    677  */
    678 
    679 void
    680 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    681     paddr_t avail_end, int free_list)
    682 {
    683 	int preload, lcv;
    684 	psize_t npages;
    685 	struct vm_page *pgs;
    686 	struct vm_physseg *ps;
    687 
    688 	if (uvmexp.pagesize == 0)
    689 		panic("uvm_page_physload: page size not set!");
    690 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    691 		panic("uvm_page_physload: bad free list %d", free_list);
    692 	if (start >= end)
    693 		panic("uvm_page_physload: start >= end");
    694 
    695 	/*
    696 	 * do we have room?
    697 	 */
    698 
    699 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    700 		printf("uvm_page_physload: unable to load physical memory "
    701 		    "segment\n");
    702 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    703 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    704 		printf("\tincrease VM_PHYSSEG_MAX\n");
    705 		return;
    706 	}
    707 
    708 	/*
    709 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    710 	 * called yet, so malloc is not available).
    711 	 */
    712 
    713 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    714 		if (vm_physmem[lcv].pgs)
    715 			break;
    716 	}
    717 	preload = (lcv == vm_nphysseg);
    718 
    719 	/*
    720 	 * if VM is already running, attempt to malloc() vm_page structures
    721 	 */
    722 
    723 	if (!preload) {
    724 #if defined(VM_PHYSSEG_NOADD)
    725 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    726 #else
    727 		/* XXXCDC: need some sort of lockout for this case */
    728 		paddr_t paddr;
    729 		npages = end - start;  /* # of pages */
    730 		pgs = malloc(sizeof(struct vm_page) * npages,
    731 		    M_VMPAGE, M_NOWAIT);
    732 		if (pgs == NULL) {
    733 			printf("uvm_page_physload: can not malloc vm_page "
    734 			    "structs for segment\n");
    735 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    736 			return;
    737 		}
    738 		/* zero data, init phys_addr and free_list, and free pages */
    739 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    740 		for (lcv = 0, paddr = ptoa(start) ;
    741 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    742 			pgs[lcv].phys_addr = paddr;
    743 			pgs[lcv].free_list = free_list;
    744 			if (atop(paddr) >= avail_start &&
    745 			    atop(paddr) <= avail_end)
    746 				uvm_pagefree(&pgs[lcv]);
    747 		}
    748 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    749 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    750 #endif
    751 	} else {
    752 		pgs = NULL;
    753 		npages = 0;
    754 	}
    755 
    756 	/*
    757 	 * now insert us in the proper place in vm_physmem[]
    758 	 */
    759 
    760 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    761 	/* random: put it at the end (easy!) */
    762 	ps = &vm_physmem[vm_nphysseg];
    763 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    764 	{
    765 		int x;
    766 		/* sort by address for binary search */
    767 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    768 			if (start < vm_physmem[lcv].start)
    769 				break;
    770 		ps = &vm_physmem[lcv];
    771 		/* move back other entries, if necessary ... */
    772 		for (x = vm_nphysseg ; x > lcv ; x--)
    773 			/* structure copy */
    774 			vm_physmem[x] = vm_physmem[x - 1];
    775 	}
    776 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    777 	{
    778 		int x;
    779 		/* sort by largest segment first */
    780 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    781 			if ((end - start) >
    782 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    783 				break;
    784 		ps = &vm_physmem[lcv];
    785 		/* move back other entries, if necessary ... */
    786 		for (x = vm_nphysseg ; x > lcv ; x--)
    787 			/* structure copy */
    788 			vm_physmem[x] = vm_physmem[x - 1];
    789 	}
    790 #else
    791 	panic("uvm_page_physload: unknown physseg strategy selected!");
    792 #endif
    793 
    794 	ps->start = start;
    795 	ps->end = end;
    796 	ps->avail_start = avail_start;
    797 	ps->avail_end = avail_end;
    798 	if (preload) {
    799 		ps->pgs = NULL;
    800 	} else {
    801 		ps->pgs = pgs;
    802 		ps->lastpg = pgs + npages - 1;
    803 	}
    804 	ps->free_list = free_list;
    805 	vm_nphysseg++;
    806 
    807 	if (!preload) {
    808 		uvm_page_rehash();
    809 		uvmpdpol_reinit();
    810 	}
    811 }
    812 
    813 /*
    814  * uvm_page_rehash: reallocate hash table based on number of free pages.
    815  */
    816 
    817 void
    818 uvm_page_rehash(void)
    819 {
    820 	int freepages, lcv, bucketcount, oldcount;
    821 	struct pglist *newbuckets, *oldbuckets;
    822 	struct vm_page *pg;
    823 	size_t newsize, oldsize;
    824 
    825 	/*
    826 	 * compute number of pages that can go in the free pool
    827 	 */
    828 
    829 	freepages = 0;
    830 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    831 		freepages +=
    832 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    833 
    834 	/*
    835 	 * compute number of buckets needed for this number of pages
    836 	 */
    837 
    838 	bucketcount = 1;
    839 	while (bucketcount < freepages)
    840 		bucketcount = bucketcount * 2;
    841 
    842 	/*
    843 	 * compute the size of the current table and new table.
    844 	 */
    845 
    846 	oldbuckets = uvm.page_hash;
    847 	oldcount = uvm.page_nhash;
    848 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    849 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    850 
    851 	/*
    852 	 * allocate the new buckets
    853 	 */
    854 
    855 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    856 	    0, UVM_KMF_WIRED);
    857 	if (newbuckets == NULL) {
    858 		printf("uvm_page_physrehash: WARNING: could not grow page "
    859 		    "hash table\n");
    860 		return;
    861 	}
    862 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    863 		TAILQ_INIT(&newbuckets[lcv]);
    864 
    865 	/*
    866 	 * now replace the old buckets with the new ones and rehash everything
    867 	 */
    868 
    869 	simple_lock(&uvm.hashlock);
    870 	uvm.page_hash = newbuckets;
    871 	uvm.page_nhash = bucketcount;
    872 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    873 
    874 	/* ... and rehash */
    875 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    876 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    877 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    878 			TAILQ_INSERT_TAIL(
    879 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    880 			  pg, hashq);
    881 		}
    882 	}
    883 	simple_unlock(&uvm.hashlock);
    884 
    885 	/*
    886 	 * free old bucket array if is not the boot-time table
    887 	 */
    888 
    889 	if (oldbuckets != &uvm_bootbucket)
    890 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    891 		    UVM_KMF_WIRED);
    892 }
    893 
    894 /*
    895  * uvm_page_recolor: Recolor the pages if the new bucket count is
    896  * larger than the old one.
    897  */
    898 
    899 void
    900 uvm_page_recolor(int newncolors)
    901 {
    902 	struct pgflbucket *bucketarray, *oldbucketarray;
    903 	struct pgfreelist pgfl;
    904 	struct vm_page *pg;
    905 	vsize_t bucketcount;
    906 	int s, lcv, color, i, ocolors;
    907 
    908 	if (newncolors <= uvmexp.ncolors)
    909 		return;
    910 
    911 	if (uvm.page_init_done == FALSE) {
    912 		uvmexp.ncolors = newncolors;
    913 		return;
    914 	}
    915 
    916 	bucketcount = newncolors * VM_NFREELIST;
    917 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    918 	    M_VMPAGE, M_NOWAIT);
    919 	if (bucketarray == NULL) {
    920 		printf("WARNING: unable to allocate %ld page color buckets\n",
    921 		    (long) bucketcount);
    922 		return;
    923 	}
    924 
    925 	s = uvm_lock_fpageq();
    926 
    927 	/* Make sure we should still do this. */
    928 	if (newncolors <= uvmexp.ncolors) {
    929 		uvm_unlock_fpageq(s);
    930 		free(bucketarray, M_VMPAGE);
    931 		return;
    932 	}
    933 
    934 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    935 	ocolors = uvmexp.ncolors;
    936 
    937 	uvmexp.ncolors = newncolors;
    938 	uvmexp.colormask = uvmexp.ncolors - 1;
    939 
    940 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    941 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    942 		uvm_page_init_buckets(&pgfl);
    943 		for (color = 0; color < ocolors; color++) {
    944 			for (i = 0; i < PGFL_NQUEUES; i++) {
    945 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    946 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    947 				    != NULL) {
    948 					TAILQ_REMOVE(&uvm.page_free[
    949 					    lcv].pgfl_buckets[
    950 					    color].pgfl_queues[i], pg, pageq);
    951 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    952 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    953 					    i], pg, pageq);
    954 				}
    955 			}
    956 		}
    957 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    958 	}
    959 
    960 	if (have_recolored_pages) {
    961 		uvm_unlock_fpageq(s);
    962 		free(oldbucketarray, M_VMPAGE);
    963 		return;
    964 	}
    965 
    966 	have_recolored_pages = TRUE;
    967 	uvm_unlock_fpageq(s);
    968 }
    969 
    970 /*
    971  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    972  */
    973 
    974 static struct vm_page *
    975 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    976     int *trycolorp)
    977 {
    978 	struct pglist *freeq;
    979 	struct vm_page *pg;
    980 	int color, trycolor = *trycolorp;
    981 
    982 	color = trycolor;
    983 	do {
    984 		if ((pg = TAILQ_FIRST((freeq =
    985 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    986 			goto gotit;
    987 		if ((pg = TAILQ_FIRST((freeq =
    988 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    989 			goto gotit;
    990 		color = (color + 1) & uvmexp.colormask;
    991 	} while (color != trycolor);
    992 
    993 	return (NULL);
    994 
    995  gotit:
    996 	TAILQ_REMOVE(freeq, pg, pageq);
    997 	uvmexp.free--;
    998 
    999 	/* update zero'd page count */
   1000 	if (pg->flags & PG_ZERO)
   1001 		uvmexp.zeropages--;
   1002 
   1003 	if (color == trycolor)
   1004 		uvmexp.colorhit++;
   1005 	else {
   1006 		uvmexp.colormiss++;
   1007 		*trycolorp = color;
   1008 	}
   1009 
   1010 	return (pg);
   1011 }
   1012 
   1013 /*
   1014  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1015  *
   1016  * => return null if no pages free
   1017  * => wake up pagedaemon if number of free pages drops below low water mark
   1018  * => if obj != NULL, obj must be locked (to put in hash)
   1019  * => if anon != NULL, anon must be locked (to put in anon)
   1020  * => only one of obj or anon can be non-null
   1021  * => caller must activate/deactivate page if it is not wired.
   1022  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1023  * => policy decision: it is more important to pull a page off of the
   1024  *	appropriate priority free list than it is to get a zero'd or
   1025  *	unknown contents page.  This is because we live with the
   1026  *	consequences of a bad free list decision for the entire
   1027  *	lifetime of the page, e.g. if the page comes from memory that
   1028  *	is slower to access.
   1029  */
   1030 
   1031 struct vm_page *
   1032 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1033     int flags, int strat, int free_list)
   1034 {
   1035 	int lcv, try1, try2, s, zeroit = 0, color;
   1036 	struct vm_page *pg;
   1037 	boolean_t use_reserve;
   1038 
   1039 	KASSERT(obj == NULL || anon == NULL);
   1040 	KASSERT(anon == NULL || off == 0);
   1041 	KASSERT(off == trunc_page(off));
   1042 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1043 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1044 
   1045 	s = uvm_lock_fpageq();
   1046 
   1047 	/*
   1048 	 * This implements a global round-robin page coloring
   1049 	 * algorithm.
   1050 	 *
   1051 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1052 	 * XXXJRT: What about virtually-indexed caches?
   1053 	 */
   1054 
   1055 	color = uvm.page_free_nextcolor;
   1056 
   1057 	/*
   1058 	 * check to see if we need to generate some free pages waking
   1059 	 * the pagedaemon.
   1060 	 */
   1061 
   1062 	uvm_kick_pdaemon();
   1063 
   1064 	/*
   1065 	 * fail if any of these conditions is true:
   1066 	 * [1]  there really are no free pages, or
   1067 	 * [2]  only kernel "reserved" pages remain and
   1068 	 *        the page isn't being allocated to a kernel object.
   1069 	 * [3]  only pagedaemon "reserved" pages remain and
   1070 	 *        the requestor isn't the pagedaemon.
   1071 	 */
   1072 
   1073 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1074 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1075 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1076 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1077 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1078 		goto fail;
   1079 
   1080 #if PGFL_NQUEUES != 2
   1081 #error uvm_pagealloc_strat needs to be updated
   1082 #endif
   1083 
   1084 	/*
   1085 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1086 	 * we try the UNKNOWN queue first.
   1087 	 */
   1088 	if (flags & UVM_PGA_ZERO) {
   1089 		try1 = PGFL_ZEROS;
   1090 		try2 = PGFL_UNKNOWN;
   1091 	} else {
   1092 		try1 = PGFL_UNKNOWN;
   1093 		try2 = PGFL_ZEROS;
   1094 	}
   1095 
   1096  again:
   1097 	switch (strat) {
   1098 	case UVM_PGA_STRAT_NORMAL:
   1099 		/* Check all freelists in descending priority order. */
   1100 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1101 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1102 			    try1, try2, &color);
   1103 			if (pg != NULL)
   1104 				goto gotit;
   1105 		}
   1106 
   1107 		/* No pages free! */
   1108 		goto fail;
   1109 
   1110 	case UVM_PGA_STRAT_ONLY:
   1111 	case UVM_PGA_STRAT_FALLBACK:
   1112 		/* Attempt to allocate from the specified free list. */
   1113 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1114 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1115 		    try1, try2, &color);
   1116 		if (pg != NULL)
   1117 			goto gotit;
   1118 
   1119 		/* Fall back, if possible. */
   1120 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1121 			strat = UVM_PGA_STRAT_NORMAL;
   1122 			goto again;
   1123 		}
   1124 
   1125 		/* No pages free! */
   1126 		goto fail;
   1127 
   1128 	default:
   1129 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1130 		/* NOTREACHED */
   1131 	}
   1132 
   1133  gotit:
   1134 	/*
   1135 	 * We now know which color we actually allocated from; set
   1136 	 * the next color accordingly.
   1137 	 */
   1138 
   1139 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1140 
   1141 	/*
   1142 	 * update allocation statistics and remember if we have to
   1143 	 * zero the page
   1144 	 */
   1145 
   1146 	if (flags & UVM_PGA_ZERO) {
   1147 		if (pg->flags & PG_ZERO) {
   1148 			uvmexp.pga_zerohit++;
   1149 			zeroit = 0;
   1150 		} else {
   1151 			uvmexp.pga_zeromiss++;
   1152 			zeroit = 1;
   1153 		}
   1154 	}
   1155 	uvm_unlock_fpageq(s);
   1156 
   1157 	pg->offset = off;
   1158 	pg->uobject = obj;
   1159 	pg->uanon = anon;
   1160 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1161 	if (anon) {
   1162 		anon->an_page = pg;
   1163 		pg->pqflags = PQ_ANON;
   1164 		uvmexp.anonpages++;
   1165 	} else {
   1166 		if (obj) {
   1167 			uvm_pageinsert(pg);
   1168 		}
   1169 		pg->pqflags = 0;
   1170 	}
   1171 #if defined(UVM_PAGE_TRKOWN)
   1172 	pg->owner_tag = NULL;
   1173 #endif
   1174 	UVM_PAGE_OWN(pg, "new alloc");
   1175 
   1176 	if (flags & UVM_PGA_ZERO) {
   1177 		/*
   1178 		 * A zero'd page is not clean.  If we got a page not already
   1179 		 * zero'd, then we have to zero it ourselves.
   1180 		 */
   1181 		pg->flags &= ~PG_CLEAN;
   1182 		if (zeroit)
   1183 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1184 	}
   1185 
   1186 	return(pg);
   1187 
   1188  fail:
   1189 	uvm_unlock_fpageq(s);
   1190 	return (NULL);
   1191 }
   1192 
   1193 /*
   1194  * uvm_pagereplace: replace a page with another
   1195  *
   1196  * => object must be locked
   1197  */
   1198 
   1199 void
   1200 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1201 {
   1202 
   1203 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1204 	KASSERT(oldpg->uobject != NULL);
   1205 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1206 	KASSERT(newpg->uobject == NULL);
   1207 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1208 
   1209 	newpg->uobject = oldpg->uobject;
   1210 	newpg->offset = oldpg->offset;
   1211 
   1212 	uvm_pageinsert_after(newpg, oldpg);
   1213 	uvm_pageremove(oldpg);
   1214 }
   1215 
   1216 /*
   1217  * uvm_pagerealloc: reallocate a page from one object to another
   1218  *
   1219  * => both objects must be locked
   1220  */
   1221 
   1222 void
   1223 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1224 {
   1225 	/*
   1226 	 * remove it from the old object
   1227 	 */
   1228 
   1229 	if (pg->uobject) {
   1230 		uvm_pageremove(pg);
   1231 	}
   1232 
   1233 	/*
   1234 	 * put it in the new object
   1235 	 */
   1236 
   1237 	if (newobj) {
   1238 		pg->uobject = newobj;
   1239 		pg->offset = newoff;
   1240 		uvm_pageinsert(pg);
   1241 	}
   1242 }
   1243 
   1244 #ifdef DEBUG
   1245 /*
   1246  * check if page is zero-filled
   1247  *
   1248  *  - called with free page queue lock held.
   1249  */
   1250 void
   1251 uvm_pagezerocheck(struct vm_page *pg)
   1252 {
   1253 	int *p, *ep;
   1254 
   1255 	KASSERT(uvm_zerocheckkva != 0);
   1256 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1257 
   1258 	/*
   1259 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1260 	 * uvm page allocator.
   1261 	 *
   1262 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1263 	 */
   1264 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1265 	p = (int *)uvm_zerocheckkva;
   1266 	ep = (int *)((char *)p + PAGE_SIZE);
   1267 	pmap_update(pmap_kernel());
   1268 	while (p < ep) {
   1269 		if (*p != 0)
   1270 			panic("PG_ZERO page isn't zero-filled");
   1271 		p++;
   1272 	}
   1273 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1274 }
   1275 #endif /* DEBUG */
   1276 
   1277 /*
   1278  * uvm_pagefree: free page
   1279  *
   1280  * => erase page's identity (i.e. remove from hash/object)
   1281  * => put page on free list
   1282  * => caller must lock owning object (either anon or uvm_object)
   1283  * => caller must lock page queues
   1284  * => assumes all valid mappings of pg are gone
   1285  */
   1286 
   1287 void
   1288 uvm_pagefree(struct vm_page *pg)
   1289 {
   1290 	int s;
   1291 	struct pglist *pgfl;
   1292 	boolean_t iszero;
   1293 
   1294 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1295 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1296 		    !uvmpdpol_pageisqueued_p(pg));
   1297 	LOCK_ASSERT(pg->uobject == NULL ||
   1298 		    simple_lock_held(&pg->uobject->vmobjlock));
   1299 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1300 		    simple_lock_held(&pg->uanon->an_lock));
   1301 
   1302 #ifdef DEBUG
   1303 	if (pg->uobject == (void *)0xdeadbeef &&
   1304 	    pg->uanon == (void *)0xdeadbeef) {
   1305 		panic("uvm_pagefree: freeing free page %p", pg);
   1306 	}
   1307 #endif /* DEBUG */
   1308 
   1309 	/*
   1310 	 * if the page is loaned, resolve the loan instead of freeing.
   1311 	 */
   1312 
   1313 	if (pg->loan_count) {
   1314 		KASSERT(pg->wire_count == 0);
   1315 
   1316 		/*
   1317 		 * if the page is owned by an anon then we just want to
   1318 		 * drop anon ownership.  the kernel will free the page when
   1319 		 * it is done with it.  if the page is owned by an object,
   1320 		 * remove it from the object and mark it dirty for the benefit
   1321 		 * of possible anon owners.
   1322 		 *
   1323 		 * regardless of previous ownership, wakeup any waiters,
   1324 		 * unbusy the page, and we're done.
   1325 		 */
   1326 
   1327 		if (pg->uobject != NULL) {
   1328 			uvm_pageremove(pg);
   1329 			pg->flags &= ~PG_CLEAN;
   1330 		} else if (pg->uanon != NULL) {
   1331 			if ((pg->pqflags & PQ_ANON) == 0) {
   1332 				pg->loan_count--;
   1333 			} else {
   1334 				pg->pqflags &= ~PQ_ANON;
   1335 				uvmexp.anonpages--;
   1336 			}
   1337 			pg->uanon->an_page = NULL;
   1338 			pg->uanon = NULL;
   1339 		}
   1340 		if (pg->flags & PG_WANTED) {
   1341 			wakeup(pg);
   1342 		}
   1343 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1344 #ifdef UVM_PAGE_TRKOWN
   1345 		pg->owner_tag = NULL;
   1346 #endif
   1347 		if (pg->loan_count) {
   1348 			KASSERT(pg->uobject == NULL);
   1349 			if (pg->uanon == NULL) {
   1350 				uvm_pagedequeue(pg);
   1351 			}
   1352 			return;
   1353 		}
   1354 	}
   1355 
   1356 	/*
   1357 	 * remove page from its object or anon.
   1358 	 */
   1359 
   1360 	if (pg->uobject != NULL) {
   1361 		uvm_pageremove(pg);
   1362 	} else if (pg->uanon != NULL) {
   1363 		pg->uanon->an_page = NULL;
   1364 		uvmexp.anonpages--;
   1365 	}
   1366 
   1367 	/*
   1368 	 * now remove the page from the queues.
   1369 	 */
   1370 
   1371 	uvm_pagedequeue(pg);
   1372 
   1373 	/*
   1374 	 * if the page was wired, unwire it now.
   1375 	 */
   1376 
   1377 	if (pg->wire_count) {
   1378 		pg->wire_count = 0;
   1379 		uvmexp.wired--;
   1380 	}
   1381 
   1382 	/*
   1383 	 * and put on free queue
   1384 	 */
   1385 
   1386 	iszero = (pg->flags & PG_ZERO);
   1387 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1388 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1389 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1390 
   1391 	pg->pqflags = PQ_FREE;
   1392 #ifdef DEBUG
   1393 	pg->uobject = (void *)0xdeadbeef;
   1394 	pg->offset = 0xdeadbeef;
   1395 	pg->uanon = (void *)0xdeadbeef;
   1396 #endif
   1397 
   1398 	s = uvm_lock_fpageq();
   1399 
   1400 #ifdef DEBUG
   1401 	if (iszero)
   1402 		uvm_pagezerocheck(pg);
   1403 #endif /* DEBUG */
   1404 
   1405 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1406 	uvmexp.free++;
   1407 	if (iszero)
   1408 		uvmexp.zeropages++;
   1409 
   1410 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1411 		uvm.page_idle_zero = vm_page_zero_enable;
   1412 
   1413 	uvm_unlock_fpageq(s);
   1414 }
   1415 
   1416 /*
   1417  * uvm_page_unbusy: unbusy an array of pages.
   1418  *
   1419  * => pages must either all belong to the same object, or all belong to anons.
   1420  * => if pages are object-owned, object must be locked.
   1421  * => if pages are anon-owned, anons must be locked.
   1422  * => caller must lock page queues if pages may be released.
   1423  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1424  */
   1425 
   1426 void
   1427 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1428 {
   1429 	struct vm_page *pg;
   1430 	int i;
   1431 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1432 
   1433 	for (i = 0; i < npgs; i++) {
   1434 		pg = pgs[i];
   1435 		if (pg == NULL || pg == PGO_DONTCARE) {
   1436 			continue;
   1437 		}
   1438 
   1439 		LOCK_ASSERT(pg->uobject == NULL ||
   1440 		    simple_lock_held(&pg->uobject->vmobjlock));
   1441 		LOCK_ASSERT(pg->uobject != NULL ||
   1442 		    (pg->uanon != NULL &&
   1443 		    simple_lock_held(&pg->uanon->an_lock)));
   1444 
   1445 		KASSERT(pg->flags & PG_BUSY);
   1446 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1447 		if (pg->flags & PG_WANTED) {
   1448 			wakeup(pg);
   1449 		}
   1450 		if (pg->flags & PG_RELEASED) {
   1451 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1452 			KASSERT(pg->uobject != NULL ||
   1453 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1454 			pg->flags &= ~PG_RELEASED;
   1455 			uvm_pagefree(pg);
   1456 		} else {
   1457 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1458 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1459 			UVM_PAGE_OWN(pg, NULL);
   1460 		}
   1461 	}
   1462 }
   1463 
   1464 #if defined(UVM_PAGE_TRKOWN)
   1465 /*
   1466  * uvm_page_own: set or release page ownership
   1467  *
   1468  * => this is a debugging function that keeps track of who sets PG_BUSY
   1469  *	and where they do it.   it can be used to track down problems
   1470  *	such a process setting "PG_BUSY" and never releasing it.
   1471  * => page's object [if any] must be locked
   1472  * => if "tag" is NULL then we are releasing page ownership
   1473  */
   1474 void
   1475 uvm_page_own(struct vm_page *pg, const char *tag)
   1476 {
   1477 	struct uvm_object *uobj;
   1478 	struct vm_anon *anon;
   1479 
   1480 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1481 
   1482 	uobj = pg->uobject;
   1483 	anon = pg->uanon;
   1484 	if (uobj != NULL) {
   1485 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
   1486 	} else if (anon != NULL) {
   1487 		LOCK_ASSERT(simple_lock_held(&anon->an_lock));
   1488 	}
   1489 
   1490 	KASSERT((pg->flags & PG_WANTED) == 0);
   1491 
   1492 	/* gain ownership? */
   1493 	if (tag) {
   1494 		KASSERT((pg->flags & PG_BUSY) != 0);
   1495 		if (pg->owner_tag) {
   1496 			printf("uvm_page_own: page %p already owned "
   1497 			    "by proc %d [%s]\n", pg,
   1498 			    pg->owner, pg->owner_tag);
   1499 			panic("uvm_page_own");
   1500 		}
   1501 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1502 		pg->owner_tag = tag;
   1503 		return;
   1504 	}
   1505 
   1506 	/* drop ownership */
   1507 	KASSERT((pg->flags & PG_BUSY) == 0);
   1508 	if (pg->owner_tag == NULL) {
   1509 		printf("uvm_page_own: dropping ownership of an non-owned "
   1510 		    "page (%p)\n", pg);
   1511 		panic("uvm_page_own");
   1512 	}
   1513 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1514 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1515 		    pg->wire_count > 0);
   1516 	} else {
   1517 		KASSERT(pg->wire_count == 0);
   1518 	}
   1519 	pg->owner_tag = NULL;
   1520 }
   1521 #endif
   1522 
   1523 /*
   1524  * uvm_pageidlezero: zero free pages while the system is idle.
   1525  *
   1526  * => try to complete one color bucket at a time, to reduce our impact
   1527  *	on the CPU cache.
   1528  * => we loop until we either reach the target or whichqs indicates that
   1529  *	there is a process ready to run.
   1530  */
   1531 void
   1532 uvm_pageidlezero(void)
   1533 {
   1534 	struct vm_page *pg;
   1535 	struct pgfreelist *pgfl;
   1536 	int free_list, s, firstbucket;
   1537 	static int nextbucket;
   1538 
   1539 	KERNEL_LOCK(1, NULL);
   1540 	s = uvm_lock_fpageq();
   1541 	firstbucket = nextbucket;
   1542 	do {
   1543 		if (sched_whichqs != 0)
   1544 			goto quit;
   1545 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1546 			uvm.page_idle_zero = FALSE;
   1547 			goto quit;
   1548 		}
   1549 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1550 			pgfl = &uvm.page_free[free_list];
   1551 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1552 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1553 				if (sched_whichqs != 0)
   1554 					goto quit;
   1555 
   1556 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1557 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1558 				    pg, pageq);
   1559 				uvmexp.free--;
   1560 				uvm_unlock_fpageq(s);
   1561 				KERNEL_UNLOCK_LAST(NULL);
   1562 #ifdef PMAP_PAGEIDLEZERO
   1563 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1564 
   1565 					/*
   1566 					 * The machine-dependent code detected
   1567 					 * some reason for us to abort zeroing
   1568 					 * pages, probably because there is a
   1569 					 * process now ready to run.
   1570 					 */
   1571 
   1572 					KERNEL_LOCK(1, NULL);
   1573 					s = uvm_lock_fpageq();
   1574 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1575 					    nextbucket].pgfl_queues[
   1576 					    PGFL_UNKNOWN], pg, pageq);
   1577 					uvmexp.free++;
   1578 					uvmexp.zeroaborts++;
   1579 					goto quit;
   1580 				}
   1581 #else
   1582 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1583 #endif /* PMAP_PAGEIDLEZERO */
   1584 				pg->flags |= PG_ZERO;
   1585 
   1586 				KERNEL_LOCK(1, NULL);
   1587 				s = uvm_lock_fpageq();
   1588 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1589 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1590 				    pg, pageq);
   1591 				uvmexp.free++;
   1592 				uvmexp.zeropages++;
   1593 			}
   1594 		}
   1595 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1596 	} while (nextbucket != firstbucket);
   1597 quit:
   1598 	uvm_unlock_fpageq(s);
   1599 	KERNEL_UNLOCK_LAST(NULL);
   1600 }
   1601 
   1602 /*
   1603  * uvm_lock_fpageq: lock the free page queue
   1604  *
   1605  * => free page queue can be accessed in interrupt context, so this
   1606  *	blocks all interrupts that can cause memory allocation, and
   1607  *	returns the previous interrupt level.
   1608  */
   1609 
   1610 int
   1611 uvm_lock_fpageq(void)
   1612 {
   1613 	int s;
   1614 
   1615 	s = splvm();
   1616 	simple_lock(&uvm.fpageqlock);
   1617 	return (s);
   1618 }
   1619 
   1620 /*
   1621  * uvm_unlock_fpageq: unlock the free page queue
   1622  *
   1623  * => caller must supply interrupt level returned by uvm_lock_fpageq()
   1624  *	so that it may be restored.
   1625  */
   1626 
   1627 void
   1628 uvm_unlock_fpageq(int s)
   1629 {
   1630 
   1631 	simple_unlock(&uvm.fpageqlock);
   1632 	splx(s);
   1633 }
   1634 
   1635 /*
   1636  * uvm_pagelookup: look up a page
   1637  *
   1638  * => caller should lock object to keep someone from pulling the page
   1639  *	out from under it
   1640  */
   1641 
   1642 struct vm_page *
   1643 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1644 {
   1645 	struct vm_page *pg;
   1646 	struct pglist *buck;
   1647 
   1648 	buck = &uvm.page_hash[uvm_pagehash(obj,off)];
   1649 	simple_lock(&uvm.hashlock);
   1650 	TAILQ_FOREACH(pg, buck, hashq) {
   1651 		if (pg->uobject == obj && pg->offset == off) {
   1652 			break;
   1653 		}
   1654 	}
   1655 	simple_unlock(&uvm.hashlock);
   1656 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1657 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1658 		(pg->flags & PG_BUSY) != 0);
   1659 	return(pg);
   1660 }
   1661 
   1662 /*
   1663  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1664  *
   1665  * => caller must lock page queues
   1666  */
   1667 
   1668 void
   1669 uvm_pagewire(struct vm_page *pg)
   1670 {
   1671 	UVM_LOCK_ASSERT_PAGEQ();
   1672 #if defined(READAHEAD_STATS)
   1673 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1674 		uvm_ra_hit.ev_count++;
   1675 		pg->pqflags &= ~PQ_READAHEAD;
   1676 	}
   1677 #endif /* defined(READAHEAD_STATS) */
   1678 	if (pg->wire_count == 0) {
   1679 		uvm_pagedequeue(pg);
   1680 		uvmexp.wired++;
   1681 	}
   1682 	pg->wire_count++;
   1683 }
   1684 
   1685 /*
   1686  * uvm_pageunwire: unwire the page.
   1687  *
   1688  * => activate if wire count goes to zero.
   1689  * => caller must lock page queues
   1690  */
   1691 
   1692 void
   1693 uvm_pageunwire(struct vm_page *pg)
   1694 {
   1695 	UVM_LOCK_ASSERT_PAGEQ();
   1696 	pg->wire_count--;
   1697 	if (pg->wire_count == 0) {
   1698 		uvm_pageactivate(pg);
   1699 		uvmexp.wired--;
   1700 	}
   1701 }
   1702 
   1703 /*
   1704  * uvm_pagedeactivate: deactivate page
   1705  *
   1706  * => caller must lock page queues
   1707  * => caller must check to make sure page is not wired
   1708  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1709  * => caller must clear the reference on the page before calling
   1710  */
   1711 
   1712 void
   1713 uvm_pagedeactivate(struct vm_page *pg)
   1714 {
   1715 
   1716 	UVM_LOCK_ASSERT_PAGEQ();
   1717 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1718 	uvmpdpol_pagedeactivate(pg);
   1719 }
   1720 
   1721 /*
   1722  * uvm_pageactivate: activate page
   1723  *
   1724  * => caller must lock page queues
   1725  */
   1726 
   1727 void
   1728 uvm_pageactivate(struct vm_page *pg)
   1729 {
   1730 
   1731 	UVM_LOCK_ASSERT_PAGEQ();
   1732 #if defined(READAHEAD_STATS)
   1733 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1734 		uvm_ra_hit.ev_count++;
   1735 		pg->pqflags &= ~PQ_READAHEAD;
   1736 	}
   1737 #endif /* defined(READAHEAD_STATS) */
   1738 	if (pg->wire_count != 0) {
   1739 		return;
   1740 	}
   1741 	uvmpdpol_pageactivate(pg);
   1742 }
   1743 
   1744 /*
   1745  * uvm_pagedequeue: remove a page from any paging queue
   1746  */
   1747 
   1748 void
   1749 uvm_pagedequeue(struct vm_page *pg)
   1750 {
   1751 
   1752 #if defined(LOCKDEBUG)
   1753 	if (uvmpdpol_pageisqueued_p(pg)) {
   1754 		UVM_LOCK_ASSERT_PAGEQ();
   1755 	}
   1756 #endif /* defined(LOCKDEBUG) */
   1757 	uvmpdpol_pagedequeue(pg);
   1758 }
   1759 
   1760 /*
   1761  * uvm_pageenqueue: add a page to a paging queue without activating.
   1762  * used where a page is not really demanded (yet).  eg. read-ahead
   1763  */
   1764 
   1765 void
   1766 uvm_pageenqueue(struct vm_page *pg)
   1767 {
   1768 
   1769 	UVM_LOCK_ASSERT_PAGEQ();
   1770 	if (pg->wire_count != 0) {
   1771 		return;
   1772 	}
   1773 	uvmpdpol_pageenqueue(pg);
   1774 }
   1775 
   1776 /*
   1777  * uvm_pagezero: zero fill a page
   1778  *
   1779  * => if page is part of an object then the object should be locked
   1780  *	to protect pg->flags.
   1781  */
   1782 
   1783 void
   1784 uvm_pagezero(struct vm_page *pg)
   1785 {
   1786 	pg->flags &= ~PG_CLEAN;
   1787 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1788 }
   1789 
   1790 /*
   1791  * uvm_pagecopy: copy a page
   1792  *
   1793  * => if page is part of an object then the object should be locked
   1794  *	to protect pg->flags.
   1795  */
   1796 
   1797 void
   1798 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1799 {
   1800 
   1801 	dst->flags &= ~PG_CLEAN;
   1802 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1803 }
   1804 
   1805 /*
   1806  * uvm_page_lookup_freelist: look up the free list for the specified page
   1807  */
   1808 
   1809 int
   1810 uvm_page_lookup_freelist(struct vm_page *pg)
   1811 {
   1812 	int lcv;
   1813 
   1814 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1815 	KASSERT(lcv != -1);
   1816 	return (vm_physmem[lcv].free_list);
   1817 }
   1818