uvm_page.c revision 1.127 1 /* $NetBSD: uvm_page.c,v 1.127 2008/01/02 11:49:19 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.127 2008/01/02 11:49:19 ad Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/sched.h>
83 #include <sys/kernel.h>
84 #include <sys/vnode.h>
85 #include <sys/proc.h>
86 #include <sys/atomic.h>
87
88 #include <uvm/uvm.h>
89 #include <uvm/uvm_pdpolicy.h>
90
91 /*
92 * global vars... XXXCDC: move to uvm. structure.
93 */
94
95 /*
96 * physical memory config is stored in vm_physmem.
97 */
98
99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
100 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
101
102 /*
103 * Some supported CPUs in a given architecture don't support all
104 * of the things necessary to do idle page zero'ing efficiently.
105 * We therefore provide a way to disable it from machdep code here.
106 */
107 /*
108 * XXX disabled until we can find a way to do this without causing
109 * problems for either CPU caches or DMA latency.
110 */
111 bool vm_page_zero_enable = false;
112
113 /*
114 * local variables
115 */
116
117 /*
118 * these variables record the values returned by vm_page_bootstrap,
119 * for debugging purposes. The implementation of uvm_pageboot_alloc
120 * and pmap_startup here also uses them internally.
121 */
122
123 static vaddr_t virtual_space_start;
124 static vaddr_t virtual_space_end;
125
126 /*
127 * we use a hash table with only one bucket during bootup. we will
128 * later rehash (resize) the hash table once the allocator is ready.
129 * we static allocate the one bootstrap bucket below...
130 */
131
132 static struct pglist uvm_bootbucket;
133
134 /*
135 * we allocate an initial number of page colors in uvm_page_init(),
136 * and remember them. We may re-color pages as cache sizes are
137 * discovered during the autoconfiguration phase. But we can never
138 * free the initial set of buckets, since they are allocated using
139 * uvm_pageboot_alloc().
140 */
141
142 static bool have_recolored_pages /* = false */;
143
144 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
145
146 #ifdef DEBUG
147 vaddr_t uvm_zerocheckkva;
148 #endif /* DEBUG */
149
150 /*
151 * locks on the hash table. allocated in 32 byte chunks to try
152 * and reduce cache traffic between CPUs.
153 */
154
155 #define UVM_HASHLOCK_CNT 32
156 #define uvm_hashlock(hash) \
157 (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
158
159 static union {
160 kmutex_t lock;
161 uint8_t pad[32];
162 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
163
164 /*
165 * local prototypes
166 */
167
168 static void uvm_pageinsert(struct vm_page *);
169 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
170 static void uvm_pageremove(struct vm_page *);
171
172 /*
173 * inline functions
174 */
175
176 /*
177 * uvm_pageinsert: insert a page in the object and the hash table
178 * uvm_pageinsert_after: insert a page into the specified place in listq
179 *
180 * => caller must lock object
181 * => caller must lock page queues
182 * => call should have already set pg's object and offset pointers
183 * and bumped the version counter
184 */
185
186 inline static void
187 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
188 {
189 struct pglist *buck;
190 struct uvm_object *uobj = pg->uobject;
191 kmutex_t *lock;
192 u_int hash;
193
194 KASSERT(mutex_owned(&uobj->vmobjlock));
195 KASSERT((pg->flags & PG_TABLED) == 0);
196 KASSERT(where == NULL || (where->flags & PG_TABLED));
197 KASSERT(where == NULL || (where->uobject == uobj));
198
199 hash = uvm_pagehash(uobj, pg->offset);
200 buck = &uvm.page_hash[hash];
201 lock = uvm_hashlock(hash);
202 mutex_spin_enter(lock);
203 TAILQ_INSERT_TAIL(buck, pg, hashq);
204 mutex_spin_exit(lock);
205
206 if (UVM_OBJ_IS_VNODE(uobj)) {
207 if (uobj->uo_npages == 0) {
208 struct vnode *vp = (struct vnode *)uobj;
209
210 vholdl(vp);
211 }
212 if (UVM_OBJ_IS_VTEXT(uobj)) {
213 atomic_inc_uint(&uvmexp.execpages);
214 } else {
215 atomic_inc_uint(&uvmexp.filepages);
216 }
217 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
218 atomic_inc_uint(&uvmexp.anonpages);
219 }
220
221 if (where)
222 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
223 else
224 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
225 pg->flags |= PG_TABLED;
226 uobj->uo_npages++;
227 }
228
229 inline static void
230 uvm_pageinsert(struct vm_page *pg)
231 {
232
233 uvm_pageinsert_after(pg, NULL);
234 }
235
236 /*
237 * uvm_page_remove: remove page from object and hash
238 *
239 * => caller must lock object
240 * => caller must lock page queues
241 */
242
243 static inline void
244 uvm_pageremove(struct vm_page *pg)
245 {
246 struct pglist *buck;
247 struct uvm_object *uobj = pg->uobject;
248 kmutex_t *lock;
249 u_int hash;
250
251 KASSERT(mutex_owned(&uobj->vmobjlock));
252 KASSERT(pg->flags & PG_TABLED);
253
254 hash = uvm_pagehash(uobj, pg->offset);
255 buck = &uvm.page_hash[hash];
256 lock = uvm_hashlock(hash);
257 mutex_spin_enter(lock);
258 TAILQ_REMOVE(buck, pg, hashq);
259 mutex_spin_exit(lock);
260
261 if (UVM_OBJ_IS_VNODE(uobj)) {
262 if (uobj->uo_npages == 1) {
263 struct vnode *vp = (struct vnode *)uobj;
264
265 holdrelel(vp);
266 }
267 if (UVM_OBJ_IS_VTEXT(uobj)) {
268 atomic_dec_uint(&uvmexp.execpages);
269 } else {
270 atomic_dec_uint(&uvmexp.filepages);
271 }
272 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
273 atomic_dec_uint(&uvmexp.anonpages);
274 }
275
276 /* object should be locked */
277 uobj->uo_npages--;
278 TAILQ_REMOVE(&uobj->memq, pg, listq);
279 pg->flags &= ~PG_TABLED;
280 pg->uobject = NULL;
281 }
282
283 static void
284 uvm_page_init_buckets(struct pgfreelist *pgfl)
285 {
286 int color, i;
287
288 for (color = 0; color < uvmexp.ncolors; color++) {
289 for (i = 0; i < PGFL_NQUEUES; i++) {
290 TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
291 }
292 }
293 }
294
295 /*
296 * uvm_page_init: init the page system. called from uvm_init().
297 *
298 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
299 */
300
301 void
302 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
303 {
304 vsize_t freepages, pagecount, bucketcount, n;
305 struct pgflbucket *bucketarray;
306 struct vm_page *pagearray;
307 int lcv;
308 u_int i;
309 paddr_t paddr;
310
311 /*
312 * init the page queues and page queue locks, except the free
313 * list; we allocate that later (with the initial vm_page
314 * structures).
315 */
316
317 uvmpdpol_init();
318 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
319 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
320
321 /*
322 * init the <obj,offset> => <page> hash table. for now
323 * we just have one bucket (the bootstrap bucket). later on we
324 * will allocate new buckets as we dynamically resize the hash table.
325 */
326
327 uvm.page_nhash = 1; /* 1 bucket */
328 uvm.page_hashmask = 0; /* mask for hash function */
329 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
330 TAILQ_INIT(uvm.page_hash); /* init hash table */
331
332 /*
333 * init hashtable locks. these must be spinlocks, as they are
334 * called from sites in the pmap modules where we cannot block.
335 * if taking multiple locks, the order is: low numbered first,
336 * high numbered second.
337 */
338
339 for (i = 0; i < UVM_HASHLOCK_CNT; i++)
340 mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
341
342 /*
343 * allocate vm_page structures.
344 */
345
346 /*
347 * sanity check:
348 * before calling this function the MD code is expected to register
349 * some free RAM with the uvm_page_physload() function. our job
350 * now is to allocate vm_page structures for this memory.
351 */
352
353 if (vm_nphysseg == 0)
354 panic("uvm_page_bootstrap: no memory pre-allocated");
355
356 /*
357 * first calculate the number of free pages...
358 *
359 * note that we use start/end rather than avail_start/avail_end.
360 * this allows us to allocate extra vm_page structures in case we
361 * want to return some memory to the pool after booting.
362 */
363
364 freepages = 0;
365 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
366 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
367
368 /*
369 * Let MD code initialize the number of colors, or default
370 * to 1 color if MD code doesn't care.
371 */
372 if (uvmexp.ncolors == 0)
373 uvmexp.ncolors = 1;
374 uvmexp.colormask = uvmexp.ncolors - 1;
375
376 /*
377 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
378 * use. for each page of memory we use we need a vm_page structure.
379 * thus, the total number of pages we can use is the total size of
380 * the memory divided by the PAGE_SIZE plus the size of the vm_page
381 * structure. we add one to freepages as a fudge factor to avoid
382 * truncation errors (since we can only allocate in terms of whole
383 * pages).
384 */
385
386 bucketcount = uvmexp.ncolors * VM_NFREELIST;
387 pagecount = ((freepages + 1) << PAGE_SHIFT) /
388 (PAGE_SIZE + sizeof(struct vm_page));
389
390 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
391 sizeof(struct pgflbucket)) + (pagecount *
392 sizeof(struct vm_page)));
393 pagearray = (struct vm_page *)(bucketarray + bucketcount);
394
395 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
396 uvm.page_free[lcv].pgfl_buckets =
397 (bucketarray + (lcv * uvmexp.ncolors));
398 uvm_page_init_buckets(&uvm.page_free[lcv]);
399 }
400 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
401
402 /*
403 * init the vm_page structures and put them in the correct place.
404 */
405
406 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
407 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
408
409 /* set up page array pointers */
410 vm_physmem[lcv].pgs = pagearray;
411 pagearray += n;
412 pagecount -= n;
413 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
414
415 /* init and free vm_pages (we've already zeroed them) */
416 paddr = ptoa(vm_physmem[lcv].start);
417 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
418 vm_physmem[lcv].pgs[i].phys_addr = paddr;
419 #ifdef __HAVE_VM_PAGE_MD
420 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
421 #endif
422 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
423 atop(paddr) <= vm_physmem[lcv].avail_end) {
424 uvmexp.npages++;
425 /* add page to free pool */
426 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
427 }
428 }
429 }
430
431 /*
432 * pass up the values of virtual_space_start and
433 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
434 * layers of the VM.
435 */
436
437 *kvm_startp = round_page(virtual_space_start);
438 *kvm_endp = trunc_page(virtual_space_end);
439 #ifdef DEBUG
440 /*
441 * steal kva for uvm_pagezerocheck().
442 */
443 uvm_zerocheckkva = *kvm_startp;
444 *kvm_startp += PAGE_SIZE;
445 #endif /* DEBUG */
446
447 /*
448 * init various thresholds.
449 */
450
451 uvmexp.reserve_pagedaemon = 1;
452 uvmexp.reserve_kernel = 5;
453
454 /*
455 * determine if we should zero pages in the idle loop.
456 */
457
458 uvm.page_idle_zero = vm_page_zero_enable;
459
460 /*
461 * done!
462 */
463
464 uvm.page_init_done = true;
465 }
466
467 /*
468 * uvm_setpagesize: set the page size
469 *
470 * => sets page_shift and page_mask from uvmexp.pagesize.
471 */
472
473 void
474 uvm_setpagesize(void)
475 {
476
477 /*
478 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
479 * to be a constant (indicated by being a non-zero value).
480 */
481 if (uvmexp.pagesize == 0) {
482 if (PAGE_SIZE == 0)
483 panic("uvm_setpagesize: uvmexp.pagesize not set");
484 uvmexp.pagesize = PAGE_SIZE;
485 }
486 uvmexp.pagemask = uvmexp.pagesize - 1;
487 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
488 panic("uvm_setpagesize: page size not a power of two");
489 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
490 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
491 break;
492 }
493
494 /*
495 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
496 */
497
498 vaddr_t
499 uvm_pageboot_alloc(vsize_t size)
500 {
501 static bool initialized = false;
502 vaddr_t addr;
503 #if !defined(PMAP_STEAL_MEMORY)
504 vaddr_t vaddr;
505 paddr_t paddr;
506 #endif
507
508 /*
509 * on first call to this function, initialize ourselves.
510 */
511 if (initialized == false) {
512 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
513
514 /* round it the way we like it */
515 virtual_space_start = round_page(virtual_space_start);
516 virtual_space_end = trunc_page(virtual_space_end);
517
518 initialized = true;
519 }
520
521 /* round to page size */
522 size = round_page(size);
523
524 #if defined(PMAP_STEAL_MEMORY)
525
526 /*
527 * defer bootstrap allocation to MD code (it may want to allocate
528 * from a direct-mapped segment). pmap_steal_memory should adjust
529 * virtual_space_start/virtual_space_end if necessary.
530 */
531
532 addr = pmap_steal_memory(size, &virtual_space_start,
533 &virtual_space_end);
534
535 return(addr);
536
537 #else /* !PMAP_STEAL_MEMORY */
538
539 /*
540 * allocate virtual memory for this request
541 */
542 if (virtual_space_start == virtual_space_end ||
543 (virtual_space_end - virtual_space_start) < size)
544 panic("uvm_pageboot_alloc: out of virtual space");
545
546 addr = virtual_space_start;
547
548 #ifdef PMAP_GROWKERNEL
549 /*
550 * If the kernel pmap can't map the requested space,
551 * then allocate more resources for it.
552 */
553 if (uvm_maxkaddr < (addr + size)) {
554 uvm_maxkaddr = pmap_growkernel(addr + size);
555 if (uvm_maxkaddr < (addr + size))
556 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
557 }
558 #endif
559
560 virtual_space_start += size;
561
562 /*
563 * allocate and mapin physical pages to back new virtual pages
564 */
565
566 for (vaddr = round_page(addr) ; vaddr < addr + size ;
567 vaddr += PAGE_SIZE) {
568
569 if (!uvm_page_physget(&paddr))
570 panic("uvm_pageboot_alloc: out of memory");
571
572 /*
573 * Note this memory is no longer managed, so using
574 * pmap_kenter is safe.
575 */
576 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
577 }
578 pmap_update(pmap_kernel());
579 return(addr);
580 #endif /* PMAP_STEAL_MEMORY */
581 }
582
583 #if !defined(PMAP_STEAL_MEMORY)
584 /*
585 * uvm_page_physget: "steal" one page from the vm_physmem structure.
586 *
587 * => attempt to allocate it off the end of a segment in which the "avail"
588 * values match the start/end values. if we can't do that, then we
589 * will advance both values (making them equal, and removing some
590 * vm_page structures from the non-avail area).
591 * => return false if out of memory.
592 */
593
594 /* subroutine: try to allocate from memory chunks on the specified freelist */
595 static bool uvm_page_physget_freelist(paddr_t *, int);
596
597 static bool
598 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
599 {
600 int lcv, x;
601
602 /* pass 1: try allocating from a matching end */
603 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
604 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
605 #else
606 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
607 #endif
608 {
609
610 if (uvm.page_init_done == true)
611 panic("uvm_page_physget: called _after_ bootstrap");
612
613 if (vm_physmem[lcv].free_list != freelist)
614 continue;
615
616 /* try from front */
617 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
618 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
619 *paddrp = ptoa(vm_physmem[lcv].avail_start);
620 vm_physmem[lcv].avail_start++;
621 vm_physmem[lcv].start++;
622 /* nothing left? nuke it */
623 if (vm_physmem[lcv].avail_start ==
624 vm_physmem[lcv].end) {
625 if (vm_nphysseg == 1)
626 panic("uvm_page_physget: out of memory!");
627 vm_nphysseg--;
628 for (x = lcv ; x < vm_nphysseg ; x++)
629 /* structure copy */
630 vm_physmem[x] = vm_physmem[x+1];
631 }
632 return (true);
633 }
634
635 /* try from rear */
636 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
637 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
638 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
639 vm_physmem[lcv].avail_end--;
640 vm_physmem[lcv].end--;
641 /* nothing left? nuke it */
642 if (vm_physmem[lcv].avail_end ==
643 vm_physmem[lcv].start) {
644 if (vm_nphysseg == 1)
645 panic("uvm_page_physget: out of memory!");
646 vm_nphysseg--;
647 for (x = lcv ; x < vm_nphysseg ; x++)
648 /* structure copy */
649 vm_physmem[x] = vm_physmem[x+1];
650 }
651 return (true);
652 }
653 }
654
655 /* pass2: forget about matching ends, just allocate something */
656 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
657 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
658 #else
659 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
660 #endif
661 {
662
663 /* any room in this bank? */
664 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
665 continue; /* nope */
666
667 *paddrp = ptoa(vm_physmem[lcv].avail_start);
668 vm_physmem[lcv].avail_start++;
669 /* truncate! */
670 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
671
672 /* nothing left? nuke it */
673 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
674 if (vm_nphysseg == 1)
675 panic("uvm_page_physget: out of memory!");
676 vm_nphysseg--;
677 for (x = lcv ; x < vm_nphysseg ; x++)
678 /* structure copy */
679 vm_physmem[x] = vm_physmem[x+1];
680 }
681 return (true);
682 }
683
684 return (false); /* whoops! */
685 }
686
687 bool
688 uvm_page_physget(paddr_t *paddrp)
689 {
690 int i;
691
692 /* try in the order of freelist preference */
693 for (i = 0; i < VM_NFREELIST; i++)
694 if (uvm_page_physget_freelist(paddrp, i) == true)
695 return (true);
696 return (false);
697 }
698 #endif /* PMAP_STEAL_MEMORY */
699
700 /*
701 * uvm_page_physload: load physical memory into VM system
702 *
703 * => all args are PFs
704 * => all pages in start/end get vm_page structures
705 * => areas marked by avail_start/avail_end get added to the free page pool
706 * => we are limited to VM_PHYSSEG_MAX physical memory segments
707 */
708
709 void
710 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
711 paddr_t avail_end, int free_list)
712 {
713 int preload, lcv;
714 psize_t npages;
715 struct vm_page *pgs;
716 struct vm_physseg *ps;
717
718 if (uvmexp.pagesize == 0)
719 panic("uvm_page_physload: page size not set!");
720 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
721 panic("uvm_page_physload: bad free list %d", free_list);
722 if (start >= end)
723 panic("uvm_page_physload: start >= end");
724
725 /*
726 * do we have room?
727 */
728
729 if (vm_nphysseg == VM_PHYSSEG_MAX) {
730 printf("uvm_page_physload: unable to load physical memory "
731 "segment\n");
732 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
733 VM_PHYSSEG_MAX, (long long)start, (long long)end);
734 printf("\tincrease VM_PHYSSEG_MAX\n");
735 return;
736 }
737
738 /*
739 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
740 * called yet, so malloc is not available).
741 */
742
743 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
744 if (vm_physmem[lcv].pgs)
745 break;
746 }
747 preload = (lcv == vm_nphysseg);
748
749 /*
750 * if VM is already running, attempt to malloc() vm_page structures
751 */
752
753 if (!preload) {
754 #if defined(VM_PHYSSEG_NOADD)
755 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
756 #else
757 /* XXXCDC: need some sort of lockout for this case */
758 paddr_t paddr;
759 npages = end - start; /* # of pages */
760 pgs = malloc(sizeof(struct vm_page) * npages,
761 M_VMPAGE, M_NOWAIT);
762 if (pgs == NULL) {
763 printf("uvm_page_physload: can not malloc vm_page "
764 "structs for segment\n");
765 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
766 return;
767 }
768 /* zero data, init phys_addr and free_list, and free pages */
769 memset(pgs, 0, sizeof(struct vm_page) * npages);
770 for (lcv = 0, paddr = ptoa(start) ;
771 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
772 pgs[lcv].phys_addr = paddr;
773 pgs[lcv].free_list = free_list;
774 if (atop(paddr) >= avail_start &&
775 atop(paddr) <= avail_end)
776 uvm_pagefree(&pgs[lcv]);
777 }
778 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
779 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
780 #endif
781 } else {
782 pgs = NULL;
783 npages = 0;
784 }
785
786 /*
787 * now insert us in the proper place in vm_physmem[]
788 */
789
790 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
791 /* random: put it at the end (easy!) */
792 ps = &vm_physmem[vm_nphysseg];
793 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
794 {
795 int x;
796 /* sort by address for binary search */
797 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
798 if (start < vm_physmem[lcv].start)
799 break;
800 ps = &vm_physmem[lcv];
801 /* move back other entries, if necessary ... */
802 for (x = vm_nphysseg ; x > lcv ; x--)
803 /* structure copy */
804 vm_physmem[x] = vm_physmem[x - 1];
805 }
806 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
807 {
808 int x;
809 /* sort by largest segment first */
810 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
811 if ((end - start) >
812 (vm_physmem[lcv].end - vm_physmem[lcv].start))
813 break;
814 ps = &vm_physmem[lcv];
815 /* move back other entries, if necessary ... */
816 for (x = vm_nphysseg ; x > lcv ; x--)
817 /* structure copy */
818 vm_physmem[x] = vm_physmem[x - 1];
819 }
820 #else
821 panic("uvm_page_physload: unknown physseg strategy selected!");
822 #endif
823
824 ps->start = start;
825 ps->end = end;
826 ps->avail_start = avail_start;
827 ps->avail_end = avail_end;
828 if (preload) {
829 ps->pgs = NULL;
830 } else {
831 ps->pgs = pgs;
832 ps->lastpg = pgs + npages - 1;
833 }
834 ps->free_list = free_list;
835 vm_nphysseg++;
836
837 if (!preload) {
838 uvm_page_rehash();
839 uvmpdpol_reinit();
840 }
841 }
842
843 /*
844 * uvm_page_rehash: reallocate hash table based on number of free pages.
845 */
846
847 void
848 uvm_page_rehash(void)
849 {
850 int freepages, lcv, bucketcount, oldcount, i;
851 struct pglist *newbuckets, *oldbuckets;
852 struct vm_page *pg;
853 size_t newsize, oldsize;
854
855 /*
856 * compute number of pages that can go in the free pool
857 */
858
859 freepages = 0;
860 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
861 freepages +=
862 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
863
864 /*
865 * compute number of buckets needed for this number of pages
866 */
867
868 bucketcount = 1;
869 while (bucketcount < freepages)
870 bucketcount = bucketcount * 2;
871
872 /*
873 * compute the size of the current table and new table.
874 */
875
876 oldbuckets = uvm.page_hash;
877 oldcount = uvm.page_nhash;
878 oldsize = round_page(sizeof(struct pglist) * oldcount);
879 newsize = round_page(sizeof(struct pglist) * bucketcount);
880
881 /*
882 * allocate the new buckets
883 */
884
885 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
886 0, UVM_KMF_WIRED);
887 if (newbuckets == NULL) {
888 printf("uvm_page_physrehash: WARNING: could not grow page "
889 "hash table\n");
890 return;
891 }
892 for (lcv = 0 ; lcv < bucketcount ; lcv++)
893 TAILQ_INIT(&newbuckets[lcv]);
894
895 /*
896 * now replace the old buckets with the new ones and rehash everything
897 */
898
899 for (i = 0; i < UVM_HASHLOCK_CNT; i++)
900 mutex_spin_enter(&uvm_hashlocks[i].lock);
901
902 uvm.page_hash = newbuckets;
903 uvm.page_nhash = bucketcount;
904 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
905
906 /* ... and rehash */
907 for (lcv = 0 ; lcv < oldcount ; lcv++) {
908 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
909 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
910 TAILQ_INSERT_TAIL(
911 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
912 pg, hashq);
913 }
914 }
915
916 for (i = 0; i < UVM_HASHLOCK_CNT; i++)
917 mutex_spin_exit(&uvm_hashlocks[i].lock);
918
919 /*
920 * free old bucket array if is not the boot-time table
921 */
922
923 if (oldbuckets != &uvm_bootbucket)
924 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
925 UVM_KMF_WIRED);
926 }
927
928 /*
929 * uvm_page_recolor: Recolor the pages if the new bucket count is
930 * larger than the old one.
931 */
932
933 void
934 uvm_page_recolor(int newncolors)
935 {
936 struct pgflbucket *bucketarray, *oldbucketarray;
937 struct pgfreelist pgfl;
938 struct vm_page *pg;
939 vsize_t bucketcount;
940 int lcv, color, i, ocolors;
941
942 if (newncolors <= uvmexp.ncolors)
943 return;
944
945 if (uvm.page_init_done == false) {
946 uvmexp.ncolors = newncolors;
947 return;
948 }
949
950 bucketcount = newncolors * VM_NFREELIST;
951 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
952 M_VMPAGE, M_NOWAIT);
953 if (bucketarray == NULL) {
954 printf("WARNING: unable to allocate %ld page color buckets\n",
955 (long) bucketcount);
956 return;
957 }
958
959 mutex_spin_enter(&uvm_fpageqlock);
960
961 /* Make sure we should still do this. */
962 if (newncolors <= uvmexp.ncolors) {
963 mutex_spin_exit(&uvm_fpageqlock);
964 free(bucketarray, M_VMPAGE);
965 return;
966 }
967
968 oldbucketarray = uvm.page_free[0].pgfl_buckets;
969 ocolors = uvmexp.ncolors;
970
971 uvmexp.ncolors = newncolors;
972 uvmexp.colormask = uvmexp.ncolors - 1;
973
974 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
975 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
976 uvm_page_init_buckets(&pgfl);
977 for (color = 0; color < ocolors; color++) {
978 for (i = 0; i < PGFL_NQUEUES; i++) {
979 while ((pg = TAILQ_FIRST(&uvm.page_free[
980 lcv].pgfl_buckets[color].pgfl_queues[i]))
981 != NULL) {
982 TAILQ_REMOVE(&uvm.page_free[
983 lcv].pgfl_buckets[
984 color].pgfl_queues[i], pg, pageq);
985 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
986 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
987 i], pg, pageq);
988 }
989 }
990 }
991 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
992 }
993
994 if (have_recolored_pages) {
995 mutex_spin_exit(&uvm_fpageqlock);
996 free(oldbucketarray, M_VMPAGE);
997 return;
998 }
999
1000 have_recolored_pages = true;
1001 mutex_spin_exit(&uvm_fpageqlock);
1002 }
1003
1004 /*
1005 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1006 */
1007
1008 static struct vm_page *
1009 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
1010 int *trycolorp)
1011 {
1012 struct pglist *freeq;
1013 struct vm_page *pg;
1014 int color, trycolor = *trycolorp;
1015
1016 color = trycolor;
1017 do {
1018 if ((pg = TAILQ_FIRST((freeq =
1019 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
1020 goto gotit;
1021 if ((pg = TAILQ_FIRST((freeq =
1022 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
1023 goto gotit;
1024 color = (color + 1) & uvmexp.colormask;
1025 } while (color != trycolor);
1026
1027 return (NULL);
1028
1029 gotit:
1030 TAILQ_REMOVE(freeq, pg, pageq);
1031 uvmexp.free--;
1032
1033 /* update zero'd page count */
1034 if (pg->flags & PG_ZERO)
1035 uvmexp.zeropages--;
1036
1037 if (color == trycolor)
1038 uvmexp.colorhit++;
1039 else {
1040 uvmexp.colormiss++;
1041 *trycolorp = color;
1042 }
1043
1044 return (pg);
1045 }
1046
1047 /*
1048 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1049 *
1050 * => return null if no pages free
1051 * => wake up pagedaemon if number of free pages drops below low water mark
1052 * => if obj != NULL, obj must be locked (to put in hash)
1053 * => if anon != NULL, anon must be locked (to put in anon)
1054 * => only one of obj or anon can be non-null
1055 * => caller must activate/deactivate page if it is not wired.
1056 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1057 * => policy decision: it is more important to pull a page off of the
1058 * appropriate priority free list than it is to get a zero'd or
1059 * unknown contents page. This is because we live with the
1060 * consequences of a bad free list decision for the entire
1061 * lifetime of the page, e.g. if the page comes from memory that
1062 * is slower to access.
1063 */
1064
1065 struct vm_page *
1066 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1067 int flags, int strat, int free_list)
1068 {
1069 int lcv, try1, try2, zeroit = 0, color;
1070 struct vm_page *pg;
1071 bool use_reserve;
1072
1073 KASSERT(obj == NULL || anon == NULL);
1074 KASSERT(anon == NULL || off == 0);
1075 KASSERT(off == trunc_page(off));
1076 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1077 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1078
1079 mutex_spin_enter(&uvm_fpageqlock);
1080
1081 /*
1082 * This implements a global round-robin page coloring
1083 * algorithm.
1084 *
1085 * XXXJRT: Should we make the `nextcolor' per-CPU?
1086 * XXXJRT: What about virtually-indexed caches?
1087 */
1088
1089 color = uvm.page_free_nextcolor;
1090
1091 /*
1092 * check to see if we need to generate some free pages waking
1093 * the pagedaemon.
1094 */
1095
1096 uvm_kick_pdaemon();
1097
1098 /*
1099 * fail if any of these conditions is true:
1100 * [1] there really are no free pages, or
1101 * [2] only kernel "reserved" pages remain and
1102 * the page isn't being allocated to a kernel object.
1103 * [3] only pagedaemon "reserved" pages remain and
1104 * the requestor isn't the pagedaemon.
1105 */
1106
1107 use_reserve = (flags & UVM_PGA_USERESERVE) ||
1108 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1109 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1110 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1111 !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
1112 goto fail;
1113
1114 #if PGFL_NQUEUES != 2
1115 #error uvm_pagealloc_strat needs to be updated
1116 #endif
1117
1118 /*
1119 * If we want a zero'd page, try the ZEROS queue first, otherwise
1120 * we try the UNKNOWN queue first.
1121 */
1122 if (flags & UVM_PGA_ZERO) {
1123 try1 = PGFL_ZEROS;
1124 try2 = PGFL_UNKNOWN;
1125 } else {
1126 try1 = PGFL_UNKNOWN;
1127 try2 = PGFL_ZEROS;
1128 }
1129
1130 again:
1131 switch (strat) {
1132 case UVM_PGA_STRAT_NORMAL:
1133 /* Check all freelists in descending priority order. */
1134 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1135 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1136 try1, try2, &color);
1137 if (pg != NULL)
1138 goto gotit;
1139 }
1140
1141 /* No pages free! */
1142 goto fail;
1143
1144 case UVM_PGA_STRAT_ONLY:
1145 case UVM_PGA_STRAT_FALLBACK:
1146 /* Attempt to allocate from the specified free list. */
1147 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1148 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1149 try1, try2, &color);
1150 if (pg != NULL)
1151 goto gotit;
1152
1153 /* Fall back, if possible. */
1154 if (strat == UVM_PGA_STRAT_FALLBACK) {
1155 strat = UVM_PGA_STRAT_NORMAL;
1156 goto again;
1157 }
1158
1159 /* No pages free! */
1160 goto fail;
1161
1162 default:
1163 panic("uvm_pagealloc_strat: bad strat %d", strat);
1164 /* NOTREACHED */
1165 }
1166
1167 gotit:
1168 /*
1169 * We now know which color we actually allocated from; set
1170 * the next color accordingly.
1171 */
1172
1173 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1174
1175 /*
1176 * update allocation statistics and remember if we have to
1177 * zero the page
1178 */
1179
1180 if (flags & UVM_PGA_ZERO) {
1181 if (pg->flags & PG_ZERO) {
1182 uvmexp.pga_zerohit++;
1183 zeroit = 0;
1184 } else {
1185 uvmexp.pga_zeromiss++;
1186 zeroit = 1;
1187 }
1188 }
1189 mutex_spin_exit(&uvm_fpageqlock);
1190
1191 pg->offset = off;
1192 pg->uobject = obj;
1193 pg->uanon = anon;
1194 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1195 if (anon) {
1196 anon->an_page = pg;
1197 pg->pqflags = PQ_ANON;
1198 atomic_inc_uint(&uvmexp.anonpages);
1199 } else {
1200 if (obj) {
1201 uvm_pageinsert(pg);
1202 }
1203 pg->pqflags = 0;
1204 }
1205 #if defined(UVM_PAGE_TRKOWN)
1206 pg->owner_tag = NULL;
1207 #endif
1208 UVM_PAGE_OWN(pg, "new alloc");
1209
1210 if (flags & UVM_PGA_ZERO) {
1211 /*
1212 * A zero'd page is not clean. If we got a page not already
1213 * zero'd, then we have to zero it ourselves.
1214 */
1215 pg->flags &= ~PG_CLEAN;
1216 if (zeroit)
1217 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1218 }
1219
1220 return(pg);
1221
1222 fail:
1223 mutex_spin_exit(&uvm_fpageqlock);
1224 return (NULL);
1225 }
1226
1227 /*
1228 * uvm_pagereplace: replace a page with another
1229 *
1230 * => object must be locked
1231 */
1232
1233 void
1234 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1235 {
1236
1237 KASSERT((oldpg->flags & PG_TABLED) != 0);
1238 KASSERT(oldpg->uobject != NULL);
1239 KASSERT((newpg->flags & PG_TABLED) == 0);
1240 KASSERT(newpg->uobject == NULL);
1241 KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
1242
1243 newpg->uobject = oldpg->uobject;
1244 newpg->offset = oldpg->offset;
1245
1246 uvm_pageinsert_after(newpg, oldpg);
1247 uvm_pageremove(oldpg);
1248 }
1249
1250 /*
1251 * uvm_pagerealloc: reallocate a page from one object to another
1252 *
1253 * => both objects must be locked
1254 */
1255
1256 void
1257 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1258 {
1259 /*
1260 * remove it from the old object
1261 */
1262
1263 if (pg->uobject) {
1264 uvm_pageremove(pg);
1265 }
1266
1267 /*
1268 * put it in the new object
1269 */
1270
1271 if (newobj) {
1272 pg->uobject = newobj;
1273 pg->offset = newoff;
1274 uvm_pageinsert(pg);
1275 }
1276 }
1277
1278 #ifdef DEBUG
1279 /*
1280 * check if page is zero-filled
1281 *
1282 * - called with free page queue lock held.
1283 */
1284 void
1285 uvm_pagezerocheck(struct vm_page *pg)
1286 {
1287 int *p, *ep;
1288
1289 KASSERT(uvm_zerocheckkva != 0);
1290 KASSERT(mutex_owned(&uvm_fpageqlock));
1291
1292 /*
1293 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1294 * uvm page allocator.
1295 *
1296 * it might be better to have "CPU-local temporary map" pmap interface.
1297 */
1298 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1299 p = (int *)uvm_zerocheckkva;
1300 ep = (int *)((char *)p + PAGE_SIZE);
1301 pmap_update(pmap_kernel());
1302 while (p < ep) {
1303 if (*p != 0)
1304 panic("PG_ZERO page isn't zero-filled");
1305 p++;
1306 }
1307 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1308 }
1309 #endif /* DEBUG */
1310
1311 /*
1312 * uvm_pagefree: free page
1313 *
1314 * => erase page's identity (i.e. remove from hash/object)
1315 * => put page on free list
1316 * => caller must lock owning object (either anon or uvm_object)
1317 * => caller must lock page queues
1318 * => assumes all valid mappings of pg are gone
1319 */
1320
1321 void
1322 uvm_pagefree(struct vm_page *pg)
1323 {
1324 struct pglist *pgfl;
1325 bool iszero;
1326
1327 #ifdef DEBUG
1328 if (pg->uobject == (void *)0xdeadbeef &&
1329 pg->uanon == (void *)0xdeadbeef) {
1330 panic("uvm_pagefree: freeing free page %p", pg);
1331 }
1332 #endif /* DEBUG */
1333
1334 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1335 KASSERT(mutex_owned(&uvm_pageqlock) ||
1336 !uvmpdpol_pageisqueued_p(pg));
1337 KASSERT(pg->uobject == NULL ||
1338 mutex_owned(&pg->uobject->vmobjlock));
1339 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1340 mutex_owned(&pg->uanon->an_lock));
1341
1342 /*
1343 * if the page is loaned, resolve the loan instead of freeing.
1344 */
1345
1346 if (pg->loan_count) {
1347 KASSERT(pg->wire_count == 0);
1348
1349 /*
1350 * if the page is owned by an anon then we just want to
1351 * drop anon ownership. the kernel will free the page when
1352 * it is done with it. if the page is owned by an object,
1353 * remove it from the object and mark it dirty for the benefit
1354 * of possible anon owners.
1355 *
1356 * regardless of previous ownership, wakeup any waiters,
1357 * unbusy the page, and we're done.
1358 */
1359
1360 if (pg->uobject != NULL) {
1361 uvm_pageremove(pg);
1362 pg->flags &= ~PG_CLEAN;
1363 } else if (pg->uanon != NULL) {
1364 if ((pg->pqflags & PQ_ANON) == 0) {
1365 pg->loan_count--;
1366 } else {
1367 pg->pqflags &= ~PQ_ANON;
1368 atomic_dec_uint(&uvmexp.anonpages);
1369 }
1370 pg->uanon->an_page = NULL;
1371 pg->uanon = NULL;
1372 }
1373 if (pg->flags & PG_WANTED) {
1374 wakeup(pg);
1375 }
1376 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1377 #ifdef UVM_PAGE_TRKOWN
1378 pg->owner_tag = NULL;
1379 #endif
1380 if (pg->loan_count) {
1381 KASSERT(pg->uobject == NULL);
1382 if (pg->uanon == NULL) {
1383 uvm_pagedequeue(pg);
1384 }
1385 return;
1386 }
1387 }
1388
1389 /*
1390 * remove page from its object or anon.
1391 */
1392
1393 if (pg->uobject != NULL) {
1394 uvm_pageremove(pg);
1395 } else if (pg->uanon != NULL) {
1396 pg->uanon->an_page = NULL;
1397 atomic_dec_uint(&uvmexp.anonpages);
1398 }
1399
1400 /*
1401 * now remove the page from the queues.
1402 */
1403
1404 uvm_pagedequeue(pg);
1405
1406 /*
1407 * if the page was wired, unwire it now.
1408 */
1409
1410 if (pg->wire_count) {
1411 pg->wire_count = 0;
1412 uvmexp.wired--;
1413 }
1414
1415 /*
1416 * and put on free queue
1417 */
1418
1419 iszero = (pg->flags & PG_ZERO);
1420 pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
1421 pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
1422 pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
1423
1424 pg->pqflags = PQ_FREE;
1425 #ifdef DEBUG
1426 pg->uobject = (void *)0xdeadbeef;
1427 pg->offset = 0xdeadbeef;
1428 pg->uanon = (void *)0xdeadbeef;
1429 #endif
1430
1431 mutex_spin_enter(&uvm_fpageqlock);
1432
1433 #ifdef DEBUG
1434 if (iszero)
1435 uvm_pagezerocheck(pg);
1436 #endif /* DEBUG */
1437
1438 TAILQ_INSERT_HEAD(pgfl, pg, pageq);
1439 uvmexp.free++;
1440 if (iszero)
1441 uvmexp.zeropages++;
1442
1443 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1444 uvm.page_idle_zero = vm_page_zero_enable;
1445
1446 mutex_spin_exit(&uvm_fpageqlock);
1447 }
1448
1449 /*
1450 * uvm_page_unbusy: unbusy an array of pages.
1451 *
1452 * => pages must either all belong to the same object, or all belong to anons.
1453 * => if pages are object-owned, object must be locked.
1454 * => if pages are anon-owned, anons must be locked.
1455 * => caller must lock page queues if pages may be released.
1456 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1457 */
1458
1459 void
1460 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1461 {
1462 struct vm_page *pg;
1463 int i;
1464 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1465
1466 for (i = 0; i < npgs; i++) {
1467 pg = pgs[i];
1468 if (pg == NULL || pg == PGO_DONTCARE) {
1469 continue;
1470 }
1471
1472 KASSERT(pg->uobject == NULL ||
1473 mutex_owned(&pg->uobject->vmobjlock));
1474 KASSERT(pg->uobject != NULL ||
1475 (pg->uanon != NULL &&
1476 mutex_owned(&pg->uanon->an_lock)));
1477
1478 KASSERT(pg->flags & PG_BUSY);
1479 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1480 if (pg->flags & PG_WANTED) {
1481 wakeup(pg);
1482 }
1483 if (pg->flags & PG_RELEASED) {
1484 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1485 KASSERT(pg->uobject != NULL ||
1486 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1487 pg->flags &= ~PG_RELEASED;
1488 uvm_pagefree(pg);
1489 } else {
1490 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1491 pg->flags &= ~(PG_WANTED|PG_BUSY);
1492 UVM_PAGE_OWN(pg, NULL);
1493 }
1494 }
1495 }
1496
1497 #if defined(UVM_PAGE_TRKOWN)
1498 /*
1499 * uvm_page_own: set or release page ownership
1500 *
1501 * => this is a debugging function that keeps track of who sets PG_BUSY
1502 * and where they do it. it can be used to track down problems
1503 * such a process setting "PG_BUSY" and never releasing it.
1504 * => page's object [if any] must be locked
1505 * => if "tag" is NULL then we are releasing page ownership
1506 */
1507 void
1508 uvm_page_own(struct vm_page *pg, const char *tag)
1509 {
1510 struct uvm_object *uobj;
1511 struct vm_anon *anon;
1512
1513 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1514
1515 uobj = pg->uobject;
1516 anon = pg->uanon;
1517 if (uobj != NULL) {
1518 KASSERT(mutex_owned(&uobj->vmobjlock));
1519 } else if (anon != NULL) {
1520 KASSERT(mutex_owned(&anon->an_lock));
1521 }
1522
1523 KASSERT((pg->flags & PG_WANTED) == 0);
1524
1525 /* gain ownership? */
1526 if (tag) {
1527 KASSERT((pg->flags & PG_BUSY) != 0);
1528 if (pg->owner_tag) {
1529 printf("uvm_page_own: page %p already owned "
1530 "by proc %d [%s]\n", pg,
1531 pg->owner, pg->owner_tag);
1532 panic("uvm_page_own");
1533 }
1534 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1535 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1536 pg->owner_tag = tag;
1537 return;
1538 }
1539
1540 /* drop ownership */
1541 KASSERT((pg->flags & PG_BUSY) == 0);
1542 if (pg->owner_tag == NULL) {
1543 printf("uvm_page_own: dropping ownership of an non-owned "
1544 "page (%p)\n", pg);
1545 panic("uvm_page_own");
1546 }
1547 if (!uvmpdpol_pageisqueued_p(pg)) {
1548 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1549 pg->wire_count > 0);
1550 } else {
1551 KASSERT(pg->wire_count == 0);
1552 }
1553 pg->owner_tag = NULL;
1554 }
1555 #endif
1556
1557 /*
1558 * uvm_pageidlezero: zero free pages while the system is idle.
1559 *
1560 * => try to complete one color bucket at a time, to reduce our impact
1561 * on the CPU cache.
1562 * => we loop until we either reach the target or there is a lwp ready to run.
1563 */
1564 void
1565 uvm_pageidlezero(void)
1566 {
1567 struct vm_page *pg;
1568 struct pgfreelist *pgfl;
1569 int free_list, firstbucket;
1570 static int nextbucket;
1571
1572 mutex_spin_enter(&uvm_fpageqlock);
1573 firstbucket = nextbucket;
1574 do {
1575 if (sched_curcpu_runnable_p()) {
1576 goto quit;
1577 }
1578 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1579 uvm.page_idle_zero = false;
1580 goto quit;
1581 }
1582 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1583 pgfl = &uvm.page_free[free_list];
1584 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1585 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1586 if (sched_curcpu_runnable_p())
1587 goto quit;
1588
1589 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1590 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1591 pg, pageq);
1592 uvmexp.free--;
1593 mutex_spin_exit(&uvm_fpageqlock);
1594 #ifdef PMAP_PAGEIDLEZERO
1595 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1596
1597 /*
1598 * The machine-dependent code detected
1599 * some reason for us to abort zeroing
1600 * pages, probably because there is a
1601 * process now ready to run.
1602 */
1603
1604 mutex_spin_enter(&uvm_fpageqlock);
1605 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1606 nextbucket].pgfl_queues[
1607 PGFL_UNKNOWN], pg, pageq);
1608 uvmexp.free++;
1609 uvmexp.zeroaborts++;
1610 goto quit;
1611 }
1612 #else
1613 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1614 #endif /* PMAP_PAGEIDLEZERO */
1615 pg->flags |= PG_ZERO;
1616
1617 mutex_spin_enter(&uvm_fpageqlock);
1618 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1619 nextbucket].pgfl_queues[PGFL_ZEROS],
1620 pg, pageq);
1621 uvmexp.free++;
1622 uvmexp.zeropages++;
1623 }
1624 }
1625 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1626 } while (nextbucket != firstbucket);
1627 quit:
1628 mutex_spin_exit(&uvm_fpageqlock);
1629 }
1630
1631 /*
1632 * uvm_pagelookup: look up a page
1633 *
1634 * => caller should lock object to keep someone from pulling the page
1635 * out from under it
1636 */
1637
1638 struct vm_page *
1639 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1640 {
1641 struct vm_page *pg;
1642 struct pglist *buck;
1643 kmutex_t *lock;
1644 u_int hash;
1645
1646 KASSERT(mutex_owned(&obj->vmobjlock));
1647
1648 hash = uvm_pagehash(obj, off);
1649 buck = &uvm.page_hash[hash];
1650 lock = uvm_hashlock(hash);
1651 mutex_spin_enter(lock);
1652 TAILQ_FOREACH(pg, buck, hashq) {
1653 if (pg->uobject == obj && pg->offset == off) {
1654 break;
1655 }
1656 }
1657 mutex_spin_exit(lock);
1658 KASSERT(pg == NULL || obj->uo_npages != 0);
1659 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1660 (pg->flags & PG_BUSY) != 0);
1661 return(pg);
1662 }
1663
1664 /*
1665 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1666 *
1667 * => caller must lock page queues
1668 */
1669
1670 void
1671 uvm_pagewire(struct vm_page *pg)
1672 {
1673 KASSERT(mutex_owned(&uvm_pageqlock));
1674 #if defined(READAHEAD_STATS)
1675 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1676 uvm_ra_hit.ev_count++;
1677 pg->pqflags &= ~PQ_READAHEAD;
1678 }
1679 #endif /* defined(READAHEAD_STATS) */
1680 if (pg->wire_count == 0) {
1681 uvm_pagedequeue(pg);
1682 uvmexp.wired++;
1683 }
1684 pg->wire_count++;
1685 }
1686
1687 /*
1688 * uvm_pageunwire: unwire the page.
1689 *
1690 * => activate if wire count goes to zero.
1691 * => caller must lock page queues
1692 */
1693
1694 void
1695 uvm_pageunwire(struct vm_page *pg)
1696 {
1697 KASSERT(mutex_owned(&uvm_pageqlock));
1698 pg->wire_count--;
1699 if (pg->wire_count == 0) {
1700 uvm_pageactivate(pg);
1701 uvmexp.wired--;
1702 }
1703 }
1704
1705 /*
1706 * uvm_pagedeactivate: deactivate page
1707 *
1708 * => caller must lock page queues
1709 * => caller must check to make sure page is not wired
1710 * => object that page belongs to must be locked (so we can adjust pg->flags)
1711 * => caller must clear the reference on the page before calling
1712 */
1713
1714 void
1715 uvm_pagedeactivate(struct vm_page *pg)
1716 {
1717
1718 KASSERT(mutex_owned(&uvm_pageqlock));
1719 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1720 uvmpdpol_pagedeactivate(pg);
1721 }
1722
1723 /*
1724 * uvm_pageactivate: activate page
1725 *
1726 * => caller must lock page queues
1727 */
1728
1729 void
1730 uvm_pageactivate(struct vm_page *pg)
1731 {
1732
1733 KASSERT(mutex_owned(&uvm_pageqlock));
1734 #if defined(READAHEAD_STATS)
1735 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1736 uvm_ra_hit.ev_count++;
1737 pg->pqflags &= ~PQ_READAHEAD;
1738 }
1739 #endif /* defined(READAHEAD_STATS) */
1740 if (pg->wire_count != 0) {
1741 return;
1742 }
1743 uvmpdpol_pageactivate(pg);
1744 }
1745
1746 /*
1747 * uvm_pagedequeue: remove a page from any paging queue
1748 */
1749
1750 void
1751 uvm_pagedequeue(struct vm_page *pg)
1752 {
1753
1754 if (uvmpdpol_pageisqueued_p(pg)) {
1755 KASSERT(mutex_owned(&uvm_pageqlock));
1756 }
1757
1758 uvmpdpol_pagedequeue(pg);
1759 }
1760
1761 /*
1762 * uvm_pageenqueue: add a page to a paging queue without activating.
1763 * used where a page is not really demanded (yet). eg. read-ahead
1764 */
1765
1766 void
1767 uvm_pageenqueue(struct vm_page *pg)
1768 {
1769
1770 KASSERT(mutex_owned(&uvm_pageqlock));
1771 if (pg->wire_count != 0) {
1772 return;
1773 }
1774 uvmpdpol_pageenqueue(pg);
1775 }
1776
1777 /*
1778 * uvm_pagezero: zero fill a page
1779 *
1780 * => if page is part of an object then the object should be locked
1781 * to protect pg->flags.
1782 */
1783
1784 void
1785 uvm_pagezero(struct vm_page *pg)
1786 {
1787 pg->flags &= ~PG_CLEAN;
1788 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1789 }
1790
1791 /*
1792 * uvm_pagecopy: copy a page
1793 *
1794 * => if page is part of an object then the object should be locked
1795 * to protect pg->flags.
1796 */
1797
1798 void
1799 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1800 {
1801
1802 dst->flags &= ~PG_CLEAN;
1803 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1804 }
1805
1806 /*
1807 * uvm_page_lookup_freelist: look up the free list for the specified page
1808 */
1809
1810 int
1811 uvm_page_lookup_freelist(struct vm_page *pg)
1812 {
1813 int lcv;
1814
1815 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1816 KASSERT(lcv != -1);
1817 return (vm_physmem[lcv].free_list);
1818 }
1819