Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.139
      1 /*	$NetBSD: uvm_page.c,v 1.139 2008/07/02 17:47:53 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.139 2008/07/02 17:47:53 ad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 #include <sys/atomic.h>
     87 #include <sys/cpu.h>
     88 
     89 #include <uvm/uvm.h>
     90 #include <uvm/uvm_pdpolicy.h>
     91 
     92 /*
     93  * global vars... XXXCDC: move to uvm. structure.
     94  */
     95 
     96 /*
     97  * physical memory config is stored in vm_physmem.
     98  */
     99 
    100 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    101 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    102 
    103 /*
    104  * Some supported CPUs in a given architecture don't support all
    105  * of the things necessary to do idle page zero'ing efficiently.
    106  * We therefore provide a way to disable it from machdep code here.
    107  */
    108 /*
    109  * XXX disabled until we can find a way to do this without causing
    110  * problems for either CPU caches or DMA latency.
    111  */
    112 bool vm_page_zero_enable = false;
    113 
    114 /*
    115  * local variables
    116  */
    117 
    118 /*
    119  * these variables record the values returned by vm_page_bootstrap,
    120  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    121  * and pmap_startup here also uses them internally.
    122  */
    123 
    124 static vaddr_t      virtual_space_start;
    125 static vaddr_t      virtual_space_end;
    126 
    127 /*
    128  * we allocate an initial number of page colors in uvm_page_init(),
    129  * and remember them.  We may re-color pages as cache sizes are
    130  * discovered during the autoconfiguration phase.  But we can never
    131  * free the initial set of buckets, since they are allocated using
    132  * uvm_pageboot_alloc().
    133  */
    134 
    135 static bool have_recolored_pages /* = false */;
    136 
    137 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    138 
    139 #ifdef DEBUG
    140 vaddr_t uvm_zerocheckkva;
    141 #endif /* DEBUG */
    142 
    143 /*
    144  * local prototypes
    145  */
    146 
    147 static void uvm_pageinsert(struct vm_page *);
    148 static void uvm_pageremove(struct vm_page *);
    149 
    150 /*
    151  * per-object tree of pages
    152  */
    153 
    154 static signed int
    155 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    156 {
    157 	const struct vm_page *pg1 = (const void *)n1;
    158 	const struct vm_page *pg2 = (const void *)n2;
    159 	const voff_t a = pg1->offset;
    160 	const voff_t b = pg2->offset;
    161 
    162 	if (a < b)
    163 		return 1;
    164 	if (a > b)
    165 		return -1;
    166 	return 0;
    167 }
    168 
    169 static signed int
    170 uvm_page_compare_key(const struct rb_node *n, const void *key)
    171 {
    172 	const struct vm_page *pg = (const void *)n;
    173 	const voff_t a = pg->offset;
    174 	const voff_t b = *(const voff_t *)key;
    175 
    176 	if (a < b)
    177 		return 1;
    178 	if (a > b)
    179 		return -1;
    180 	return 0;
    181 }
    182 
    183 const struct rb_tree_ops uvm_page_tree_ops = {
    184 	.rbto_compare_nodes = uvm_page_compare_nodes,
    185 	.rbto_compare_key = uvm_page_compare_key,
    186 };
    187 
    188 /*
    189  * inline functions
    190  */
    191 
    192 /*
    193  * uvm_pageinsert: insert a page in the object.
    194  *
    195  * => caller must lock object
    196  * => caller must lock page queues
    197  * => call should have already set pg's object and offset pointers
    198  *    and bumped the version counter
    199  */
    200 
    201 static inline void
    202 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    203     struct vm_page *where)
    204 {
    205 
    206 	KASSERT(uobj == pg->uobject);
    207 	KASSERT(mutex_owned(&uobj->vmobjlock));
    208 	KASSERT((pg->flags & PG_TABLED) == 0);
    209 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    210 	KASSERT(where == NULL || (where->uobject == uobj));
    211 
    212 	if (UVM_OBJ_IS_VNODE(uobj)) {
    213 		if (uobj->uo_npages == 0) {
    214 			struct vnode *vp = (struct vnode *)uobj;
    215 
    216 			vholdl(vp);
    217 		}
    218 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    219 			atomic_inc_uint(&uvmexp.execpages);
    220 		} else {
    221 			atomic_inc_uint(&uvmexp.filepages);
    222 		}
    223 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    224 		atomic_inc_uint(&uvmexp.anonpages);
    225 	}
    226 
    227 	if (where)
    228 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    229 	else
    230 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    231 	pg->flags |= PG_TABLED;
    232 	uobj->uo_npages++;
    233 }
    234 
    235 
    236 static inline void
    237 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    238 {
    239 	bool success;
    240 
    241 	KASSERT(uobj == pg->uobject);
    242 	success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    243 	KASSERT(success);
    244 }
    245 
    246 static inline void
    247 uvm_pageinsert(struct vm_page *pg)
    248 {
    249 	struct uvm_object *uobj = pg->uobject;
    250 
    251 	uvm_pageinsert_tree(uobj, pg);
    252 	uvm_pageinsert_list(uobj, pg, NULL);
    253 }
    254 
    255 /*
    256  * uvm_page_remove: remove page from object.
    257  *
    258  * => caller must lock object
    259  * => caller must lock page queues
    260  */
    261 
    262 static inline void
    263 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    264 {
    265 
    266 	KASSERT(uobj == pg->uobject);
    267 	KASSERT(mutex_owned(&uobj->vmobjlock));
    268 	KASSERT(pg->flags & PG_TABLED);
    269 
    270 	if (UVM_OBJ_IS_VNODE(uobj)) {
    271 		if (uobj->uo_npages == 1) {
    272 			struct vnode *vp = (struct vnode *)uobj;
    273 
    274 			holdrelel(vp);
    275 		}
    276 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    277 			atomic_dec_uint(&uvmexp.execpages);
    278 		} else {
    279 			atomic_dec_uint(&uvmexp.filepages);
    280 		}
    281 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    282 		atomic_dec_uint(&uvmexp.anonpages);
    283 	}
    284 
    285 	/* object should be locked */
    286 	uobj->uo_npages--;
    287 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    288 	pg->flags &= ~PG_TABLED;
    289 	pg->uobject = NULL;
    290 }
    291 
    292 static inline void
    293 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    294 {
    295 
    296 	KASSERT(uobj == pg->uobject);
    297 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    298 }
    299 
    300 static inline void
    301 uvm_pageremove(struct vm_page *pg)
    302 {
    303 	struct uvm_object *uobj = pg->uobject;
    304 
    305 	uvm_pageremove_tree(uobj, pg);
    306 	uvm_pageremove_list(uobj, pg);
    307 }
    308 
    309 static void
    310 uvm_page_init_buckets(struct pgfreelist *pgfl)
    311 {
    312 	int color, i;
    313 
    314 	for (color = 0; color < uvmexp.ncolors; color++) {
    315 		for (i = 0; i < PGFL_NQUEUES; i++) {
    316 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    317 		}
    318 	}
    319 }
    320 
    321 /*
    322  * uvm_page_init: init the page system.   called from uvm_init().
    323  *
    324  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    325  */
    326 
    327 void
    328 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    329 {
    330 	vsize_t freepages, pagecount, bucketcount, n;
    331 	struct pgflbucket *bucketarray, *cpuarray;
    332 	struct vm_page *pagearray;
    333 	int lcv;
    334 	u_int i;
    335 	paddr_t paddr;
    336 
    337 	KASSERT(ncpu <= 1);
    338 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    339 
    340 	/*
    341 	 * init the page queues and page queue locks, except the free
    342 	 * list; we allocate that later (with the initial vm_page
    343 	 * structures).
    344 	 */
    345 
    346 	curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
    347 	uvmpdpol_init();
    348 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    349 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    350 
    351 	/*
    352 	 * allocate vm_page structures.
    353 	 */
    354 
    355 	/*
    356 	 * sanity check:
    357 	 * before calling this function the MD code is expected to register
    358 	 * some free RAM with the uvm_page_physload() function.   our job
    359 	 * now is to allocate vm_page structures for this memory.
    360 	 */
    361 
    362 	if (vm_nphysseg == 0)
    363 		panic("uvm_page_bootstrap: no memory pre-allocated");
    364 
    365 	/*
    366 	 * first calculate the number of free pages...
    367 	 *
    368 	 * note that we use start/end rather than avail_start/avail_end.
    369 	 * this allows us to allocate extra vm_page structures in case we
    370 	 * want to return some memory to the pool after booting.
    371 	 */
    372 
    373 	freepages = 0;
    374 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    375 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    376 
    377 	/*
    378 	 * Let MD code initialize the number of colors, or default
    379 	 * to 1 color if MD code doesn't care.
    380 	 */
    381 	if (uvmexp.ncolors == 0)
    382 		uvmexp.ncolors = 1;
    383 	uvmexp.colormask = uvmexp.ncolors - 1;
    384 
    385 	/*
    386 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    387 	 * use.   for each page of memory we use we need a vm_page structure.
    388 	 * thus, the total number of pages we can use is the total size of
    389 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    390 	 * structure.   we add one to freepages as a fudge factor to avoid
    391 	 * truncation errors (since we can only allocate in terms of whole
    392 	 * pages).
    393 	 */
    394 
    395 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    396 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    397 	    (PAGE_SIZE + sizeof(struct vm_page));
    398 
    399 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    400 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    401 	    sizeof(struct vm_page)));
    402 	cpuarray = bucketarray + bucketcount;
    403 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    404 
    405 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    406 		uvm.page_free[lcv].pgfl_buckets =
    407 		    (bucketarray + (lcv * uvmexp.ncolors));
    408 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    409 		uvm.cpus[0].page_free[lcv].pgfl_buckets =
    410 		    (cpuarray + (lcv * uvmexp.ncolors));
    411 		uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
    412 	}
    413 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    414 
    415 	/*
    416 	 * init the vm_page structures and put them in the correct place.
    417 	 */
    418 
    419 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    420 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    421 
    422 		/* set up page array pointers */
    423 		vm_physmem[lcv].pgs = pagearray;
    424 		pagearray += n;
    425 		pagecount -= n;
    426 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    427 
    428 		/* init and free vm_pages (we've already zeroed them) */
    429 		paddr = ptoa(vm_physmem[lcv].start);
    430 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    431 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    432 #ifdef __HAVE_VM_PAGE_MD
    433 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    434 #endif
    435 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    436 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    437 				uvmexp.npages++;
    438 				/* add page to free pool */
    439 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    440 			}
    441 		}
    442 	}
    443 
    444 	/*
    445 	 * pass up the values of virtual_space_start and
    446 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    447 	 * layers of the VM.
    448 	 */
    449 
    450 	*kvm_startp = round_page(virtual_space_start);
    451 	*kvm_endp = trunc_page(virtual_space_end);
    452 #ifdef DEBUG
    453 	/*
    454 	 * steal kva for uvm_pagezerocheck().
    455 	 */
    456 	uvm_zerocheckkva = *kvm_startp;
    457 	*kvm_startp += PAGE_SIZE;
    458 #endif /* DEBUG */
    459 
    460 	/*
    461 	 * init various thresholds.
    462 	 */
    463 
    464 	uvmexp.reserve_pagedaemon = 1;
    465 	uvmexp.reserve_kernel = 5;
    466 
    467 	/*
    468 	 * determine if we should zero pages in the idle loop.
    469 	 */
    470 
    471 	uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
    472 
    473 	/*
    474 	 * done!
    475 	 */
    476 
    477 	uvm.page_init_done = true;
    478 }
    479 
    480 /*
    481  * uvm_setpagesize: set the page size
    482  *
    483  * => sets page_shift and page_mask from uvmexp.pagesize.
    484  */
    485 
    486 void
    487 uvm_setpagesize(void)
    488 {
    489 
    490 	/*
    491 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    492 	 * to be a constant (indicated by being a non-zero value).
    493 	 */
    494 	if (uvmexp.pagesize == 0) {
    495 		if (PAGE_SIZE == 0)
    496 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    497 		uvmexp.pagesize = PAGE_SIZE;
    498 	}
    499 	uvmexp.pagemask = uvmexp.pagesize - 1;
    500 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    501 		panic("uvm_setpagesize: page size not a power of two");
    502 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    503 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    504 			break;
    505 }
    506 
    507 /*
    508  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    509  */
    510 
    511 vaddr_t
    512 uvm_pageboot_alloc(vsize_t size)
    513 {
    514 	static bool initialized = false;
    515 	vaddr_t addr;
    516 #if !defined(PMAP_STEAL_MEMORY)
    517 	vaddr_t vaddr;
    518 	paddr_t paddr;
    519 #endif
    520 
    521 	/*
    522 	 * on first call to this function, initialize ourselves.
    523 	 */
    524 	if (initialized == false) {
    525 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    526 
    527 		/* round it the way we like it */
    528 		virtual_space_start = round_page(virtual_space_start);
    529 		virtual_space_end = trunc_page(virtual_space_end);
    530 
    531 		initialized = true;
    532 	}
    533 
    534 	/* round to page size */
    535 	size = round_page(size);
    536 
    537 #if defined(PMAP_STEAL_MEMORY)
    538 
    539 	/*
    540 	 * defer bootstrap allocation to MD code (it may want to allocate
    541 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    542 	 * virtual_space_start/virtual_space_end if necessary.
    543 	 */
    544 
    545 	addr = pmap_steal_memory(size, &virtual_space_start,
    546 	    &virtual_space_end);
    547 
    548 	return(addr);
    549 
    550 #else /* !PMAP_STEAL_MEMORY */
    551 
    552 	/*
    553 	 * allocate virtual memory for this request
    554 	 */
    555 	if (virtual_space_start == virtual_space_end ||
    556 	    (virtual_space_end - virtual_space_start) < size)
    557 		panic("uvm_pageboot_alloc: out of virtual space");
    558 
    559 	addr = virtual_space_start;
    560 
    561 #ifdef PMAP_GROWKERNEL
    562 	/*
    563 	 * If the kernel pmap can't map the requested space,
    564 	 * then allocate more resources for it.
    565 	 */
    566 	if (uvm_maxkaddr < (addr + size)) {
    567 		uvm_maxkaddr = pmap_growkernel(addr + size);
    568 		if (uvm_maxkaddr < (addr + size))
    569 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    570 	}
    571 #endif
    572 
    573 	virtual_space_start += size;
    574 
    575 	/*
    576 	 * allocate and mapin physical pages to back new virtual pages
    577 	 */
    578 
    579 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    580 	    vaddr += PAGE_SIZE) {
    581 
    582 		if (!uvm_page_physget(&paddr))
    583 			panic("uvm_pageboot_alloc: out of memory");
    584 
    585 		/*
    586 		 * Note this memory is no longer managed, so using
    587 		 * pmap_kenter is safe.
    588 		 */
    589 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    590 	}
    591 	pmap_update(pmap_kernel());
    592 	return(addr);
    593 #endif	/* PMAP_STEAL_MEMORY */
    594 }
    595 
    596 #if !defined(PMAP_STEAL_MEMORY)
    597 /*
    598  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    599  *
    600  * => attempt to allocate it off the end of a segment in which the "avail"
    601  *    values match the start/end values.   if we can't do that, then we
    602  *    will advance both values (making them equal, and removing some
    603  *    vm_page structures from the non-avail area).
    604  * => return false if out of memory.
    605  */
    606 
    607 /* subroutine: try to allocate from memory chunks on the specified freelist */
    608 static bool uvm_page_physget_freelist(paddr_t *, int);
    609 
    610 static bool
    611 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    612 {
    613 	int lcv, x;
    614 
    615 	/* pass 1: try allocating from a matching end */
    616 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    617 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    618 #else
    619 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    620 #endif
    621 	{
    622 
    623 		if (uvm.page_init_done == true)
    624 			panic("uvm_page_physget: called _after_ bootstrap");
    625 
    626 		if (vm_physmem[lcv].free_list != freelist)
    627 			continue;
    628 
    629 		/* try from front */
    630 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    631 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    632 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    633 			vm_physmem[lcv].avail_start++;
    634 			vm_physmem[lcv].start++;
    635 			/* nothing left?   nuke it */
    636 			if (vm_physmem[lcv].avail_start ==
    637 			    vm_physmem[lcv].end) {
    638 				if (vm_nphysseg == 1)
    639 				    panic("uvm_page_physget: out of memory!");
    640 				vm_nphysseg--;
    641 				for (x = lcv ; x < vm_nphysseg ; x++)
    642 					/* structure copy */
    643 					vm_physmem[x] = vm_physmem[x+1];
    644 			}
    645 			return (true);
    646 		}
    647 
    648 		/* try from rear */
    649 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    650 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    651 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    652 			vm_physmem[lcv].avail_end--;
    653 			vm_physmem[lcv].end--;
    654 			/* nothing left?   nuke it */
    655 			if (vm_physmem[lcv].avail_end ==
    656 			    vm_physmem[lcv].start) {
    657 				if (vm_nphysseg == 1)
    658 				    panic("uvm_page_physget: out of memory!");
    659 				vm_nphysseg--;
    660 				for (x = lcv ; x < vm_nphysseg ; x++)
    661 					/* structure copy */
    662 					vm_physmem[x] = vm_physmem[x+1];
    663 			}
    664 			return (true);
    665 		}
    666 	}
    667 
    668 	/* pass2: forget about matching ends, just allocate something */
    669 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    670 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    671 #else
    672 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    673 #endif
    674 	{
    675 
    676 		/* any room in this bank? */
    677 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    678 			continue;  /* nope */
    679 
    680 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    681 		vm_physmem[lcv].avail_start++;
    682 		/* truncate! */
    683 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    684 
    685 		/* nothing left?   nuke it */
    686 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    687 			if (vm_nphysseg == 1)
    688 				panic("uvm_page_physget: out of memory!");
    689 			vm_nphysseg--;
    690 			for (x = lcv ; x < vm_nphysseg ; x++)
    691 				/* structure copy */
    692 				vm_physmem[x] = vm_physmem[x+1];
    693 		}
    694 		return (true);
    695 	}
    696 
    697 	return (false);        /* whoops! */
    698 }
    699 
    700 bool
    701 uvm_page_physget(paddr_t *paddrp)
    702 {
    703 	int i;
    704 
    705 	/* try in the order of freelist preference */
    706 	for (i = 0; i < VM_NFREELIST; i++)
    707 		if (uvm_page_physget_freelist(paddrp, i) == true)
    708 			return (true);
    709 	return (false);
    710 }
    711 #endif /* PMAP_STEAL_MEMORY */
    712 
    713 /*
    714  * uvm_page_physload: load physical memory into VM system
    715  *
    716  * => all args are PFs
    717  * => all pages in start/end get vm_page structures
    718  * => areas marked by avail_start/avail_end get added to the free page pool
    719  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    720  */
    721 
    722 void
    723 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    724     paddr_t avail_end, int free_list)
    725 {
    726 	int preload, lcv;
    727 	psize_t npages;
    728 	struct vm_page *pgs;
    729 	struct vm_physseg *ps;
    730 
    731 	if (uvmexp.pagesize == 0)
    732 		panic("uvm_page_physload: page size not set!");
    733 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    734 		panic("uvm_page_physload: bad free list %d", free_list);
    735 	if (start >= end)
    736 		panic("uvm_page_physload: start >= end");
    737 
    738 	/*
    739 	 * do we have room?
    740 	 */
    741 
    742 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    743 		printf("uvm_page_physload: unable to load physical memory "
    744 		    "segment\n");
    745 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    746 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    747 		printf("\tincrease VM_PHYSSEG_MAX\n");
    748 		return;
    749 	}
    750 
    751 	/*
    752 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    753 	 * called yet, so malloc is not available).
    754 	 */
    755 
    756 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    757 		if (vm_physmem[lcv].pgs)
    758 			break;
    759 	}
    760 	preload = (lcv == vm_nphysseg);
    761 
    762 	/*
    763 	 * if VM is already running, attempt to malloc() vm_page structures
    764 	 */
    765 
    766 	if (!preload) {
    767 #if defined(VM_PHYSSEG_NOADD)
    768 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    769 #else
    770 		/* XXXCDC: need some sort of lockout for this case */
    771 		paddr_t paddr;
    772 		npages = end - start;  /* # of pages */
    773 		pgs = malloc(sizeof(struct vm_page) * npages,
    774 		    M_VMPAGE, M_NOWAIT);
    775 		if (pgs == NULL) {
    776 			printf("uvm_page_physload: can not malloc vm_page "
    777 			    "structs for segment\n");
    778 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    779 			return;
    780 		}
    781 		/* zero data, init phys_addr and free_list, and free pages */
    782 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    783 		for (lcv = 0, paddr = ptoa(start) ;
    784 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    785 			pgs[lcv].phys_addr = paddr;
    786 			pgs[lcv].free_list = free_list;
    787 			if (atop(paddr) >= avail_start &&
    788 			    atop(paddr) <= avail_end)
    789 				uvm_pagefree(&pgs[lcv]);
    790 		}
    791 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    792 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    793 #endif
    794 	} else {
    795 		pgs = NULL;
    796 		npages = 0;
    797 	}
    798 
    799 	/*
    800 	 * now insert us in the proper place in vm_physmem[]
    801 	 */
    802 
    803 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    804 	/* random: put it at the end (easy!) */
    805 	ps = &vm_physmem[vm_nphysseg];
    806 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    807 	{
    808 		int x;
    809 		/* sort by address for binary search */
    810 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    811 			if (start < vm_physmem[lcv].start)
    812 				break;
    813 		ps = &vm_physmem[lcv];
    814 		/* move back other entries, if necessary ... */
    815 		for (x = vm_nphysseg ; x > lcv ; x--)
    816 			/* structure copy */
    817 			vm_physmem[x] = vm_physmem[x - 1];
    818 	}
    819 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    820 	{
    821 		int x;
    822 		/* sort by largest segment first */
    823 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    824 			if ((end - start) >
    825 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    826 				break;
    827 		ps = &vm_physmem[lcv];
    828 		/* move back other entries, if necessary ... */
    829 		for (x = vm_nphysseg ; x > lcv ; x--)
    830 			/* structure copy */
    831 			vm_physmem[x] = vm_physmem[x - 1];
    832 	}
    833 #else
    834 	panic("uvm_page_physload: unknown physseg strategy selected!");
    835 #endif
    836 
    837 	ps->start = start;
    838 	ps->end = end;
    839 	ps->avail_start = avail_start;
    840 	ps->avail_end = avail_end;
    841 	if (preload) {
    842 		ps->pgs = NULL;
    843 	} else {
    844 		ps->pgs = pgs;
    845 		ps->lastpg = pgs + npages - 1;
    846 	}
    847 	ps->free_list = free_list;
    848 	vm_nphysseg++;
    849 
    850 	if (!preload) {
    851 		uvmpdpol_reinit();
    852 	}
    853 }
    854 
    855 /*
    856  * uvm_page_recolor: Recolor the pages if the new bucket count is
    857  * larger than the old one.
    858  */
    859 
    860 void
    861 uvm_page_recolor(int newncolors)
    862 {
    863 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    864 	struct pgfreelist gpgfl, pgfl;
    865 	struct vm_page *pg;
    866 	vsize_t bucketcount;
    867 	int lcv, color, i, ocolors;
    868 	struct uvm_cpu *ucpu;
    869 
    870 	if (newncolors <= uvmexp.ncolors)
    871 		return;
    872 
    873 	if (uvm.page_init_done == false) {
    874 		uvmexp.ncolors = newncolors;
    875 		return;
    876 	}
    877 
    878 	bucketcount = newncolors * VM_NFREELIST;
    879 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    880 	    M_VMPAGE, M_NOWAIT);
    881 	cpuarray = bucketarray + bucketcount;
    882 	if (bucketarray == NULL) {
    883 		printf("WARNING: unable to allocate %ld page color buckets\n",
    884 		    (long) bucketcount);
    885 		return;
    886 	}
    887 
    888 	mutex_spin_enter(&uvm_fpageqlock);
    889 
    890 	/* Make sure we should still do this. */
    891 	if (newncolors <= uvmexp.ncolors) {
    892 		mutex_spin_exit(&uvm_fpageqlock);
    893 		free(bucketarray, M_VMPAGE);
    894 		return;
    895 	}
    896 
    897 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    898 	ocolors = uvmexp.ncolors;
    899 
    900 	uvmexp.ncolors = newncolors;
    901 	uvmexp.colormask = uvmexp.ncolors - 1;
    902 
    903 	ucpu = curcpu()->ci_data.cpu_uvm;
    904 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    905 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    906 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    907 		uvm_page_init_buckets(&gpgfl);
    908 		uvm_page_init_buckets(&pgfl);
    909 		for (color = 0; color < ocolors; color++) {
    910 			for (i = 0; i < PGFL_NQUEUES; i++) {
    911 				while ((pg = LIST_FIRST(&uvm.page_free[
    912 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    913 				    != NULL) {
    914 					LIST_REMOVE(pg, pageq.list); /* global */
    915 					LIST_REMOVE(pg, listq.list); /* cpu */
    916 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    917 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    918 					    i], pg, pageq.list);
    919 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    920 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    921 					    i], pg, listq.list);
    922 				}
    923 			}
    924 		}
    925 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    926 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    927 	}
    928 
    929 	if (have_recolored_pages) {
    930 		mutex_spin_exit(&uvm_fpageqlock);
    931 		free(oldbucketarray, M_VMPAGE);
    932 		return;
    933 	}
    934 
    935 	have_recolored_pages = true;
    936 	mutex_spin_exit(&uvm_fpageqlock);
    937 }
    938 
    939 /*
    940  * uvm_cpu_attach: initialize per-CPU data structures.
    941  */
    942 
    943 void
    944 uvm_cpu_attach(struct cpu_info *ci)
    945 {
    946 	struct pgflbucket *bucketarray;
    947 	struct pgfreelist pgfl;
    948 	struct uvm_cpu *ucpu;
    949 	vsize_t bucketcount;
    950 	int lcv;
    951 
    952 	if (CPU_IS_PRIMARY(ci)) {
    953 		/* Already done in uvm_page_init(). */
    954 		return;
    955 	}
    956 
    957 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    958 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    959 	    M_VMPAGE, M_WAITOK);
    960 	ucpu = &uvm.cpus[cpu_index(ci)];
    961 	ci->ci_data.cpu_uvm = ucpu;
    962 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    963 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    964 		uvm_page_init_buckets(&pgfl);
    965 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    966 	}
    967 }
    968 
    969 /*
    970  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    971  */
    972 
    973 static struct vm_page *
    974 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    975     int *trycolorp)
    976 {
    977 	struct pgflist *freeq;
    978 	struct vm_page *pg;
    979 	int color, trycolor = *trycolorp;
    980 	struct pgfreelist *gpgfl, *pgfl;
    981 
    982 	KASSERT(mutex_owned(&uvm_fpageqlock));
    983 
    984 	color = trycolor;
    985 	pgfl = &ucpu->page_free[flist];
    986 	gpgfl = &uvm.page_free[flist];
    987 	do {
    988 		/* cpu, try1 */
    989 		if ((pg = LIST_FIRST((freeq =
    990 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    991 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    992 		    	uvmexp.cpuhit++;
    993 			goto gotit;
    994 		}
    995 		/* global, try1 */
    996 		if ((pg = LIST_FIRST((freeq =
    997 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    998 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    999 		    	uvmexp.cpumiss++;
   1000 			goto gotit;
   1001 		}
   1002 		/* cpu, try2 */
   1003 		if ((pg = LIST_FIRST((freeq =
   1004 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1005 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1006 		    	uvmexp.cpuhit++;
   1007 			goto gotit;
   1008 		}
   1009 		/* global, try2 */
   1010 		if ((pg = LIST_FIRST((freeq =
   1011 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1012 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1013 		    	uvmexp.cpumiss++;
   1014 			goto gotit;
   1015 		}
   1016 		color = (color + 1) & uvmexp.colormask;
   1017 	} while (color != trycolor);
   1018 
   1019 	return (NULL);
   1020 
   1021  gotit:
   1022 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1023 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1024 	uvmexp.free--;
   1025 
   1026 	/* update zero'd page count */
   1027 	if (pg->flags & PG_ZERO)
   1028 		uvmexp.zeropages--;
   1029 
   1030 	if (color == trycolor)
   1031 		uvmexp.colorhit++;
   1032 	else {
   1033 		uvmexp.colormiss++;
   1034 		*trycolorp = color;
   1035 	}
   1036 
   1037 	return (pg);
   1038 }
   1039 
   1040 /*
   1041  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1042  *
   1043  * => return null if no pages free
   1044  * => wake up pagedaemon if number of free pages drops below low water mark
   1045  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1046  * => if anon != NULL, anon must be locked (to put in anon)
   1047  * => only one of obj or anon can be non-null
   1048  * => caller must activate/deactivate page if it is not wired.
   1049  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1050  * => policy decision: it is more important to pull a page off of the
   1051  *	appropriate priority free list than it is to get a zero'd or
   1052  *	unknown contents page.  This is because we live with the
   1053  *	consequences of a bad free list decision for the entire
   1054  *	lifetime of the page, e.g. if the page comes from memory that
   1055  *	is slower to access.
   1056  */
   1057 
   1058 struct vm_page *
   1059 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1060     int flags, int strat, int free_list)
   1061 {
   1062 	int lcv, try1, try2, zeroit = 0, color;
   1063 	struct uvm_cpu *ucpu;
   1064 	struct vm_page *pg;
   1065 	bool use_reserve;
   1066 
   1067 	KASSERT(obj == NULL || anon == NULL);
   1068 	KASSERT(anon == NULL || off == 0);
   1069 	KASSERT(off == trunc_page(off));
   1070 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1071 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1072 
   1073 	mutex_spin_enter(&uvm_fpageqlock);
   1074 
   1075 	/*
   1076 	 * This implements a global round-robin page coloring
   1077 	 * algorithm.
   1078 	 *
   1079 	 * XXXJRT: What about virtually-indexed caches?
   1080 	 */
   1081 
   1082 	ucpu = curcpu()->ci_data.cpu_uvm;
   1083 	color = ucpu->page_free_nextcolor;
   1084 
   1085 	/*
   1086 	 * check to see if we need to generate some free pages waking
   1087 	 * the pagedaemon.
   1088 	 */
   1089 
   1090 	uvm_kick_pdaemon();
   1091 
   1092 	/*
   1093 	 * fail if any of these conditions is true:
   1094 	 * [1]  there really are no free pages, or
   1095 	 * [2]  only kernel "reserved" pages remain and
   1096 	 *        the page isn't being allocated to a kernel object.
   1097 	 * [3]  only pagedaemon "reserved" pages remain and
   1098 	 *        the requestor isn't the pagedaemon.
   1099 	 */
   1100 
   1101 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1102 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1103 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1104 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1105 	     !(use_reserve && curlwp == uvm.pagedaemon_lwp)))
   1106 		goto fail;
   1107 
   1108 #if PGFL_NQUEUES != 2
   1109 #error uvm_pagealloc_strat needs to be updated
   1110 #endif
   1111 
   1112 	/*
   1113 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1114 	 * we try the UNKNOWN queue first.
   1115 	 */
   1116 	if (flags & UVM_PGA_ZERO) {
   1117 		try1 = PGFL_ZEROS;
   1118 		try2 = PGFL_UNKNOWN;
   1119 	} else {
   1120 		try1 = PGFL_UNKNOWN;
   1121 		try2 = PGFL_ZEROS;
   1122 	}
   1123 
   1124  again:
   1125 	switch (strat) {
   1126 	case UVM_PGA_STRAT_NORMAL:
   1127 		/* Check all freelists in descending priority order. */
   1128 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1129 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1130 			    try1, try2, &color);
   1131 			if (pg != NULL)
   1132 				goto gotit;
   1133 		}
   1134 
   1135 		/* No pages free! */
   1136 		goto fail;
   1137 
   1138 	case UVM_PGA_STRAT_ONLY:
   1139 	case UVM_PGA_STRAT_FALLBACK:
   1140 		/* Attempt to allocate from the specified free list. */
   1141 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1142 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1143 		    try1, try2, &color);
   1144 		if (pg != NULL)
   1145 			goto gotit;
   1146 
   1147 		/* Fall back, if possible. */
   1148 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1149 			strat = UVM_PGA_STRAT_NORMAL;
   1150 			goto again;
   1151 		}
   1152 
   1153 		/* No pages free! */
   1154 		goto fail;
   1155 
   1156 	default:
   1157 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1158 		/* NOTREACHED */
   1159 	}
   1160 
   1161  gotit:
   1162 	/*
   1163 	 * We now know which color we actually allocated from; set
   1164 	 * the next color accordingly.
   1165 	 */
   1166 
   1167 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1168 
   1169 	/*
   1170 	 * update allocation statistics and remember if we have to
   1171 	 * zero the page
   1172 	 */
   1173 
   1174 	if (flags & UVM_PGA_ZERO) {
   1175 		if (pg->flags & PG_ZERO) {
   1176 			uvmexp.pga_zerohit++;
   1177 			zeroit = 0;
   1178 		} else {
   1179 			uvmexp.pga_zeromiss++;
   1180 			zeroit = 1;
   1181 		}
   1182 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1183 			ucpu->page_idle_zero = vm_page_zero_enable;
   1184 		}
   1185 	}
   1186 	mutex_spin_exit(&uvm_fpageqlock);
   1187 
   1188 	pg->offset = off;
   1189 	pg->uobject = obj;
   1190 	pg->uanon = anon;
   1191 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1192 	if (anon) {
   1193 		anon->an_page = pg;
   1194 		pg->pqflags = PQ_ANON;
   1195 		atomic_inc_uint(&uvmexp.anonpages);
   1196 	} else {
   1197 		if (obj) {
   1198 			uvm_pageinsert(pg);
   1199 		}
   1200 		pg->pqflags = 0;
   1201 	}
   1202 #if defined(UVM_PAGE_TRKOWN)
   1203 	pg->owner_tag = NULL;
   1204 #endif
   1205 	UVM_PAGE_OWN(pg, "new alloc");
   1206 
   1207 	if (flags & UVM_PGA_ZERO) {
   1208 		/*
   1209 		 * A zero'd page is not clean.  If we got a page not already
   1210 		 * zero'd, then we have to zero it ourselves.
   1211 		 */
   1212 		pg->flags &= ~PG_CLEAN;
   1213 		if (zeroit)
   1214 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1215 	}
   1216 
   1217 	return(pg);
   1218 
   1219  fail:
   1220 	mutex_spin_exit(&uvm_fpageqlock);
   1221 	return (NULL);
   1222 }
   1223 
   1224 /*
   1225  * uvm_pagereplace: replace a page with another
   1226  *
   1227  * => object must be locked
   1228  */
   1229 
   1230 void
   1231 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1232 {
   1233 	struct uvm_object *uobj = oldpg->uobject;
   1234 
   1235 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1236 	KASSERT(uobj != NULL);
   1237 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1238 	KASSERT(newpg->uobject == NULL);
   1239 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1240 
   1241 	newpg->uobject = uobj;
   1242 	newpg->offset = oldpg->offset;
   1243 
   1244 	uvm_pageremove_tree(uobj, oldpg);
   1245 	uvm_pageinsert_tree(uobj, newpg);
   1246 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1247 	uvm_pageremove_list(uobj, oldpg);
   1248 }
   1249 
   1250 /*
   1251  * uvm_pagerealloc: reallocate a page from one object to another
   1252  *
   1253  * => both objects must be locked
   1254  */
   1255 
   1256 void
   1257 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1258 {
   1259 	/*
   1260 	 * remove it from the old object
   1261 	 */
   1262 
   1263 	if (pg->uobject) {
   1264 		uvm_pageremove(pg);
   1265 	}
   1266 
   1267 	/*
   1268 	 * put it in the new object
   1269 	 */
   1270 
   1271 	if (newobj) {
   1272 		pg->uobject = newobj;
   1273 		pg->offset = newoff;
   1274 		uvm_pageinsert(pg);
   1275 	}
   1276 }
   1277 
   1278 #ifdef DEBUG
   1279 /*
   1280  * check if page is zero-filled
   1281  *
   1282  *  - called with free page queue lock held.
   1283  */
   1284 void
   1285 uvm_pagezerocheck(struct vm_page *pg)
   1286 {
   1287 	int *p, *ep;
   1288 
   1289 	KASSERT(uvm_zerocheckkva != 0);
   1290 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1291 
   1292 	/*
   1293 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1294 	 * uvm page allocator.
   1295 	 *
   1296 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1297 	 */
   1298 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1299 	p = (int *)uvm_zerocheckkva;
   1300 	ep = (int *)((char *)p + PAGE_SIZE);
   1301 	pmap_update(pmap_kernel());
   1302 	while (p < ep) {
   1303 		if (*p != 0)
   1304 			panic("PG_ZERO page isn't zero-filled");
   1305 		p++;
   1306 	}
   1307 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1308 	/*
   1309 	 * pmap_update() is not necessary here because no one except us
   1310 	 * uses this VA.
   1311 	 */
   1312 }
   1313 #endif /* DEBUG */
   1314 
   1315 /*
   1316  * uvm_pagefree: free page
   1317  *
   1318  * => erase page's identity (i.e. remove from object)
   1319  * => put page on free list
   1320  * => caller must lock owning object (either anon or uvm_object)
   1321  * => caller must lock page queues
   1322  * => assumes all valid mappings of pg are gone
   1323  */
   1324 
   1325 void
   1326 uvm_pagefree(struct vm_page *pg)
   1327 {
   1328 	struct pgflist *pgfl;
   1329 	struct uvm_cpu *ucpu;
   1330 	int index, color, queue;
   1331 	bool iszero;
   1332 
   1333 #ifdef DEBUG
   1334 	if (pg->uobject == (void *)0xdeadbeef &&
   1335 	    pg->uanon == (void *)0xdeadbeef) {
   1336 		panic("uvm_pagefree: freeing free page %p", pg);
   1337 	}
   1338 #endif /* DEBUG */
   1339 
   1340 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1341 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1342 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1343 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1344 		mutex_owned(&pg->uanon->an_lock));
   1345 
   1346 	/*
   1347 	 * if the page is loaned, resolve the loan instead of freeing.
   1348 	 */
   1349 
   1350 	if (pg->loan_count) {
   1351 		KASSERT(pg->wire_count == 0);
   1352 
   1353 		/*
   1354 		 * if the page is owned by an anon then we just want to
   1355 		 * drop anon ownership.  the kernel will free the page when
   1356 		 * it is done with it.  if the page is owned by an object,
   1357 		 * remove it from the object and mark it dirty for the benefit
   1358 		 * of possible anon owners.
   1359 		 *
   1360 		 * regardless of previous ownership, wakeup any waiters,
   1361 		 * unbusy the page, and we're done.
   1362 		 */
   1363 
   1364 		if (pg->uobject != NULL) {
   1365 			uvm_pageremove(pg);
   1366 			pg->flags &= ~PG_CLEAN;
   1367 		} else if (pg->uanon != NULL) {
   1368 			if ((pg->pqflags & PQ_ANON) == 0) {
   1369 				pg->loan_count--;
   1370 			} else {
   1371 				pg->pqflags &= ~PQ_ANON;
   1372 				atomic_dec_uint(&uvmexp.anonpages);
   1373 			}
   1374 			pg->uanon->an_page = NULL;
   1375 			pg->uanon = NULL;
   1376 		}
   1377 		if (pg->flags & PG_WANTED) {
   1378 			wakeup(pg);
   1379 		}
   1380 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1381 #ifdef UVM_PAGE_TRKOWN
   1382 		pg->owner_tag = NULL;
   1383 #endif
   1384 		if (pg->loan_count) {
   1385 			KASSERT(pg->uobject == NULL);
   1386 			if (pg->uanon == NULL) {
   1387 				uvm_pagedequeue(pg);
   1388 			}
   1389 			return;
   1390 		}
   1391 	}
   1392 
   1393 	/*
   1394 	 * remove page from its object or anon.
   1395 	 */
   1396 
   1397 	if (pg->uobject != NULL) {
   1398 		uvm_pageremove(pg);
   1399 	} else if (pg->uanon != NULL) {
   1400 		pg->uanon->an_page = NULL;
   1401 		atomic_dec_uint(&uvmexp.anonpages);
   1402 	}
   1403 
   1404 	/*
   1405 	 * now remove the page from the queues.
   1406 	 */
   1407 
   1408 	uvm_pagedequeue(pg);
   1409 
   1410 	/*
   1411 	 * if the page was wired, unwire it now.
   1412 	 */
   1413 
   1414 	if (pg->wire_count) {
   1415 		pg->wire_count = 0;
   1416 		uvmexp.wired--;
   1417 	}
   1418 
   1419 	/*
   1420 	 * and put on free queue
   1421 	 */
   1422 
   1423 	iszero = (pg->flags & PG_ZERO);
   1424 	index = uvm_page_lookup_freelist(pg);
   1425 	color = VM_PGCOLOR_BUCKET(pg);
   1426 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1427 
   1428 	pg->pqflags = PQ_FREE;
   1429 #ifdef DEBUG
   1430 	pg->uobject = (void *)0xdeadbeef;
   1431 	pg->uanon = (void *)0xdeadbeef;
   1432 #endif
   1433 
   1434 	mutex_spin_enter(&uvm_fpageqlock);
   1435 
   1436 #ifdef DEBUG
   1437 	if (iszero)
   1438 		uvm_pagezerocheck(pg);
   1439 #endif /* DEBUG */
   1440 
   1441 
   1442 	/* global list */
   1443 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1444 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1445 	uvmexp.free++;
   1446 	if (iszero) {
   1447 		uvmexp.zeropages++;
   1448 	}
   1449 
   1450 	/* per-cpu list */
   1451 	ucpu = curcpu()->ci_data.cpu_uvm;
   1452 	pg->offset = (uintptr_t)ucpu;
   1453 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1454 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1455 	ucpu->pages[queue]++;
   1456 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1457 		ucpu->page_idle_zero = vm_page_zero_enable;
   1458 	}
   1459 
   1460 	mutex_spin_exit(&uvm_fpageqlock);
   1461 }
   1462 
   1463 /*
   1464  * uvm_page_unbusy: unbusy an array of pages.
   1465  *
   1466  * => pages must either all belong to the same object, or all belong to anons.
   1467  * => if pages are object-owned, object must be locked.
   1468  * => if pages are anon-owned, anons must be locked.
   1469  * => caller must lock page queues if pages may be released.
   1470  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1471  */
   1472 
   1473 void
   1474 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1475 {
   1476 	struct vm_page *pg;
   1477 	int i;
   1478 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1479 
   1480 	for (i = 0; i < npgs; i++) {
   1481 		pg = pgs[i];
   1482 		if (pg == NULL || pg == PGO_DONTCARE) {
   1483 			continue;
   1484 		}
   1485 
   1486 		KASSERT(pg->uobject == NULL ||
   1487 		    mutex_owned(&pg->uobject->vmobjlock));
   1488 		KASSERT(pg->uobject != NULL ||
   1489 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1490 
   1491 		KASSERT(pg->flags & PG_BUSY);
   1492 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1493 		if (pg->flags & PG_WANTED) {
   1494 			wakeup(pg);
   1495 		}
   1496 		if (pg->flags & PG_RELEASED) {
   1497 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1498 			KASSERT(pg->uobject != NULL ||
   1499 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1500 			pg->flags &= ~PG_RELEASED;
   1501 			uvm_pagefree(pg);
   1502 		} else {
   1503 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1504 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1505 			UVM_PAGE_OWN(pg, NULL);
   1506 		}
   1507 	}
   1508 }
   1509 
   1510 #if defined(UVM_PAGE_TRKOWN)
   1511 /*
   1512  * uvm_page_own: set or release page ownership
   1513  *
   1514  * => this is a debugging function that keeps track of who sets PG_BUSY
   1515  *	and where they do it.   it can be used to track down problems
   1516  *	such a process setting "PG_BUSY" and never releasing it.
   1517  * => page's object [if any] must be locked
   1518  * => if "tag" is NULL then we are releasing page ownership
   1519  */
   1520 void
   1521 uvm_page_own(struct vm_page *pg, const char *tag)
   1522 {
   1523 	struct uvm_object *uobj;
   1524 	struct vm_anon *anon;
   1525 
   1526 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1527 
   1528 	uobj = pg->uobject;
   1529 	anon = pg->uanon;
   1530 	if (uobj != NULL) {
   1531 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1532 	} else if (anon != NULL) {
   1533 		KASSERT(mutex_owned(&anon->an_lock));
   1534 	}
   1535 
   1536 	KASSERT((pg->flags & PG_WANTED) == 0);
   1537 
   1538 	/* gain ownership? */
   1539 	if (tag) {
   1540 		KASSERT((pg->flags & PG_BUSY) != 0);
   1541 		if (pg->owner_tag) {
   1542 			printf("uvm_page_own: page %p already owned "
   1543 			    "by proc %d [%s]\n", pg,
   1544 			    pg->owner, pg->owner_tag);
   1545 			panic("uvm_page_own");
   1546 		}
   1547 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1548 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1549 		pg->owner_tag = tag;
   1550 		return;
   1551 	}
   1552 
   1553 	/* drop ownership */
   1554 	KASSERT((pg->flags & PG_BUSY) == 0);
   1555 	if (pg->owner_tag == NULL) {
   1556 		printf("uvm_page_own: dropping ownership of an non-owned "
   1557 		    "page (%p)\n", pg);
   1558 		panic("uvm_page_own");
   1559 	}
   1560 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1561 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1562 		    pg->wire_count > 0);
   1563 	} else {
   1564 		KASSERT(pg->wire_count == 0);
   1565 	}
   1566 	pg->owner_tag = NULL;
   1567 }
   1568 #endif
   1569 
   1570 /*
   1571  * uvm_pageidlezero: zero free pages while the system is idle.
   1572  *
   1573  * => try to complete one color bucket at a time, to reduce our impact
   1574  *	on the CPU cache.
   1575  * => we loop until we either reach the target or there is a lwp ready
   1576  *      to run, or MD code detects a reason to break early.
   1577  */
   1578 void
   1579 uvm_pageidlezero(void)
   1580 {
   1581 	struct vm_page *pg;
   1582 	struct pgfreelist *pgfl, *gpgfl;
   1583 	struct uvm_cpu *ucpu;
   1584 	int free_list, firstbucket, nextbucket;
   1585 
   1586 	ucpu = curcpu()->ci_data.cpu_uvm;
   1587 	if (!ucpu->page_idle_zero ||
   1588 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1589 	    	ucpu->page_idle_zero = false;
   1590 		return;
   1591 	}
   1592 	mutex_enter(&uvm_fpageqlock);
   1593 	firstbucket = ucpu->page_free_nextcolor;
   1594 	nextbucket = firstbucket;
   1595 	do {
   1596 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1597 			if (sched_curcpu_runnable_p()) {
   1598 				goto quit;
   1599 			}
   1600 			pgfl = &ucpu->page_free[free_list];
   1601 			gpgfl = &uvm.page_free[free_list];
   1602 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1603 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1604 				if (sched_curcpu_runnable_p()) {
   1605 					goto quit;
   1606 				}
   1607 				LIST_REMOVE(pg, pageq.list); /* global list */
   1608 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1609 				ucpu->pages[PGFL_UNKNOWN]--;
   1610 				uvmexp.free--;
   1611 				mutex_spin_exit(&uvm_fpageqlock);
   1612 #ifdef PMAP_PAGEIDLEZERO
   1613 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1614 
   1615 					/*
   1616 					 * The machine-dependent code detected
   1617 					 * some reason for us to abort zeroing
   1618 					 * pages, probably because there is a
   1619 					 * process now ready to run.
   1620 					 */
   1621 
   1622 					mutex_spin_enter(&uvm_fpageqlock);
   1623 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1624 					    nextbucket].pgfl_queues[
   1625 					    PGFL_UNKNOWN], pg, pageq.list);
   1626 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1627 					    nextbucket].pgfl_queues[
   1628 					    PGFL_UNKNOWN], pg, listq.list);
   1629 					ucpu->pages[PGFL_UNKNOWN]++;
   1630 					uvmexp.free++;
   1631 					uvmexp.zeroaborts++;
   1632 					goto quit;
   1633 				}
   1634 #else
   1635 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1636 #endif /* PMAP_PAGEIDLEZERO */
   1637 				pg->flags |= PG_ZERO;
   1638 
   1639 				mutex_spin_enter(&uvm_fpageqlock);
   1640 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1641 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1642 				    pg, pageq.list);
   1643 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1644 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1645 				    pg, listq.list);
   1646 				ucpu->pages[PGFL_ZEROS]++;
   1647 				uvmexp.free++;
   1648 				uvmexp.zeropages++;
   1649 			}
   1650 		}
   1651 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1652 			break;
   1653 		}
   1654 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1655 	} while (nextbucket != firstbucket);
   1656 	ucpu->page_idle_zero = false;
   1657  quit:
   1658 	mutex_spin_exit(&uvm_fpageqlock);
   1659 }
   1660 
   1661 /*
   1662  * uvm_pagelookup: look up a page
   1663  *
   1664  * => caller should lock object to keep someone from pulling the page
   1665  *	out from under it
   1666  */
   1667 
   1668 struct vm_page *
   1669 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1670 {
   1671 	struct vm_page *pg;
   1672 
   1673 	KASSERT(mutex_owned(&obj->vmobjlock));
   1674 
   1675 	pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
   1676 
   1677 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1678 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1679 		(pg->flags & PG_BUSY) != 0);
   1680 	return(pg);
   1681 }
   1682 
   1683 /*
   1684  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1685  *
   1686  * => caller must lock page queues
   1687  */
   1688 
   1689 void
   1690 uvm_pagewire(struct vm_page *pg)
   1691 {
   1692 	KASSERT(mutex_owned(&uvm_pageqlock));
   1693 #if defined(READAHEAD_STATS)
   1694 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1695 		uvm_ra_hit.ev_count++;
   1696 		pg->pqflags &= ~PQ_READAHEAD;
   1697 	}
   1698 #endif /* defined(READAHEAD_STATS) */
   1699 	if (pg->wire_count == 0) {
   1700 		uvm_pagedequeue(pg);
   1701 		uvmexp.wired++;
   1702 	}
   1703 	pg->wire_count++;
   1704 }
   1705 
   1706 /*
   1707  * uvm_pageunwire: unwire the page.
   1708  *
   1709  * => activate if wire count goes to zero.
   1710  * => caller must lock page queues
   1711  */
   1712 
   1713 void
   1714 uvm_pageunwire(struct vm_page *pg)
   1715 {
   1716 	KASSERT(mutex_owned(&uvm_pageqlock));
   1717 	pg->wire_count--;
   1718 	if (pg->wire_count == 0) {
   1719 		uvm_pageactivate(pg);
   1720 		uvmexp.wired--;
   1721 	}
   1722 }
   1723 
   1724 /*
   1725  * uvm_pagedeactivate: deactivate page
   1726  *
   1727  * => caller must lock page queues
   1728  * => caller must check to make sure page is not wired
   1729  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1730  * => caller must clear the reference on the page before calling
   1731  */
   1732 
   1733 void
   1734 uvm_pagedeactivate(struct vm_page *pg)
   1735 {
   1736 
   1737 	KASSERT(mutex_owned(&uvm_pageqlock));
   1738 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1739 	uvmpdpol_pagedeactivate(pg);
   1740 }
   1741 
   1742 /*
   1743  * uvm_pageactivate: activate page
   1744  *
   1745  * => caller must lock page queues
   1746  */
   1747 
   1748 void
   1749 uvm_pageactivate(struct vm_page *pg)
   1750 {
   1751 
   1752 	KASSERT(mutex_owned(&uvm_pageqlock));
   1753 #if defined(READAHEAD_STATS)
   1754 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1755 		uvm_ra_hit.ev_count++;
   1756 		pg->pqflags &= ~PQ_READAHEAD;
   1757 	}
   1758 #endif /* defined(READAHEAD_STATS) */
   1759 	if (pg->wire_count != 0) {
   1760 		return;
   1761 	}
   1762 	uvmpdpol_pageactivate(pg);
   1763 }
   1764 
   1765 /*
   1766  * uvm_pagedequeue: remove a page from any paging queue
   1767  */
   1768 
   1769 void
   1770 uvm_pagedequeue(struct vm_page *pg)
   1771 {
   1772 
   1773 	if (uvmpdpol_pageisqueued_p(pg)) {
   1774 		KASSERT(mutex_owned(&uvm_pageqlock));
   1775 	}
   1776 
   1777 	uvmpdpol_pagedequeue(pg);
   1778 }
   1779 
   1780 /*
   1781  * uvm_pageenqueue: add a page to a paging queue without activating.
   1782  * used where a page is not really demanded (yet).  eg. read-ahead
   1783  */
   1784 
   1785 void
   1786 uvm_pageenqueue(struct vm_page *pg)
   1787 {
   1788 
   1789 	KASSERT(mutex_owned(&uvm_pageqlock));
   1790 	if (pg->wire_count != 0) {
   1791 		return;
   1792 	}
   1793 	uvmpdpol_pageenqueue(pg);
   1794 }
   1795 
   1796 /*
   1797  * uvm_pagezero: zero fill a page
   1798  *
   1799  * => if page is part of an object then the object should be locked
   1800  *	to protect pg->flags.
   1801  */
   1802 
   1803 void
   1804 uvm_pagezero(struct vm_page *pg)
   1805 {
   1806 	pg->flags &= ~PG_CLEAN;
   1807 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1808 }
   1809 
   1810 /*
   1811  * uvm_pagecopy: copy a page
   1812  *
   1813  * => if page is part of an object then the object should be locked
   1814  *	to protect pg->flags.
   1815  */
   1816 
   1817 void
   1818 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1819 {
   1820 
   1821 	dst->flags &= ~PG_CLEAN;
   1822 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1823 }
   1824 
   1825 /*
   1826  * uvm_page_lookup_freelist: look up the free list for the specified page
   1827  */
   1828 
   1829 int
   1830 uvm_page_lookup_freelist(struct vm_page *pg)
   1831 {
   1832 	int lcv;
   1833 
   1834 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1835 	KASSERT(lcv != -1);
   1836 	return (vm_physmem[lcv].free_list);
   1837 }
   1838