Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.133
      1 /*	$NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.133 2008/06/04 12:45:28 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 #include <sys/atomic.h>
     87 #include <sys/cpu.h>
     88 
     89 #include <uvm/uvm.h>
     90 #include <uvm/uvm_pdpolicy.h>
     91 
     92 /*
     93  * global vars... XXXCDC: move to uvm. structure.
     94  */
     95 
     96 /*
     97  * physical memory config is stored in vm_physmem.
     98  */
     99 
    100 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    101 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    102 
    103 /*
    104  * Some supported CPUs in a given architecture don't support all
    105  * of the things necessary to do idle page zero'ing efficiently.
    106  * We therefore provide a way to disable it from machdep code here.
    107  */
    108 /*
    109  * XXX disabled until we can find a way to do this without causing
    110  * problems for either CPU caches or DMA latency.
    111  */
    112 bool vm_page_zero_enable = false;
    113 
    114 /*
    115  * local variables
    116  */
    117 
    118 /*
    119  * these variables record the values returned by vm_page_bootstrap,
    120  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    121  * and pmap_startup here also uses them internally.
    122  */
    123 
    124 static vaddr_t      virtual_space_start;
    125 static vaddr_t      virtual_space_end;
    126 
    127 /*
    128  * we use a hash table with only one bucket during bootup.  we will
    129  * later rehash (resize) the hash table once the allocator is ready.
    130  * we static allocate the one bootstrap bucket below...
    131  */
    132 
    133 static struct pglist uvm_bootbucket;
    134 
    135 /*
    136  * we allocate an initial number of page colors in uvm_page_init(),
    137  * and remember them.  We may re-color pages as cache sizes are
    138  * discovered during the autoconfiguration phase.  But we can never
    139  * free the initial set of buckets, since they are allocated using
    140  * uvm_pageboot_alloc().
    141  */
    142 
    143 static bool have_recolored_pages /* = false */;
    144 
    145 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    146 
    147 #ifdef DEBUG
    148 vaddr_t uvm_zerocheckkva;
    149 #endif /* DEBUG */
    150 
    151 /*
    152  * locks on the hash table.  allocated in 32 byte chunks to try
    153  * and reduce cache traffic between CPUs.
    154  */
    155 
    156 #define	UVM_HASHLOCK_CNT	32
    157 #define	uvm_hashlock(hash)	\
    158     (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock)
    159 
    160 static union {
    161 	kmutex_t	lock;
    162 	uint8_t		pad[32];
    163 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32);
    164 
    165 /*
    166  * local prototypes
    167  */
    168 
    169 static void uvm_pageinsert(struct vm_page *);
    170 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    171 static void uvm_pageremove(struct vm_page *);
    172 
    173 /*
    174  * inline functions
    175  */
    176 
    177 /*
    178  * uvm_pageinsert: insert a page in the object and the hash table
    179  * uvm_pageinsert_after: insert a page into the specified place in listq
    180  *
    181  * => caller must lock object
    182  * => caller must lock page queues
    183  * => call should have already set pg's object and offset pointers
    184  *    and bumped the version counter
    185  */
    186 
    187 inline static void
    188 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
    189 {
    190 	struct pglist *buck;
    191 	struct uvm_object *uobj = pg->uobject;
    192 	kmutex_t *lock;
    193 	u_int hash;
    194 
    195 	KASSERT(mutex_owned(&uobj->vmobjlock));
    196 	KASSERT((pg->flags & PG_TABLED) == 0);
    197 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    198 	KASSERT(where == NULL || (where->uobject == uobj));
    199 
    200 	hash = uvm_pagehash(uobj, pg->offset);
    201 	buck = &uvm.page_hash[hash];
    202 	lock = uvm_hashlock(hash);
    203 	mutex_spin_enter(lock);
    204 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    205 	mutex_spin_exit(lock);
    206 
    207 	if (UVM_OBJ_IS_VNODE(uobj)) {
    208 		if (uobj->uo_npages == 0) {
    209 			struct vnode *vp = (struct vnode *)uobj;
    210 
    211 			vholdl(vp);
    212 		}
    213 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    214 			atomic_inc_uint(&uvmexp.execpages);
    215 		} else {
    216 			atomic_inc_uint(&uvmexp.filepages);
    217 		}
    218 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    219 		atomic_inc_uint(&uvmexp.anonpages);
    220 	}
    221 
    222 	if (where)
    223 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    224 	else
    225 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    226 	pg->flags |= PG_TABLED;
    227 	uobj->uo_npages++;
    228 }
    229 
    230 inline static void
    231 uvm_pageinsert(struct vm_page *pg)
    232 {
    233 
    234 	uvm_pageinsert_after(pg, NULL);
    235 }
    236 
    237 /*
    238  * uvm_page_remove: remove page from object and hash
    239  *
    240  * => caller must lock object
    241  * => caller must lock page queues
    242  */
    243 
    244 static inline void
    245 uvm_pageremove(struct vm_page *pg)
    246 {
    247 	struct pglist *buck;
    248 	struct uvm_object *uobj = pg->uobject;
    249 	kmutex_t *lock;
    250 	u_int hash;
    251 
    252 	KASSERT(mutex_owned(&uobj->vmobjlock));
    253 	KASSERT(pg->flags & PG_TABLED);
    254 
    255 	hash = uvm_pagehash(uobj, pg->offset);
    256 	buck = &uvm.page_hash[hash];
    257 	lock = uvm_hashlock(hash);
    258 	mutex_spin_enter(lock);
    259 	TAILQ_REMOVE(buck, pg, hashq);
    260 	mutex_spin_exit(lock);
    261 
    262 	if (UVM_OBJ_IS_VNODE(uobj)) {
    263 		if (uobj->uo_npages == 1) {
    264 			struct vnode *vp = (struct vnode *)uobj;
    265 
    266 			holdrelel(vp);
    267 		}
    268 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    269 			atomic_dec_uint(&uvmexp.execpages);
    270 		} else {
    271 			atomic_dec_uint(&uvmexp.filepages);
    272 		}
    273 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    274 		atomic_dec_uint(&uvmexp.anonpages);
    275 	}
    276 
    277 	/* object should be locked */
    278 	uobj->uo_npages--;
    279 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    280 	pg->flags &= ~PG_TABLED;
    281 	pg->uobject = NULL;
    282 }
    283 
    284 static void
    285 uvm_page_init_buckets(struct pgfreelist *pgfl)
    286 {
    287 	int color, i;
    288 
    289 	for (color = 0; color < uvmexp.ncolors; color++) {
    290 		for (i = 0; i < PGFL_NQUEUES; i++) {
    291 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    292 		}
    293 	}
    294 }
    295 
    296 /*
    297  * uvm_page_init: init the page system.   called from uvm_init().
    298  *
    299  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    300  */
    301 
    302 void
    303 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    304 {
    305 	vsize_t freepages, pagecount, bucketcount, n;
    306 	struct pgflbucket *bucketarray, *cpuarray;
    307 	struct vm_page *pagearray;
    308 	int lcv;
    309 	u_int i;
    310 	paddr_t paddr;
    311 
    312 	KASSERT(ncpu <= 1);
    313 	KASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    314 
    315 	/*
    316 	 * init the page queues and page queue locks, except the free
    317 	 * list; we allocate that later (with the initial vm_page
    318 	 * structures).
    319 	 */
    320 
    321 	curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
    322 	uvmpdpol_init();
    323 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    324 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    325 
    326 	/*
    327 	 * init the <obj,offset> => <page> hash table.  for now
    328 	 * we just have one bucket (the bootstrap bucket).  later on we
    329 	 * will allocate new buckets as we dynamically resize the hash table.
    330 	 */
    331 
    332 	uvm.page_nhash = 1;			/* 1 bucket */
    333 	uvm.page_hashmask = 0;			/* mask for hash function */
    334 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    335 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    336 
    337 	/*
    338 	 * init hashtable locks.  these must be spinlocks, as they are
    339 	 * called from sites in the pmap modules where we cannot block.
    340 	 * if taking multiple locks, the order is: low numbered first,
    341 	 * high numbered second.
    342 	 */
    343 
    344 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    345 		mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM);
    346 
    347 	/*
    348 	 * allocate vm_page structures.
    349 	 */
    350 
    351 	/*
    352 	 * sanity check:
    353 	 * before calling this function the MD code is expected to register
    354 	 * some free RAM with the uvm_page_physload() function.   our job
    355 	 * now is to allocate vm_page structures for this memory.
    356 	 */
    357 
    358 	if (vm_nphysseg == 0)
    359 		panic("uvm_page_bootstrap: no memory pre-allocated");
    360 
    361 	/*
    362 	 * first calculate the number of free pages...
    363 	 *
    364 	 * note that we use start/end rather than avail_start/avail_end.
    365 	 * this allows us to allocate extra vm_page structures in case we
    366 	 * want to return some memory to the pool after booting.
    367 	 */
    368 
    369 	freepages = 0;
    370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    371 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    372 
    373 	/*
    374 	 * Let MD code initialize the number of colors, or default
    375 	 * to 1 color if MD code doesn't care.
    376 	 */
    377 	if (uvmexp.ncolors == 0)
    378 		uvmexp.ncolors = 1;
    379 	uvmexp.colormask = uvmexp.ncolors - 1;
    380 
    381 	/*
    382 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    383 	 * use.   for each page of memory we use we need a vm_page structure.
    384 	 * thus, the total number of pages we can use is the total size of
    385 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    386 	 * structure.   we add one to freepages as a fudge factor to avoid
    387 	 * truncation errors (since we can only allocate in terms of whole
    388 	 * pages).
    389 	 */
    390 
    391 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    392 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    393 	    (PAGE_SIZE + sizeof(struct vm_page));
    394 
    395 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    396 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    397 	    sizeof(struct vm_page)));
    398 	cpuarray = bucketarray + bucketcount;
    399 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    400 
    401 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    402 		uvm.page_free[lcv].pgfl_buckets =
    403 		    (bucketarray + (lcv * uvmexp.ncolors));
    404 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    405 		uvm.cpus[0].page_free[lcv].pgfl_buckets =
    406 		    (cpuarray + (lcv * uvmexp.ncolors));
    407 		uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
    408 	}
    409 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    410 
    411 	/*
    412 	 * init the vm_page structures and put them in the correct place.
    413 	 */
    414 
    415 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    416 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    417 
    418 		/* set up page array pointers */
    419 		vm_physmem[lcv].pgs = pagearray;
    420 		pagearray += n;
    421 		pagecount -= n;
    422 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    423 
    424 		/* init and free vm_pages (we've already zeroed them) */
    425 		paddr = ptoa(vm_physmem[lcv].start);
    426 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    427 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    428 #ifdef __HAVE_VM_PAGE_MD
    429 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    430 #endif
    431 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    432 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    433 				uvmexp.npages++;
    434 				/* add page to free pool */
    435 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    436 			}
    437 		}
    438 	}
    439 
    440 	/*
    441 	 * pass up the values of virtual_space_start and
    442 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    443 	 * layers of the VM.
    444 	 */
    445 
    446 	*kvm_startp = round_page(virtual_space_start);
    447 	*kvm_endp = trunc_page(virtual_space_end);
    448 #ifdef DEBUG
    449 	/*
    450 	 * steal kva for uvm_pagezerocheck().
    451 	 */
    452 	uvm_zerocheckkva = *kvm_startp;
    453 	*kvm_startp += PAGE_SIZE;
    454 #endif /* DEBUG */
    455 
    456 	/*
    457 	 * init various thresholds.
    458 	 */
    459 
    460 	uvmexp.reserve_pagedaemon = 1;
    461 	uvmexp.reserve_kernel = 5;
    462 
    463 	/*
    464 	 * determine if we should zero pages in the idle loop.
    465 	 */
    466 
    467 	uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
    468 
    469 	/*
    470 	 * done!
    471 	 */
    472 
    473 	uvm.page_init_done = true;
    474 }
    475 
    476 /*
    477  * uvm_setpagesize: set the page size
    478  *
    479  * => sets page_shift and page_mask from uvmexp.pagesize.
    480  */
    481 
    482 void
    483 uvm_setpagesize(void)
    484 {
    485 
    486 	/*
    487 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    488 	 * to be a constant (indicated by being a non-zero value).
    489 	 */
    490 	if (uvmexp.pagesize == 0) {
    491 		if (PAGE_SIZE == 0)
    492 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    493 		uvmexp.pagesize = PAGE_SIZE;
    494 	}
    495 	uvmexp.pagemask = uvmexp.pagesize - 1;
    496 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    497 		panic("uvm_setpagesize: page size not a power of two");
    498 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    499 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    500 			break;
    501 }
    502 
    503 /*
    504  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    505  */
    506 
    507 vaddr_t
    508 uvm_pageboot_alloc(vsize_t size)
    509 {
    510 	static bool initialized = false;
    511 	vaddr_t addr;
    512 #if !defined(PMAP_STEAL_MEMORY)
    513 	vaddr_t vaddr;
    514 	paddr_t paddr;
    515 #endif
    516 
    517 	/*
    518 	 * on first call to this function, initialize ourselves.
    519 	 */
    520 	if (initialized == false) {
    521 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    522 
    523 		/* round it the way we like it */
    524 		virtual_space_start = round_page(virtual_space_start);
    525 		virtual_space_end = trunc_page(virtual_space_end);
    526 
    527 		initialized = true;
    528 	}
    529 
    530 	/* round to page size */
    531 	size = round_page(size);
    532 
    533 #if defined(PMAP_STEAL_MEMORY)
    534 
    535 	/*
    536 	 * defer bootstrap allocation to MD code (it may want to allocate
    537 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    538 	 * virtual_space_start/virtual_space_end if necessary.
    539 	 */
    540 
    541 	addr = pmap_steal_memory(size, &virtual_space_start,
    542 	    &virtual_space_end);
    543 
    544 	return(addr);
    545 
    546 #else /* !PMAP_STEAL_MEMORY */
    547 
    548 	/*
    549 	 * allocate virtual memory for this request
    550 	 */
    551 	if (virtual_space_start == virtual_space_end ||
    552 	    (virtual_space_end - virtual_space_start) < size)
    553 		panic("uvm_pageboot_alloc: out of virtual space");
    554 
    555 	addr = virtual_space_start;
    556 
    557 #ifdef PMAP_GROWKERNEL
    558 	/*
    559 	 * If the kernel pmap can't map the requested space,
    560 	 * then allocate more resources for it.
    561 	 */
    562 	if (uvm_maxkaddr < (addr + size)) {
    563 		uvm_maxkaddr = pmap_growkernel(addr + size);
    564 		if (uvm_maxkaddr < (addr + size))
    565 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    566 	}
    567 #endif
    568 
    569 	virtual_space_start += size;
    570 
    571 	/*
    572 	 * allocate and mapin physical pages to back new virtual pages
    573 	 */
    574 
    575 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    576 	    vaddr += PAGE_SIZE) {
    577 
    578 		if (!uvm_page_physget(&paddr))
    579 			panic("uvm_pageboot_alloc: out of memory");
    580 
    581 		/*
    582 		 * Note this memory is no longer managed, so using
    583 		 * pmap_kenter is safe.
    584 		 */
    585 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    586 	}
    587 	pmap_update(pmap_kernel());
    588 	return(addr);
    589 #endif	/* PMAP_STEAL_MEMORY */
    590 }
    591 
    592 #if !defined(PMAP_STEAL_MEMORY)
    593 /*
    594  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    595  *
    596  * => attempt to allocate it off the end of a segment in which the "avail"
    597  *    values match the start/end values.   if we can't do that, then we
    598  *    will advance both values (making them equal, and removing some
    599  *    vm_page structures from the non-avail area).
    600  * => return false if out of memory.
    601  */
    602 
    603 /* subroutine: try to allocate from memory chunks on the specified freelist */
    604 static bool uvm_page_physget_freelist(paddr_t *, int);
    605 
    606 static bool
    607 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    608 {
    609 	int lcv, x;
    610 
    611 	/* pass 1: try allocating from a matching end */
    612 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    613 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    614 #else
    615 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    616 #endif
    617 	{
    618 
    619 		if (uvm.page_init_done == true)
    620 			panic("uvm_page_physget: called _after_ bootstrap");
    621 
    622 		if (vm_physmem[lcv].free_list != freelist)
    623 			continue;
    624 
    625 		/* try from front */
    626 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    627 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    628 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    629 			vm_physmem[lcv].avail_start++;
    630 			vm_physmem[lcv].start++;
    631 			/* nothing left?   nuke it */
    632 			if (vm_physmem[lcv].avail_start ==
    633 			    vm_physmem[lcv].end) {
    634 				if (vm_nphysseg == 1)
    635 				    panic("uvm_page_physget: out of memory!");
    636 				vm_nphysseg--;
    637 				for (x = lcv ; x < vm_nphysseg ; x++)
    638 					/* structure copy */
    639 					vm_physmem[x] = vm_physmem[x+1];
    640 			}
    641 			return (true);
    642 		}
    643 
    644 		/* try from rear */
    645 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    646 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    647 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    648 			vm_physmem[lcv].avail_end--;
    649 			vm_physmem[lcv].end--;
    650 			/* nothing left?   nuke it */
    651 			if (vm_physmem[lcv].avail_end ==
    652 			    vm_physmem[lcv].start) {
    653 				if (vm_nphysseg == 1)
    654 				    panic("uvm_page_physget: out of memory!");
    655 				vm_nphysseg--;
    656 				for (x = lcv ; x < vm_nphysseg ; x++)
    657 					/* structure copy */
    658 					vm_physmem[x] = vm_physmem[x+1];
    659 			}
    660 			return (true);
    661 		}
    662 	}
    663 
    664 	/* pass2: forget about matching ends, just allocate something */
    665 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    666 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    667 #else
    668 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    669 #endif
    670 	{
    671 
    672 		/* any room in this bank? */
    673 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    674 			continue;  /* nope */
    675 
    676 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    677 		vm_physmem[lcv].avail_start++;
    678 		/* truncate! */
    679 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    680 
    681 		/* nothing left?   nuke it */
    682 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    683 			if (vm_nphysseg == 1)
    684 				panic("uvm_page_physget: out of memory!");
    685 			vm_nphysseg--;
    686 			for (x = lcv ; x < vm_nphysseg ; x++)
    687 				/* structure copy */
    688 				vm_physmem[x] = vm_physmem[x+1];
    689 		}
    690 		return (true);
    691 	}
    692 
    693 	return (false);        /* whoops! */
    694 }
    695 
    696 bool
    697 uvm_page_physget(paddr_t *paddrp)
    698 {
    699 	int i;
    700 
    701 	/* try in the order of freelist preference */
    702 	for (i = 0; i < VM_NFREELIST; i++)
    703 		if (uvm_page_physget_freelist(paddrp, i) == true)
    704 			return (true);
    705 	return (false);
    706 }
    707 #endif /* PMAP_STEAL_MEMORY */
    708 
    709 /*
    710  * uvm_page_physload: load physical memory into VM system
    711  *
    712  * => all args are PFs
    713  * => all pages in start/end get vm_page structures
    714  * => areas marked by avail_start/avail_end get added to the free page pool
    715  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    716  */
    717 
    718 void
    719 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    720     paddr_t avail_end, int free_list)
    721 {
    722 	int preload, lcv;
    723 	psize_t npages;
    724 	struct vm_page *pgs;
    725 	struct vm_physseg *ps;
    726 
    727 	if (uvmexp.pagesize == 0)
    728 		panic("uvm_page_physload: page size not set!");
    729 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    730 		panic("uvm_page_physload: bad free list %d", free_list);
    731 	if (start >= end)
    732 		panic("uvm_page_physload: start >= end");
    733 
    734 	/*
    735 	 * do we have room?
    736 	 */
    737 
    738 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    739 		printf("uvm_page_physload: unable to load physical memory "
    740 		    "segment\n");
    741 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    742 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    743 		printf("\tincrease VM_PHYSSEG_MAX\n");
    744 		return;
    745 	}
    746 
    747 	/*
    748 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    749 	 * called yet, so malloc is not available).
    750 	 */
    751 
    752 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    753 		if (vm_physmem[lcv].pgs)
    754 			break;
    755 	}
    756 	preload = (lcv == vm_nphysseg);
    757 
    758 	/*
    759 	 * if VM is already running, attempt to malloc() vm_page structures
    760 	 */
    761 
    762 	if (!preload) {
    763 #if defined(VM_PHYSSEG_NOADD)
    764 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    765 #else
    766 		/* XXXCDC: need some sort of lockout for this case */
    767 		paddr_t paddr;
    768 		npages = end - start;  /* # of pages */
    769 		pgs = malloc(sizeof(struct vm_page) * npages,
    770 		    M_VMPAGE, M_NOWAIT);
    771 		if (pgs == NULL) {
    772 			printf("uvm_page_physload: can not malloc vm_page "
    773 			    "structs for segment\n");
    774 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    775 			return;
    776 		}
    777 		/* zero data, init phys_addr and free_list, and free pages */
    778 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    779 		for (lcv = 0, paddr = ptoa(start) ;
    780 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    781 			pgs[lcv].phys_addr = paddr;
    782 			pgs[lcv].free_list = free_list;
    783 			if (atop(paddr) >= avail_start &&
    784 			    atop(paddr) <= avail_end)
    785 				uvm_pagefree(&pgs[lcv]);
    786 		}
    787 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    788 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    789 #endif
    790 	} else {
    791 		pgs = NULL;
    792 		npages = 0;
    793 	}
    794 
    795 	/*
    796 	 * now insert us in the proper place in vm_physmem[]
    797 	 */
    798 
    799 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    800 	/* random: put it at the end (easy!) */
    801 	ps = &vm_physmem[vm_nphysseg];
    802 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    803 	{
    804 		int x;
    805 		/* sort by address for binary search */
    806 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    807 			if (start < vm_physmem[lcv].start)
    808 				break;
    809 		ps = &vm_physmem[lcv];
    810 		/* move back other entries, if necessary ... */
    811 		for (x = vm_nphysseg ; x > lcv ; x--)
    812 			/* structure copy */
    813 			vm_physmem[x] = vm_physmem[x - 1];
    814 	}
    815 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    816 	{
    817 		int x;
    818 		/* sort by largest segment first */
    819 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    820 			if ((end - start) >
    821 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    822 				break;
    823 		ps = &vm_physmem[lcv];
    824 		/* move back other entries, if necessary ... */
    825 		for (x = vm_nphysseg ; x > lcv ; x--)
    826 			/* structure copy */
    827 			vm_physmem[x] = vm_physmem[x - 1];
    828 	}
    829 #else
    830 	panic("uvm_page_physload: unknown physseg strategy selected!");
    831 #endif
    832 
    833 	ps->start = start;
    834 	ps->end = end;
    835 	ps->avail_start = avail_start;
    836 	ps->avail_end = avail_end;
    837 	if (preload) {
    838 		ps->pgs = NULL;
    839 	} else {
    840 		ps->pgs = pgs;
    841 		ps->lastpg = pgs + npages - 1;
    842 	}
    843 	ps->free_list = free_list;
    844 	vm_nphysseg++;
    845 
    846 	if (!preload) {
    847 		uvm_page_rehash();
    848 		uvmpdpol_reinit();
    849 	}
    850 }
    851 
    852 /*
    853  * uvm_page_rehash: reallocate hash table based on number of free pages.
    854  */
    855 
    856 void
    857 uvm_page_rehash(void)
    858 {
    859 	int freepages, lcv, bucketcount, oldcount, i;
    860 	struct pglist *newbuckets, *oldbuckets;
    861 	struct vm_page *pg;
    862 	size_t newsize, oldsize;
    863 
    864 	/*
    865 	 * compute number of pages that can go in the free pool
    866 	 */
    867 
    868 	freepages = 0;
    869 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    870 		freepages +=
    871 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    872 
    873 	/*
    874 	 * compute number of buckets needed for this number of pages
    875 	 */
    876 
    877 	bucketcount = 1;
    878 	while (bucketcount < freepages)
    879 		bucketcount = bucketcount * 2;
    880 
    881 	/*
    882 	 * compute the size of the current table and new table.
    883 	 */
    884 
    885 	oldbuckets = uvm.page_hash;
    886 	oldcount = uvm.page_nhash;
    887 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    888 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    889 
    890 	/*
    891 	 * allocate the new buckets
    892 	 */
    893 
    894 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
    895 	    0, UVM_KMF_WIRED);
    896 	if (newbuckets == NULL) {
    897 		printf("uvm_page_physrehash: WARNING: could not grow page "
    898 		    "hash table\n");
    899 		return;
    900 	}
    901 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    902 		TAILQ_INIT(&newbuckets[lcv]);
    903 
    904 	/*
    905 	 * now replace the old buckets with the new ones and rehash everything
    906 	 */
    907 
    908 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    909 		mutex_spin_enter(&uvm_hashlocks[i].lock);
    910 
    911 	uvm.page_hash = newbuckets;
    912 	uvm.page_nhash = bucketcount;
    913 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    914 
    915 	/* ... and rehash */
    916 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    917 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    918 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    919 			TAILQ_INSERT_TAIL(
    920 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    921 			  pg, hashq);
    922 		}
    923 	}
    924 
    925 	for (i = 0; i < UVM_HASHLOCK_CNT; i++)
    926 		mutex_spin_exit(&uvm_hashlocks[i].lock);
    927 
    928 	/*
    929 	 * free old bucket array if is not the boot-time table
    930 	 */
    931 
    932 	if (oldbuckets != &uvm_bootbucket)
    933 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
    934 		    UVM_KMF_WIRED);
    935 }
    936 
    937 /*
    938  * uvm_page_recolor: Recolor the pages if the new bucket count is
    939  * larger than the old one.
    940  */
    941 
    942 void
    943 uvm_page_recolor(int newncolors)
    944 {
    945 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    946 	struct pgfreelist gpgfl, pgfl;
    947 	struct vm_page *pg;
    948 	vsize_t bucketcount;
    949 	int lcv, color, i, ocolors;
    950 	struct uvm_cpu *ucpu;
    951 
    952 	if (newncolors <= uvmexp.ncolors)
    953 		return;
    954 
    955 	if (uvm.page_init_done == false) {
    956 		uvmexp.ncolors = newncolors;
    957 		return;
    958 	}
    959 
    960 	bucketcount = newncolors * VM_NFREELIST;
    961 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    962 	    M_VMPAGE, M_NOWAIT);
    963 	cpuarray = bucketarray + bucketcount;
    964 	if (bucketarray == NULL) {
    965 		printf("WARNING: unable to allocate %ld page color buckets\n",
    966 		    (long) bucketcount);
    967 		return;
    968 	}
    969 
    970 	mutex_spin_enter(&uvm_fpageqlock);
    971 
    972 	/* Make sure we should still do this. */
    973 	if (newncolors <= uvmexp.ncolors) {
    974 		mutex_spin_exit(&uvm_fpageqlock);
    975 		free(bucketarray, M_VMPAGE);
    976 		return;
    977 	}
    978 
    979 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    980 	ocolors = uvmexp.ncolors;
    981 
    982 	uvmexp.ncolors = newncolors;
    983 	uvmexp.colormask = uvmexp.ncolors - 1;
    984 
    985 	ucpu = curcpu()->ci_data.cpu_uvm;
    986 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    987 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    988 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    989 		uvm_page_init_buckets(&gpgfl);
    990 		uvm_page_init_buckets(&pgfl);
    991 		for (color = 0; color < ocolors; color++) {
    992 			for (i = 0; i < PGFL_NQUEUES; i++) {
    993 				while ((pg = LIST_FIRST(&uvm.page_free[
    994 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    995 				    != NULL) {
    996 					LIST_REMOVE(pg, pageq.list); /* global */
    997 					LIST_REMOVE(pg, listq.list); /* cpu */
    998 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    999 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1000 					    i], pg, pageq.list);
   1001 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1002 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1003 					    i], pg, listq.list);
   1004 				}
   1005 			}
   1006 		}
   1007 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1008 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1009 	}
   1010 
   1011 	if (have_recolored_pages) {
   1012 		mutex_spin_exit(&uvm_fpageqlock);
   1013 		free(oldbucketarray, M_VMPAGE);
   1014 		return;
   1015 	}
   1016 
   1017 	have_recolored_pages = true;
   1018 	mutex_spin_exit(&uvm_fpageqlock);
   1019 }
   1020 
   1021 /*
   1022  * uvm_cpu_attach: initialize per-CPU data structures.
   1023  */
   1024 
   1025 void
   1026 uvm_cpu_attach(struct cpu_info *ci)
   1027 {
   1028 	struct pgflbucket *bucketarray;
   1029 	struct pgfreelist pgfl;
   1030 	struct uvm_cpu *ucpu;
   1031 	vsize_t bucketcount;
   1032 	int lcv;
   1033 
   1034 	if (CPU_IS_PRIMARY(ci)) {
   1035 		/* Already done in uvm_page_init(). */
   1036 		return;
   1037 	}
   1038 
   1039 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1040 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1041 	    M_VMPAGE, M_WAITOK);
   1042 	ucpu = &uvm.cpus[cpu_index(ci)];
   1043 	ci->ci_data.cpu_uvm = ucpu;
   1044 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1045 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1046 		uvm_page_init_buckets(&pgfl);
   1047 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1048 	}
   1049 }
   1050 
   1051 /*
   1052  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1053  */
   1054 
   1055 static struct vm_page *
   1056 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1057     int *trycolorp)
   1058 {
   1059 	struct pgflist *freeq;
   1060 	struct vm_page *pg;
   1061 	int color, trycolor = *trycolorp;
   1062 	struct pgfreelist *gpgfl, *pgfl;
   1063 
   1064 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1065 
   1066 	color = trycolor;
   1067 	cpu = false;
   1068 	pgfl = &ucpu->page_free[flist];
   1069 	gpgfl = &uvm.page_free[flist];
   1070 	do {
   1071 		/* cpu, try1 */
   1072 		if ((pg = LIST_FIRST((freeq =
   1073 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1074 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1075 		    	uvmexp.cpuhit++;
   1076 			goto gotit;
   1077 		}
   1078 		/* global, try1 */
   1079 		if ((pg = LIST_FIRST((freeq =
   1080 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1081 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1082 		    	uvmexp.cpumiss++;
   1083 			goto gotit;
   1084 		}
   1085 		/* cpu, try2 */
   1086 		if ((pg = LIST_FIRST((freeq =
   1087 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1088 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1089 		    	uvmexp.cpuhit++;
   1090 			goto gotit;
   1091 		}
   1092 		/* global, try2 */
   1093 		if ((pg = LIST_FIRST((freeq =
   1094 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1095 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1096 		    	uvmexp.cpumiss++;
   1097 			goto gotit;
   1098 		}
   1099 		color = (color + 1) & uvmexp.colormask;
   1100 	} while (color != trycolor);
   1101 
   1102 	return (NULL);
   1103 
   1104  gotit:
   1105 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1106 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1107 	uvmexp.free--;
   1108 
   1109 	/* update zero'd page count */
   1110 	if (pg->flags & PG_ZERO)
   1111 		uvmexp.zeropages--;
   1112 
   1113 	if (color == trycolor)
   1114 		uvmexp.colorhit++;
   1115 	else {
   1116 		uvmexp.colormiss++;
   1117 		*trycolorp = color;
   1118 	}
   1119 
   1120 	return (pg);
   1121 }
   1122 
   1123 /*
   1124  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1125  *
   1126  * => return null if no pages free
   1127  * => wake up pagedaemon if number of free pages drops below low water mark
   1128  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1129  * => if anon != NULL, anon must be locked (to put in anon)
   1130  * => only one of obj or anon can be non-null
   1131  * => caller must activate/deactivate page if it is not wired.
   1132  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1133  * => policy decision: it is more important to pull a page off of the
   1134  *	appropriate priority free list than it is to get a zero'd or
   1135  *	unknown contents page.  This is because we live with the
   1136  *	consequences of a bad free list decision for the entire
   1137  *	lifetime of the page, e.g. if the page comes from memory that
   1138  *	is slower to access.
   1139  */
   1140 
   1141 struct vm_page *
   1142 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1143     int flags, int strat, int free_list)
   1144 {
   1145 	int lcv, try1, try2, zeroit = 0, color;
   1146 	struct uvm_cpu *ucpu;
   1147 	struct vm_page *pg;
   1148 	bool use_reserve;
   1149 
   1150 	KASSERT(obj == NULL || anon == NULL);
   1151 	KASSERT(anon == NULL || off == 0);
   1152 	KASSERT(off == trunc_page(off));
   1153 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1154 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1155 
   1156 	mutex_spin_enter(&uvm_fpageqlock);
   1157 
   1158 	/*
   1159 	 * This implements a global round-robin page coloring
   1160 	 * algorithm.
   1161 	 *
   1162 	 * XXXJRT: What about virtually-indexed caches?
   1163 	 */
   1164 
   1165 	ucpu = curcpu()->ci_data.cpu_uvm;
   1166 	color = ucpu->page_free_nextcolor;
   1167 
   1168 	/*
   1169 	 * check to see if we need to generate some free pages waking
   1170 	 * the pagedaemon.
   1171 	 */
   1172 
   1173 	uvm_kick_pdaemon();
   1174 
   1175 	/*
   1176 	 * fail if any of these conditions is true:
   1177 	 * [1]  there really are no free pages, or
   1178 	 * [2]  only kernel "reserved" pages remain and
   1179 	 *        the page isn't being allocated to a kernel object.
   1180 	 * [3]  only pagedaemon "reserved" pages remain and
   1181 	 *        the requestor isn't the pagedaemon.
   1182 	 */
   1183 
   1184 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1185 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1186 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1187 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1188 	     !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
   1189 		goto fail;
   1190 
   1191 #if PGFL_NQUEUES != 2
   1192 #error uvm_pagealloc_strat needs to be updated
   1193 #endif
   1194 
   1195 	/*
   1196 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1197 	 * we try the UNKNOWN queue first.
   1198 	 */
   1199 	if (flags & UVM_PGA_ZERO) {
   1200 		try1 = PGFL_ZEROS;
   1201 		try2 = PGFL_UNKNOWN;
   1202 	} else {
   1203 		try1 = PGFL_UNKNOWN;
   1204 		try2 = PGFL_ZEROS;
   1205 	}
   1206 
   1207  again:
   1208 	switch (strat) {
   1209 	case UVM_PGA_STRAT_NORMAL:
   1210 		/* Check all freelists in descending priority order. */
   1211 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1212 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1213 			    try1, try2, &color);
   1214 			if (pg != NULL)
   1215 				goto gotit;
   1216 		}
   1217 
   1218 		/* No pages free! */
   1219 		goto fail;
   1220 
   1221 	case UVM_PGA_STRAT_ONLY:
   1222 	case UVM_PGA_STRAT_FALLBACK:
   1223 		/* Attempt to allocate from the specified free list. */
   1224 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1225 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1226 		    try1, try2, &color);
   1227 		if (pg != NULL)
   1228 			goto gotit;
   1229 
   1230 		/* Fall back, if possible. */
   1231 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1232 			strat = UVM_PGA_STRAT_NORMAL;
   1233 			goto again;
   1234 		}
   1235 
   1236 		/* No pages free! */
   1237 		goto fail;
   1238 
   1239 	default:
   1240 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1241 		/* NOTREACHED */
   1242 	}
   1243 
   1244  gotit:
   1245 	/*
   1246 	 * We now know which color we actually allocated from; set
   1247 	 * the next color accordingly.
   1248 	 */
   1249 
   1250 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1251 
   1252 	/*
   1253 	 * update allocation statistics and remember if we have to
   1254 	 * zero the page
   1255 	 */
   1256 
   1257 	if (flags & UVM_PGA_ZERO) {
   1258 		if (pg->flags & PG_ZERO) {
   1259 			uvmexp.pga_zerohit++;
   1260 			zeroit = 0;
   1261 		} else {
   1262 			uvmexp.pga_zeromiss++;
   1263 			zeroit = 1;
   1264 		}
   1265 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1266 			ucpu->page_idle_zero = vm_page_zero_enable;
   1267 		}
   1268 	}
   1269 	mutex_spin_exit(&uvm_fpageqlock);
   1270 
   1271 	pg->offset = off;
   1272 	pg->uobject = obj;
   1273 	pg->uanon = anon;
   1274 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1275 	if (anon) {
   1276 		anon->an_page = pg;
   1277 		pg->pqflags = PQ_ANON;
   1278 		atomic_inc_uint(&uvmexp.anonpages);
   1279 	} else {
   1280 		if (obj) {
   1281 			uvm_pageinsert(pg);
   1282 		}
   1283 		pg->pqflags = 0;
   1284 	}
   1285 #if defined(UVM_PAGE_TRKOWN)
   1286 	pg->owner_tag = NULL;
   1287 #endif
   1288 	UVM_PAGE_OWN(pg, "new alloc");
   1289 
   1290 	if (flags & UVM_PGA_ZERO) {
   1291 		/*
   1292 		 * A zero'd page is not clean.  If we got a page not already
   1293 		 * zero'd, then we have to zero it ourselves.
   1294 		 */
   1295 		pg->flags &= ~PG_CLEAN;
   1296 		if (zeroit)
   1297 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1298 	}
   1299 
   1300 	return(pg);
   1301 
   1302  fail:
   1303 	mutex_spin_exit(&uvm_fpageqlock);
   1304 	return (NULL);
   1305 }
   1306 
   1307 /*
   1308  * uvm_pagereplace: replace a page with another
   1309  *
   1310  * => object must be locked
   1311  */
   1312 
   1313 void
   1314 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1315 {
   1316 
   1317 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1318 	KASSERT(oldpg->uobject != NULL);
   1319 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1320 	KASSERT(newpg->uobject == NULL);
   1321 	KASSERT(mutex_owned(&oldpg->uobject->vmobjlock));
   1322 
   1323 	newpg->uobject = oldpg->uobject;
   1324 	newpg->offset = oldpg->offset;
   1325 
   1326 	uvm_pageinsert_after(newpg, oldpg);
   1327 	uvm_pageremove(oldpg);
   1328 }
   1329 
   1330 /*
   1331  * uvm_pagerealloc: reallocate a page from one object to another
   1332  *
   1333  * => both objects must be locked
   1334  */
   1335 
   1336 void
   1337 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1338 {
   1339 	/*
   1340 	 * remove it from the old object
   1341 	 */
   1342 
   1343 	if (pg->uobject) {
   1344 		uvm_pageremove(pg);
   1345 	}
   1346 
   1347 	/*
   1348 	 * put it in the new object
   1349 	 */
   1350 
   1351 	if (newobj) {
   1352 		pg->uobject = newobj;
   1353 		pg->offset = newoff;
   1354 		uvm_pageinsert(pg);
   1355 	}
   1356 }
   1357 
   1358 #ifdef DEBUG
   1359 /*
   1360  * check if page is zero-filled
   1361  *
   1362  *  - called with free page queue lock held.
   1363  */
   1364 void
   1365 uvm_pagezerocheck(struct vm_page *pg)
   1366 {
   1367 	int *p, *ep;
   1368 
   1369 	KASSERT(uvm_zerocheckkva != 0);
   1370 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1371 
   1372 	/*
   1373 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1374 	 * uvm page allocator.
   1375 	 *
   1376 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1377 	 */
   1378 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1379 	p = (int *)uvm_zerocheckkva;
   1380 	ep = (int *)((char *)p + PAGE_SIZE);
   1381 	pmap_update(pmap_kernel());
   1382 	while (p < ep) {
   1383 		if (*p != 0)
   1384 			panic("PG_ZERO page isn't zero-filled");
   1385 		p++;
   1386 	}
   1387 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1388 	/*
   1389 	 * pmap_update() is not necessary here because no one except us
   1390 	 * uses this VA.
   1391 	 */
   1392 }
   1393 #endif /* DEBUG */
   1394 
   1395 /*
   1396  * uvm_pagefree: free page
   1397  *
   1398  * => erase page's identity (i.e. remove from object)
   1399  * => put page on free list
   1400  * => caller must lock owning object (either anon or uvm_object)
   1401  * => caller must lock page queues
   1402  * => assumes all valid mappings of pg are gone
   1403  */
   1404 
   1405 void
   1406 uvm_pagefree(struct vm_page *pg)
   1407 {
   1408 	struct pgflist *pgfl;
   1409 	struct uvm_cpu *ucpu;
   1410 	int index, color, queue;
   1411 	bool iszero;
   1412 
   1413 #ifdef DEBUG
   1414 	if (pg->uobject == (void *)0xdeadbeef &&
   1415 	    pg->uanon == (void *)0xdeadbeef) {
   1416 		panic("uvm_pagefree: freeing free page %p", pg);
   1417 	}
   1418 #endif /* DEBUG */
   1419 
   1420 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1421 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1422 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1423 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1424 		mutex_owned(&pg->uanon->an_lock));
   1425 
   1426 	/*
   1427 	 * if the page is loaned, resolve the loan instead of freeing.
   1428 	 */
   1429 
   1430 	if (pg->loan_count) {
   1431 		KASSERT(pg->wire_count == 0);
   1432 
   1433 		/*
   1434 		 * if the page is owned by an anon then we just want to
   1435 		 * drop anon ownership.  the kernel will free the page when
   1436 		 * it is done with it.  if the page is owned by an object,
   1437 		 * remove it from the object and mark it dirty for the benefit
   1438 		 * of possible anon owners.
   1439 		 *
   1440 		 * regardless of previous ownership, wakeup any waiters,
   1441 		 * unbusy the page, and we're done.
   1442 		 */
   1443 
   1444 		if (pg->uobject != NULL) {
   1445 			uvm_pageremove(pg);
   1446 			pg->flags &= ~PG_CLEAN;
   1447 		} else if (pg->uanon != NULL) {
   1448 			if ((pg->pqflags & PQ_ANON) == 0) {
   1449 				pg->loan_count--;
   1450 			} else {
   1451 				pg->pqflags &= ~PQ_ANON;
   1452 				atomic_dec_uint(&uvmexp.anonpages);
   1453 			}
   1454 			pg->uanon->an_page = NULL;
   1455 			pg->uanon = NULL;
   1456 		}
   1457 		if (pg->flags & PG_WANTED) {
   1458 			wakeup(pg);
   1459 		}
   1460 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1461 #ifdef UVM_PAGE_TRKOWN
   1462 		pg->owner_tag = NULL;
   1463 #endif
   1464 		if (pg->loan_count) {
   1465 			KASSERT(pg->uobject == NULL);
   1466 			if (pg->uanon == NULL) {
   1467 				uvm_pagedequeue(pg);
   1468 			}
   1469 			return;
   1470 		}
   1471 	}
   1472 
   1473 	/*
   1474 	 * remove page from its object or anon.
   1475 	 */
   1476 
   1477 	if (pg->uobject != NULL) {
   1478 		uvm_pageremove(pg);
   1479 	} else if (pg->uanon != NULL) {
   1480 		pg->uanon->an_page = NULL;
   1481 		atomic_dec_uint(&uvmexp.anonpages);
   1482 	}
   1483 
   1484 	/*
   1485 	 * now remove the page from the queues.
   1486 	 */
   1487 
   1488 	uvm_pagedequeue(pg);
   1489 
   1490 	/*
   1491 	 * if the page was wired, unwire it now.
   1492 	 */
   1493 
   1494 	if (pg->wire_count) {
   1495 		pg->wire_count = 0;
   1496 		uvmexp.wired--;
   1497 	}
   1498 
   1499 	/*
   1500 	 * and put on free queue
   1501 	 */
   1502 
   1503 	iszero = (pg->flags & PG_ZERO);
   1504 	index = uvm_page_lookup_freelist(pg);
   1505 	color = VM_PGCOLOR_BUCKET(pg);
   1506 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1507 
   1508 	pg->pqflags = PQ_FREE;
   1509 #ifdef DEBUG
   1510 	pg->uobject = (void *)0xdeadbeef;
   1511 	pg->uanon = (void *)0xdeadbeef;
   1512 #endif
   1513 
   1514 	mutex_spin_enter(&uvm_fpageqlock);
   1515 
   1516 #ifdef DEBUG
   1517 	if (iszero)
   1518 		uvm_pagezerocheck(pg);
   1519 #endif /* DEBUG */
   1520 
   1521 
   1522 	/* global list */
   1523 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1524 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1525 	uvmexp.free++;
   1526 	if (iszero) {
   1527 		uvmexp.zeropages++;
   1528 	}
   1529 
   1530 	/* per-cpu list */
   1531 	ucpu = curcpu()->ci_data.cpu_uvm;
   1532 	pg->offset = (uintptr_t)ucpu;
   1533 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1534 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1535 	ucpu->pages[queue]++;
   1536 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1537 		ucpu->page_idle_zero = vm_page_zero_enable;
   1538 	}
   1539 
   1540 	mutex_spin_exit(&uvm_fpageqlock);
   1541 }
   1542 
   1543 /*
   1544  * uvm_page_unbusy: unbusy an array of pages.
   1545  *
   1546  * => pages must either all belong to the same object, or all belong to anons.
   1547  * => if pages are object-owned, object must be locked.
   1548  * => if pages are anon-owned, anons must be locked.
   1549  * => caller must lock page queues if pages may be released.
   1550  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1551  */
   1552 
   1553 void
   1554 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1555 {
   1556 	struct vm_page *pg;
   1557 	int i;
   1558 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1559 
   1560 	for (i = 0; i < npgs; i++) {
   1561 		pg = pgs[i];
   1562 		if (pg == NULL || pg == PGO_DONTCARE) {
   1563 			continue;
   1564 		}
   1565 
   1566 		KASSERT(pg->uobject == NULL ||
   1567 		    mutex_owned(&pg->uobject->vmobjlock));
   1568 		KASSERT(pg->uobject != NULL ||
   1569 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1570 
   1571 		KASSERT(pg->flags & PG_BUSY);
   1572 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1573 		if (pg->flags & PG_WANTED) {
   1574 			wakeup(pg);
   1575 		}
   1576 		if (pg->flags & PG_RELEASED) {
   1577 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1578 			KASSERT(pg->uobject != NULL ||
   1579 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1580 			pg->flags &= ~PG_RELEASED;
   1581 			uvm_pagefree(pg);
   1582 		} else {
   1583 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1584 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1585 			UVM_PAGE_OWN(pg, NULL);
   1586 		}
   1587 	}
   1588 }
   1589 
   1590 #if defined(UVM_PAGE_TRKOWN)
   1591 /*
   1592  * uvm_page_own: set or release page ownership
   1593  *
   1594  * => this is a debugging function that keeps track of who sets PG_BUSY
   1595  *	and where they do it.   it can be used to track down problems
   1596  *	such a process setting "PG_BUSY" and never releasing it.
   1597  * => page's object [if any] must be locked
   1598  * => if "tag" is NULL then we are releasing page ownership
   1599  */
   1600 void
   1601 uvm_page_own(struct vm_page *pg, const char *tag)
   1602 {
   1603 	struct uvm_object *uobj;
   1604 	struct vm_anon *anon;
   1605 
   1606 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1607 
   1608 	uobj = pg->uobject;
   1609 	anon = pg->uanon;
   1610 	if (uobj != NULL) {
   1611 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1612 	} else if (anon != NULL) {
   1613 		KASSERT(mutex_owned(&anon->an_lock));
   1614 	}
   1615 
   1616 	KASSERT((pg->flags & PG_WANTED) == 0);
   1617 
   1618 	/* gain ownership? */
   1619 	if (tag) {
   1620 		KASSERT((pg->flags & PG_BUSY) != 0);
   1621 		if (pg->owner_tag) {
   1622 			printf("uvm_page_own: page %p already owned "
   1623 			    "by proc %d [%s]\n", pg,
   1624 			    pg->owner, pg->owner_tag);
   1625 			panic("uvm_page_own");
   1626 		}
   1627 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1628 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1629 		pg->owner_tag = tag;
   1630 		return;
   1631 	}
   1632 
   1633 	/* drop ownership */
   1634 	KASSERT((pg->flags & PG_BUSY) == 0);
   1635 	if (pg->owner_tag == NULL) {
   1636 		printf("uvm_page_own: dropping ownership of an non-owned "
   1637 		    "page (%p)\n", pg);
   1638 		panic("uvm_page_own");
   1639 	}
   1640 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1641 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1642 		    pg->wire_count > 0);
   1643 	} else {
   1644 		KASSERT(pg->wire_count == 0);
   1645 	}
   1646 	pg->owner_tag = NULL;
   1647 }
   1648 #endif
   1649 
   1650 /*
   1651  * uvm_pageidlezero: zero free pages while the system is idle.
   1652  *
   1653  * => try to complete one color bucket at a time, to reduce our impact
   1654  *	on the CPU cache.
   1655  * => we loop until we either reach the target or there is a lwp ready
   1656  *      to run, or MD code detects a reason to break early.
   1657  */
   1658 void
   1659 uvm_pageidlezero(void)
   1660 {
   1661 	struct vm_page *pg;
   1662 	struct pgfreelist *pgfl, *gpgfl;
   1663 	struct uvm_cpu *ucpu;
   1664 	int free_list, firstbucket, nextbucket;
   1665 
   1666 	ucpu = curcpu()->ci_data.cpu_uvm;
   1667 	if (!ucpu->page_idle_zero ||
   1668 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1669 	    	ucpu->page_idle_zero = false;
   1670 		return;
   1671 	}
   1672 	mutex_enter(&uvm_fpageqlock);
   1673 	firstbucket = ucpu->page_free_nextcolor;
   1674 	nextbucket = firstbucket;
   1675 	do {
   1676 		if (sched_curcpu_runnable_p()) {
   1677 			break;
   1678 		}
   1679 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1680 			pgfl = &ucpu->page_free[free_list];
   1681 			gpgfl = &uvm.page_free[free_list];
   1682 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1683 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1684 				if (sched_curcpu_runnable_p()) {
   1685 					goto quit;
   1686 				}
   1687 				LIST_REMOVE(pg, pageq.list); /* global list */
   1688 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1689 				ucpu->pages[PGFL_UNKNOWN]--;
   1690 				uvmexp.free--;
   1691 				mutex_spin_exit(&uvm_fpageqlock);
   1692 #ifdef PMAP_PAGEIDLEZERO
   1693 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1694 
   1695 					/*
   1696 					 * The machine-dependent code detected
   1697 					 * some reason for us to abort zeroing
   1698 					 * pages, probably because there is a
   1699 					 * process now ready to run.
   1700 					 */
   1701 
   1702 					mutex_spin_enter(&uvm_fpageqlock);
   1703 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1704 					    nextbucket].pgfl_queues[
   1705 					    PGFL_UNKNOWN], pg, pageq.list);
   1706 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1707 					    nextbucket].pgfl_queues[
   1708 					    PGFL_UNKNOWN], pg, listq.list);
   1709 					ucpu->pages[PGFL_UNKNOWN]++;
   1710 					uvmexp.free++;
   1711 					uvmexp.zeroaborts++;
   1712 					goto quit;
   1713 				}
   1714 #else
   1715 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1716 #endif /* PMAP_PAGEIDLEZERO */
   1717 				pg->flags |= PG_ZERO;
   1718 
   1719 				mutex_spin_enter(&uvm_fpageqlock);
   1720 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1721 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1722 				    pg, pageq.list);
   1723 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1724 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1725 				    pg, listq.list);
   1726 				ucpu->pages[PGFL_ZEROS]++;
   1727 				uvmexp.free++;
   1728 				uvmexp.zeropages++;
   1729 			}
   1730 		}
   1731 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1732 			break;
   1733 		}
   1734 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1735 	} while (nextbucket != firstbucket);
   1736 	ucpu->page_idle_zero = false;
   1737  quit:
   1738 	mutex_spin_exit(&uvm_fpageqlock);
   1739 }
   1740 
   1741 /*
   1742  * uvm_pagelookup: look up a page
   1743  *
   1744  * => caller should lock object to keep someone from pulling the page
   1745  *	out from under it
   1746  */
   1747 
   1748 struct vm_page *
   1749 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1750 {
   1751 	struct vm_page *pg;
   1752 	struct pglist *buck;
   1753 	kmutex_t *lock;
   1754 	u_int hash;
   1755 
   1756 	KASSERT(mutex_owned(&obj->vmobjlock));
   1757 
   1758 	hash = uvm_pagehash(obj, off);
   1759 	buck = &uvm.page_hash[hash];
   1760 	lock = uvm_hashlock(hash);
   1761 	mutex_spin_enter(lock);
   1762 	TAILQ_FOREACH(pg, buck, hashq) {
   1763 		if (pg->uobject == obj && pg->offset == off) {
   1764 			break;
   1765 		}
   1766 	}
   1767 	mutex_spin_exit(lock);
   1768 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1769 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1770 		(pg->flags & PG_BUSY) != 0);
   1771 	return(pg);
   1772 }
   1773 
   1774 /*
   1775  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1776  *
   1777  * => caller must lock page queues
   1778  */
   1779 
   1780 void
   1781 uvm_pagewire(struct vm_page *pg)
   1782 {
   1783 	KASSERT(mutex_owned(&uvm_pageqlock));
   1784 #if defined(READAHEAD_STATS)
   1785 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1786 		uvm_ra_hit.ev_count++;
   1787 		pg->pqflags &= ~PQ_READAHEAD;
   1788 	}
   1789 #endif /* defined(READAHEAD_STATS) */
   1790 	if (pg->wire_count == 0) {
   1791 		uvm_pagedequeue(pg);
   1792 		uvmexp.wired++;
   1793 	}
   1794 	pg->wire_count++;
   1795 }
   1796 
   1797 /*
   1798  * uvm_pageunwire: unwire the page.
   1799  *
   1800  * => activate if wire count goes to zero.
   1801  * => caller must lock page queues
   1802  */
   1803 
   1804 void
   1805 uvm_pageunwire(struct vm_page *pg)
   1806 {
   1807 	KASSERT(mutex_owned(&uvm_pageqlock));
   1808 	pg->wire_count--;
   1809 	if (pg->wire_count == 0) {
   1810 		uvm_pageactivate(pg);
   1811 		uvmexp.wired--;
   1812 	}
   1813 }
   1814 
   1815 /*
   1816  * uvm_pagedeactivate: deactivate page
   1817  *
   1818  * => caller must lock page queues
   1819  * => caller must check to make sure page is not wired
   1820  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1821  * => caller must clear the reference on the page before calling
   1822  */
   1823 
   1824 void
   1825 uvm_pagedeactivate(struct vm_page *pg)
   1826 {
   1827 
   1828 	KASSERT(mutex_owned(&uvm_pageqlock));
   1829 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1830 	uvmpdpol_pagedeactivate(pg);
   1831 }
   1832 
   1833 /*
   1834  * uvm_pageactivate: activate page
   1835  *
   1836  * => caller must lock page queues
   1837  */
   1838 
   1839 void
   1840 uvm_pageactivate(struct vm_page *pg)
   1841 {
   1842 
   1843 	KASSERT(mutex_owned(&uvm_pageqlock));
   1844 #if defined(READAHEAD_STATS)
   1845 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1846 		uvm_ra_hit.ev_count++;
   1847 		pg->pqflags &= ~PQ_READAHEAD;
   1848 	}
   1849 #endif /* defined(READAHEAD_STATS) */
   1850 	if (pg->wire_count != 0) {
   1851 		return;
   1852 	}
   1853 	uvmpdpol_pageactivate(pg);
   1854 }
   1855 
   1856 /*
   1857  * uvm_pagedequeue: remove a page from any paging queue
   1858  */
   1859 
   1860 void
   1861 uvm_pagedequeue(struct vm_page *pg)
   1862 {
   1863 
   1864 	if (uvmpdpol_pageisqueued_p(pg)) {
   1865 		KASSERT(mutex_owned(&uvm_pageqlock));
   1866 	}
   1867 
   1868 	uvmpdpol_pagedequeue(pg);
   1869 }
   1870 
   1871 /*
   1872  * uvm_pageenqueue: add a page to a paging queue without activating.
   1873  * used where a page is not really demanded (yet).  eg. read-ahead
   1874  */
   1875 
   1876 void
   1877 uvm_pageenqueue(struct vm_page *pg)
   1878 {
   1879 
   1880 	KASSERT(mutex_owned(&uvm_pageqlock));
   1881 	if (pg->wire_count != 0) {
   1882 		return;
   1883 	}
   1884 	uvmpdpol_pageenqueue(pg);
   1885 }
   1886 
   1887 /*
   1888  * uvm_pagezero: zero fill a page
   1889  *
   1890  * => if page is part of an object then the object should be locked
   1891  *	to protect pg->flags.
   1892  */
   1893 
   1894 void
   1895 uvm_pagezero(struct vm_page *pg)
   1896 {
   1897 	pg->flags &= ~PG_CLEAN;
   1898 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1899 }
   1900 
   1901 /*
   1902  * uvm_pagecopy: copy a page
   1903  *
   1904  * => if page is part of an object then the object should be locked
   1905  *	to protect pg->flags.
   1906  */
   1907 
   1908 void
   1909 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1910 {
   1911 
   1912 	dst->flags &= ~PG_CLEAN;
   1913 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1914 }
   1915 
   1916 /*
   1917  * uvm_page_lookup_freelist: look up the free list for the specified page
   1918  */
   1919 
   1920 int
   1921 uvm_page_lookup_freelist(struct vm_page *pg)
   1922 {
   1923 	int lcv;
   1924 
   1925 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1926 	KASSERT(lcv != -1);
   1927 	return (vm_physmem[lcv].free_list);
   1928 }
   1929