Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.127
      1 /*	$NetBSD: uvm_page.c,v 1.127 2008/01/02 11:49:19 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.127 2008/01/02 11:49:19 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 #include <sys/atomic.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pdpolicy.h>
     90 
     91 /*
     92  * global vars... XXXCDC: move to uvm. structure.
     93  */
     94 
     95 /*
     96  * physical memory config is stored in vm_physmem.
     97  */
     98 
     99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    100 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    101 
    102 /*
    103  * Some supported CPUs in a given architecture don't support all
    104  * of the things necessary to do idle page zero'ing efficiently.
    105  * We therefore provide a way to disable it from machdep code here.
    106  */
    107 /*
    108  * XXX disabled until we can find a way to do this without causing
    109  * problems for either CPU caches or DMA latency.
    110  */
    111 bool vm_page_zero_enable = false;
    112 
    113 /*
    114  * local variables
    115  */
    116 
    117 /*
    118  * these variables record the values returned by vm_page_bootstrap,
    119  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    120  * and pmap_startup here also uses them internally.
    121  */
    122 
    123 static vaddr_t      virtual_space_start;
    124 static vaddr_t      virtual_space_end;
    125 
    126 /*
    127  * we use a hash table with only one bucket during bootup.  we will
    128  * later rehash (resize) the hash table once the allocator is ready.
    129  * we static allocate the one bootstrap bucket below...
    130  */
    131 
    132 static struct pglist uvm_bootbucket;
    133 
    134 /*
    135  * we allocate an initial number of page colors in uvm_page_init(),
    136  * and remember them.  We may re-color pages as cache sizes are
    137  * discovered during the autoconfiguration phase.  But we can never
    138  * free the initial set of buckets, since they are allocated using
    139  * uvm_pageboot_alloc().
    140  */
    141 
    142 static bool have_recolored_pages /* = false */;
    143 
    144 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    145 
    146 #ifdef DEBUG
    147 vaddr_t uvm_zerocheckkva;
    148 #endif /* DEBUG */
    149 
    150 /*
    151  * locks on the hash table.  allocated in 32 byte chunks to try
    152  * and reduce cache traffic between CPUs.
    153  */
    154 
    155 #define	UVM_HASHLOCK_CNT	32
    156 #define	uvm_hashlock(hash)	\
    157     (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
    158 
    159 static union {
    160 	kmutex_t	lock;
    161 	uint8_t		pad[32];
    162 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
    163 
    164 /*
    165  * local prototypes
    166  */
    167 
    168 static void uvm_pageinsert(struct vm_page *);
    169 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    170 static void uvm_pageremove(struct vm_page *);
    171 
    172 /*
    173  * inline functions
    174  */
    175 
    176 /*
    177  * uvm_pageinsert: insert a page in the object and the hash table
    178  * uvm_pageinsert_after: insert a page into the specified place in listq
    179  *
    180  * => caller must lock object
    181  * => caller must lock page queues
    182  * => call should have already set pg's object and offset pointers
    183  *    and bumped the version counter
    184  */
    185 
    186 inline static void
    187 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    188 {
    189 	struct pglist *buck;
    190 	struct uvm_object *uobj = pg->uobject;
    191 	kmutex_t *lock;
    192 	u_int hash;
    193 
    194 	KASSERT(mutex_owned(&uobj->vmobjlock));
    195 	KASSERT((pg->flags & PG_TABLED) == 0);
    196 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    197 	KASSERT(where == NULL || (where->uobject == uobj));
    198 
    199 	hash = uvm_pagehash(uobj, pg->offset);
    200 	buck = &uvm.page_hash[hash];
    201 	lock = uvm_hashlock(hash);
    202 	mutex_spin_enter(lock);
    203 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    204 	mutex_spin_exit(lock);
    205 
    206 	if (UVM_OBJ_IS_VNODE(uobj)) {
    207 		if (uobj->uo_npages == 0) {
    208 			struct vnode *vp = (struct vnode *)uobj;
    209 
    210 			vholdl(vp);
    211 		}
    212 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    213 			atomic_inc_uint(&uvmexp.execpages);
    214 		} else {
    215 			atomic_inc_uint(&uvmexp.filepages);
    216 		}
    217 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    218 		atomic_inc_uint(&uvmexp.anonpages);
    219 	}
    220 
    221 	if (where)
    222 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    223 	else
    224 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    225 	pg->flags |= PG_TABLED;
    226 	uobj->uo_npages++;
    227 }
    228 
    229 inline static void
    230 uvm_pageinsert(struct vm_page *pg)
    231 {
    232 
    233 	uvm_pageinsert_after(pg, NULL);
    234 }
    235 
    236 /*
    237  * uvm_page_remove: remove page from object and hash
    238  *
    239  * => caller must lock object
    240  * => caller must lock page queues
    241  */
    242 
    243 static inline void
    244 uvm_pageremove(struct vm_page *pg)
    245 {
    246 	struct pglist *buck;
    247 	struct uvm_object *uobj = pg->uobject;
    248 	kmutex_t *lock;
    249 	u_int hash;
    250 
    251 	KASSERT(mutex_owned(&uobj->vmobjlock));
    252 	KASSERT(pg->flags & PG_TABLED);
    253 
    254 	hash = uvm_pagehash(uobj, pg->offset);
    255 	buck = &uvm.page_hash[hash];
    256 	lock = uvm_hashlock(hash);
    257 	mutex_spin_enter(lock);
    258 	TAILQ_REMOVE(buck, pg, hashq);
    259 	mutex_spin_exit(lock);
    260 
    261 	if (UVM_OBJ_IS_VNODE(uobj)) {
    262 		if (uobj->uo_npages == 1) {
    263 			struct vnode *vp = (struct vnode *)uobj;
    264 
    265 			holdrelel(vp);
    266 		}
    267 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    268 			atomic_dec_uint(&uvmexp.execpages);
    269 		} else {
    270 			atomic_dec_uint(&uvmexp.filepages);
    271 		}
    272 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    273 		atomic_dec_uint(&uvmexp.anonpages);
    274 	}
    275 
    276 	/* object should be locked */
    277 	uobj->uo_npages--;
    278 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    279 	pg->flags &= ~PG_TABLED;
    280 	pg->uobject = NULL;
    281 }
    282 
    283 static void
    284 uvm_page_init_buckets(struct pgfreelist *pgfl)
    285 {
    286 	int color, i;
    287 
    288 	for (color = 0; color < uvmexp.ncolors; color++) {
    289 		for (i = 0; i < PGFL_NQUEUES; i++) {
    290 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    291 		}
    292 	}
    293 }
    294 
    295 /*
    296  * uvm_page_init: init the page system.   called from uvm_init().
    297  *
    298  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    299  */
    300 
    301 void
    302 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    303 {
    304 	vsize_t freepages, pagecount, bucketcount, n;
    305 	struct pgflbucket *bucketarray;
    306 	struct vm_page *pagearray;
    307 	int lcv;
    308 	u_int i;
    309 	paddr_t paddr;
    310 
    311 	/*
    312 	 * init the page queues and page queue locks, except the free
    313 	 * list; we allocate that later (with the initial vm_page
    314 	 * structures).
    315 	 */
    316 
    317 	uvmpdpol_init();
    318 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    319 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    320 
    321 	/*
    322 	 * init the <obj,offset> => <page> hash table.  for now
    323 	 * we just have one bucket (the bootstrap bucket).  later on we
    324 	 * will allocate new buckets as we dynamically resize the hash table.
    325 	 */
    326 
    327 	uvm.page_nhash = 1;			/* 1 bucket */
    328 	uvm.page_hashmask = 0;			/* mask for hash function */
    329 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    330 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    331 
    332 	/*
    333 	 * init hashtable locks.  these must be spinlocks, as they are
    334 	 * called from sites in the pmap modules where we cannot block.
    335 	 * if taking multiple locks, the order is: low numbered first,
    336 	 * high numbered second.
    337 	 */
    338 
    339 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    340 		mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
    341 
    342 	/*
    343 	 * allocate vm_page structures.
    344 	 */
    345 
    346 	/*
    347 	 * sanity check:
    348 	 * before calling this function the MD code is expected to register
    349 	 * some free RAM with the uvm_page_physload() function.   our job
    350 	 * now is to allocate vm_page structures for this memory.
    351 	 */
    352 
    353 	if (vm_nphysseg == 0)
    354 		panic("uvm_page_bootstrap: no memory pre-allocated");
    355 
    356 	/*
    357 	 * first calculate the number of free pages...
    358 	 *
    359 	 * note that we use start/end rather than avail_start/avail_end.
    360 	 * this allows us to allocate extra vm_page structures in case we
    361 	 * want to return some memory to the pool after booting.
    362 	 */
    363 
    364 	freepages = 0;
    365 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    366 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    367 
    368 	/*
    369 	 * Let MD code initialize the number of colors, or default
    370 	 * to 1 color if MD code doesn't care.
    371 	 */
    372 	if (uvmexp.ncolors == 0)
    373 		uvmexp.ncolors = 1;
    374 	uvmexp.colormask = uvmexp.ncolors - 1;
    375 
    376 	/*
    377 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    378 	 * use.   for each page of memory we use we need a vm_page structure.
    379 	 * thus, the total number of pages we can use is the total size of
    380 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    381 	 * structure.   we add one to freepages as a fudge factor to avoid
    382 	 * truncation errors (since we can only allocate in terms of whole
    383 	 * pages).
    384 	 */
    385 
    386 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    387 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    388 	    (PAGE_SIZE + sizeof(struct vm_page));
    389 
    390 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    391 	    sizeof(struct pgflbucket)) + (pagecount *
    392 	    sizeof(struct vm_page)));
    393 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    394 
    395 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    396 		uvm.page_free[lcv].pgfl_buckets =
    397 		    (bucketarray + (lcv * uvmexp.ncolors));
    398 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    399 	}
    400 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    401 
    402 	/*
    403 	 * init the vm_page structures and put them in the correct place.
    404 	 */
    405 
    406 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    407 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    408 
    409 		/* set up page array pointers */
    410 		vm_physmem[lcv].pgs = pagearray;
    411 		pagearray += n;
    412 		pagecount -= n;
    413 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    414 
    415 		/* init and free vm_pages (we've already zeroed them) */
    416 		paddr = ptoa(vm_physmem[lcv].start);
    417 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    418 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    419 #ifdef __HAVE_VM_PAGE_MD
    420 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    421 #endif
    422 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    423 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    424 				uvmexp.npages++;
    425 				/* add page to free pool */
    426 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    427 			}
    428 		}
    429 	}
    430 
    431 	/*
    432 	 * pass up the values of virtual_space_start and
    433 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    434 	 * layers of the VM.
    435 	 */
    436 
    437 	*kvm_startp = round_page(virtual_space_start);
    438 	*kvm_endp = trunc_page(virtual_space_end);
    439 #ifdef DEBUG
    440 	/*
    441 	 * steal kva for uvm_pagezerocheck().
    442 	 */
    443 	uvm_zerocheckkva = *kvm_startp;
    444 	*kvm_startp += PAGE_SIZE;
    445 #endif /* DEBUG */
    446 
    447 	/*
    448 	 * init various thresholds.
    449 	 */
    450 
    451 	uvmexp.reserve_pagedaemon = 1;
    452 	uvmexp.reserve_kernel = 5;
    453 
    454 	/*
    455 	 * determine if we should zero pages in the idle loop.
    456 	 */
    457 
    458 	uvm.page_idle_zero = vm_page_zero_enable;
    459 
    460 	/*
    461 	 * done!
    462 	 */
    463 
    464 	uvm.page_init_done = true;
    465 }
    466 
    467 /*
    468  * uvm_setpagesize: set the page size
    469  *
    470  * => sets page_shift and page_mask from uvmexp.pagesize.
    471  */
    472 
    473 void
    474 uvm_setpagesize(void)
    475 {
    476 
    477 	/*
    478 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    479 	 * to be a constant (indicated by being a non-zero value).
    480 	 */
    481 	if (uvmexp.pagesize == 0) {
    482 		if (PAGE_SIZE == 0)
    483 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    484 		uvmexp.pagesize = PAGE_SIZE;
    485 	}
    486 	uvmexp.pagemask = uvmexp.pagesize - 1;
    487 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    488 		panic("uvm_setpagesize: page size not a power of two");
    489 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    490 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    491 			break;
    492 }
    493 
    494 /*
    495  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    496  */
    497 
    498 vaddr_t
    499 uvm_pageboot_alloc(vsize_t size)
    500 {
    501 	static bool initialized = false;
    502 	vaddr_t addr;
    503 #if !defined(PMAP_STEAL_MEMORY)
    504 	vaddr_t vaddr;
    505 	paddr_t paddr;
    506 #endif
    507 
    508 	/*
    509 	 * on first call to this function, initialize ourselves.
    510 	 */
    511 	if (initialized == false) {
    512 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    513 
    514 		/* round it the way we like it */
    515 		virtual_space_start = round_page(virtual_space_start);
    516 		virtual_space_end = trunc_page(virtual_space_end);
    517 
    518 		initialized = true;
    519 	}
    520 
    521 	/* round to page size */
    522 	size = round_page(size);
    523 
    524 #if defined(PMAP_STEAL_MEMORY)
    525 
    526 	/*
    527 	 * defer bootstrap allocation to MD code (it may want to allocate
    528 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    529 	 * virtual_space_start/virtual_space_end if necessary.
    530 	 */
    531 
    532 	addr = pmap_steal_memory(size, &virtual_space_start,
    533 	    &virtual_space_end);
    534 
    535 	return(addr);
    536 
    537 #else /* !PMAP_STEAL_MEMORY */
    538 
    539 	/*
    540 	 * allocate virtual memory for this request
    541 	 */
    542 	if (virtual_space_start == virtual_space_end ||
    543 	    (virtual_space_end - virtual_space_start) < size)
    544 		panic("uvm_pageboot_alloc: out of virtual space");
    545 
    546 	addr = virtual_space_start;
    547 
    548 #ifdef PMAP_GROWKERNEL
    549 	/*
    550 	 * If the kernel pmap can't map the requested space,
    551 	 * then allocate more resources for it.
    552 	 */
    553 	if (uvm_maxkaddr < (addr + size)) {
    554 		uvm_maxkaddr = pmap_growkernel(addr + size);
    555 		if (uvm_maxkaddr < (addr + size))
    556 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    557 	}
    558 #endif
    559 
    560 	virtual_space_start += size;
    561 
    562 	/*
    563 	 * allocate and mapin physical pages to back new virtual pages
    564 	 */
    565 
    566 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    567 	    vaddr += PAGE_SIZE) {
    568 
    569 		if (!uvm_page_physget(&paddr))
    570 			panic("uvm_pageboot_alloc: out of memory");
    571 
    572 		/*
    573 		 * Note this memory is no longer managed, so using
    574 		 * pmap_kenter is safe.
    575 		 */
    576 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    577 	}
    578 	pmap_update(pmap_kernel());
    579 	return(addr);
    580 #endif	/* PMAP_STEAL_MEMORY */
    581 }
    582 
    583 #if !defined(PMAP_STEAL_MEMORY)
    584 /*
    585  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    586  *
    587  * => attempt to allocate it off the end of a segment in which the "avail"
    588  *    values match the start/end values.   if we can't do that, then we
    589  *    will advance both values (making them equal, and removing some
    590  *    vm_page structures from the non-avail area).
    591  * => return false if out of memory.
    592  */
    593 
    594 /* subroutine: try to allocate from memory chunks on the specified freelist */
    595 static bool uvm_page_physget_freelist(paddr_t *, int);
    596 
    597 static bool
    598 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    599 {
    600 	int lcv, x;
    601 
    602 	/* pass 1: try allocating from a matching end */
    603 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    604 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    605 #else
    606 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    607 #endif
    608 	{
    609 
    610 		if (uvm.page_init_done == true)
    611 			panic("uvm_page_physget: called _after_ bootstrap");
    612 
    613 		if (vm_physmem[lcv].free_list != freelist)
    614 			continue;
    615 
    616 		/* try from front */
    617 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    618 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    619 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    620 			vm_physmem[lcv].avail_start++;
    621 			vm_physmem[lcv].start++;
    622 			/* nothing left?   nuke it */
    623 			if (vm_physmem[lcv].avail_start ==
    624 			    vm_physmem[lcv].end) {
    625 				if (vm_nphysseg == 1)
    626 				    panic("uvm_page_physget: out of memory!");
    627 				vm_nphysseg--;
    628 				for (x = lcv ; x < vm_nphysseg ; x++)
    629 					/* structure copy */
    630 					vm_physmem[x] = vm_physmem[x+1];
    631 			}
    632 			return (true);
    633 		}
    634 
    635 		/* try from rear */
    636 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    637 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    638 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    639 			vm_physmem[lcv].avail_end--;
    640 			vm_physmem[lcv].end--;
    641 			/* nothing left?   nuke it */
    642 			if (vm_physmem[lcv].avail_end ==
    643 			    vm_physmem[lcv].start) {
    644 				if (vm_nphysseg == 1)
    645 				    panic("uvm_page_physget: out of memory!");
    646 				vm_nphysseg--;
    647 				for (x = lcv ; x < vm_nphysseg ; x++)
    648 					/* structure copy */
    649 					vm_physmem[x] = vm_physmem[x+1];
    650 			}
    651 			return (true);
    652 		}
    653 	}
    654 
    655 	/* pass2: forget about matching ends, just allocate something */
    656 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    657 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    658 #else
    659 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    660 #endif
    661 	{
    662 
    663 		/* any room in this bank? */
    664 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    665 			continue;  /* nope */
    666 
    667 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    668 		vm_physmem[lcv].avail_start++;
    669 		/* truncate! */
    670 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    671 
    672 		/* nothing left?   nuke it */
    673 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    674 			if (vm_nphysseg == 1)
    675 				panic("uvm_page_physget: out of memory!");
    676 			vm_nphysseg--;
    677 			for (x = lcv ; x < vm_nphysseg ; x++)
    678 				/* structure copy */
    679 				vm_physmem[x] = vm_physmem[x+1];
    680 		}
    681 		return (true);
    682 	}
    683 
    684 	return (false);        /* whoops! */
    685 }
    686 
    687 bool
    688 uvm_page_physget(paddr_t *paddrp)
    689 {
    690 	int i;
    691 
    692 	/* try in the order of freelist preference */
    693 	for (i = 0; i < VM_NFREELIST; i++)
    694 		if (uvm_page_physget_freelist(paddrp, i) == true)
    695 			return (true);
    696 	return (false);
    697 }
    698 #endif /* PMAP_STEAL_MEMORY */
    699 
    700 /*
    701  * uvm_page_physload: load physical memory into VM system
    702  *
    703  * => all args are PFs
    704  * => all pages in start/end get vm_page structures
    705  * => areas marked by avail_start/avail_end get added to the free page pool
    706  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    707  */
    708 
    709 void
    710 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    711     paddr_t avail_end, int free_list)
    712 {
    713 	int preload, lcv;
    714 	psize_t npages;
    715 	struct vm_page *pgs;
    716 	struct vm_physseg *ps;
    717 
    718 	if (uvmexp.pagesize == 0)
    719 		panic("uvm_page_physload: page size not set!");
    720 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    721 		panic("uvm_page_physload: bad free list %d", free_list);
    722 	if (start >= end)
    723 		panic("uvm_page_physload: start >= end");
    724 
    725 	/*
    726 	 * do we have room?
    727 	 */
    728 
    729 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    730 		printf("uvm_page_physload: unable to load physical memory "
    731 		    "segment\n");
    732 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    733 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    734 		printf("\tincrease VM_PHYSSEG_MAX\n");
    735 		return;
    736 	}
    737 
    738 	/*
    739 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    740 	 * called yet, so malloc is not available).
    741 	 */
    742 
    743 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    744 		if (vm_physmem[lcv].pgs)
    745 			break;
    746 	}
    747 	preload = (lcv == vm_nphysseg);
    748 
    749 	/*
    750 	 * if VM is already running, attempt to malloc() vm_page structures
    751 	 */
    752 
    753 	if (!preload) {
    754 #if defined(VM_PHYSSEG_NOADD)
    755 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    756 #else
    757 		/* XXXCDC: need some sort of lockout for this case */
    758 		paddr_t paddr;
    759 		npages = end - start;  /* # of pages */
    760 		pgs = malloc(sizeof(struct vm_page) * npages,
    761 		    M_VMPAGE, M_NOWAIT);
    762 		if (pgs == NULL) {
    763 			printf("uvm_page_physload: can not malloc vm_page "
    764 			    "structs for segment\n");
    765 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    766 			return;
    767 		}
    768 		/* zero data, init phys_addr and free_list, and free pages */
    769 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    770 		for (lcv = 0, paddr = ptoa(start) ;
    771 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    772 			pgs[lcv].phys_addr = paddr;
    773 			pgs[lcv].free_list = free_list;
    774 			if (atop(paddr) >= avail_start &&
    775 			    atop(paddr) <= avail_end)
    776 				uvm_pagefree(&pgs[lcv]);
    777 		}
    778 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    779 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    780 #endif
    781 	} else {
    782 		pgs = NULL;
    783 		npages = 0;
    784 	}
    785 
    786 	/*
    787 	 * now insert us in the proper place in vm_physmem[]
    788 	 */
    789 
    790 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    791 	/* random: put it at the end (easy!) */
    792 	ps = &vm_physmem[vm_nphysseg];
    793 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    794 	{
    795 		int x;
    796 		/* sort by address for binary search */
    797 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    798 			if (start < vm_physmem[lcv].start)
    799 				break;
    800 		ps = &vm_physmem[lcv];
    801 		/* move back other entries, if necessary ... */
    802 		for (x = vm_nphysseg ; x > lcv ; x--)
    803 			/* structure copy */
    804 			vm_physmem[x] = vm_physmem[x - 1];
    805 	}
    806 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    807 	{
    808 		int x;
    809 		/* sort by largest segment first */
    810 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    811 			if ((end - start) >
    812 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    813 				break;
    814 		ps = &vm_physmem[lcv];
    815 		/* move back other entries, if necessary ... */
    816 		for (x = vm_nphysseg ; x > lcv ; x--)
    817 			/* structure copy */
    818 			vm_physmem[x] = vm_physmem[x - 1];
    819 	}
    820 #else
    821 	panic("uvm_page_physload: unknown physseg strategy selected!");
    822 #endif
    823 
    824 	ps->start = start;
    825 	ps->end = end;
    826 	ps->avail_start = avail_start;
    827 	ps->avail_end = avail_end;
    828 	if (preload) {
    829 		ps->pgs = NULL;
    830 	} else {
    831 		ps->pgs = pgs;
    832 		ps->lastpg = pgs + npages - 1;
    833 	}
    834 	ps->free_list = free_list;
    835 	vm_nphysseg++;
    836 
    837 	if (!preload) {
    838 		uvm_page_rehash();
    839 		uvmpdpol_reinit();
    840 	}
    841 }
    842 
    843 /*
    844  * uvm_page_rehash: reallocate hash table based on number of free pages.
    845  */
    846 
    847 void
    848 uvm_page_rehash(void)
    849 {
    850 	int freepages, lcv, bucketcount, oldcount, i;
    851 	struct pglist *newbuckets, *oldbuckets;
    852 	struct vm_page *pg;
    853 	size_t newsize, oldsize;
    854 
    855 	/*
    856 	 * compute number of pages that can go in the free pool
    857 	 */
    858 
    859 	freepages = 0;
    860 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    861 		freepages +=
    862 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    863 
    864 	/*
    865 	 * compute number of buckets needed for this number of pages
    866 	 */
    867 
    868 	bucketcount = 1;
    869 	while (bucketcount < freepages)
    870 		bucketcount = bucketcount * 2;
    871 
    872 	/*
    873 	 * compute the size of the current table and new table.
    874 	 */
    875 
    876 	oldbuckets = uvm.page_hash;
    877 	oldcount = uvm.page_nhash;
    878 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    879 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    880 
    881 	/*
    882 	 * allocate the new buckets
    883 	 */
    884 
    885 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    886 	    0, UVM_KMF_WIRED);
    887 	if (newbuckets == NULL) {
    888 		printf("uvm_page_physrehash: WARNING: could not grow page "
    889 		    "hash table\n");
    890 		return;
    891 	}
    892 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    893 		TAILQ_INIT(&newbuckets[lcv]);
    894 
    895 	/*
    896 	 * now replace the old buckets with the new ones and rehash everything
    897 	 */
    898 
    899 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    900 		mutex_spin_enter(&uvm_hashlocks[i].lock);
    901 
    902 	uvm.page_hash = newbuckets;
    903 	uvm.page_nhash = bucketcount;
    904 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    905 
    906 	/* ... and rehash */
    907 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    908 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    909 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    910 			TAILQ_INSERT_TAIL(
    911 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    912 			  pg, hashq);
    913 		}
    914 	}
    915 
    916 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    917 		mutex_spin_exit(&uvm_hashlocks[i].lock);
    918 
    919 	/*
    920 	 * free old bucket array if is not the boot-time table
    921 	 */
    922 
    923 	if (oldbuckets != &uvm_bootbucket)
    924 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    925 		    UVM_KMF_WIRED);
    926 }
    927 
    928 /*
    929  * uvm_page_recolor: Recolor the pages if the new bucket count is
    930  * larger than the old one.
    931  */
    932 
    933 void
    934 uvm_page_recolor(int newncolors)
    935 {
    936 	struct pgflbucket *bucketarray, *oldbucketarray;
    937 	struct pgfreelist pgfl;
    938 	struct vm_page *pg;
    939 	vsize_t bucketcount;
    940 	int lcv, color, i, ocolors;
    941 
    942 	if (newncolors <= uvmexp.ncolors)
    943 		return;
    944 
    945 	if (uvm.page_init_done == false) {
    946 		uvmexp.ncolors = newncolors;
    947 		return;
    948 	}
    949 
    950 	bucketcount = newncolors * VM_NFREELIST;
    951 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    952 	    M_VMPAGE, M_NOWAIT);
    953 	if (bucketarray == NULL) {
    954 		printf("WARNING: unable to allocate %ld page color buckets\n",
    955 		    (long) bucketcount);
    956 		return;
    957 	}
    958 
    959 	mutex_spin_enter(&uvm_fpageqlock);
    960 
    961 	/* Make sure we should still do this. */
    962 	if (newncolors <= uvmexp.ncolors) {
    963 		mutex_spin_exit(&uvm_fpageqlock);
    964 		free(bucketarray, M_VMPAGE);
    965 		return;
    966 	}
    967 
    968 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    969 	ocolors = uvmexp.ncolors;
    970 
    971 	uvmexp.ncolors = newncolors;
    972 	uvmexp.colormask = uvmexp.ncolors - 1;
    973 
    974 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    975 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    976 		uvm_page_init_buckets(&pgfl);
    977 		for (color = 0; color < ocolors; color++) {
    978 			for (i = 0; i < PGFL_NQUEUES; i++) {
    979 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    980 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    981 				    != NULL) {
    982 					TAILQ_REMOVE(&uvm.page_free[
    983 					    lcv].pgfl_buckets[
    984 					    color].pgfl_queues[i], pg, pageq);
    985 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    986 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    987 					    i], pg, pageq);
    988 				}
    989 			}
    990 		}
    991 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    992 	}
    993 
    994 	if (have_recolored_pages) {
    995 		mutex_spin_exit(&uvm_fpageqlock);
    996 		free(oldbucketarray, M_VMPAGE);
    997 		return;
    998 	}
    999 
   1000 	have_recolored_pages = true;
   1001 	mutex_spin_exit(&uvm_fpageqlock);
   1002 }
   1003 
   1004 /*
   1005  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1006  */
   1007 
   1008 static struct vm_page *
   1009 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
   1010     int *trycolorp)
   1011 {
   1012 	struct pglist *freeq;
   1013 	struct vm_page *pg;
   1014 	int color, trycolor = *trycolorp;
   1015 
   1016 	color = trycolor;
   1017 	do {
   1018 		if ((pg = TAILQ_FIRST((freeq =
   1019 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
   1020 			goto gotit;
   1021 		if ((pg = TAILQ_FIRST((freeq =
   1022 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
   1023 			goto gotit;
   1024 		color = (color + 1) & uvmexp.colormask;
   1025 	} while (color != trycolor);
   1026 
   1027 	return (NULL);
   1028 
   1029  gotit:
   1030 	TAILQ_REMOVE(freeq, pg, pageq);
   1031 	uvmexp.free--;
   1032 
   1033 	/* update zero'd page count */
   1034 	if (pg->flags & PG_ZERO)
   1035 		uvmexp.zeropages--;
   1036 
   1037 	if (color == trycolor)
   1038 		uvmexp.colorhit++;
   1039 	else {
   1040 		uvmexp.colormiss++;
   1041 		*trycolorp = color;
   1042 	}
   1043 
   1044 	return (pg);
   1045 }
   1046 
   1047 /*
   1048  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1049  *
   1050  * => return null if no pages free
   1051  * => wake up pagedaemon if number of free pages drops below low water mark
   1052  * => if obj != NULL, obj must be locked (to put in hash)
   1053  * => if anon != NULL, anon must be locked (to put in anon)
   1054  * => only one of obj or anon can be non-null
   1055  * => caller must activate/deactivate page if it is not wired.
   1056  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1057  * => policy decision: it is more important to pull a page off of the
   1058  *	appropriate priority free list than it is to get a zero'd or
   1059  *	unknown contents page.  This is because we live with the
   1060  *	consequences of a bad free list decision for the entire
   1061  *	lifetime of the page, e.g. if the page comes from memory that
   1062  *	is slower to access.
   1063  */
   1064 
   1065 struct vm_page *
   1066 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1067     int flags, int strat, int free_list)
   1068 {
   1069 	int lcv, try1, try2, zeroit = 0, color;
   1070 	struct vm_page *pg;
   1071 	bool use_reserve;
   1072 
   1073 	KASSERT(obj == NULL || anon == NULL);
   1074 	KASSERT(anon == NULL || off == 0);
   1075 	KASSERT(off == trunc_page(off));
   1076 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1077 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1078 
   1079 	mutex_spin_enter(&uvm_fpageqlock);
   1080 
   1081 	/*
   1082 	 * This implements a global round-robin page coloring
   1083 	 * algorithm.
   1084 	 *
   1085 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1086 	 * XXXJRT: What about virtually-indexed caches?
   1087 	 */
   1088 
   1089 	color = uvm.page_free_nextcolor;
   1090 
   1091 	/*
   1092 	 * check to see if we need to generate some free pages waking
   1093 	 * the pagedaemon.
   1094 	 */
   1095 
   1096 	uvm_kick_pdaemon();
   1097 
   1098 	/*
   1099 	 * fail if any of these conditions is true:
   1100 	 * [1]  there really are no free pages, or
   1101 	 * [2]  only kernel "reserved" pages remain and
   1102 	 *        the page isn't being allocated to a kernel object.
   1103 	 * [3]  only pagedaemon "reserved" pages remain and
   1104 	 *        the requestor isn't the pagedaemon.
   1105 	 */
   1106 
   1107 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1108 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1109 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1110 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1111 	     !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
   1112 		goto fail;
   1113 
   1114 #if PGFL_NQUEUES != 2
   1115 #error uvm_pagealloc_strat needs to be updated
   1116 #endif
   1117 
   1118 	/*
   1119 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1120 	 * we try the UNKNOWN queue first.
   1121 	 */
   1122 	if (flags & UVM_PGA_ZERO) {
   1123 		try1 = PGFL_ZEROS;
   1124 		try2 = PGFL_UNKNOWN;
   1125 	} else {
   1126 		try1 = PGFL_UNKNOWN;
   1127 		try2 = PGFL_ZEROS;
   1128 	}
   1129 
   1130  again:
   1131 	switch (strat) {
   1132 	case UVM_PGA_STRAT_NORMAL:
   1133 		/* Check all freelists in descending priority order. */
   1134 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1135 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1136 			    try1, try2, &color);
   1137 			if (pg != NULL)
   1138 				goto gotit;
   1139 		}
   1140 
   1141 		/* No pages free! */
   1142 		goto fail;
   1143 
   1144 	case UVM_PGA_STRAT_ONLY:
   1145 	case UVM_PGA_STRAT_FALLBACK:
   1146 		/* Attempt to allocate from the specified free list. */
   1147 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1148 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1149 		    try1, try2, &color);
   1150 		if (pg != NULL)
   1151 			goto gotit;
   1152 
   1153 		/* Fall back, if possible. */
   1154 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1155 			strat = UVM_PGA_STRAT_NORMAL;
   1156 			goto again;
   1157 		}
   1158 
   1159 		/* No pages free! */
   1160 		goto fail;
   1161 
   1162 	default:
   1163 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1164 		/* NOTREACHED */
   1165 	}
   1166 
   1167  gotit:
   1168 	/*
   1169 	 * We now know which color we actually allocated from; set
   1170 	 * the next color accordingly.
   1171 	 */
   1172 
   1173 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1174 
   1175 	/*
   1176 	 * update allocation statistics and remember if we have to
   1177 	 * zero the page
   1178 	 */
   1179 
   1180 	if (flags & UVM_PGA_ZERO) {
   1181 		if (pg->flags & PG_ZERO) {
   1182 			uvmexp.pga_zerohit++;
   1183 			zeroit = 0;
   1184 		} else {
   1185 			uvmexp.pga_zeromiss++;
   1186 			zeroit = 1;
   1187 		}
   1188 	}
   1189 	mutex_spin_exit(&uvm_fpageqlock);
   1190 
   1191 	pg->offset = off;
   1192 	pg->uobject = obj;
   1193 	pg->uanon = anon;
   1194 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1195 	if (anon) {
   1196 		anon->an_page = pg;
   1197 		pg->pqflags = PQ_ANON;
   1198 		atomic_inc_uint(&uvmexp.anonpages);
   1199 	} else {
   1200 		if (obj) {
   1201 			uvm_pageinsert(pg);
   1202 		}
   1203 		pg->pqflags = 0;
   1204 	}
   1205 #if defined(UVM_PAGE_TRKOWN)
   1206 	pg->owner_tag = NULL;
   1207 #endif
   1208 	UVM_PAGE_OWN(pg, "new alloc");
   1209 
   1210 	if (flags & UVM_PGA_ZERO) {
   1211 		/*
   1212 		 * A zero'd page is not clean.  If we got a page not already
   1213 		 * zero'd, then we have to zero it ourselves.
   1214 		 */
   1215 		pg->flags &= ~PG_CLEAN;
   1216 		if (zeroit)
   1217 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1218 	}
   1219 
   1220 	return(pg);
   1221 
   1222  fail:
   1223 	mutex_spin_exit(&uvm_fpageqlock);
   1224 	return (NULL);
   1225 }
   1226 
   1227 /*
   1228  * uvm_pagereplace: replace a page with another
   1229  *
   1230  * => object must be locked
   1231  */
   1232 
   1233 void
   1234 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1235 {
   1236 
   1237 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1238 	KASSERT(oldpg->uobject != NULL);
   1239 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1240 	KASSERT(newpg->uobject == NULL);
   1241 	KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
   1242 
   1243 	newpg->uobject = oldpg->uobject;
   1244 	newpg->offset = oldpg->offset;
   1245 
   1246 	uvm_pageinsert_after(newpg, oldpg);
   1247 	uvm_pageremove(oldpg);
   1248 }
   1249 
   1250 /*
   1251  * uvm_pagerealloc: reallocate a page from one object to another
   1252  *
   1253  * => both objects must be locked
   1254  */
   1255 
   1256 void
   1257 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1258 {
   1259 	/*
   1260 	 * remove it from the old object
   1261 	 */
   1262 
   1263 	if (pg->uobject) {
   1264 		uvm_pageremove(pg);
   1265 	}
   1266 
   1267 	/*
   1268 	 * put it in the new object
   1269 	 */
   1270 
   1271 	if (newobj) {
   1272 		pg->uobject = newobj;
   1273 		pg->offset = newoff;
   1274 		uvm_pageinsert(pg);
   1275 	}
   1276 }
   1277 
   1278 #ifdef DEBUG
   1279 /*
   1280  * check if page is zero-filled
   1281  *
   1282  *  - called with free page queue lock held.
   1283  */
   1284 void
   1285 uvm_pagezerocheck(struct vm_page *pg)
   1286 {
   1287 	int *p, *ep;
   1288 
   1289 	KASSERT(uvm_zerocheckkva != 0);
   1290 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1291 
   1292 	/*
   1293 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1294 	 * uvm page allocator.
   1295 	 *
   1296 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1297 	 */
   1298 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1299 	p = (int *)uvm_zerocheckkva;
   1300 	ep = (int *)((char *)p + PAGE_SIZE);
   1301 	pmap_update(pmap_kernel());
   1302 	while (p < ep) {
   1303 		if (*p != 0)
   1304 			panic("PG_ZERO page isn't zero-filled");
   1305 		p++;
   1306 	}
   1307 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1308 }
   1309 #endif /* DEBUG */
   1310 
   1311 /*
   1312  * uvm_pagefree: free page
   1313  *
   1314  * => erase page's identity (i.e. remove from hash/object)
   1315  * => put page on free list
   1316  * => caller must lock owning object (either anon or uvm_object)
   1317  * => caller must lock page queues
   1318  * => assumes all valid mappings of pg are gone
   1319  */
   1320 
   1321 void
   1322 uvm_pagefree(struct vm_page *pg)
   1323 {
   1324 	struct pglist *pgfl;
   1325 	bool iszero;
   1326 
   1327 #ifdef DEBUG
   1328 	if (pg->uobject == (void *)0xdeadbeef &&
   1329 	    pg->uanon == (void *)0xdeadbeef) {
   1330 		panic("uvm_pagefree: freeing free page %p", pg);
   1331 	}
   1332 #endif /* DEBUG */
   1333 
   1334 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1335 	KASSERT(mutex_owned(&uvm_pageqlock) ||
   1336 		!uvmpdpol_pageisqueued_p(pg));
   1337 	KASSERT(pg->uobject == NULL ||
   1338 		mutex_owned(&pg->uobject->vmobjlock));
   1339 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1340 		mutex_owned(&pg->uanon->an_lock));
   1341 
   1342 	/*
   1343 	 * if the page is loaned, resolve the loan instead of freeing.
   1344 	 */
   1345 
   1346 	if (pg->loan_count) {
   1347 		KASSERT(pg->wire_count == 0);
   1348 
   1349 		/*
   1350 		 * if the page is owned by an anon then we just want to
   1351 		 * drop anon ownership.  the kernel will free the page when
   1352 		 * it is done with it.  if the page is owned by an object,
   1353 		 * remove it from the object and mark it dirty for the benefit
   1354 		 * of possible anon owners.
   1355 		 *
   1356 		 * regardless of previous ownership, wakeup any waiters,
   1357 		 * unbusy the page, and we're done.
   1358 		 */
   1359 
   1360 		if (pg->uobject != NULL) {
   1361 			uvm_pageremove(pg);
   1362 			pg->flags &= ~PG_CLEAN;
   1363 		} else if (pg->uanon != NULL) {
   1364 			if ((pg->pqflags & PQ_ANON) == 0) {
   1365 				pg->loan_count--;
   1366 			} else {
   1367 				pg->pqflags &= ~PQ_ANON;
   1368 				atomic_dec_uint(&uvmexp.anonpages);
   1369 			}
   1370 			pg->uanon->an_page = NULL;
   1371 			pg->uanon = NULL;
   1372 		}
   1373 		if (pg->flags & PG_WANTED) {
   1374 			wakeup(pg);
   1375 		}
   1376 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1377 #ifdef UVM_PAGE_TRKOWN
   1378 		pg->owner_tag = NULL;
   1379 #endif
   1380 		if (pg->loan_count) {
   1381 			KASSERT(pg->uobject == NULL);
   1382 			if (pg->uanon == NULL) {
   1383 				uvm_pagedequeue(pg);
   1384 			}
   1385 			return;
   1386 		}
   1387 	}
   1388 
   1389 	/*
   1390 	 * remove page from its object or anon.
   1391 	 */
   1392 
   1393 	if (pg->uobject != NULL) {
   1394 		uvm_pageremove(pg);
   1395 	} else if (pg->uanon != NULL) {
   1396 		pg->uanon->an_page = NULL;
   1397 		atomic_dec_uint(&uvmexp.anonpages);
   1398 	}
   1399 
   1400 	/*
   1401 	 * now remove the page from the queues.
   1402 	 */
   1403 
   1404 	uvm_pagedequeue(pg);
   1405 
   1406 	/*
   1407 	 * if the page was wired, unwire it now.
   1408 	 */
   1409 
   1410 	if (pg->wire_count) {
   1411 		pg->wire_count = 0;
   1412 		uvmexp.wired--;
   1413 	}
   1414 
   1415 	/*
   1416 	 * and put on free queue
   1417 	 */
   1418 
   1419 	iszero = (pg->flags & PG_ZERO);
   1420 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1421 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1422 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1423 
   1424 	pg->pqflags = PQ_FREE;
   1425 #ifdef DEBUG
   1426 	pg->uobject = (void *)0xdeadbeef;
   1427 	pg->offset = 0xdeadbeef;
   1428 	pg->uanon = (void *)0xdeadbeef;
   1429 #endif
   1430 
   1431 	mutex_spin_enter(&uvm_fpageqlock);
   1432 
   1433 #ifdef DEBUG
   1434 	if (iszero)
   1435 		uvm_pagezerocheck(pg);
   1436 #endif /* DEBUG */
   1437 
   1438 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
   1439 	uvmexp.free++;
   1440 	if (iszero)
   1441 		uvmexp.zeropages++;
   1442 
   1443 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1444 		uvm.page_idle_zero = vm_page_zero_enable;
   1445 
   1446 	mutex_spin_exit(&uvm_fpageqlock);
   1447 }
   1448 
   1449 /*
   1450  * uvm_page_unbusy: unbusy an array of pages.
   1451  *
   1452  * => pages must either all belong to the same object, or all belong to anons.
   1453  * => if pages are object-owned, object must be locked.
   1454  * => if pages are anon-owned, anons must be locked.
   1455  * => caller must lock page queues if pages may be released.
   1456  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1457  */
   1458 
   1459 void
   1460 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1461 {
   1462 	struct vm_page *pg;
   1463 	int i;
   1464 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1465 
   1466 	for (i = 0; i < npgs; i++) {
   1467 		pg = pgs[i];
   1468 		if (pg == NULL || pg == PGO_DONTCARE) {
   1469 			continue;
   1470 		}
   1471 
   1472 		KASSERT(pg->uobject == NULL ||
   1473 		    mutex_owned(&pg->uobject->vmobjlock));
   1474 		KASSERT(pg->uobject != NULL ||
   1475 		    (pg->uanon != NULL &&
   1476 		    mutex_owned(&pg->uanon->an_lock)));
   1477 
   1478 		KASSERT(pg->flags & PG_BUSY);
   1479 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1480 		if (pg->flags & PG_WANTED) {
   1481 			wakeup(pg);
   1482 		}
   1483 		if (pg->flags & PG_RELEASED) {
   1484 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1485 			KASSERT(pg->uobject != NULL ||
   1486 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1487 			pg->flags &= ~PG_RELEASED;
   1488 			uvm_pagefree(pg);
   1489 		} else {
   1490 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1491 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1492 			UVM_PAGE_OWN(pg, NULL);
   1493 		}
   1494 	}
   1495 }
   1496 
   1497 #if defined(UVM_PAGE_TRKOWN)
   1498 /*
   1499  * uvm_page_own: set or release page ownership
   1500  *
   1501  * => this is a debugging function that keeps track of who sets PG_BUSY
   1502  *	and where they do it.   it can be used to track down problems
   1503  *	such a process setting "PG_BUSY" and never releasing it.
   1504  * => page's object [if any] must be locked
   1505  * => if "tag" is NULL then we are releasing page ownership
   1506  */
   1507 void
   1508 uvm_page_own(struct vm_page *pg, const char *tag)
   1509 {
   1510 	struct uvm_object *uobj;
   1511 	struct vm_anon *anon;
   1512 
   1513 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1514 
   1515 	uobj = pg->uobject;
   1516 	anon = pg->uanon;
   1517 	if (uobj != NULL) {
   1518 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1519 	} else if (anon != NULL) {
   1520 		KASSERT(mutex_owned(&anon->an_lock));
   1521 	}
   1522 
   1523 	KASSERT((pg->flags & PG_WANTED) == 0);
   1524 
   1525 	/* gain ownership? */
   1526 	if (tag) {
   1527 		KASSERT((pg->flags & PG_BUSY) != 0);
   1528 		if (pg->owner_tag) {
   1529 			printf("uvm_page_own: page %p already owned "
   1530 			    "by proc %d [%s]\n", pg,
   1531 			    pg->owner, pg->owner_tag);
   1532 			panic("uvm_page_own");
   1533 		}
   1534 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1535 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1536 		pg->owner_tag = tag;
   1537 		return;
   1538 	}
   1539 
   1540 	/* drop ownership */
   1541 	KASSERT((pg->flags & PG_BUSY) == 0);
   1542 	if (pg->owner_tag == NULL) {
   1543 		printf("uvm_page_own: dropping ownership of an non-owned "
   1544 		    "page (%p)\n", pg);
   1545 		panic("uvm_page_own");
   1546 	}
   1547 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1548 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1549 		    pg->wire_count > 0);
   1550 	} else {
   1551 		KASSERT(pg->wire_count == 0);
   1552 	}
   1553 	pg->owner_tag = NULL;
   1554 }
   1555 #endif
   1556 
   1557 /*
   1558  * uvm_pageidlezero: zero free pages while the system is idle.
   1559  *
   1560  * => try to complete one color bucket at a time, to reduce our impact
   1561  *	on the CPU cache.
   1562  * => we loop until we either reach the target or there is a lwp ready to run.
   1563  */
   1564 void
   1565 uvm_pageidlezero(void)
   1566 {
   1567 	struct vm_page *pg;
   1568 	struct pgfreelist *pgfl;
   1569 	int free_list, firstbucket;
   1570 	static int nextbucket;
   1571 
   1572 	mutex_spin_enter(&uvm_fpageqlock);
   1573 	firstbucket = nextbucket;
   1574 	do {
   1575 		if (sched_curcpu_runnable_p()) {
   1576 			goto quit;
   1577 		}
   1578 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1579 			uvm.page_idle_zero = false;
   1580 			goto quit;
   1581 		}
   1582 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1583 			pgfl = &uvm.page_free[free_list];
   1584 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1585 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1586 				if (sched_curcpu_runnable_p())
   1587 					goto quit;
   1588 
   1589 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1590 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1591 				    pg, pageq);
   1592 				uvmexp.free--;
   1593 				mutex_spin_exit(&uvm_fpageqlock);
   1594 #ifdef PMAP_PAGEIDLEZERO
   1595 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1596 
   1597 					/*
   1598 					 * The machine-dependent code detected
   1599 					 * some reason for us to abort zeroing
   1600 					 * pages, probably because there is a
   1601 					 * process now ready to run.
   1602 					 */
   1603 
   1604 					mutex_spin_enter(&uvm_fpageqlock);
   1605 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1606 					    nextbucket].pgfl_queues[
   1607 					    PGFL_UNKNOWN], pg, pageq);
   1608 					uvmexp.free++;
   1609 					uvmexp.zeroaborts++;
   1610 					goto quit;
   1611 				}
   1612 #else
   1613 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1614 #endif /* PMAP_PAGEIDLEZERO */
   1615 				pg->flags |= PG_ZERO;
   1616 
   1617 				mutex_spin_enter(&uvm_fpageqlock);
   1618 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1619 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1620 				    pg, pageq);
   1621 				uvmexp.free++;
   1622 				uvmexp.zeropages++;
   1623 			}
   1624 		}
   1625 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1626 	} while (nextbucket != firstbucket);
   1627 quit:
   1628 	mutex_spin_exit(&uvm_fpageqlock);
   1629 }
   1630 
   1631 /*
   1632  * uvm_pagelookup: look up a page
   1633  *
   1634  * => caller should lock object to keep someone from pulling the page
   1635  *	out from under it
   1636  */
   1637 
   1638 struct vm_page *
   1639 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1640 {
   1641 	struct vm_page *pg;
   1642 	struct pglist *buck;
   1643 	kmutex_t *lock;
   1644 	u_int hash;
   1645 
   1646 	KASSERT(mutex_owned(&obj->vmobjlock));
   1647 
   1648 	hash = uvm_pagehash(obj, off);
   1649 	buck = &uvm.page_hash[hash];
   1650 	lock = uvm_hashlock(hash);
   1651 	mutex_spin_enter(lock);
   1652 	TAILQ_FOREACH(pg, buck, hashq) {
   1653 		if (pg->uobject == obj && pg->offset == off) {
   1654 			break;
   1655 		}
   1656 	}
   1657 	mutex_spin_exit(lock);
   1658 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1659 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1660 		(pg->flags & PG_BUSY) != 0);
   1661 	return(pg);
   1662 }
   1663 
   1664 /*
   1665  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1666  *
   1667  * => caller must lock page queues
   1668  */
   1669 
   1670 void
   1671 uvm_pagewire(struct vm_page *pg)
   1672 {
   1673 	KASSERT(mutex_owned(&uvm_pageqlock));
   1674 #if defined(READAHEAD_STATS)
   1675 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1676 		uvm_ra_hit.ev_count++;
   1677 		pg->pqflags &= ~PQ_READAHEAD;
   1678 	}
   1679 #endif /* defined(READAHEAD_STATS) */
   1680 	if (pg->wire_count == 0) {
   1681 		uvm_pagedequeue(pg);
   1682 		uvmexp.wired++;
   1683 	}
   1684 	pg->wire_count++;
   1685 }
   1686 
   1687 /*
   1688  * uvm_pageunwire: unwire the page.
   1689  *
   1690  * => activate if wire count goes to zero.
   1691  * => caller must lock page queues
   1692  */
   1693 
   1694 void
   1695 uvm_pageunwire(struct vm_page *pg)
   1696 {
   1697 	KASSERT(mutex_owned(&uvm_pageqlock));
   1698 	pg->wire_count--;
   1699 	if (pg->wire_count == 0) {
   1700 		uvm_pageactivate(pg);
   1701 		uvmexp.wired--;
   1702 	}
   1703 }
   1704 
   1705 /*
   1706  * uvm_pagedeactivate: deactivate page
   1707  *
   1708  * => caller must lock page queues
   1709  * => caller must check to make sure page is not wired
   1710  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1711  * => caller must clear the reference on the page before calling
   1712  */
   1713 
   1714 void
   1715 uvm_pagedeactivate(struct vm_page *pg)
   1716 {
   1717 
   1718 	KASSERT(mutex_owned(&uvm_pageqlock));
   1719 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1720 	uvmpdpol_pagedeactivate(pg);
   1721 }
   1722 
   1723 /*
   1724  * uvm_pageactivate: activate page
   1725  *
   1726  * => caller must lock page queues
   1727  */
   1728 
   1729 void
   1730 uvm_pageactivate(struct vm_page *pg)
   1731 {
   1732 
   1733 	KASSERT(mutex_owned(&uvm_pageqlock));
   1734 #if defined(READAHEAD_STATS)
   1735 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1736 		uvm_ra_hit.ev_count++;
   1737 		pg->pqflags &= ~PQ_READAHEAD;
   1738 	}
   1739 #endif /* defined(READAHEAD_STATS) */
   1740 	if (pg->wire_count != 0) {
   1741 		return;
   1742 	}
   1743 	uvmpdpol_pageactivate(pg);
   1744 }
   1745 
   1746 /*
   1747  * uvm_pagedequeue: remove a page from any paging queue
   1748  */
   1749 
   1750 void
   1751 uvm_pagedequeue(struct vm_page *pg)
   1752 {
   1753 
   1754 	if (uvmpdpol_pageisqueued_p(pg)) {
   1755 		KASSERT(mutex_owned(&uvm_pageqlock));
   1756 	}
   1757 
   1758 	uvmpdpol_pagedequeue(pg);
   1759 }
   1760 
   1761 /*
   1762  * uvm_pageenqueue: add a page to a paging queue without activating.
   1763  * used where a page is not really demanded (yet).  eg. read-ahead
   1764  */
   1765 
   1766 void
   1767 uvm_pageenqueue(struct vm_page *pg)
   1768 {
   1769 
   1770 	KASSERT(mutex_owned(&uvm_pageqlock));
   1771 	if (pg->wire_count != 0) {
   1772 		return;
   1773 	}
   1774 	uvmpdpol_pageenqueue(pg);
   1775 }
   1776 
   1777 /*
   1778  * uvm_pagezero: zero fill a page
   1779  *
   1780  * => if page is part of an object then the object should be locked
   1781  *	to protect pg->flags.
   1782  */
   1783 
   1784 void
   1785 uvm_pagezero(struct vm_page *pg)
   1786 {
   1787 	pg->flags &= ~PG_CLEAN;
   1788 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1789 }
   1790 
   1791 /*
   1792  * uvm_pagecopy: copy a page
   1793  *
   1794  * => if page is part of an object then the object should be locked
   1795  *	to protect pg->flags.
   1796  */
   1797 
   1798 void
   1799 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1800 {
   1801 
   1802 	dst->flags &= ~PG_CLEAN;
   1803 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1804 }
   1805 
   1806 /*
   1807  * uvm_page_lookup_freelist: look up the free list for the specified page
   1808  */
   1809 
   1810 int
   1811 uvm_page_lookup_freelist(struct vm_page *pg)
   1812 {
   1813 	int lcv;
   1814 
   1815 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1816 	KASSERT(lcv != -1);
   1817 	return (vm_physmem[lcv].free_list);
   1818 }
   1819