Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.124
      1 /*	$NetBSD: uvm_page.c,v 1.124 2007/10/08 14:06:15 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.124 2007/10/08 14:06:15 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 
     87 #include <uvm/uvm.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * global vars... XXXCDC: move to uvm. structure.
     92  */
     93 
     94 /*
     95  * physical memory config is stored in vm_physmem.
     96  */
     97 
     98 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     99 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    100 
    101 /*
    102  * Some supported CPUs in a given architecture don't support all
    103  * of the things necessary to do idle page zero'ing efficiently.
    104  * We therefore provide a way to disable it from machdep code here.
    105  */
    106 /*
    107  * XXX disabled until we can find a way to do this without causing
    108  * problems for either CPU caches or DMA latency.
    109  */
    110 bool vm_page_zero_enable = false;
    111 
    112 /*
    113  * local variables
    114  */
    115 
    116 /*
    117  * these variables record the values returned by vm_page_bootstrap,
    118  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    119  * and pmap_startup here also uses them internally.
    120  */
    121 
    122 static vaddr_t      virtual_space_start;
    123 static vaddr_t      virtual_space_end;
    124 
    125 /*
    126  * we use a hash table with only one bucket during bootup.  we will
    127  * later rehash (resize) the hash table once the allocator is ready.
    128  * we static allocate the one bootstrap bucket below...
    129  */
    130 
    131 static struct pglist uvm_bootbucket;
    132 
    133 /*
    134  * we allocate an initial number of page colors in uvm_page_init(),
    135  * and remember them.  We may re-color pages as cache sizes are
    136  * discovered during the autoconfiguration phase.  But we can never
    137  * free the initial set of buckets, since they are allocated using
    138  * uvm_pageboot_alloc().
    139  */
    140 
    141 static bool have_recolored_pages /* = false */;
    142 
    143 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    144 
    145 #ifdef DEBUG
    146 vaddr_t uvm_zerocheckkva;
    147 #endif /* DEBUG */
    148 
    149 /*
    150  * locks on the hash table.  allocated in 32 byte chunks to try
    151  * and reduce cache traffic between CPUs.
    152  */
    153 
    154 #define	UVM_HASHLOCK_CNT	32
    155 #define	uvm_hashlock(hash)	\
    156     (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
    157 
    158 static union {
    159 	kmutex_t	lock;
    160 	uint8_t		pad[32];
    161 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
    162 
    163 /*
    164  * locks on the hash table.
    165  */
    166 
    167 #define	UVM_HASHLOCK_CNT	32
    168 #define	uvm_hashlock(hash)	(&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)])
    169 
    170 static kmutex_t uvm_hashlocks[UVM_HASHLOCK_CNT];
    171 
    172 /*
    173  * local prototypes
    174  */
    175 
    176 static void uvm_pageinsert(struct vm_page *);
    177 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    178 static void uvm_pageremove(struct vm_page *);
    179 
    180 /*
    181  * inline functions
    182  */
    183 
    184 /*
    185  * uvm_pageinsert: insert a page in the object and the hash table
    186  * uvm_pageinsert_after: insert a page into the specified place in listq
    187  *
    188  * => caller must lock object
    189  * => caller must lock page queues
    190  * => call should have already set pg's object and offset pointers
    191  *    and bumped the version counter
    192  */
    193 
    194 inline static void
    195 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    196 {
    197 	struct pglist *buck;
    198 	struct uvm_object *uobj = pg->uobject;
    199 	kmutex_t *lock;
    200 	u_int hash;
    201 
    202 	LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    203 	KASSERT((pg->flags & PG_TABLED) == 0);
    204 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    205 	KASSERT(where == NULL || (where->uobject == uobj));
    206 
    207 	hash = uvm_pagehash(uobj, pg->offset);
    208 	buck = &uvm.page_hash[hash];
    209 	lock = uvm_hashlock(hash);
    210 	mutex_spin_enter(lock);
    211 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    212 	mutex_spin_exit(lock);
    213 
    214 	if (UVM_OBJ_IS_VNODE(uobj)) {
    215 		if (uobj->uo_npages == 0) {
    216 			struct vnode *vp = (struct vnode *)uobj;
    217 
    218 			vholdl(vp);
    219 		}
    220 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    221 			uvmexp.execpages++;
    222 		} else {
    223 			uvmexp.filepages++;
    224 		}
    225 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    226 		uvmexp.anonpages++;
    227 	}
    228 
    229 	if (where)
    230 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    231 	else
    232 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    233 	pg->flags |= PG_TABLED;
    234 	uobj->uo_npages++;
    235 }
    236 
    237 inline static void
    238 uvm_pageinsert(struct vm_page *pg)
    239 {
    240 
    241 	uvm_pageinsert_after(pg, NULL);
    242 }
    243 
    244 /*
    245  * uvm_page_remove: remove page from object and hash
    246  *
    247  * => caller must lock object
    248  * => caller must lock page queues
    249  */
    250 
    251 static inline void
    252 uvm_pageremove(struct vm_page *pg)
    253 {
    254 	struct pglist *buck;
    255 	struct uvm_object *uobj = pg->uobject;
    256 	kmutex_t *lock;
    257 	u_int hash;
    258 
    259 	LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
    260 	KASSERT(pg->flags & PG_TABLED);
    261 
    262 	hash = uvm_pagehash(uobj, pg->offset);
    263 	buck = &uvm.page_hash[hash];
    264 	lock = uvm_hashlock(hash);
    265 	mutex_spin_enter(lock);
    266 	TAILQ_REMOVE(buck, pg, hashq);
    267 	mutex_spin_exit(lock);
    268 
    269 	if (UVM_OBJ_IS_VNODE(uobj)) {
    270 		if (uobj->uo_npages == 1) {
    271 			struct vnode *vp = (struct vnode *)uobj;
    272 
    273 			holdrelel(vp);
    274 		}
    275 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    276 			uvmexp.execpages--;
    277 		} else {
    278 			uvmexp.filepages--;
    279 		}
    280 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    281 		uvmexp.anonpages--;
    282 	}
    283 
    284 	/* object should be locked */
    285 	uobj->uo_npages--;
    286 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    287 	pg->flags &= ~PG_TABLED;
    288 	pg->uobject = NULL;
    289 }
    290 
    291 static void
    292 uvm_page_init_buckets(struct pgfreelist *pgfl)
    293 {
    294 	int color, i;
    295 
    296 	for (color = 0; color < uvmexp.ncolors; color++) {
    297 		for (i = 0; i < PGFL_NQUEUES; i++) {
    298 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    299 		}
    300 	}
    301 }
    302 
    303 /*
    304  * uvm_page_init: init the page system.   called from uvm_init().
    305  *
    306  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    307  */
    308 
    309 void
    310 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    311 {
    312 	vsize_t freepages, pagecount, bucketcount, n;
    313 	struct pgflbucket *bucketarray;
    314 	struct vm_page *pagearray;
    315 	int lcv;
    316 	u_int i;
    317 	paddr_t paddr;
    318 
    319 	/*
    320 	 * init the page queues and page queue locks, except the free
    321 	 * list; we allocate that later (with the initial vm_page
    322 	 * structures).
    323 	 */
    324 
    325 	uvmpdpol_init();
    326 	simple_lock_init(&uvm.pageqlock);
    327 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    328 
    329 	/*
    330 	 * init the <obj,offset> => <page> hash table.  for now
    331 	 * we just have one bucket (the bootstrap bucket).  later on we
    332 	 * will allocate new buckets as we dynamically resize the hash table.
    333 	 */
    334 
    335 	uvm.page_nhash = 1;			/* 1 bucket */
    336 	uvm.page_hashmask = 0;			/* mask for hash function */
    337 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    338 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    339 
    340 	/*
    341 	 * init hashtable locks.  these must be spinlocks, as they are
    342 	 * called from sites in the pmap modules where we cannot block.
    343 	 * if taking multiple locks, the order is: low numbered first,
    344 	 * high numbered second.
    345 	 */
    346 
    347 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    348 		mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
    349 
    350 	/*
    351 	 * allocate vm_page structures.
    352 	 */
    353 
    354 	/*
    355 	 * sanity check:
    356 	 * before calling this function the MD code is expected to register
    357 	 * some free RAM with the uvm_page_physload() function.   our job
    358 	 * now is to allocate vm_page structures for this memory.
    359 	 */
    360 
    361 	if (vm_nphysseg == 0)
    362 		panic("uvm_page_bootstrap: no memory pre-allocated");
    363 
    364 	/*
    365 	 * first calculate the number of free pages...
    366 	 *
    367 	 * note that we use start/end rather than avail_start/avail_end.
    368 	 * this allows us to allocate extra vm_page structures in case we
    369 	 * want to return some memory to the pool after booting.
    370 	 */
    371 
    372 	freepages = 0;
    373 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    374 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    375 
    376 	/*
    377 	 * Let MD code initialize the number of colors, or default
    378 	 * to 1 color if MD code doesn't care.
    379 	 */
    380 	if (uvmexp.ncolors == 0)
    381 		uvmexp.ncolors = 1;
    382 	uvmexp.colormask = uvmexp.ncolors - 1;
    383 
    384 	/*
    385 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    386 	 * use.   for each page of memory we use we need a vm_page structure.
    387 	 * thus, the total number of pages we can use is the total size of
    388 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    389 	 * structure.   we add one to freepages as a fudge factor to avoid
    390 	 * truncation errors (since we can only allocate in terms of whole
    391 	 * pages).
    392 	 */
    393 
    394 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    395 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    396 	    (PAGE_SIZE + sizeof(struct vm_page));
    397 
    398 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    399 	    sizeof(struct pgflbucket)) + (pagecount *
    400 	    sizeof(struct vm_page)));
    401 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    402 
    403 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    404 		uvm.page_free[lcv].pgfl_buckets =
    405 		    (bucketarray + (lcv * uvmexp.ncolors));
    406 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    407 	}
    408 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    409 
    410 	/*
    411 	 * init the vm_page structures and put them in the correct place.
    412 	 */
    413 
    414 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    415 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    416 
    417 		/* set up page array pointers */
    418 		vm_physmem[lcv].pgs = pagearray;
    419 		pagearray += n;
    420 		pagecount -= n;
    421 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    422 
    423 		/* init and free vm_pages (we've already zeroed them) */
    424 		paddr = ptoa(vm_physmem[lcv].start);
    425 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    426 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    427 #ifdef __HAVE_VM_PAGE_MD
    428 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    429 #endif
    430 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    431 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    432 				uvmexp.npages++;
    433 				/* add page to free pool */
    434 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    435 			}
    436 		}
    437 	}
    438 
    439 	/*
    440 	 * pass up the values of virtual_space_start and
    441 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    442 	 * layers of the VM.
    443 	 */
    444 
    445 	*kvm_startp = round_page(virtual_space_start);
    446 	*kvm_endp = trunc_page(virtual_space_end);
    447 #ifdef DEBUG
    448 	/*
    449 	 * steal kva for uvm_pagezerocheck().
    450 	 */
    451 	uvm_zerocheckkva = *kvm_startp;
    452 	*kvm_startp += PAGE_SIZE;
    453 #endif /* DEBUG */
    454 
    455 	/*
    456 	 * init locks for kernel threads
    457 	 */
    458 
    459 	mutex_init(&uvm_pagedaemon_lock, MUTEX_DEFAULT, IPL_NONE);
    460 
    461 	/*
    462 	 * init various thresholds.
    463 	 */
    464 
    465 	uvmexp.reserve_pagedaemon = 1;
    466 	uvmexp.reserve_kernel = 5;
    467 
    468 	/*
    469 	 * determine if we should zero pages in the idle loop.
    470 	 */
    471 
    472 	uvm.page_idle_zero = vm_page_zero_enable;
    473 
    474 	/*
    475 	 * done!
    476 	 */
    477 
    478 	uvm.page_init_done = true;
    479 }
    480 
    481 /*
    482  * uvm_setpagesize: set the page size
    483  *
    484  * => sets page_shift and page_mask from uvmexp.pagesize.
    485  */
    486 
    487 void
    488 uvm_setpagesize(void)
    489 {
    490 
    491 	/*
    492 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    493 	 * to be a constant (indicated by being a non-zero value).
    494 	 */
    495 	if (uvmexp.pagesize == 0) {
    496 		if (PAGE_SIZE == 0)
    497 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    498 		uvmexp.pagesize = PAGE_SIZE;
    499 	}
    500 	uvmexp.pagemask = uvmexp.pagesize - 1;
    501 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    502 		panic("uvm_setpagesize: page size not a power of two");
    503 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    504 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    505 			break;
    506 }
    507 
    508 /*
    509  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    510  */
    511 
    512 vaddr_t
    513 uvm_pageboot_alloc(vsize_t size)
    514 {
    515 	static bool initialized = false;
    516 	vaddr_t addr;
    517 #if !defined(PMAP_STEAL_MEMORY)
    518 	vaddr_t vaddr;
    519 	paddr_t paddr;
    520 #endif
    521 
    522 	/*
    523 	 * on first call to this function, initialize ourselves.
    524 	 */
    525 	if (initialized == false) {
    526 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    527 
    528 		/* round it the way we like it */
    529 		virtual_space_start = round_page(virtual_space_start);
    530 		virtual_space_end = trunc_page(virtual_space_end);
    531 
    532 		initialized = true;
    533 	}
    534 
    535 	/* round to page size */
    536 	size = round_page(size);
    537 
    538 #if defined(PMAP_STEAL_MEMORY)
    539 
    540 	/*
    541 	 * defer bootstrap allocation to MD code (it may want to allocate
    542 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    543 	 * virtual_space_start/virtual_space_end if necessary.
    544 	 */
    545 
    546 	addr = pmap_steal_memory(size, &virtual_space_start,
    547 	    &virtual_space_end);
    548 
    549 	return(addr);
    550 
    551 #else /* !PMAP_STEAL_MEMORY */
    552 
    553 	/*
    554 	 * allocate virtual memory for this request
    555 	 */
    556 	if (virtual_space_start == virtual_space_end ||
    557 	    (virtual_space_end - virtual_space_start) < size)
    558 		panic("uvm_pageboot_alloc: out of virtual space");
    559 
    560 	addr = virtual_space_start;
    561 
    562 #ifdef PMAP_GROWKERNEL
    563 	/*
    564 	 * If the kernel pmap can't map the requested space,
    565 	 * then allocate more resources for it.
    566 	 */
    567 	if (uvm_maxkaddr < (addr + size)) {
    568 		uvm_maxkaddr = pmap_growkernel(addr + size);
    569 		if (uvm_maxkaddr < (addr + size))
    570 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    571 	}
    572 #endif
    573 
    574 	virtual_space_start += size;
    575 
    576 	/*
    577 	 * allocate and mapin physical pages to back new virtual pages
    578 	 */
    579 
    580 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    581 	    vaddr += PAGE_SIZE) {
    582 
    583 		if (!uvm_page_physget(&paddr))
    584 			panic("uvm_pageboot_alloc: out of memory");
    585 
    586 		/*
    587 		 * Note this memory is no longer managed, so using
    588 		 * pmap_kenter is safe.
    589 		 */
    590 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    591 	}
    592 	pmap_update(pmap_kernel());
    593 	return(addr);
    594 #endif	/* PMAP_STEAL_MEMORY */
    595 }
    596 
    597 #if !defined(PMAP_STEAL_MEMORY)
    598 /*
    599  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    600  *
    601  * => attempt to allocate it off the end of a segment in which the "avail"
    602  *    values match the start/end values.   if we can't do that, then we
    603  *    will advance both values (making them equal, and removing some
    604  *    vm_page structures from the non-avail area).
    605  * => return false if out of memory.
    606  */
    607 
    608 /* subroutine: try to allocate from memory chunks on the specified freelist */
    609 static bool uvm_page_physget_freelist(paddr_t *, int);
    610 
    611 static bool
    612 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    613 {
    614 	int lcv, x;
    615 
    616 	/* pass 1: try allocating from a matching end */
    617 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    618 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    619 #else
    620 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    621 #endif
    622 	{
    623 
    624 		if (uvm.page_init_done == true)
    625 			panic("uvm_page_physget: called _after_ bootstrap");
    626 
    627 		if (vm_physmem[lcv].free_list != freelist)
    628 			continue;
    629 
    630 		/* try from front */
    631 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    632 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    633 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    634 			vm_physmem[lcv].avail_start++;
    635 			vm_physmem[lcv].start++;
    636 			/* nothing left?   nuke it */
    637 			if (vm_physmem[lcv].avail_start ==
    638 			    vm_physmem[lcv].end) {
    639 				if (vm_nphysseg == 1)
    640 				    panic("uvm_page_physget: out of memory!");
    641 				vm_nphysseg--;
    642 				for (x = lcv ; x < vm_nphysseg ; x++)
    643 					/* structure copy */
    644 					vm_physmem[x] = vm_physmem[x+1];
    645 			}
    646 			return (true);
    647 		}
    648 
    649 		/* try from rear */
    650 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    651 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    652 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    653 			vm_physmem[lcv].avail_end--;
    654 			vm_physmem[lcv].end--;
    655 			/* nothing left?   nuke it */
    656 			if (vm_physmem[lcv].avail_end ==
    657 			    vm_physmem[lcv].start) {
    658 				if (vm_nphysseg == 1)
    659 				    panic("uvm_page_physget: out of memory!");
    660 				vm_nphysseg--;
    661 				for (x = lcv ; x < vm_nphysseg ; x++)
    662 					/* structure copy */
    663 					vm_physmem[x] = vm_physmem[x+1];
    664 			}
    665 			return (true);
    666 		}
    667 	}
    668 
    669 	/* pass2: forget about matching ends, just allocate something */
    670 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    671 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    672 #else
    673 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    674 #endif
    675 	{
    676 
    677 		/* any room in this bank? */
    678 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    679 			continue;  /* nope */
    680 
    681 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    682 		vm_physmem[lcv].avail_start++;
    683 		/* truncate! */
    684 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    685 
    686 		/* nothing left?   nuke it */
    687 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    688 			if (vm_nphysseg == 1)
    689 				panic("uvm_page_physget: out of memory!");
    690 			vm_nphysseg--;
    691 			for (x = lcv ; x < vm_nphysseg ; x++)
    692 				/* structure copy */
    693 				vm_physmem[x] = vm_physmem[x+1];
    694 		}
    695 		return (true);
    696 	}
    697 
    698 	return (false);        /* whoops! */
    699 }
    700 
    701 bool
    702 uvm_page_physget(paddr_t *paddrp)
    703 {
    704 	int i;
    705 
    706 	/* try in the order of freelist preference */
    707 	for (i = 0; i < VM_NFREELIST; i++)
    708 		if (uvm_page_physget_freelist(paddrp, i) == true)
    709 			return (true);
    710 	return (false);
    711 }
    712 #endif /* PMAP_STEAL_MEMORY */
    713 
    714 /*
    715  * uvm_page_physload: load physical memory into VM system
    716  *
    717  * => all args are PFs
    718  * => all pages in start/end get vm_page structures
    719  * => areas marked by avail_start/avail_end get added to the free page pool
    720  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    721  */
    722 
    723 void
    724 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    725     paddr_t avail_end, int free_list)
    726 {
    727 	int preload, lcv;
    728 	psize_t npages;
    729 	struct vm_page *pgs;
    730 	struct vm_physseg *ps;
    731 
    732 	if (uvmexp.pagesize == 0)
    733 		panic("uvm_page_physload: page size not set!");
    734 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    735 		panic("uvm_page_physload: bad free list %d", free_list);
    736 	if (start >= end)
    737 		panic("uvm_page_physload: start >= end");
    738 
    739 	/*
    740 	 * do we have room?
    741 	 */
    742 
    743 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    744 		printf("uvm_page_physload: unable to load physical memory "
    745 		    "segment\n");
    746 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    747 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    748 		printf("\tincrease VM_PHYSSEG_MAX\n");
    749 		return;
    750 	}
    751 
    752 	/*
    753 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    754 	 * called yet, so malloc is not available).
    755 	 */
    756 
    757 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    758 		if (vm_physmem[lcv].pgs)
    759 			break;
    760 	}
    761 	preload = (lcv == vm_nphysseg);
    762 
    763 	/*
    764 	 * if VM is already running, attempt to malloc() vm_page structures
    765 	 */
    766 
    767 	if (!preload) {
    768 #if defined(VM_PHYSSEG_NOADD)
    769 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    770 #else
    771 		/* XXXCDC: need some sort of lockout for this case */
    772 		paddr_t paddr;
    773 		npages = end - start;  /* # of pages */
    774 		pgs = malloc(sizeof(struct vm_page) * npages,
    775 		    M_VMPAGE, M_NOWAIT);
    776 		if (pgs == NULL) {
    777 			printf("uvm_page_physload: can not malloc vm_page "
    778 			    "structs for segment\n");
    779 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    780 			return;
    781 		}
    782 		/* zero data, init phys_addr and free_list, and free pages */
    783 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    784 		for (lcv = 0, paddr = ptoa(start) ;
    785 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    786 			pgs[lcv].phys_addr = paddr;
    787 			pgs[lcv].free_list = free_list;
    788 			if (atop(paddr) >= avail_start &&
    789 			    atop(paddr) <= avail_end)
    790 				uvm_pagefree(&pgs[lcv]);
    791 		}
    792 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    793 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    794 #endif
    795 	} else {
    796 		pgs = NULL;
    797 		npages = 0;
    798 	}
    799 
    800 	/*
    801 	 * now insert us in the proper place in vm_physmem[]
    802 	 */
    803 
    804 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    805 	/* random: put it at the end (easy!) */
    806 	ps = &vm_physmem[vm_nphysseg];
    807 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    808 	{
    809 		int x;
    810 		/* sort by address for binary search */
    811 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    812 			if (start < vm_physmem[lcv].start)
    813 				break;
    814 		ps = &vm_physmem[lcv];
    815 		/* move back other entries, if necessary ... */
    816 		for (x = vm_nphysseg ; x > lcv ; x--)
    817 			/* structure copy */
    818 			vm_physmem[x] = vm_physmem[x - 1];
    819 	}
    820 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    821 	{
    822 		int x;
    823 		/* sort by largest segment first */
    824 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    825 			if ((end - start) >
    826 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    827 				break;
    828 		ps = &vm_physmem[lcv];
    829 		/* move back other entries, if necessary ... */
    830 		for (x = vm_nphysseg ; x > lcv ; x--)
    831 			/* structure copy */
    832 			vm_physmem[x] = vm_physmem[x - 1];
    833 	}
    834 #else
    835 	panic("uvm_page_physload: unknown physseg strategy selected!");
    836 #endif
    837 
    838 	ps->start = start;
    839 	ps->end = end;
    840 	ps->avail_start = avail_start;
    841 	ps->avail_end = avail_end;
    842 	if (preload) {
    843 		ps->pgs = NULL;
    844 	} else {
    845 		ps->pgs = pgs;
    846 		ps->lastpg = pgs + npages - 1;
    847 	}
    848 	ps->free_list = free_list;
    849 	vm_nphysseg++;
    850 
    851 	if (!preload) {
    852 		uvm_page_rehash();
    853 		uvmpdpol_reinit();
    854 	}
    855 }
    856 
    857 /*
    858  * uvm_page_rehash: reallocate hash table based on number of free pages.
    859  */
    860 
    861 void
    862 uvm_page_rehash(void)
    863 {
    864 	int freepages, lcv, bucketcount, oldcount, i;
    865 	struct pglist *newbuckets, *oldbuckets;
    866 	struct vm_page *pg;
    867 	size_t newsize, oldsize;
    868 
    869 	/*
    870 	 * compute number of pages that can go in the free pool
    871 	 */
    872 
    873 	freepages = 0;
    874 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    875 		freepages +=
    876 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    877 
    878 	/*
    879 	 * compute number of buckets needed for this number of pages
    880 	 */
    881 
    882 	bucketcount = 1;
    883 	while (bucketcount < freepages)
    884 		bucketcount = bucketcount * 2;
    885 
    886 	/*
    887 	 * compute the size of the current table and new table.
    888 	 */
    889 
    890 	oldbuckets = uvm.page_hash;
    891 	oldcount = uvm.page_nhash;
    892 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    893 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    894 
    895 	/*
    896 	 * allocate the new buckets
    897 	 */
    898 
    899 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    900 	    0, UVM_KMF_WIRED);
    901 	if (newbuckets == NULL) {
    902 		printf("uvm_page_physrehash: WARNING: could not grow page "
    903 		    "hash table\n");
    904 		return;
    905 	}
    906 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    907 		TAILQ_INIT(&newbuckets[lcv]);
    908 
    909 	/*
    910 	 * now replace the old buckets with the new ones and rehash everything
    911 	 */
    912 
    913 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    914 		mutex_spin_enter(&uvm_hashlocks[i].lock);
    915 
    916 	uvm.page_hash = newbuckets;
    917 	uvm.page_nhash = bucketcount;
    918 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    919 
    920 	/* ... and rehash */
    921 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    922 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    923 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    924 			TAILQ_INSERT_TAIL(
    925 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    926 			  pg, hashq);
    927 		}
    928 	}
    929 
    930 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    931 		mutex_spin_exit(&uvm_hashlocks[i].lock);
    932 
    933 	/*
    934 	 * free old bucket array if is not the boot-time table
    935 	 */
    936 
    937 	if (oldbuckets != &uvm_bootbucket)
    938 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    939 		    UVM_KMF_WIRED);
    940 }
    941 
    942 /*
    943  * uvm_page_recolor: Recolor the pages if the new bucket count is
    944  * larger than the old one.
    945  */
    946 
    947 void
    948 uvm_page_recolor(int newncolors)
    949 {
    950 	struct pgflbucket *bucketarray, *oldbucketarray;
    951 	struct pgfreelist pgfl;
    952 	struct vm_page *pg;
    953 	vsize_t bucketcount;
    954 	int lcv, color, i, ocolors;
    955 
    956 	if (newncolors <= uvmexp.ncolors)
    957 		return;
    958 
    959 	if (uvm.page_init_done == false) {
    960 		uvmexp.ncolors = newncolors;
    961 		return;
    962 	}
    963 
    964 	bucketcount = newncolors * VM_NFREELIST;
    965 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    966 	    M_VMPAGE, M_NOWAIT);
    967 	if (bucketarray == NULL) {
    968 		printf("WARNING: unable to allocate %ld page color buckets\n",
    969 		    (long) bucketcount);
    970 		return;
    971 	}
    972 
    973 	mutex_spin_enter(&uvm_fpageqlock);
    974 
    975 	/* Make sure we should still do this. */
    976 	if (newncolors <= uvmexp.ncolors) {
    977 		mutex_spin_exit(&uvm_fpageqlock);
    978 		free(bucketarray, M_VMPAGE);
    979 		return;
    980 	}
    981 
    982 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    983 	ocolors = uvmexp.ncolors;
    984 
    985 	uvmexp.ncolors = newncolors;
    986 	uvmexp.colormask = uvmexp.ncolors - 1;
    987 
    988 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    989 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    990 		uvm_page_init_buckets(&pgfl);
    991 		for (color = 0; color < ocolors; color++) {
    992 			for (i = 0; i < PGFL_NQUEUES; i++) {
    993 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    994 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    995 				    != NULL) {
    996 					TAILQ_REMOVE(&uvm.page_free[
    997 					    lcv].pgfl_buckets[
    998 					    color].pgfl_queues[i], pg, pageq);
    999 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
   1000 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1001 					    i], pg, pageq);
   1002 				}
   1003 			}
   1004 		}
   1005 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1006 	}
   1007 
   1008 	if (have_recolored_pages) {
   1009 		mutex_spin_exit(&uvm_fpageqlock);
   1010 		free(oldbucketarray, M_VMPAGE);
   1011 		return;
   1012 	}
   1013 
   1014 	have_recolored_pages = true;
   1015 	mutex_spin_exit(&uvm_fpageqlock);
   1016 }
   1017 
   1018 /*
   1019  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1020  */
   1021 
   1022 static struct vm_page *
   1023 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
   1024     int *trycolorp)
   1025 {
   1026 	struct pglist *freeq;
   1027 	struct vm_page *pg;
   1028 	int color, trycolor = *trycolorp;
   1029 
   1030 	color = trycolor;
   1031 	do {
   1032 		if ((pg = TAILQ_FIRST((freeq =
   1033 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
   1034 			goto gotit;
   1035 		if ((pg = TAILQ_FIRST((freeq =
   1036 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
   1037 			goto gotit;
   1038 		color = (color + 1) & uvmexp.colormask;
   1039 	} while (color != trycolor);
   1040 
   1041 	return (NULL);
   1042 
   1043  gotit:
   1044 	TAILQ_REMOVE(freeq, pg, pageq);
   1045 	uvmexp.free--;
   1046 
   1047 	/* update zero'd page count */
   1048 	if (pg->flags & PG_ZERO)
   1049 		uvmexp.zeropages--;
   1050 
   1051 	if (color == trycolor)
   1052 		uvmexp.colorhit++;
   1053 	else {
   1054 		uvmexp.colormiss++;
   1055 		*trycolorp = color;
   1056 	}
   1057 
   1058 	return (pg);
   1059 }
   1060 
   1061 /*
   1062  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1063  *
   1064  * => return null if no pages free
   1065  * => wake up pagedaemon if number of free pages drops below low water mark
   1066  * => if obj != NULL, obj must be locked (to put in hash)
   1067  * => if anon != NULL, anon must be locked (to put in anon)
   1068  * => only one of obj or anon can be non-null
   1069  * => caller must activate/deactivate page if it is not wired.
   1070  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1071  * => policy decision: it is more important to pull a page off of the
   1072  *	appropriate priority free list than it is to get a zero'd or
   1073  *	unknown contents page.  This is because we live with the
   1074  *	consequences of a bad free list decision for the entire
   1075  *	lifetime of the page, e.g. if the page comes from memory that
   1076  *	is slower to access.
   1077  */
   1078 
   1079 struct vm_page *
   1080 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1081     int flags, int strat, int free_list)
   1082 {
   1083 	int lcv, try1, try2, zeroit = 0, color;
   1084 	struct vm_page *pg;
   1085 	bool use_reserve;
   1086 
   1087 	KASSERT(obj == NULL || anon == NULL);
   1088 	KASSERT(anon == NULL || off == 0);
   1089 	KASSERT(off == trunc_page(off));
   1090 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1091 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1092 
   1093 	mutex_spin_enter(&uvm_fpageqlock);
   1094 
   1095 	/*
   1096 	 * This implements a global round-robin page coloring
   1097 	 * algorithm.
   1098 	 *
   1099 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1100 	 * XXXJRT: What about virtually-indexed caches?
   1101 	 */
   1102 
   1103 	color = uvm.page_free_nextcolor;
   1104 
   1105 	/*
   1106 	 * check to see if we need to generate some free pages waking
   1107 	 * the pagedaemon.
   1108 	 */
   1109 
   1110 	uvm_kick_pdaemon();
   1111 
   1112 	/*
   1113 	 * fail if any of these conditions is true:
   1114 	 * [1]  there really are no free pages, or
   1115 	 * [2]  only kernel "reserved" pages remain and
   1116 	 *        the page isn't being allocated to a kernel object.
   1117 	 * [3]  only pagedaemon "reserved" pages remain and
   1118 	 *        the requestor isn't the pagedaemon.
   1119 	 */
   1120 
   1121 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1122 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1123 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1124 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1125 	     !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
   1126 		goto fail;
   1127 
   1128 #if PGFL_NQUEUES != 2
   1129 #error uvm_pagealloc_strat needs to be updated
   1130 #endif
   1131 
   1132 	/*
   1133 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1134 	 * we try the UNKNOWN queue first.
   1135 	 */
   1136 	if (flags & UVM_PGA_ZERO) {
   1137 		try1 = PGFL_ZEROS;
   1138 		try2 = PGFL_UNKNOWN;
   1139 	} else {
   1140 		try1 = PGFL_UNKNOWN;
   1141 		try2 = PGFL_ZEROS;
   1142 	}
   1143 
   1144  again:
   1145 	switch (strat) {
   1146 	case UVM_PGA_STRAT_NORMAL:
   1147 		/* Check all freelists in descending priority order. */
   1148 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1149 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1150 			    try1, try2, &color);
   1151 			if (pg != NULL)
   1152 				goto gotit;
   1153 		}
   1154 
   1155 		/* No pages free! */
   1156 		goto fail;
   1157 
   1158 	case UVM_PGA_STRAT_ONLY:
   1159 	case UVM_PGA_STRAT_FALLBACK:
   1160 		/* Attempt to allocate from the specified free list. */
   1161 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1162 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1163 		    try1, try2, &color);
   1164 		if (pg != NULL)
   1165 			goto gotit;
   1166 
   1167 		/* Fall back, if possible. */
   1168 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1169 			strat = UVM_PGA_STRAT_NORMAL;
   1170 			goto again;
   1171 		}
   1172 
   1173 		/* No pages free! */
   1174 		goto fail;
   1175 
   1176 	default:
   1177 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1178 		/* NOTREACHED */
   1179 	}
   1180 
   1181  gotit:
   1182 	/*
   1183 	 * We now know which color we actually allocated from; set
   1184 	 * the next color accordingly.
   1185 	 */
   1186 
   1187 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1188 
   1189 	/*
   1190 	 * update allocation statistics and remember if we have to
   1191 	 * zero the page
   1192 	 */
   1193 
   1194 	if (flags & UVM_PGA_ZERO) {
   1195 		if (pg->flags & PG_ZERO) {
   1196 			uvmexp.pga_zerohit++;
   1197 			zeroit = 0;
   1198 		} else {
   1199 			uvmexp.pga_zeromiss++;
   1200 			zeroit = 1;
   1201 		}
   1202 	}
   1203 	mutex_spin_exit(&uvm_fpageqlock);
   1204 
   1205 	pg->offset = off;
   1206 	pg->uobject = obj;
   1207 	pg->uanon = anon;
   1208 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1209 	if (anon) {
   1210 		anon->an_page = pg;
   1211 		pg->pqflags = PQ_ANON;
   1212 		uvmexp.anonpages++;
   1213 	} else {
   1214 		if (obj) {
   1215 			uvm_pageinsert(pg);
   1216 		}
   1217 		pg->pqflags = 0;
   1218 	}
   1219 #if defined(UVM_PAGE_TRKOWN)
   1220 	pg->owner_tag = NULL;
   1221 #endif
   1222 	UVM_PAGE_OWN(pg, "new alloc");
   1223 
   1224 	if (flags & UVM_PGA_ZERO) {
   1225 		/*
   1226 		 * A zero'd page is not clean.  If we got a page not already
   1227 		 * zero'd, then we have to zero it ourselves.
   1228 		 */
   1229 		pg->flags &= ~PG_CLEAN;
   1230 		if (zeroit)
   1231 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1232 	}
   1233 
   1234 	return(pg);
   1235 
   1236  fail:
   1237 	mutex_spin_exit(&uvm_fpageqlock);
   1238 	return (NULL);
   1239 }
   1240 
   1241 /*
   1242  * uvm_pagereplace: replace a page with another
   1243  *
   1244  * => object must be locked
   1245  */
   1246 
   1247 void
   1248 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1249 {
   1250 
   1251 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1252 	KASSERT(oldpg->uobject != NULL);
   1253 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1254 	KASSERT(newpg->uobject == NULL);
   1255 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1256 
   1257 	newpg->uobject = oldpg->uobject;
   1258 	newpg->offset = oldpg->offset;
   1259 
   1260 	uvm_pageinsert_after(newpg, oldpg);
   1261 	uvm_pageremove(oldpg);
   1262 }
   1263 
   1264 /*
   1265  * uvm_pagerealloc: reallocate a page from one object to another
   1266  *
   1267  * => both objects must be locked
   1268  */
   1269 
   1270 void
   1271 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1272 {
   1273 	/*
   1274 	 * remove it from the old object
   1275 	 */
   1276 
   1277 	if (pg->uobject) {
   1278 		uvm_pageremove(pg);
   1279 	}
   1280 
   1281 	/*
   1282 	 * put it in the new object
   1283 	 */
   1284 
   1285 	if (newobj) {
   1286 		pg->uobject = newobj;
   1287 		pg->offset = newoff;
   1288 		uvm_pageinsert(pg);
   1289 	}
   1290 }
   1291 
   1292 #ifdef DEBUG
   1293 /*
   1294  * check if page is zero-filled
   1295  *
   1296  *  - called with free page queue lock held.
   1297  */
   1298 void
   1299 uvm_pagezerocheck(struct vm_page *pg)
   1300 {
   1301 	int *p, *ep;
   1302 
   1303 	KASSERT(uvm_zerocheckkva != 0);
   1304 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1305 
   1306 	/*
   1307 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1308 	 * uvm page allocator.
   1309 	 *
   1310 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1311 	 */
   1312 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1313 	p = (int *)uvm_zerocheckkva;
   1314 	ep = (int *)((char *)p + PAGE_SIZE);
   1315 	pmap_update(pmap_kernel());
   1316 	while (p < ep) {
   1317 		if (*p != 0)
   1318 			panic("PG_ZERO page isn't zero-filled");
   1319 		p++;
   1320 	}
   1321 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1322 }
   1323 #endif /* DEBUG */
   1324 
   1325 /*
   1326  * uvm_pagefree: free page
   1327  *
   1328  * => erase page's identity (i.e. remove from hash/object)
   1329  * => put page on free list
   1330  * => caller must lock owning object (either anon or uvm_object)
   1331  * => caller must lock page queues
   1332  * => assumes all valid mappings of pg are gone
   1333  */
   1334 
   1335 void
   1336 uvm_pagefree(struct vm_page *pg)
   1337 {
   1338 	struct pglist *pgfl;
   1339 	bool iszero;
   1340 
   1341 #ifdef DEBUG
   1342 	if (pg->uobject == (void *)0xdeadbeef &&
   1343 	    pg->uanon == (void *)0xdeadbeef) {
   1344 		panic("uvm_pagefree: freeing free page %p", pg);
   1345 	}
   1346 #endif /* DEBUG */
   1347 
   1348 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1349 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1350 		!uvmpdpol_pageisqueued_p(pg));
   1351 	LOCK_ASSERT(pg->uobject == NULL ||
   1352 		simple_lock_held(&pg->uobject->vmobjlock));
   1353 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1354 		simple_lock_held(&pg->uanon->an_lock));
   1355 
   1356 	/*
   1357 	 * if the page is loaned, resolve the loan instead of freeing.
   1358 	 */
   1359 
   1360 	if (pg->loan_count) {
   1361 		KASSERT(pg->wire_count == 0);
   1362 
   1363 		/*
   1364 		 * if the page is owned by an anon then we just want to
   1365 		 * drop anon ownership.  the kernel will free the page when
   1366 		 * it is done with it.  if the page is owned by an object,
   1367 		 * remove it from the object and mark it dirty for the benefit
   1368 		 * of possible anon owners.
   1369 		 *
   1370 		 * regardless of previous ownership, wakeup any waiters,
   1371 		 * unbusy the page, and we're done.
   1372 		 */
   1373 
   1374 		if (pg->uobject != NULL) {
   1375 			uvm_pageremove(pg);
   1376 			pg->flags &= ~PG_CLEAN;
   1377 		} else if (pg->uanon != NULL) {
   1378 			if ((pg->pqflags & PQ_ANON) == 0) {
   1379 				pg->loan_count--;
   1380 			} else {
   1381 				pg->pqflags &= ~PQ_ANON;
   1382 				uvmexp.anonpages--;
   1383 			}
   1384 			pg->uanon->an_page = NULL;
   1385 			pg->uanon = NULL;
   1386 		}
   1387 		if (pg->flags & PG_WANTED) {
   1388 			wakeup(pg);
   1389 		}
   1390 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1391 #ifdef UVM_PAGE_TRKOWN
   1392 		pg->owner_tag = NULL;
   1393 #endif
   1394 		if (pg->loan_count) {
   1395 			KASSERT(pg->uobject == NULL);
   1396 			if (pg->uanon == NULL) {
   1397 				uvm_pagedequeue(pg);
   1398 			}
   1399 			return;
   1400 		}
   1401 	}
   1402 
   1403 	/*
   1404 	 * remove page from its object or anon.
   1405 	 */
   1406 
   1407 	if (pg->uobject != NULL) {
   1408 		uvm_pageremove(pg);
   1409 	} else if (pg->uanon != NULL) {
   1410 		pg->uanon->an_page = NULL;
   1411 		uvmexp.anonpages--;
   1412 	}
   1413 
   1414 	/*
   1415 	 * now remove the page from the queues.
   1416 	 */
   1417 
   1418 	uvm_pagedequeue(pg);
   1419 
   1420 	/*
   1421 	 * if the page was wired, unwire it now.
   1422 	 */
   1423 
   1424 	if (pg->wire_count) {
   1425 		pg->wire_count = 0;
   1426 		uvmexp.wired--;
   1427 	}
   1428 
   1429 	/*
   1430 	 * and put on free queue
   1431 	 */
   1432 
   1433 	iszero = (pg->flags & PG_ZERO);
   1434 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1435 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1436 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1437 
   1438 	pg->pqflags = PQ_FREE;
   1439 #ifdef DEBUG
   1440 	pg->uobject = (void *)0xdeadbeef;
   1441 	pg->offset = 0xdeadbeef;
   1442 	pg->uanon = (void *)0xdeadbeef;
   1443 #endif
   1444 
   1445 	mutex_spin_enter(&uvm_fpageqlock);
   1446 
   1447 #ifdef DEBUG
   1448 	if (iszero)
   1449 		uvm_pagezerocheck(pg);
   1450 #endif /* DEBUG */
   1451 
   1452 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1453 	uvmexp.free++;
   1454 	if (iszero)
   1455 		uvmexp.zeropages++;
   1456 
   1457 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1458 		uvm.page_idle_zero = vm_page_zero_enable;
   1459 
   1460 	mutex_spin_exit(&uvm_fpageqlock);
   1461 }
   1462 
   1463 /*
   1464  * uvm_page_unbusy: unbusy an array of pages.
   1465  *
   1466  * => pages must either all belong to the same object, or all belong to anons.
   1467  * => if pages are object-owned, object must be locked.
   1468  * => if pages are anon-owned, anons must be locked.
   1469  * => caller must lock page queues if pages may be released.
   1470  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1471  */
   1472 
   1473 void
   1474 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1475 {
   1476 	struct vm_page *pg;
   1477 	int i;
   1478 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1479 
   1480 	for (i = 0; i < npgs; i++) {
   1481 		pg = pgs[i];
   1482 		if (pg == NULL || pg == PGO_DONTCARE) {
   1483 			continue;
   1484 		}
   1485 
   1486 		LOCK_ASSERT(pg->uobject == NULL ||
   1487 		    simple_lock_held(&pg->uobject->vmobjlock));
   1488 		LOCK_ASSERT(pg->uobject != NULL ||
   1489 		    (pg->uanon != NULL &&
   1490 		    simple_lock_held(&pg->uanon->an_lock)));
   1491 
   1492 		KASSERT(pg->flags & PG_BUSY);
   1493 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1494 		if (pg->flags & PG_WANTED) {
   1495 			wakeup(pg);
   1496 		}
   1497 		if (pg->flags & PG_RELEASED) {
   1498 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1499 			KASSERT(pg->uobject != NULL ||
   1500 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1501 			pg->flags &= ~PG_RELEASED;
   1502 			uvm_pagefree(pg);
   1503 		} else {
   1504 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1505 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1506 			UVM_PAGE_OWN(pg, NULL);
   1507 		}
   1508 	}
   1509 }
   1510 
   1511 #if defined(UVM_PAGE_TRKOWN)
   1512 /*
   1513  * uvm_page_own: set or release page ownership
   1514  *
   1515  * => this is a debugging function that keeps track of who sets PG_BUSY
   1516  *	and where they do it.   it can be used to track down problems
   1517  *	such a process setting "PG_BUSY" and never releasing it.
   1518  * => page's object [if any] must be locked
   1519  * => if "tag" is NULL then we are releasing page ownership
   1520  */
   1521 void
   1522 uvm_page_own(struct vm_page *pg, const char *tag)
   1523 {
   1524 	struct uvm_object *uobj;
   1525 	struct vm_anon *anon;
   1526 
   1527 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1528 
   1529 	uobj = pg->uobject;
   1530 	anon = pg->uanon;
   1531 	if (uobj != NULL) {
   1532 		LOCK_ASSERT(simple_lock_held(&uobj->vmobjlock));
   1533 	} else if (anon != NULL) {
   1534 		LOCK_ASSERT(simple_lock_held(&anon->an_lock));
   1535 	}
   1536 
   1537 	KASSERT((pg->flags & PG_WANTED) == 0);
   1538 
   1539 	/* gain ownership? */
   1540 	if (tag) {
   1541 		KASSERT((pg->flags & PG_BUSY) != 0);
   1542 		if (pg->owner_tag) {
   1543 			printf("uvm_page_own: page %p already owned "
   1544 			    "by proc %d [%s]\n", pg,
   1545 			    pg->owner, pg->owner_tag);
   1546 			panic("uvm_page_own");
   1547 		}
   1548 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1549 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1550 		pg->owner_tag = tag;
   1551 		return;
   1552 	}
   1553 
   1554 	/* drop ownership */
   1555 	KASSERT((pg->flags & PG_BUSY) == 0);
   1556 	if (pg->owner_tag == NULL) {
   1557 		printf("uvm_page_own: dropping ownership of an non-owned "
   1558 		    "page (%p)\n", pg);
   1559 		panic("uvm_page_own");
   1560 	}
   1561 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1562 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1563 		    pg->wire_count > 0);
   1564 	} else {
   1565 		KASSERT(pg->wire_count == 0);
   1566 	}
   1567 	pg->owner_tag = NULL;
   1568 }
   1569 #endif
   1570 
   1571 /*
   1572  * uvm_pageidlezero: zero free pages while the system is idle.
   1573  *
   1574  * => try to complete one color bucket at a time, to reduce our impact
   1575  *	on the CPU cache.
   1576  * => we loop until we either reach the target or there is a lwp ready to run.
   1577  */
   1578 void
   1579 uvm_pageidlezero(void)
   1580 {
   1581 	struct vm_page *pg;
   1582 	struct pgfreelist *pgfl;
   1583 	int free_list, firstbucket;
   1584 	static int nextbucket;
   1585 
   1586 	KERNEL_LOCK(1, NULL);
   1587 	mutex_spin_enter(&uvm_fpageqlock);
   1588 	firstbucket = nextbucket;
   1589 	do {
   1590 		if (sched_curcpu_runnable_p()) {
   1591 			goto quit;
   1592 		}
   1593 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1594 			uvm.page_idle_zero = false;
   1595 			goto quit;
   1596 		}
   1597 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1598 			pgfl = &uvm.page_free[free_list];
   1599 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1600 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1601 				if (sched_curcpu_runnable_p())
   1602 					goto quit;
   1603 
   1604 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1605 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1606 				    pg, pageq);
   1607 				uvmexp.free--;
   1608 				mutex_spin_exit(&uvm_fpageqlock);
   1609 				KERNEL_UNLOCK_LAST(NULL);
   1610 #ifdef PMAP_PAGEIDLEZERO
   1611 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1612 
   1613 					/*
   1614 					 * The machine-dependent code detected
   1615 					 * some reason for us to abort zeroing
   1616 					 * pages, probably because there is a
   1617 					 * process now ready to run.
   1618 					 */
   1619 
   1620 					KERNEL_LOCK(1, NULL);
   1621 					mutex_spin_enter(&uvm_fpageqlock);
   1622 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1623 					    nextbucket].pgfl_queues[
   1624 					    PGFL_UNKNOWN], pg, pageq);
   1625 					uvmexp.free++;
   1626 					uvmexp.zeroaborts++;
   1627 					goto quit;
   1628 				}
   1629 #else
   1630 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1631 #endif /* PMAP_PAGEIDLEZERO */
   1632 				pg->flags |= PG_ZERO;
   1633 
   1634 				KERNEL_LOCK(1, NULL);
   1635 				mutex_spin_enter(&uvm_fpageqlock);
   1636 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1637 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1638 				    pg, pageq);
   1639 				uvmexp.free++;
   1640 				uvmexp.zeropages++;
   1641 			}
   1642 		}
   1643 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1644 	} while (nextbucket != firstbucket);
   1645 quit:
   1646 	mutex_spin_exit(&uvm_fpageqlock);
   1647 	KERNEL_UNLOCK_LAST(NULL);
   1648 }
   1649 
   1650 /*
   1651  * uvm_pagelookup: look up a page
   1652  *
   1653  * => caller should lock object to keep someone from pulling the page
   1654  *	out from under it
   1655  */
   1656 
   1657 struct vm_page *
   1658 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1659 {
   1660 	struct vm_page *pg;
   1661 	struct pglist *buck;
   1662 	kmutex_t *lock;
   1663 	u_int hash;
   1664 
   1665 	LOCK_ASSERT(simple_lock_held(&obj->vmobjlock));
   1666 
   1667 	hash = uvm_pagehash(obj, off);
   1668 	buck = &uvm.page_hash[hash];
   1669 	lock = uvm_hashlock(hash);
   1670 	mutex_spin_enter(lock);
   1671 	TAILQ_FOREACH(pg, buck, hashq) {
   1672 		if (pg->uobject == obj && pg->offset == off) {
   1673 			break;
   1674 		}
   1675 	}
   1676 	mutex_spin_exit(lock);
   1677 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1678 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1679 		(pg->flags & PG_BUSY) != 0);
   1680 	return(pg);
   1681 }
   1682 
   1683 /*
   1684  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1685  *
   1686  * => caller must lock page queues
   1687  */
   1688 
   1689 void
   1690 uvm_pagewire(struct vm_page *pg)
   1691 {
   1692 	UVM_LOCK_ASSERT_PAGEQ();
   1693 #if defined(READAHEAD_STATS)
   1694 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1695 		uvm_ra_hit.ev_count++;
   1696 		pg->pqflags &= ~PQ_READAHEAD;
   1697 	}
   1698 #endif /* defined(READAHEAD_STATS) */
   1699 	if (pg->wire_count == 0) {
   1700 		uvm_pagedequeue(pg);
   1701 		uvmexp.wired++;
   1702 	}
   1703 	pg->wire_count++;
   1704 }
   1705 
   1706 /*
   1707  * uvm_pageunwire: unwire the page.
   1708  *
   1709  * => activate if wire count goes to zero.
   1710  * => caller must lock page queues
   1711  */
   1712 
   1713 void
   1714 uvm_pageunwire(struct vm_page *pg)
   1715 {
   1716 	UVM_LOCK_ASSERT_PAGEQ();
   1717 	pg->wire_count--;
   1718 	if (pg->wire_count == 0) {
   1719 		uvm_pageactivate(pg);
   1720 		uvmexp.wired--;
   1721 	}
   1722 }
   1723 
   1724 /*
   1725  * uvm_pagedeactivate: deactivate page
   1726  *
   1727  * => caller must lock page queues
   1728  * => caller must check to make sure page is not wired
   1729  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1730  * => caller must clear the reference on the page before calling
   1731  */
   1732 
   1733 void
   1734 uvm_pagedeactivate(struct vm_page *pg)
   1735 {
   1736 
   1737 	UVM_LOCK_ASSERT_PAGEQ();
   1738 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1739 	uvmpdpol_pagedeactivate(pg);
   1740 }
   1741 
   1742 /*
   1743  * uvm_pageactivate: activate page
   1744  *
   1745  * => caller must lock page queues
   1746  */
   1747 
   1748 void
   1749 uvm_pageactivate(struct vm_page *pg)
   1750 {
   1751 
   1752 	UVM_LOCK_ASSERT_PAGEQ();
   1753 #if defined(READAHEAD_STATS)
   1754 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1755 		uvm_ra_hit.ev_count++;
   1756 		pg->pqflags &= ~PQ_READAHEAD;
   1757 	}
   1758 #endif /* defined(READAHEAD_STATS) */
   1759 	if (pg->wire_count != 0) {
   1760 		return;
   1761 	}
   1762 	uvmpdpol_pageactivate(pg);
   1763 }
   1764 
   1765 /*
   1766  * uvm_pagedequeue: remove a page from any paging queue
   1767  */
   1768 
   1769 void
   1770 uvm_pagedequeue(struct vm_page *pg)
   1771 {
   1772 
   1773 	if (uvmpdpol_pageisqueued_p(pg)) {
   1774 		UVM_LOCK_ASSERT_PAGEQ();
   1775 	}
   1776 
   1777 	uvmpdpol_pagedequeue(pg);
   1778 }
   1779 
   1780 /*
   1781  * uvm_pageenqueue: add a page to a paging queue without activating.
   1782  * used where a page is not really demanded (yet).  eg. read-ahead
   1783  */
   1784 
   1785 void
   1786 uvm_pageenqueue(struct vm_page *pg)
   1787 {
   1788 
   1789 	UVM_LOCK_ASSERT_PAGEQ();
   1790 	if (pg->wire_count != 0) {
   1791 		return;
   1792 	}
   1793 	uvmpdpol_pageenqueue(pg);
   1794 }
   1795 
   1796 /*
   1797  * uvm_pagezero: zero fill a page
   1798  *
   1799  * => if page is part of an object then the object should be locked
   1800  *	to protect pg->flags.
   1801  */
   1802 
   1803 void
   1804 uvm_pagezero(struct vm_page *pg)
   1805 {
   1806 	pg->flags &= ~PG_CLEAN;
   1807 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1808 }
   1809 
   1810 /*
   1811  * uvm_pagecopy: copy a page
   1812  *
   1813  * => if page is part of an object then the object should be locked
   1814  *	to protect pg->flags.
   1815  */
   1816 
   1817 void
   1818 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1819 {
   1820 
   1821 	dst->flags &= ~PG_CLEAN;
   1822 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1823 }
   1824 
   1825 /*
   1826  * uvm_page_lookup_freelist: look up the free list for the specified page
   1827  */
   1828 
   1829 int
   1830 uvm_page_lookup_freelist(struct vm_page *pg)
   1831 {
   1832 	int lcv;
   1833 
   1834 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1835 	KASSERT(lcv != -1);
   1836 	return (vm_physmem[lcv].free_list);
   1837 }
   1838