uvm_page.c revision 1.13 1 /* $NetBSD: uvm_page.c,v 1.13 1998/08/09 22:36:39 perry Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by Charles D. Cranor,
27 * Washington University, the University of California, Berkeley and
28 * its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
46 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
47 *
48 *
49 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 * All rights reserved.
51 *
52 * Permission to use, copy, modify and distribute this software and
53 * its documentation is hereby granted, provided that both the copyright
54 * notice and this permission notice appear in all copies of the
55 * software, derivative works or modified versions, and any portions
56 * thereof, and that both notices appear in supporting documentation.
57 *
58 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 *
62 * Carnegie Mellon requests users of this software to return to
63 *
64 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 * School of Computer Science
66 * Carnegie Mellon University
67 * Pittsburgh PA 15213-3890
68 *
69 * any improvements or extensions that they make and grant Carnegie the
70 * rights to redistribute these changes.
71 */
72
73 /*
74 * uvm_page.c: page ops.
75 */
76
77 #include "opt_pmap_new.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/proc.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_kern.h>
87
88 #define UVM_PAGE /* pull in uvm_page.h functions */
89 #include <uvm/uvm.h>
90
91 /*
92 * global vars... XXXCDC: move to uvm. structure.
93 */
94
95 /*
96 * physical memory config is stored in vm_physmem.
97 */
98
99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
100 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
101
102 /*
103 * local variables
104 */
105
106 /*
107 * these variables record the values returned by vm_page_bootstrap,
108 * for debugging purposes. The implementation of uvm_pageboot_alloc
109 * and pmap_startup here also uses them internally.
110 */
111
112 static vm_offset_t virtual_space_start;
113 static vm_offset_t virtual_space_end;
114
115 /*
116 * we use a hash table with only one bucket during bootup. we will
117 * later rehash (resize) the hash table once malloc() is ready.
118 * we static allocate the bootstrap bucket below...
119 */
120
121 static struct pglist uvm_bootbucket;
122
123 /*
124 * local prototypes
125 */
126
127 static void uvm_pageinsert __P((struct vm_page *));
128
129
130 /*
131 * inline functions
132 */
133
134 /*
135 * uvm_pageinsert: insert a page in the object and the hash table
136 *
137 * => caller must lock object
138 * => caller must lock page queues
139 * => call should have already set pg's object and offset pointers
140 * and bumped the version counter
141 */
142
143 __inline static void
144 uvm_pageinsert(pg)
145 struct vm_page *pg;
146 {
147 struct pglist *buck;
148 int s;
149
150 #ifdef DIAGNOSTIC
151 if (pg->flags & PG_TABLED)
152 panic("uvm_pageinsert: already inserted");
153 #endif
154
155 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
156 s = splimp();
157 simple_lock(&uvm.hashlock);
158 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
159 simple_unlock(&uvm.hashlock);
160 splx(s);
161
162 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
163 pg->flags |= PG_TABLED;
164 pg->uobject->uo_npages++;
165
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 void __inline
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 #ifdef DIAGNOSTIC
183 if ((pg->flags & (PG_FAULTING)) != 0)
184 panic("uvm_pageremove: page is faulting");
185 #endif
186
187 if ((pg->flags & PG_TABLED) == 0)
188 return; /* XXX: log */
189
190 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
191 s = splimp();
192 simple_lock(&uvm.hashlock);
193 TAILQ_REMOVE(buck, pg, hashq);
194 simple_unlock(&uvm.hashlock);
195 splx(s);
196
197 /* object should be locked */
198 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
199
200 pg->flags &= ~PG_TABLED;
201 pg->uobject->uo_npages--;
202 pg->uobject = NULL;
203 pg->version++;
204
205 }
206
207 /*
208 * uvm_page_init: init the page system. called from uvm_init().
209 *
210 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
211 */
212
213 void
214 uvm_page_init(kvm_startp, kvm_endp)
215 vm_offset_t *kvm_startp, *kvm_endp;
216 {
217 int freepages, pagecount;
218 vm_page_t pagearray;
219 int lcv, n, i;
220 vm_offset_t paddr;
221
222
223 /*
224 * step 1: init the page queues and page queue locks
225 */
226
227 for (lcv = 0; lcv < VM_NFREELIST; lcv++)
228 TAILQ_INIT(&uvm.page_free[lcv]);
229 TAILQ_INIT(&uvm.page_active);
230 TAILQ_INIT(&uvm.page_inactive_swp);
231 TAILQ_INIT(&uvm.page_inactive_obj);
232 simple_lock_init(&uvm.pageqlock);
233 simple_lock_init(&uvm.fpageqlock);
234
235 /*
236 * step 2: init the <obj,offset> => <page> hash table. for now
237 * we just have one bucket (the bootstrap bucket). later on we
238 * will malloc() new buckets as we dynamically resize the hash table.
239 */
240
241 uvm.page_nhash = 1; /* 1 bucket */
242 uvm.page_hashmask = 0; /* mask for hash function */
243 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
244 TAILQ_INIT(uvm.page_hash); /* init hash table */
245 simple_lock_init(&uvm.hashlock); /* init hash table lock */
246
247 /*
248 * step 3: allocate vm_page structures.
249 */
250
251 /*
252 * sanity check:
253 * before calling this function the MD code is expected to register
254 * some free RAM with the uvm_page_physload() function. our job
255 * now is to allocate vm_page structures for this memory.
256 */
257
258 if (vm_nphysseg == 0)
259 panic("vm_page_bootstrap: no memory pre-allocated");
260
261 /*
262 * first calculate the number of free pages...
263 *
264 * note that we use start/end rather than avail_start/avail_end.
265 * this allows us to allocate extra vm_page structures in case we
266 * want to return some memory to the pool after booting.
267 */
268
269 freepages = 0;
270 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
271 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
272
273 /*
274 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
275 * use. for each page of memory we use we need a vm_page structure.
276 * thus, the total number of pages we can use is the total size of
277 * the memory divided by the PAGE_SIZE plus the size of the vm_page
278 * structure. we add one to freepages as a fudge factor to avoid
279 * truncation errors (since we can only allocate in terms of whole
280 * pages).
281 */
282
283 pagecount = (PAGE_SIZE * (freepages + 1)) /
284 (PAGE_SIZE + sizeof(struct vm_page));
285 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
286 sizeof(struct vm_page));
287 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
288
289 /*
290 * step 4: init the vm_page structures and put them in the correct
291 * place...
292 */
293
294 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
295
296 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
297 if (n > pagecount) {
298 printf("uvm_page_init: lost %d page(s) in init\n",
299 n - pagecount);
300 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
301 /* n = pagecount; */
302 }
303 /* set up page array pointers */
304 vm_physmem[lcv].pgs = pagearray;
305 pagearray += n;
306 pagecount -= n;
307 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
308
309 /* init and free vm_pages (we've already zeroed them) */
310 paddr = ptoa(vm_physmem[lcv].start);
311 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
312 vm_physmem[lcv].pgs[i].phys_addr = paddr;
313 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
314 atop(paddr) <= vm_physmem[lcv].avail_end) {
315 uvmexp.npages++;
316 /* add page to free pool */
317 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
318 }
319 }
320 }
321 /*
322 * step 5: pass up the values of virtual_space_start and
323 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
324 * layers of the VM.
325 */
326
327 *kvm_startp = round_page(virtual_space_start);
328 *kvm_endp = trunc_page(virtual_space_end);
329
330 /*
331 * step 6: init pagedaemon lock
332 */
333
334 simple_lock_init(&uvm.pagedaemon_lock);
335
336 /*
337 * step 7: init reserve thresholds
338 * XXXCDC - values may need adjusting
339 */
340 uvmexp.reserve_pagedaemon = 1;
341 uvmexp.reserve_kernel = 5;
342
343 /*
344 * done!
345 */
346
347 }
348
349 /*
350 * uvm_setpagesize: set the page size
351 *
352 * => sets page_shift and page_mask from uvmexp.pagesize.
353 * => XXXCDC: move global vars.
354 */
355
356 void
357 uvm_setpagesize()
358 {
359 if (uvmexp.pagesize == 0)
360 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
361 uvmexp.pagemask = uvmexp.pagesize - 1;
362 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
363 panic("uvm_setpagesize: page size not a power of two");
364 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
365 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
366 break;
367 }
368
369 /*
370 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
371 */
372
373 vm_offset_t
374 uvm_pageboot_alloc(size)
375 vm_size_t size;
376 {
377 #if defined(PMAP_STEAL_MEMORY)
378 vm_offset_t addr;
379
380 /*
381 * defer bootstrap allocation to MD code (it may want to allocate
382 * from a direct-mapped segment). pmap_steal_memory should round
383 * off virtual_space_start/virtual_space_end.
384 */
385
386 addr = pmap_steal_memory(size, &virtual_space_start,
387 &virtual_space_end);
388
389 return(addr);
390
391 #else /* !PMAP_STEAL_MEMORY */
392
393 vm_offset_t addr, vaddr, paddr;
394
395 /* round to page size */
396 size = round_page(size);
397
398 /*
399 * on first call to this function init ourselves. we detect this
400 * by checking virtual_space_start/end which are in the zero'd BSS area.
401 */
402
403 if (virtual_space_start == virtual_space_end) {
404 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
405
406 /* round it the way we like it */
407 virtual_space_start = round_page(virtual_space_start);
408 virtual_space_end = trunc_page(virtual_space_end);
409 }
410
411 /*
412 * allocate virtual memory for this request
413 */
414
415 addr = virtual_space_start;
416 virtual_space_start += size;
417
418 /*
419 * allocate and mapin physical pages to back new virtual pages
420 */
421
422 for (vaddr = round_page(addr) ; vaddr < addr + size ;
423 vaddr += PAGE_SIZE) {
424
425 if (!uvm_page_physget(&paddr))
426 panic("uvm_pageboot_alloc: out of memory");
427
428 /* XXX: should be wired, but some pmaps don't like that ... */
429 #if defined(PMAP_NEW)
430 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
431 #else
432 pmap_enter(pmap_kernel(), vaddr, paddr,
433 VM_PROT_READ|VM_PROT_WRITE, FALSE);
434 #endif
435
436 }
437
438 return(addr);
439 #endif /* PMAP_STEAL_MEMORY */
440 }
441
442 #if !defined(PMAP_STEAL_MEMORY)
443 /*
444 * uvm_page_physget: "steal" one page from the vm_physmem structure.
445 *
446 * => attempt to allocate it off the end of a segment in which the "avail"
447 * values match the start/end values. if we can't do that, then we
448 * will advance both values (making them equal, and removing some
449 * vm_page structures from the non-avail area).
450 * => return false if out of memory.
451 */
452
453 boolean_t
454 uvm_page_physget(paddrp)
455 vm_offset_t *paddrp;
456 {
457 int lcv, x;
458
459 /* pass 1: try allocating from a matching end */
460 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
461 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
462 #else
463 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
464 #endif
465 {
466
467 if (vm_physmem[lcv].pgs)
468 panic("vm_page_physget: called _after_ bootstrap");
469
470 /* try from front */
471 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
472 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
473 *paddrp = ptoa(vm_physmem[lcv].avail_start);
474 vm_physmem[lcv].avail_start++;
475 vm_physmem[lcv].start++;
476 /* nothing left? nuke it */
477 if (vm_physmem[lcv].avail_start ==
478 vm_physmem[lcv].end) {
479 if (vm_nphysseg == 1)
480 panic("vm_page_physget: out of memory!");
481 vm_nphysseg--;
482 for (x = lcv ; x < vm_nphysseg ; x++)
483 /* structure copy */
484 vm_physmem[x] = vm_physmem[x+1];
485 }
486 return (TRUE);
487 }
488
489 /* try from rear */
490 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
491 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
492 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
493 vm_physmem[lcv].avail_end--;
494 vm_physmem[lcv].end--;
495 /* nothing left? nuke it */
496 if (vm_physmem[lcv].avail_end ==
497 vm_physmem[lcv].start) {
498 if (vm_nphysseg == 1)
499 panic("vm_page_physget: out of memory!");
500 vm_nphysseg--;
501 for (x = lcv ; x < vm_nphysseg ; x++)
502 /* structure copy */
503 vm_physmem[x] = vm_physmem[x+1];
504 }
505 return (TRUE);
506 }
507 }
508
509 /* pass2: forget about matching ends, just allocate something */
510 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
511 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
512 #else
513 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
514 #endif
515 {
516
517 /* any room in this bank? */
518 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
519 continue; /* nope */
520
521 *paddrp = ptoa(vm_physmem[lcv].avail_start);
522 vm_physmem[lcv].avail_start++;
523 /* truncate! */
524 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
525
526 /* nothing left? nuke it */
527 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
528 if (vm_nphysseg == 1)
529 panic("vm_page_physget: out of memory!");
530 vm_nphysseg--;
531 for (x = lcv ; x < vm_nphysseg ; x++)
532 /* structure copy */
533 vm_physmem[x] = vm_physmem[x+1];
534 }
535 return (TRUE);
536 }
537
538 return (FALSE); /* whoops! */
539 }
540 #endif /* PMAP_STEAL_MEMORY */
541
542 /*
543 * uvm_page_physload: load physical memory into VM system
544 *
545 * => all args are PFs
546 * => all pages in start/end get vm_page structures
547 * => areas marked by avail_start/avail_end get added to the free page pool
548 * => we are limited to VM_PHYSSEG_MAX physical memory segments
549 */
550
551 void
552 uvm_page_physload(start, end, avail_start, avail_end, free_list)
553 vm_offset_t start, end, avail_start, avail_end;
554 int free_list;
555 {
556 int preload, lcv, npages;
557 struct vm_page *pgs;
558 struct vm_physseg *ps;
559
560 if (uvmexp.pagesize == 0)
561 panic("vm_page_physload: page size not set!");
562
563 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
564 panic("uvm_page_physload: bad free list %d\n", free_list);
565
566 /*
567 * do we have room?
568 */
569 if (vm_nphysseg == VM_PHYSSEG_MAX) {
570 printf("vm_page_physload: unable to load physical memory "
571 "segment\n");
572 printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
573 VM_PHYSSEG_MAX, start, end);
574 return;
575 }
576
577 /*
578 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
579 * called yet, so malloc is not available).
580 */
581 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
582 if (vm_physmem[lcv].pgs)
583 break;
584 }
585 preload = (lcv == vm_nphysseg);
586
587 /*
588 * if VM is already running, attempt to malloc() vm_page structures
589 */
590 if (!preload) {
591 #if defined(VM_PHYSSEG_NOADD)
592 panic("vm_page_physload: tried to add RAM after vm_mem_init");
593 #else
594 /* XXXCDC: need some sort of lockout for this case */
595 vm_offset_t paddr;
596 npages = end - start; /* # of pages */
597 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
598 M_VMPAGE, M_NOWAIT);
599 if (pgs == NULL) {
600 printf("vm_page_physload: can not malloc vm_page "
601 "structs for segment\n");
602 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
603 return;
604 }
605 /* zero data, init phys_addr and free_list, and free pages */
606 memset(pgs, 0, sizeof(struct vm_page) * npages);
607 for (lcv = 0, paddr = ptoa(start) ;
608 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
609 pgs[lcv].phys_addr = paddr;
610 pgs[lcv].free_list = free_list;
611 if (atop(paddr) >= avail_start &&
612 atop(paddr) <= avail_end)
613 uvm_pagefree(&pgs[lcv]);
614 }
615 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
616 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
617 #endif
618 } else {
619
620 /* gcc complains if these don't get init'd */
621 pgs = NULL;
622 npages = 0;
623
624 }
625
626 /*
627 * now insert us in the proper place in vm_physmem[]
628 */
629
630 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
631
632 /* random: put it at the end (easy!) */
633 ps = &vm_physmem[vm_nphysseg];
634
635 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
636
637 {
638 int x;
639 /* sort by address for binary search */
640 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
641 if (start < vm_physmem[lcv].start)
642 break;
643 ps = &vm_physmem[lcv];
644 /* move back other entries, if necessary ... */
645 for (x = vm_nphysseg ; x > lcv ; x--)
646 /* structure copy */
647 vm_physmem[x] = vm_physmem[x - 1];
648 }
649
650 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
651
652 {
653 int x;
654 /* sort by largest segment first */
655 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
656 if ((end - start) >
657 (vm_physmem[lcv].end - vm_physmem[lcv].start))
658 break;
659 ps = &vm_physmem[lcv];
660 /* move back other entries, if necessary ... */
661 for (x = vm_nphysseg ; x > lcv ; x--)
662 /* structure copy */
663 vm_physmem[x] = vm_physmem[x - 1];
664 }
665
666 #else
667
668 panic("vm_page_physload: unknown physseg strategy selected!");
669
670 #endif
671
672 ps->start = start;
673 ps->end = end;
674 ps->avail_start = avail_start;
675 ps->avail_end = avail_end;
676 if (preload) {
677 ps->pgs = NULL;
678 } else {
679 ps->pgs = pgs;
680 ps->lastpg = pgs + npages - 1;
681 }
682 ps->free_list = free_list;
683 vm_nphysseg++;
684
685 /*
686 * done!
687 */
688
689 if (!preload)
690 uvm_page_rehash();
691
692 return;
693 }
694
695 /*
696 * uvm_page_rehash: reallocate hash table based on number of free pages.
697 */
698
699 void
700 uvm_page_rehash()
701 {
702 int freepages, lcv, bucketcount, s, oldcount;
703 struct pglist *newbuckets, *oldbuckets;
704 struct vm_page *pg;
705
706 /*
707 * compute number of pages that can go in the free pool
708 */
709
710 freepages = 0;
711 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712 freepages +=
713 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
714
715 /*
716 * compute number of buckets needed for this number of pages
717 */
718
719 bucketcount = 1;
720 while (bucketcount < freepages)
721 bucketcount = bucketcount * 2;
722
723 /*
724 * malloc new buckets
725 */
726
727 MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
728 M_VMPBUCKET, M_NOWAIT);
729 if (newbuckets == NULL) {
730 printf("vm_page_physrehash: WARNING: could not grow page "
731 "hash table\n");
732 return;
733 }
734 for (lcv = 0 ; lcv < bucketcount ; lcv++)
735 TAILQ_INIT(&newbuckets[lcv]);
736
737 /*
738 * now replace the old buckets with the new ones and rehash everything
739 */
740
741 s = splimp();
742 simple_lock(&uvm.hashlock);
743 /* swap old for new ... */
744 oldbuckets = uvm.page_hash;
745 oldcount = uvm.page_nhash;
746 uvm.page_hash = newbuckets;
747 uvm.page_nhash = bucketcount;
748 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
749
750 /* ... and rehash */
751 for (lcv = 0 ; lcv < oldcount ; lcv++) {
752 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
753 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
754 TAILQ_INSERT_TAIL(
755 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
756 pg, hashq);
757 }
758 }
759 simple_unlock(&uvm.hashlock);
760 splx(s);
761
762 /*
763 * free old bucket array if we malloc'd it previously
764 */
765
766 if (oldbuckets != &uvm_bootbucket)
767 FREE(oldbuckets, M_VMPBUCKET);
768
769 /*
770 * done
771 */
772 return;
773 }
774
775
776 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
777
778 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
779
780 /* call from DDB */
781 void
782 uvm_page_physdump()
783 {
784 int lcv;
785
786 printf("rehash: physical memory config [segs=%d of %d]:\n",
787 vm_nphysseg, VM_PHYSSEG_MAX);
788 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
789 printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
790 vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
791 vm_physmem[lcv].avail_end);
792 printf("STRATEGY = ");
793 switch (VM_PHYSSEG_STRAT) {
794 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
795 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
796 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
797 default: printf("<<UNKNOWN>>!!!!\n");
798 }
799 printf("number of buckets = %d\n", uvm.page_nhash);
800 }
801 #endif
802
803 /*
804 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
805 *
806 * => return null if no pages free
807 * => wake up pagedaemon if number of free pages drops below low water mark
808 * => if obj != NULL, obj must be locked (to put in hash)
809 * => if anon != NULL, anon must be locked (to put in anon)
810 * => only one of obj or anon can be non-null
811 * => caller must activate/deactivate page if it is not wired.
812 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
813 */
814
815 struct vm_page *
816 uvm_pagealloc_strat(obj, off, anon, strat, free_list)
817 struct uvm_object *obj;
818 vm_offset_t off;
819 struct vm_anon *anon;
820 int strat, free_list;
821 {
822 int lcv, s;
823 struct vm_page *pg;
824 struct pglist *freeq;
825
826 #ifdef DIAGNOSTIC
827 /* sanity check */
828 if (obj && anon)
829 panic("uvm_pagealloc: obj and anon != NULL");
830 #endif
831
832 s = splimp();
833
834 uvm_lock_fpageq(); /* lock free page queue */
835
836 /*
837 * check to see if we need to generate some free pages waking
838 * the pagedaemon.
839 */
840
841 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
842 uvmexp.inactive < uvmexp.inactarg))
843 thread_wakeup(&uvm.pagedaemon);
844
845 /*
846 * fail if any of these conditions is true:
847 * [1] there really are no free pages, or
848 * [2] only kernel "reserved" pages remain and
849 * the page isn't being allocated to a kernel object.
850 * [3] only pagedaemon "reserved" pages remain and
851 * the requestor isn't the pagedaemon.
852 */
853
854 if ((uvmexp.free <= uvmexp.reserve_kernel &&
855 !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
856 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
857 !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc)))
858 goto fail;
859
860 again:
861 switch (strat) {
862 case UVM_PGA_STRAT_NORMAL:
863 /* Check all freelists in descending priority order. */
864 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
865 freeq = &uvm.page_free[lcv];
866 if ((pg = freeq->tqh_first) != NULL)
867 goto gotit;
868 }
869
870 /* No pages free! */
871 goto fail;
872
873 case UVM_PGA_STRAT_ONLY:
874 case UVM_PGA_STRAT_FALLBACK:
875 /* Attempt to allocate from the specified free list. */
876 #ifdef DIAGNOSTIC
877 if (free_list >= VM_NFREELIST || free_list < 0)
878 panic("uvm_pagealloc_strat: bad free list %d",
879 free_list);
880 #endif
881 freeq = &uvm.page_free[free_list];
882 if ((pg = freeq->tqh_first) != NULL)
883 goto gotit;
884
885 /* Fall back, if possible. */
886 if (strat == UVM_PGA_STRAT_FALLBACK) {
887 strat = UVM_PGA_STRAT_NORMAL;
888 goto again;
889 }
890
891 /* No pages free! */
892 goto fail;
893
894 default:
895 panic("uvm_pagealloc_strat: bad strat %d", strat);
896 /* NOTREACHED */
897 }
898
899 gotit:
900 TAILQ_REMOVE(freeq, pg, pageq);
901 uvmexp.free--;
902
903 uvm_unlock_fpageq(); /* unlock free page queue */
904 splx(s);
905
906 pg->offset = off;
907 pg->uobject = obj;
908 pg->uanon = anon;
909 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
910 pg->version++;
911 pg->wire_count = 0;
912 pg->loan_count = 0;
913 if (anon) {
914 anon->u.an_page = pg;
915 pg->pqflags = PQ_ANON;
916 } else {
917 if (obj)
918 uvm_pageinsert(pg);
919 pg->pqflags = 0;
920 }
921 #if defined(UVM_PAGE_TRKOWN)
922 pg->owner_tag = NULL;
923 #endif
924 UVM_PAGE_OWN(pg, "new alloc");
925
926 return(pg);
927
928 fail:
929 uvm_unlock_fpageq();
930 splx(s);
931 return (NULL);
932 }
933
934 /*
935 * uvm_pagerealloc: reallocate a page from one object to another
936 *
937 * => both objects must be locked
938 */
939
940 void
941 uvm_pagerealloc(pg, newobj, newoff)
942 struct vm_page *pg;
943 struct uvm_object *newobj;
944 vm_offset_t newoff;
945 {
946 /*
947 * remove it from the old object
948 */
949
950 if (pg->uobject) {
951 uvm_pageremove(pg);
952 }
953
954 /*
955 * put it in the new object
956 */
957
958 if (newobj) {
959 pg->uobject = newobj;
960 pg->offset = newoff;
961 pg->version++;
962 uvm_pageinsert(pg);
963 }
964
965 return;
966 }
967
968
969 /*
970 * uvm_pagefree: free page
971 *
972 * => erase page's identity (i.e. remove from hash/object)
973 * => put page on free list
974 * => caller must lock owning object (either anon or uvm_object)
975 * => caller must lock page queues
976 * => assumes all valid mappings of pg are gone
977 */
978
979 void uvm_pagefree(pg)
980
981 struct vm_page *pg;
982
983 {
984 int s;
985 int saved_loan_count = pg->loan_count;
986
987 /*
988 * if the page was an object page (and thus "TABLED"), remove it
989 * from the object.
990 */
991
992 if (pg->flags & PG_TABLED) {
993
994 /*
995 * if the object page is on loan we are going to drop ownership.
996 * it is possible that an anon will take over as owner for this
997 * page later on. the anon will want a !PG_CLEAN page so that
998 * it knows it needs to allocate swap if it wants to page the
999 * page out.
1000 */
1001
1002 if (saved_loan_count)
1003 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1004
1005 uvm_pageremove(pg);
1006
1007 /*
1008 * if our page was on loan, then we just lost control over it
1009 * (in fact, if it was loaned to an anon, the anon may have
1010 * already taken over ownership of the page by now and thus
1011 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1012 * return (when the last loan is dropped, then the page can be
1013 * freed by whatever was holding the last loan).
1014 */
1015 if (saved_loan_count)
1016 return;
1017
1018 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1019
1020 /*
1021 * if our page is owned by an anon and is loaned out to the
1022 * kernel then we just want to drop ownership and return.
1023 * the kernel must free the page when all its loans clear ...
1024 * note that the kernel can't change the loan status of our
1025 * page as long as we are holding PQ lock.
1026 */
1027 pg->pqflags &= ~PQ_ANON;
1028 pg->uanon = NULL;
1029 return;
1030 }
1031
1032 #ifdef DIAGNOSTIC
1033 if (saved_loan_count) {
1034 printf("uvm_pagefree: warning: freeing page with a loan "
1035 "count of %d\n", saved_loan_count);
1036 panic("uvm_pagefree: loan count");
1037 }
1038 #endif
1039
1040
1041 /*
1042 * now remove the page from the queues
1043 */
1044
1045 if (pg->pqflags & PQ_ACTIVE) {
1046 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1047 pg->pqflags &= ~PQ_ACTIVE;
1048 uvmexp.active--;
1049 }
1050 if (pg->pqflags & PQ_INACTIVE) {
1051 if (pg->pqflags & PQ_SWAPBACKED)
1052 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1053 else
1054 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1055 pg->pqflags &= ~PQ_INACTIVE;
1056 uvmexp.inactive--;
1057 }
1058
1059 /*
1060 * if the page was wired, unwire it now.
1061 */
1062 if (pg->wire_count)
1063 {
1064 pg->wire_count = 0;
1065 uvmexp.wired--;
1066 }
1067
1068 /*
1069 * and put on free queue
1070 */
1071
1072 s = splimp();
1073 uvm_lock_fpageq();
1074 TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1075 pg, pageq);
1076 pg->pqflags = PQ_FREE;
1077 #ifdef DEBUG
1078 pg->uobject = (void *)0xdeadbeef;
1079 pg->offset = 0xdeadbeef;
1080 pg->uanon = (void *)0xdeadbeef;
1081 #endif
1082 uvmexp.free++;
1083 uvm_unlock_fpageq();
1084 splx(s);
1085 }
1086
1087 #if defined(UVM_PAGE_TRKOWN)
1088 /*
1089 * uvm_page_own: set or release page ownership
1090 *
1091 * => this is a debugging function that keeps track of who sets PG_BUSY
1092 * and where they do it. it can be used to track down problems
1093 * such a process setting "PG_BUSY" and never releasing it.
1094 * => page's object [if any] must be locked
1095 * => if "tag" is NULL then we are releasing page ownership
1096 */
1097 void
1098 uvm_page_own(pg, tag)
1099 struct vm_page *pg;
1100 char *tag;
1101 {
1102 /* gain ownership? */
1103 if (tag) {
1104 if (pg->owner_tag) {
1105 printf("uvm_page_own: page %p already owned "
1106 "by proc %d [%s]\n", pg,
1107 pg->owner, pg->owner_tag);
1108 panic("uvm_page_own");
1109 }
1110 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1111 pg->owner_tag = tag;
1112 return;
1113 }
1114
1115 /* drop ownership */
1116 if (pg->owner_tag == NULL) {
1117 printf("uvm_page_own: dropping ownership of an non-owned "
1118 "page (%p)\n", pg);
1119 panic("uvm_page_own");
1120 }
1121 pg->owner_tag = NULL;
1122 return;
1123 }
1124 #endif
1125