Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.13
      1 /*	$NetBSD: uvm_page.c,v 1.13 1998/08/09 22:36:39 perry Exp $	*/
      2 
      3 /*
      4  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  */
      7 /*
      8  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  *
     11  * All rights reserved.
     12  *
     13  * This code is derived from software contributed to Berkeley by
     14  * The Mach Operating System project at Carnegie-Mellon University.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by Charles D. Cranor,
     27  *      Washington University, the University of California, Berkeley and
     28  *      its contributors.
     29  * 4. Neither the name of the University nor the names of its contributors
     30  *    may be used to endorse or promote products derived from this software
     31  *    without specific prior written permission.
     32  *
     33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  * SUCH DAMAGE.
     44  *
     45  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     46  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     47  *
     48  *
     49  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  * All rights reserved.
     51  *
     52  * Permission to use, copy, modify and distribute this software and
     53  * its documentation is hereby granted, provided that both the copyright
     54  * notice and this permission notice appear in all copies of the
     55  * software, derivative works or modified versions, and any portions
     56  * thereof, and that both notices appear in supporting documentation.
     57  *
     58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  *
     62  * Carnegie Mellon requests users of this software to return to
     63  *
     64  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  *  School of Computer Science
     66  *  Carnegie Mellon University
     67  *  Pittsburgh PA 15213-3890
     68  *
     69  * any improvements or extensions that they make and grant Carnegie the
     70  * rights to redistribute these changes.
     71  */
     72 
     73 /*
     74  * uvm_page.c: page ops.
     75  */
     76 
     77 #include "opt_pmap_new.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/proc.h>
     83 
     84 #include <vm/vm.h>
     85 #include <vm/vm_page.h>
     86 #include <vm/vm_kern.h>
     87 
     88 #define UVM_PAGE                /* pull in uvm_page.h functions */
     89 #include <uvm/uvm.h>
     90 
     91 /*
     92  * global vars... XXXCDC: move to uvm. structure.
     93  */
     94 
     95 /*
     96  * physical memory config is stored in vm_physmem.
     97  */
     98 
     99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    100 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    101 
    102 /*
    103  * local variables
    104  */
    105 
    106 /*
    107  * these variables record the values returned by vm_page_bootstrap,
    108  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    109  * and pmap_startup here also uses them internally.
    110  */
    111 
    112 static vm_offset_t      virtual_space_start;
    113 static vm_offset_t      virtual_space_end;
    114 
    115 /*
    116  * we use a hash table with only one bucket during bootup.  we will
    117  * later rehash (resize) the hash table once malloc() is ready.
    118  * we static allocate the bootstrap bucket below...
    119  */
    120 
    121 static struct pglist uvm_bootbucket;
    122 
    123 /*
    124  * local prototypes
    125  */
    126 
    127 static void uvm_pageinsert __P((struct vm_page *));
    128 
    129 
    130 /*
    131  * inline functions
    132  */
    133 
    134 /*
    135  * uvm_pageinsert: insert a page in the object and the hash table
    136  *
    137  * => caller must lock object
    138  * => caller must lock page queues
    139  * => call should have already set pg's object and offset pointers
    140  *    and bumped the version counter
    141  */
    142 
    143 __inline static void
    144 uvm_pageinsert(pg)
    145 	struct vm_page *pg;
    146 {
    147 	struct pglist *buck;
    148 	int s;
    149 
    150 #ifdef DIAGNOSTIC
    151 	if (pg->flags & PG_TABLED)
    152 		panic("uvm_pageinsert: already inserted");
    153 #endif
    154 
    155 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    156 	s = splimp();
    157 	simple_lock(&uvm.hashlock);
    158 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    159 	simple_unlock(&uvm.hashlock);
    160 	splx(s);
    161 
    162 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    163 	pg->flags |= PG_TABLED;
    164 	pg->uobject->uo_npages++;
    165 
    166 }
    167 
    168 /*
    169  * uvm_page_remove: remove page from object and hash
    170  *
    171  * => caller must lock object
    172  * => caller must lock page queues
    173  */
    174 
    175 void __inline
    176 uvm_pageremove(pg)
    177 	struct vm_page *pg;
    178 {
    179 	struct pglist *buck;
    180 	int s;
    181 
    182 #ifdef DIAGNOSTIC
    183 	if ((pg->flags & (PG_FAULTING)) != 0)
    184 		panic("uvm_pageremove: page is faulting");
    185 #endif
    186 
    187 	if ((pg->flags & PG_TABLED) == 0)
    188 		return;				/* XXX: log */
    189 
    190 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    191 	s = splimp();
    192 	simple_lock(&uvm.hashlock);
    193 	TAILQ_REMOVE(buck, pg, hashq);
    194 	simple_unlock(&uvm.hashlock);
    195 	splx(s);
    196 
    197 	/* object should be locked */
    198 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    199 
    200 	pg->flags &= ~PG_TABLED;
    201 	pg->uobject->uo_npages--;
    202 	pg->uobject = NULL;
    203 	pg->version++;
    204 
    205 }
    206 
    207 /*
    208  * uvm_page_init: init the page system.   called from uvm_init().
    209  *
    210  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    211  */
    212 
    213 void
    214 uvm_page_init(kvm_startp, kvm_endp)
    215 	vm_offset_t *kvm_startp, *kvm_endp;
    216 {
    217 	int freepages, pagecount;
    218 	vm_page_t pagearray;
    219 	int lcv, n, i;
    220 	vm_offset_t paddr;
    221 
    222 
    223 	/*
    224 	 * step 1: init the page queues and page queue locks
    225 	 */
    226 
    227 	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
    228 	  TAILQ_INIT(&uvm.page_free[lcv]);
    229 	TAILQ_INIT(&uvm.page_active);
    230 	TAILQ_INIT(&uvm.page_inactive_swp);
    231 	TAILQ_INIT(&uvm.page_inactive_obj);
    232 	simple_lock_init(&uvm.pageqlock);
    233 	simple_lock_init(&uvm.fpageqlock);
    234 
    235 	/*
    236 	 * step 2: init the <obj,offset> => <page> hash table. for now
    237 	 * we just have one bucket (the bootstrap bucket).   later on we
    238 	 * will malloc() new buckets as we dynamically resize the hash table.
    239 	 */
    240 
    241 	uvm.page_nhash = 1;			/* 1 bucket */
    242 	uvm.page_hashmask = 0;		/* mask for hash function */
    243 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    244 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    245 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    246 
    247 	/*
    248 	 * step 3: allocate vm_page structures.
    249 	 */
    250 
    251 	/*
    252 	 * sanity check:
    253 	 * before calling this function the MD code is expected to register
    254 	 * some free RAM with the uvm_page_physload() function.   our job
    255 	 * now is to allocate vm_page structures for this memory.
    256 	 */
    257 
    258 	if (vm_nphysseg == 0)
    259 		panic("vm_page_bootstrap: no memory pre-allocated");
    260 
    261 	/*
    262 	 * first calculate the number of free pages...
    263 	 *
    264 	 * note that we use start/end rather than avail_start/avail_end.
    265 	 * this allows us to allocate extra vm_page structures in case we
    266 	 * want to return some memory to the pool after booting.
    267 	 */
    268 
    269 	freepages = 0;
    270 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    271 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    272 
    273 	/*
    274 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    275 	 * use.   for each page of memory we use we need a vm_page structure.
    276 	 * thus, the total number of pages we can use is the total size of
    277 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    278 	 * structure.   we add one to freepages as a fudge factor to avoid
    279 	 * truncation errors (since we can only allocate in terms of whole
    280 	 * pages).
    281 	 */
    282 
    283 	pagecount = (PAGE_SIZE * (freepages + 1)) /
    284 	    (PAGE_SIZE + sizeof(struct vm_page));
    285 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    286 	    sizeof(struct vm_page));
    287 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    288 
    289 	/*
    290 	 * step 4: init the vm_page structures and put them in the correct
    291 	 * place...
    292 	 */
    293 
    294 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    295 
    296 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    297 		if (n > pagecount) {
    298 			printf("uvm_page_init: lost %d page(s) in init\n",
    299 			    n - pagecount);
    300 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    301 			/* n = pagecount; */
    302 		}
    303 		/* set up page array pointers */
    304 		vm_physmem[lcv].pgs = pagearray;
    305 		pagearray += n;
    306 		pagecount -= n;
    307 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    308 
    309 		/* init and free vm_pages (we've already zeroed them) */
    310 		paddr = ptoa(vm_physmem[lcv].start);
    311 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    312 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    313 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    314 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    315 				uvmexp.npages++;
    316 				/* add page to free pool */
    317 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    318 			}
    319 		}
    320 	}
    321 	/*
    322 	 * step 5: pass up the values of virtual_space_start and
    323 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    324 	 * layers of the VM.
    325 	 */
    326 
    327 	*kvm_startp = round_page(virtual_space_start);
    328 	*kvm_endp = trunc_page(virtual_space_end);
    329 
    330 	/*
    331 	 * step 6: init pagedaemon lock
    332 	 */
    333 
    334 	simple_lock_init(&uvm.pagedaemon_lock);
    335 
    336 	/*
    337 	 * step 7: init reserve thresholds
    338 	 * XXXCDC - values may need adjusting
    339 	 */
    340 	uvmexp.reserve_pagedaemon = 1;
    341 	uvmexp.reserve_kernel = 5;
    342 
    343 	/*
    344 	 * done!
    345 	 */
    346 
    347 }
    348 
    349 /*
    350  * uvm_setpagesize: set the page size
    351  *
    352  * => sets page_shift and page_mask from uvmexp.pagesize.
    353  * => XXXCDC: move global vars.
    354  */
    355 
    356 void
    357 uvm_setpagesize()
    358 {
    359 	if (uvmexp.pagesize == 0)
    360 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    361 	uvmexp.pagemask = uvmexp.pagesize - 1;
    362 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    363 		panic("uvm_setpagesize: page size not a power of two");
    364 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    365 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    366 			break;
    367 }
    368 
    369 /*
    370  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    371  */
    372 
    373 vm_offset_t
    374 uvm_pageboot_alloc(size)
    375 	vm_size_t size;
    376 {
    377 #if defined(PMAP_STEAL_MEMORY)
    378 	vm_offset_t addr;
    379 
    380 	/*
    381 	 * defer bootstrap allocation to MD code (it may want to allocate
    382 	 * from a direct-mapped segment).  pmap_steal_memory should round
    383 	 * off virtual_space_start/virtual_space_end.
    384 	 */
    385 
    386 	addr = pmap_steal_memory(size, &virtual_space_start,
    387 	    &virtual_space_end);
    388 
    389 	return(addr);
    390 
    391 #else /* !PMAP_STEAL_MEMORY */
    392 
    393 	vm_offset_t addr, vaddr, paddr;
    394 
    395 	/* round to page size */
    396 	size = round_page(size);
    397 
    398 	/*
    399 	 * on first call to this function init ourselves.   we detect this
    400 	 * by checking virtual_space_start/end which are in the zero'd BSS area.
    401 	 */
    402 
    403 	if (virtual_space_start == virtual_space_end) {
    404 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    405 
    406 		/* round it the way we like it */
    407 		virtual_space_start = round_page(virtual_space_start);
    408 		virtual_space_end = trunc_page(virtual_space_end);
    409 	}
    410 
    411 	/*
    412 	 * allocate virtual memory for this request
    413 	 */
    414 
    415 	addr = virtual_space_start;
    416 	virtual_space_start += size;
    417 
    418 	/*
    419 	 * allocate and mapin physical pages to back new virtual pages
    420 	 */
    421 
    422 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    423 	    vaddr += PAGE_SIZE) {
    424 
    425 		if (!uvm_page_physget(&paddr))
    426 			panic("uvm_pageboot_alloc: out of memory");
    427 
    428 		/* XXX: should be wired, but some pmaps don't like that ... */
    429 #if defined(PMAP_NEW)
    430 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    431 #else
    432 		pmap_enter(pmap_kernel(), vaddr, paddr,
    433 		    VM_PROT_READ|VM_PROT_WRITE, FALSE);
    434 #endif
    435 
    436 	}
    437 
    438 	return(addr);
    439 #endif	/* PMAP_STEAL_MEMORY */
    440 }
    441 
    442 #if !defined(PMAP_STEAL_MEMORY)
    443 /*
    444  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    445  *
    446  * => attempt to allocate it off the end of a segment in which the "avail"
    447  *    values match the start/end values.   if we can't do that, then we
    448  *    will advance both values (making them equal, and removing some
    449  *    vm_page structures from the non-avail area).
    450  * => return false if out of memory.
    451  */
    452 
    453 boolean_t
    454 uvm_page_physget(paddrp)
    455 	vm_offset_t *paddrp;
    456 {
    457 	int lcv, x;
    458 
    459 	/* pass 1: try allocating from a matching end */
    460 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    461 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    462 #else
    463 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    464 #endif
    465 	{
    466 
    467 		if (vm_physmem[lcv].pgs)
    468 			panic("vm_page_physget: called _after_ bootstrap");
    469 
    470 		/* try from front */
    471 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    472 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    473 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    474 			vm_physmem[lcv].avail_start++;
    475 			vm_physmem[lcv].start++;
    476 			/* nothing left?   nuke it */
    477 			if (vm_physmem[lcv].avail_start ==
    478 			    vm_physmem[lcv].end) {
    479 				if (vm_nphysseg == 1)
    480 				    panic("vm_page_physget: out of memory!");
    481 				vm_nphysseg--;
    482 				for (x = lcv ; x < vm_nphysseg ; x++)
    483 					/* structure copy */
    484 					vm_physmem[x] = vm_physmem[x+1];
    485 			}
    486 			return (TRUE);
    487 		}
    488 
    489 		/* try from rear */
    490 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    491 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    492 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    493 			vm_physmem[lcv].avail_end--;
    494 			vm_physmem[lcv].end--;
    495 			/* nothing left?   nuke it */
    496 			if (vm_physmem[lcv].avail_end ==
    497 			    vm_physmem[lcv].start) {
    498 				if (vm_nphysseg == 1)
    499 				    panic("vm_page_physget: out of memory!");
    500 				vm_nphysseg--;
    501 				for (x = lcv ; x < vm_nphysseg ; x++)
    502 					/* structure copy */
    503 					vm_physmem[x] = vm_physmem[x+1];
    504 			}
    505 			return (TRUE);
    506 		}
    507 	}
    508 
    509 	/* pass2: forget about matching ends, just allocate something */
    510 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    511 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    512 #else
    513 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    514 #endif
    515 	{
    516 
    517 		/* any room in this bank? */
    518 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    519 			continue;  /* nope */
    520 
    521 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    522 		vm_physmem[lcv].avail_start++;
    523 		/* truncate! */
    524 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    525 
    526 		/* nothing left?   nuke it */
    527 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    528 			if (vm_nphysseg == 1)
    529 				panic("vm_page_physget: out of memory!");
    530 			vm_nphysseg--;
    531 			for (x = lcv ; x < vm_nphysseg ; x++)
    532 				/* structure copy */
    533 				vm_physmem[x] = vm_physmem[x+1];
    534 		}
    535 		return (TRUE);
    536 	}
    537 
    538 	return (FALSE);        /* whoops! */
    539 }
    540 #endif /* PMAP_STEAL_MEMORY */
    541 
    542 /*
    543  * uvm_page_physload: load physical memory into VM system
    544  *
    545  * => all args are PFs
    546  * => all pages in start/end get vm_page structures
    547  * => areas marked by avail_start/avail_end get added to the free page pool
    548  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    549  */
    550 
    551 void
    552 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    553 	vm_offset_t start, end, avail_start, avail_end;
    554 	int free_list;
    555 {
    556 	int preload, lcv, npages;
    557 	struct vm_page *pgs;
    558 	struct vm_physseg *ps;
    559 
    560 	if (uvmexp.pagesize == 0)
    561 		panic("vm_page_physload: page size not set!");
    562 
    563 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    564 		panic("uvm_page_physload: bad free list %d\n", free_list);
    565 
    566 	/*
    567 	 * do we have room?
    568 	 */
    569 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    570 		printf("vm_page_physload: unable to load physical memory "
    571 		    "segment\n");
    572 		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
    573 		    VM_PHYSSEG_MAX, start, end);
    574 		return;
    575 	}
    576 
    577 	/*
    578 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    579 	 * called yet, so malloc is not available).
    580 	 */
    581 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    582 		if (vm_physmem[lcv].pgs)
    583 			break;
    584 	}
    585 	preload = (lcv == vm_nphysseg);
    586 
    587 	/*
    588 	 * if VM is already running, attempt to malloc() vm_page structures
    589 	 */
    590 	if (!preload) {
    591 #if defined(VM_PHYSSEG_NOADD)
    592 		panic("vm_page_physload: tried to add RAM after vm_mem_init");
    593 #else
    594 		/* XXXCDC: need some sort of lockout for this case */
    595 		vm_offset_t paddr;
    596 		npages = end - start;  /* # of pages */
    597 		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
    598 					 M_VMPAGE, M_NOWAIT);
    599 		if (pgs == NULL) {
    600 			printf("vm_page_physload: can not malloc vm_page "
    601 			    "structs for segment\n");
    602 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    603 			return;
    604 		}
    605 		/* zero data, init phys_addr and free_list, and free pages */
    606 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    607 		for (lcv = 0, paddr = ptoa(start) ;
    608 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    609 			pgs[lcv].phys_addr = paddr;
    610 			pgs[lcv].free_list = free_list;
    611 			if (atop(paddr) >= avail_start &&
    612 			    atop(paddr) <= avail_end)
    613 				uvm_pagefree(&pgs[lcv]);
    614 		}
    615 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    616 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    617 #endif
    618 	} else {
    619 
    620 		/* gcc complains if these don't get init'd */
    621 		pgs = NULL;
    622 		npages = 0;
    623 
    624 	}
    625 
    626 	/*
    627 	 * now insert us in the proper place in vm_physmem[]
    628 	 */
    629 
    630 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    631 
    632 	/* random: put it at the end (easy!) */
    633 	ps = &vm_physmem[vm_nphysseg];
    634 
    635 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    636 
    637 	{
    638 		int x;
    639 		/* sort by address for binary search */
    640 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    641 			if (start < vm_physmem[lcv].start)
    642 				break;
    643 		ps = &vm_physmem[lcv];
    644 		/* move back other entries, if necessary ... */
    645 		for (x = vm_nphysseg ; x > lcv ; x--)
    646 			/* structure copy */
    647 			vm_physmem[x] = vm_physmem[x - 1];
    648 	}
    649 
    650 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    651 
    652 	{
    653 		int x;
    654 		/* sort by largest segment first */
    655 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    656 			if ((end - start) >
    657 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    658 				break;
    659 		ps = &vm_physmem[lcv];
    660 		/* move back other entries, if necessary ... */
    661 		for (x = vm_nphysseg ; x > lcv ; x--)
    662 			/* structure copy */
    663 			vm_physmem[x] = vm_physmem[x - 1];
    664 	}
    665 
    666 #else
    667 
    668 	panic("vm_page_physload: unknown physseg strategy selected!");
    669 
    670 #endif
    671 
    672 	ps->start = start;
    673 	ps->end = end;
    674 	ps->avail_start = avail_start;
    675 	ps->avail_end = avail_end;
    676 	if (preload) {
    677 		ps->pgs = NULL;
    678 	} else {
    679 		ps->pgs = pgs;
    680 		ps->lastpg = pgs + npages - 1;
    681 	}
    682 	ps->free_list = free_list;
    683 	vm_nphysseg++;
    684 
    685 	/*
    686 	 * done!
    687 	 */
    688 
    689 	if (!preload)
    690 		uvm_page_rehash();
    691 
    692 	return;
    693 }
    694 
    695 /*
    696  * uvm_page_rehash: reallocate hash table based on number of free pages.
    697  */
    698 
    699 void
    700 uvm_page_rehash()
    701 {
    702 	int freepages, lcv, bucketcount, s, oldcount;
    703 	struct pglist *newbuckets, *oldbuckets;
    704 	struct vm_page *pg;
    705 
    706 	/*
    707 	 * compute number of pages that can go in the free pool
    708 	 */
    709 
    710 	freepages = 0;
    711 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    712 		freepages +=
    713 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    714 
    715 	/*
    716 	 * compute number of buckets needed for this number of pages
    717 	 */
    718 
    719 	bucketcount = 1;
    720 	while (bucketcount < freepages)
    721 		bucketcount = bucketcount * 2;
    722 
    723 	/*
    724 	 * malloc new buckets
    725 	 */
    726 
    727 	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
    728 					 M_VMPBUCKET, M_NOWAIT);
    729 	if (newbuckets == NULL) {
    730 		printf("vm_page_physrehash: WARNING: could not grow page "
    731 		    "hash table\n");
    732 		return;
    733 	}
    734 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    735 		TAILQ_INIT(&newbuckets[lcv]);
    736 
    737 	/*
    738 	 * now replace the old buckets with the new ones and rehash everything
    739 	 */
    740 
    741 	s = splimp();
    742 	simple_lock(&uvm.hashlock);
    743 	/* swap old for new ... */
    744 	oldbuckets = uvm.page_hash;
    745 	oldcount = uvm.page_nhash;
    746 	uvm.page_hash = newbuckets;
    747 	uvm.page_nhash = bucketcount;
    748 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    749 
    750 	/* ... and rehash */
    751 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    752 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    753 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    754 			TAILQ_INSERT_TAIL(
    755 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    756 			  pg, hashq);
    757 		}
    758 	}
    759 	simple_unlock(&uvm.hashlock);
    760 	splx(s);
    761 
    762 	/*
    763 	 * free old bucket array if we malloc'd it previously
    764 	 */
    765 
    766 	if (oldbuckets != &uvm_bootbucket)
    767 		FREE(oldbuckets, M_VMPBUCKET);
    768 
    769 	/*
    770 	 * done
    771 	 */
    772 	return;
    773 }
    774 
    775 
    776 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    777 
    778 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    779 
    780 /* call from DDB */
    781 void
    782 uvm_page_physdump()
    783 {
    784 	int lcv;
    785 
    786 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    787 				 vm_nphysseg, VM_PHYSSEG_MAX);
    788 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    789 		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
    790 		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
    791 		    vm_physmem[lcv].avail_end);
    792 	printf("STRATEGY = ");
    793 	switch (VM_PHYSSEG_STRAT) {
    794 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    795 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    796 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    797 	default: printf("<<UNKNOWN>>!!!!\n");
    798 	}
    799 	printf("number of buckets = %d\n", uvm.page_nhash);
    800 }
    801 #endif
    802 
    803 /*
    804  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    805  *
    806  * => return null if no pages free
    807  * => wake up pagedaemon if number of free pages drops below low water mark
    808  * => if obj != NULL, obj must be locked (to put in hash)
    809  * => if anon != NULL, anon must be locked (to put in anon)
    810  * => only one of obj or anon can be non-null
    811  * => caller must activate/deactivate page if it is not wired.
    812  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    813  */
    814 
    815 struct vm_page *
    816 uvm_pagealloc_strat(obj, off, anon, strat, free_list)
    817 	struct uvm_object *obj;
    818 	vm_offset_t off;
    819 	struct vm_anon *anon;
    820 	int strat, free_list;
    821 {
    822 	int lcv, s;
    823 	struct vm_page *pg;
    824 	struct pglist *freeq;
    825 
    826 #ifdef DIAGNOSTIC
    827 	/* sanity check */
    828 	if (obj && anon)
    829 		panic("uvm_pagealloc: obj and anon != NULL");
    830 #endif
    831 
    832 	s = splimp();
    833 
    834 	uvm_lock_fpageq();		/* lock free page queue */
    835 
    836 	/*
    837 	 * check to see if we need to generate some free pages waking
    838 	 * the pagedaemon.
    839 	 */
    840 
    841 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
    842 	    uvmexp.inactive < uvmexp.inactarg))
    843 		thread_wakeup(&uvm.pagedaemon);
    844 
    845 	/*
    846 	 * fail if any of these conditions is true:
    847 	 * [1]  there really are no free pages, or
    848 	 * [2]  only kernel "reserved" pages remain and
    849 	 *        the page isn't being allocated to a kernel object.
    850 	 * [3]  only pagedaemon "reserved" pages remain and
    851 	 *        the requestor isn't the pagedaemon.
    852 	 */
    853 
    854 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    855 	     !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
    856 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    857 	     !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc)))
    858 		goto fail;
    859 
    860  again:
    861 	switch (strat) {
    862 	case UVM_PGA_STRAT_NORMAL:
    863 		/* Check all freelists in descending priority order. */
    864 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    865 			freeq = &uvm.page_free[lcv];
    866 			if ((pg = freeq->tqh_first) != NULL)
    867 				goto gotit;
    868 		}
    869 
    870 		/* No pages free! */
    871 		goto fail;
    872 
    873 	case UVM_PGA_STRAT_ONLY:
    874 	case UVM_PGA_STRAT_FALLBACK:
    875 		/* Attempt to allocate from the specified free list. */
    876 #ifdef DIAGNOSTIC
    877 		if (free_list >= VM_NFREELIST || free_list < 0)
    878 			panic("uvm_pagealloc_strat: bad free list %d",
    879 			    free_list);
    880 #endif
    881 		freeq = &uvm.page_free[free_list];
    882 		if ((pg = freeq->tqh_first) != NULL)
    883 			goto gotit;
    884 
    885 		/* Fall back, if possible. */
    886 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    887 			strat = UVM_PGA_STRAT_NORMAL;
    888 			goto again;
    889 		}
    890 
    891 		/* No pages free! */
    892 		goto fail;
    893 
    894 	default:
    895 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    896 		/* NOTREACHED */
    897 	}
    898 
    899  gotit:
    900 	TAILQ_REMOVE(freeq, pg, pageq);
    901 	uvmexp.free--;
    902 
    903 	uvm_unlock_fpageq();		/* unlock free page queue */
    904 	splx(s);
    905 
    906 	pg->offset = off;
    907 	pg->uobject = obj;
    908 	pg->uanon = anon;
    909 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
    910 	pg->version++;
    911 	pg->wire_count = 0;
    912 	pg->loan_count = 0;
    913 	if (anon) {
    914 		anon->u.an_page = pg;
    915 		pg->pqflags = PQ_ANON;
    916 	} else {
    917 		if (obj)
    918 			uvm_pageinsert(pg);
    919 		pg->pqflags = 0;
    920 	}
    921 #if defined(UVM_PAGE_TRKOWN)
    922 	pg->owner_tag = NULL;
    923 #endif
    924 	UVM_PAGE_OWN(pg, "new alloc");
    925 
    926 	return(pg);
    927 
    928  fail:
    929 	uvm_unlock_fpageq();
    930 	splx(s);
    931 	return (NULL);
    932 }
    933 
    934 /*
    935  * uvm_pagerealloc: reallocate a page from one object to another
    936  *
    937  * => both objects must be locked
    938  */
    939 
    940 void
    941 uvm_pagerealloc(pg, newobj, newoff)
    942 	struct vm_page *pg;
    943 	struct uvm_object *newobj;
    944 	vm_offset_t newoff;
    945 {
    946 	/*
    947 	 * remove it from the old object
    948 	 */
    949 
    950 	if (pg->uobject) {
    951 		uvm_pageremove(pg);
    952 	}
    953 
    954 	/*
    955 	 * put it in the new object
    956 	 */
    957 
    958 	if (newobj) {
    959 		pg->uobject = newobj;
    960 		pg->offset = newoff;
    961 		pg->version++;
    962 		uvm_pageinsert(pg);
    963 	}
    964 
    965 	return;
    966 }
    967 
    968 
    969 /*
    970  * uvm_pagefree: free page
    971  *
    972  * => erase page's identity (i.e. remove from hash/object)
    973  * => put page on free list
    974  * => caller must lock owning object (either anon or uvm_object)
    975  * => caller must lock page queues
    976  * => assumes all valid mappings of pg are gone
    977  */
    978 
    979 void uvm_pagefree(pg)
    980 
    981 struct vm_page *pg;
    982 
    983 {
    984 	int s;
    985 	int saved_loan_count = pg->loan_count;
    986 
    987 	/*
    988 	 * if the page was an object page (and thus "TABLED"), remove it
    989 	 * from the object.
    990 	 */
    991 
    992 	if (pg->flags & PG_TABLED) {
    993 
    994 		/*
    995 		 * if the object page is on loan we are going to drop ownership.
    996 		 * it is possible that an anon will take over as owner for this
    997 		 * page later on.   the anon will want a !PG_CLEAN page so that
    998 		 * it knows it needs to allocate swap if it wants to page the
    999 		 * page out.
   1000 		 */
   1001 
   1002 		if (saved_loan_count)
   1003 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1004 
   1005 		uvm_pageremove(pg);
   1006 
   1007 		/*
   1008 		 * if our page was on loan, then we just lost control over it
   1009 		 * (in fact, if it was loaned to an anon, the anon may have
   1010 		 * already taken over ownership of the page by now and thus
   1011 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1012 		 * return (when the last loan is dropped, then the page can be
   1013 		 * freed by whatever was holding the last loan).
   1014 		 */
   1015 		if (saved_loan_count)
   1016 			return;
   1017 
   1018 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1019 
   1020 		/*
   1021 		 * if our page is owned by an anon and is loaned out to the
   1022 		 * kernel then we just want to drop ownership and return.
   1023 		 * the kernel must free the page when all its loans clear ...
   1024 		 * note that the kernel can't change the loan status of our
   1025 		 * page as long as we are holding PQ lock.
   1026 		 */
   1027 		pg->pqflags &= ~PQ_ANON;
   1028 		pg->uanon = NULL;
   1029 		return;
   1030 	}
   1031 
   1032 #ifdef DIAGNOSTIC
   1033 	if (saved_loan_count) {
   1034 		printf("uvm_pagefree: warning: freeing page with a loan "
   1035 		    "count of %d\n", saved_loan_count);
   1036 		panic("uvm_pagefree: loan count");
   1037 	}
   1038 #endif
   1039 
   1040 
   1041 	/*
   1042 	 * now remove the page from the queues
   1043 	 */
   1044 
   1045 	if (pg->pqflags & PQ_ACTIVE) {
   1046 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1047 		pg->pqflags &= ~PQ_ACTIVE;
   1048 		uvmexp.active--;
   1049 	}
   1050 	if (pg->pqflags & PQ_INACTIVE) {
   1051 		if (pg->pqflags & PQ_SWAPBACKED)
   1052 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1053 		else
   1054 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1055 		pg->pqflags &= ~PQ_INACTIVE;
   1056 		uvmexp.inactive--;
   1057 	}
   1058 
   1059 	/*
   1060 	 * if the page was wired, unwire it now.
   1061 	 */
   1062 	if (pg->wire_count)
   1063 	{
   1064 		pg->wire_count = 0;
   1065 		uvmexp.wired--;
   1066 	}
   1067 
   1068 	/*
   1069 	 * and put on free queue
   1070 	 */
   1071 
   1072 	s = splimp();
   1073 	uvm_lock_fpageq();
   1074 	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
   1075 	    pg, pageq);
   1076 	pg->pqflags = PQ_FREE;
   1077 #ifdef DEBUG
   1078 	pg->uobject = (void *)0xdeadbeef;
   1079 	pg->offset = 0xdeadbeef;
   1080 	pg->uanon = (void *)0xdeadbeef;
   1081 #endif
   1082 	uvmexp.free++;
   1083 	uvm_unlock_fpageq();
   1084 	splx(s);
   1085 }
   1086 
   1087 #if defined(UVM_PAGE_TRKOWN)
   1088 /*
   1089  * uvm_page_own: set or release page ownership
   1090  *
   1091  * => this is a debugging function that keeps track of who sets PG_BUSY
   1092  *	and where they do it.   it can be used to track down problems
   1093  *	such a process setting "PG_BUSY" and never releasing it.
   1094  * => page's object [if any] must be locked
   1095  * => if "tag" is NULL then we are releasing page ownership
   1096  */
   1097 void
   1098 uvm_page_own(pg, tag)
   1099 	struct vm_page *pg;
   1100 	char *tag;
   1101 {
   1102 	/* gain ownership? */
   1103 	if (tag) {
   1104 		if (pg->owner_tag) {
   1105 			printf("uvm_page_own: page %p already owned "
   1106 			    "by proc %d [%s]\n", pg,
   1107 			     pg->owner, pg->owner_tag);
   1108 			panic("uvm_page_own");
   1109 		}
   1110 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1111 		pg->owner_tag = tag;
   1112 		return;
   1113 	}
   1114 
   1115 	/* drop ownership */
   1116 	if (pg->owner_tag == NULL) {
   1117 		printf("uvm_page_own: dropping ownership of an non-owned "
   1118 		    "page (%p)\n", pg);
   1119 		panic("uvm_page_own");
   1120 	}
   1121 	pg->owner_tag = NULL;
   1122 	return;
   1123 }
   1124 #endif
   1125