uvm_page.c revision 1.141 1 /* $NetBSD: uvm_page.c,v 1.141 2008/12/13 11:34:43 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.141 2008/12/13 11:34:43 ad Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/sched.h>
83 #include <sys/kernel.h>
84 #include <sys/vnode.h>
85 #include <sys/proc.h>
86 #include <sys/atomic.h>
87 #include <sys/cpu.h>
88
89 #include <uvm/uvm.h>
90 #include <uvm/uvm_pdpolicy.h>
91
92 /*
93 * global vars... XXXCDC: move to uvm. structure.
94 */
95
96 /*
97 * physical memory config is stored in vm_physmem.
98 */
99
100 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102
103 /*
104 * Some supported CPUs in a given architecture don't support all
105 * of the things necessary to do idle page zero'ing efficiently.
106 * We therefore provide a way to disable it from machdep code here.
107 */
108 /*
109 * XXX disabled until we can find a way to do this without causing
110 * problems for either CPU caches or DMA latency.
111 */
112 bool vm_page_zero_enable = false;
113
114 /*
115 * number of pages per-CPU to reserve for the kernel.
116 */
117 int vm_page_reserve_kernel = 5;
118
119 /*
120 * local variables
121 */
122
123 /*
124 * these variables record the values returned by vm_page_bootstrap,
125 * for debugging purposes. The implementation of uvm_pageboot_alloc
126 * and pmap_startup here also uses them internally.
127 */
128
129 static vaddr_t virtual_space_start;
130 static vaddr_t virtual_space_end;
131
132 /*
133 * we allocate an initial number of page colors in uvm_page_init(),
134 * and remember them. We may re-color pages as cache sizes are
135 * discovered during the autoconfiguration phase. But we can never
136 * free the initial set of buckets, since they are allocated using
137 * uvm_pageboot_alloc().
138 */
139
140 static bool have_recolored_pages /* = false */;
141
142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
143
144 #ifdef DEBUG
145 vaddr_t uvm_zerocheckkva;
146 #endif /* DEBUG */
147
148 /*
149 * local prototypes
150 */
151
152 static void uvm_pageinsert(struct vm_page *);
153 static void uvm_pageremove(struct vm_page *);
154
155 /*
156 * per-object tree of pages
157 */
158
159 static signed int
160 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
161 {
162 const struct vm_page *pg1 = (const void *)n1;
163 const struct vm_page *pg2 = (const void *)n2;
164 const voff_t a = pg1->offset;
165 const voff_t b = pg2->offset;
166
167 if (a < b)
168 return 1;
169 if (a > b)
170 return -1;
171 return 0;
172 }
173
174 static signed int
175 uvm_page_compare_key(const struct rb_node *n, const void *key)
176 {
177 const struct vm_page *pg = (const void *)n;
178 const voff_t a = pg->offset;
179 const voff_t b = *(const voff_t *)key;
180
181 if (a < b)
182 return 1;
183 if (a > b)
184 return -1;
185 return 0;
186 }
187
188 const struct rb_tree_ops uvm_page_tree_ops = {
189 .rbto_compare_nodes = uvm_page_compare_nodes,
190 .rbto_compare_key = uvm_page_compare_key,
191 };
192
193 /*
194 * inline functions
195 */
196
197 /*
198 * uvm_pageinsert: insert a page in the object.
199 *
200 * => caller must lock object
201 * => caller must lock page queues
202 * => call should have already set pg's object and offset pointers
203 * and bumped the version counter
204 */
205
206 static inline void
207 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
208 struct vm_page *where)
209 {
210
211 KASSERT(uobj == pg->uobject);
212 KASSERT(mutex_owned(&uobj->vmobjlock));
213 KASSERT((pg->flags & PG_TABLED) == 0);
214 KASSERT(where == NULL || (where->flags & PG_TABLED));
215 KASSERT(where == NULL || (where->uobject == uobj));
216
217 if (UVM_OBJ_IS_VNODE(uobj)) {
218 if (uobj->uo_npages == 0) {
219 struct vnode *vp = (struct vnode *)uobj;
220
221 vholdl(vp);
222 }
223 if (UVM_OBJ_IS_VTEXT(uobj)) {
224 atomic_inc_uint(&uvmexp.execpages);
225 } else {
226 atomic_inc_uint(&uvmexp.filepages);
227 }
228 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
229 atomic_inc_uint(&uvmexp.anonpages);
230 }
231
232 if (where)
233 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
234 else
235 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
236 pg->flags |= PG_TABLED;
237 uobj->uo_npages++;
238 }
239
240
241 static inline void
242 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
243 {
244 bool success;
245
246 KASSERT(uobj == pg->uobject);
247 success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
248 KASSERT(success);
249 }
250
251 static inline void
252 uvm_pageinsert(struct vm_page *pg)
253 {
254 struct uvm_object *uobj = pg->uobject;
255
256 uvm_pageinsert_tree(uobj, pg);
257 uvm_pageinsert_list(uobj, pg, NULL);
258 }
259
260 /*
261 * uvm_page_remove: remove page from object.
262 *
263 * => caller must lock object
264 * => caller must lock page queues
265 */
266
267 static inline void
268 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
269 {
270
271 KASSERT(uobj == pg->uobject);
272 KASSERT(mutex_owned(&uobj->vmobjlock));
273 KASSERT(pg->flags & PG_TABLED);
274
275 if (UVM_OBJ_IS_VNODE(uobj)) {
276 if (uobj->uo_npages == 1) {
277 struct vnode *vp = (struct vnode *)uobj;
278
279 holdrelel(vp);
280 }
281 if (UVM_OBJ_IS_VTEXT(uobj)) {
282 atomic_dec_uint(&uvmexp.execpages);
283 } else {
284 atomic_dec_uint(&uvmexp.filepages);
285 }
286 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
287 atomic_dec_uint(&uvmexp.anonpages);
288 }
289
290 /* object should be locked */
291 uobj->uo_npages--;
292 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
293 pg->flags &= ~PG_TABLED;
294 pg->uobject = NULL;
295 }
296
297 static inline void
298 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
299 {
300
301 KASSERT(uobj == pg->uobject);
302 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
303 }
304
305 static inline void
306 uvm_pageremove(struct vm_page *pg)
307 {
308 struct uvm_object *uobj = pg->uobject;
309
310 uvm_pageremove_tree(uobj, pg);
311 uvm_pageremove_list(uobj, pg);
312 }
313
314 static void
315 uvm_page_init_buckets(struct pgfreelist *pgfl)
316 {
317 int color, i;
318
319 for (color = 0; color < uvmexp.ncolors; color++) {
320 for (i = 0; i < PGFL_NQUEUES; i++) {
321 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
322 }
323 }
324 }
325
326 /*
327 * uvm_page_init: init the page system. called from uvm_init().
328 *
329 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
330 */
331
332 void
333 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
334 {
335 vsize_t freepages, pagecount, bucketcount, n;
336 struct pgflbucket *bucketarray, *cpuarray;
337 struct vm_page *pagearray;
338 int lcv;
339 u_int i;
340 paddr_t paddr;
341
342 KASSERT(ncpu <= 1);
343 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
344
345 /*
346 * init the page queues and page queue locks, except the free
347 * list; we allocate that later (with the initial vm_page
348 * structures).
349 */
350
351 curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
352 uvmpdpol_init();
353 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
354 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
355
356 /*
357 * allocate vm_page structures.
358 */
359
360 /*
361 * sanity check:
362 * before calling this function the MD code is expected to register
363 * some free RAM with the uvm_page_physload() function. our job
364 * now is to allocate vm_page structures for this memory.
365 */
366
367 if (vm_nphysseg == 0)
368 panic("uvm_page_bootstrap: no memory pre-allocated");
369
370 /*
371 * first calculate the number of free pages...
372 *
373 * note that we use start/end rather than avail_start/avail_end.
374 * this allows us to allocate extra vm_page structures in case we
375 * want to return some memory to the pool after booting.
376 */
377
378 freepages = 0;
379 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
380 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
381
382 /*
383 * Let MD code initialize the number of colors, or default
384 * to 1 color if MD code doesn't care.
385 */
386 if (uvmexp.ncolors == 0)
387 uvmexp.ncolors = 1;
388 uvmexp.colormask = uvmexp.ncolors - 1;
389
390 /*
391 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
392 * use. for each page of memory we use we need a vm_page structure.
393 * thus, the total number of pages we can use is the total size of
394 * the memory divided by the PAGE_SIZE plus the size of the vm_page
395 * structure. we add one to freepages as a fudge factor to avoid
396 * truncation errors (since we can only allocate in terms of whole
397 * pages).
398 */
399
400 bucketcount = uvmexp.ncolors * VM_NFREELIST;
401 pagecount = ((freepages + 1) << PAGE_SHIFT) /
402 (PAGE_SIZE + sizeof(struct vm_page));
403
404 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
405 sizeof(struct pgflbucket) * 2) + (pagecount *
406 sizeof(struct vm_page)));
407 cpuarray = bucketarray + bucketcount;
408 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
409
410 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
411 uvm.page_free[lcv].pgfl_buckets =
412 (bucketarray + (lcv * uvmexp.ncolors));
413 uvm_page_init_buckets(&uvm.page_free[lcv]);
414 uvm.cpus[0].page_free[lcv].pgfl_buckets =
415 (cpuarray + (lcv * uvmexp.ncolors));
416 uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
417 }
418 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
419
420 /*
421 * init the vm_page structures and put them in the correct place.
422 */
423
424 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
425 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
426
427 /* set up page array pointers */
428 vm_physmem[lcv].pgs = pagearray;
429 pagearray += n;
430 pagecount -= n;
431 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
432
433 /* init and free vm_pages (we've already zeroed them) */
434 paddr = ptoa(vm_physmem[lcv].start);
435 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
436 vm_physmem[lcv].pgs[i].phys_addr = paddr;
437 #ifdef __HAVE_VM_PAGE_MD
438 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
439 #endif
440 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
441 atop(paddr) <= vm_physmem[lcv].avail_end) {
442 uvmexp.npages++;
443 /* add page to free pool */
444 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
445 }
446 }
447 }
448
449 /*
450 * pass up the values of virtual_space_start and
451 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
452 * layers of the VM.
453 */
454
455 *kvm_startp = round_page(virtual_space_start);
456 *kvm_endp = trunc_page(virtual_space_end);
457 #ifdef DEBUG
458 /*
459 * steal kva for uvm_pagezerocheck().
460 */
461 uvm_zerocheckkva = *kvm_startp;
462 *kvm_startp += PAGE_SIZE;
463 #endif /* DEBUG */
464
465 /*
466 * init various thresholds.
467 */
468
469 uvmexp.reserve_pagedaemon = 1;
470 uvmexp.reserve_kernel = vm_page_reserve_kernel;
471
472 /*
473 * determine if we should zero pages in the idle loop.
474 */
475
476 uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
477
478 /*
479 * done!
480 */
481
482 uvm.page_init_done = true;
483 }
484
485 /*
486 * uvm_setpagesize: set the page size
487 *
488 * => sets page_shift and page_mask from uvmexp.pagesize.
489 */
490
491 void
492 uvm_setpagesize(void)
493 {
494
495 /*
496 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
497 * to be a constant (indicated by being a non-zero value).
498 */
499 if (uvmexp.pagesize == 0) {
500 if (PAGE_SIZE == 0)
501 panic("uvm_setpagesize: uvmexp.pagesize not set");
502 uvmexp.pagesize = PAGE_SIZE;
503 }
504 uvmexp.pagemask = uvmexp.pagesize - 1;
505 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
506 panic("uvm_setpagesize: page size not a power of two");
507 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 break;
510 }
511
512 /*
513 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514 */
515
516 vaddr_t
517 uvm_pageboot_alloc(vsize_t size)
518 {
519 static bool initialized = false;
520 vaddr_t addr;
521 #if !defined(PMAP_STEAL_MEMORY)
522 vaddr_t vaddr;
523 paddr_t paddr;
524 #endif
525
526 /*
527 * on first call to this function, initialize ourselves.
528 */
529 if (initialized == false) {
530 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531
532 /* round it the way we like it */
533 virtual_space_start = round_page(virtual_space_start);
534 virtual_space_end = trunc_page(virtual_space_end);
535
536 initialized = true;
537 }
538
539 /* round to page size */
540 size = round_page(size);
541
542 #if defined(PMAP_STEAL_MEMORY)
543
544 /*
545 * defer bootstrap allocation to MD code (it may want to allocate
546 * from a direct-mapped segment). pmap_steal_memory should adjust
547 * virtual_space_start/virtual_space_end if necessary.
548 */
549
550 addr = pmap_steal_memory(size, &virtual_space_start,
551 &virtual_space_end);
552
553 return(addr);
554
555 #else /* !PMAP_STEAL_MEMORY */
556
557 /*
558 * allocate virtual memory for this request
559 */
560 if (virtual_space_start == virtual_space_end ||
561 (virtual_space_end - virtual_space_start) < size)
562 panic("uvm_pageboot_alloc: out of virtual space");
563
564 addr = virtual_space_start;
565
566 #ifdef PMAP_GROWKERNEL
567 /*
568 * If the kernel pmap can't map the requested space,
569 * then allocate more resources for it.
570 */
571 if (uvm_maxkaddr < (addr + size)) {
572 uvm_maxkaddr = pmap_growkernel(addr + size);
573 if (uvm_maxkaddr < (addr + size))
574 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
575 }
576 #endif
577
578 virtual_space_start += size;
579
580 /*
581 * allocate and mapin physical pages to back new virtual pages
582 */
583
584 for (vaddr = round_page(addr) ; vaddr < addr + size ;
585 vaddr += PAGE_SIZE) {
586
587 if (!uvm_page_physget(&paddr))
588 panic("uvm_pageboot_alloc: out of memory");
589
590 /*
591 * Note this memory is no longer managed, so using
592 * pmap_kenter is safe.
593 */
594 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
595 }
596 pmap_update(pmap_kernel());
597 return(addr);
598 #endif /* PMAP_STEAL_MEMORY */
599 }
600
601 #if !defined(PMAP_STEAL_MEMORY)
602 /*
603 * uvm_page_physget: "steal" one page from the vm_physmem structure.
604 *
605 * => attempt to allocate it off the end of a segment in which the "avail"
606 * values match the start/end values. if we can't do that, then we
607 * will advance both values (making them equal, and removing some
608 * vm_page structures from the non-avail area).
609 * => return false if out of memory.
610 */
611
612 /* subroutine: try to allocate from memory chunks on the specified freelist */
613 static bool uvm_page_physget_freelist(paddr_t *, int);
614
615 static bool
616 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
617 {
618 int lcv, x;
619
620 /* pass 1: try allocating from a matching end */
621 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
622 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
623 #else
624 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
625 #endif
626 {
627
628 if (uvm.page_init_done == true)
629 panic("uvm_page_physget: called _after_ bootstrap");
630
631 if (vm_physmem[lcv].free_list != freelist)
632 continue;
633
634 /* try from front */
635 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
636 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
637 *paddrp = ptoa(vm_physmem[lcv].avail_start);
638 vm_physmem[lcv].avail_start++;
639 vm_physmem[lcv].start++;
640 /* nothing left? nuke it */
641 if (vm_physmem[lcv].avail_start ==
642 vm_physmem[lcv].end) {
643 if (vm_nphysseg == 1)
644 panic("uvm_page_physget: out of memory!");
645 vm_nphysseg--;
646 for (x = lcv ; x < vm_nphysseg ; x++)
647 /* structure copy */
648 vm_physmem[x] = vm_physmem[x+1];
649 }
650 return (true);
651 }
652
653 /* try from rear */
654 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
655 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
656 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
657 vm_physmem[lcv].avail_end--;
658 vm_physmem[lcv].end--;
659 /* nothing left? nuke it */
660 if (vm_physmem[lcv].avail_end ==
661 vm_physmem[lcv].start) {
662 if (vm_nphysseg == 1)
663 panic("uvm_page_physget: out of memory!");
664 vm_nphysseg--;
665 for (x = lcv ; x < vm_nphysseg ; x++)
666 /* structure copy */
667 vm_physmem[x] = vm_physmem[x+1];
668 }
669 return (true);
670 }
671 }
672
673 /* pass2: forget about matching ends, just allocate something */
674 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
675 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
676 #else
677 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
678 #endif
679 {
680
681 /* any room in this bank? */
682 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
683 continue; /* nope */
684
685 *paddrp = ptoa(vm_physmem[lcv].avail_start);
686 vm_physmem[lcv].avail_start++;
687 /* truncate! */
688 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
689
690 /* nothing left? nuke it */
691 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
692 if (vm_nphysseg == 1)
693 panic("uvm_page_physget: out of memory!");
694 vm_nphysseg--;
695 for (x = lcv ; x < vm_nphysseg ; x++)
696 /* structure copy */
697 vm_physmem[x] = vm_physmem[x+1];
698 }
699 return (true);
700 }
701
702 return (false); /* whoops! */
703 }
704
705 bool
706 uvm_page_physget(paddr_t *paddrp)
707 {
708 int i;
709
710 /* try in the order of freelist preference */
711 for (i = 0; i < VM_NFREELIST; i++)
712 if (uvm_page_physget_freelist(paddrp, i) == true)
713 return (true);
714 return (false);
715 }
716 #endif /* PMAP_STEAL_MEMORY */
717
718 /*
719 * uvm_page_physload: load physical memory into VM system
720 *
721 * => all args are PFs
722 * => all pages in start/end get vm_page structures
723 * => areas marked by avail_start/avail_end get added to the free page pool
724 * => we are limited to VM_PHYSSEG_MAX physical memory segments
725 */
726
727 void
728 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
729 paddr_t avail_end, int free_list)
730 {
731 int preload, lcv;
732 psize_t npages;
733 struct vm_page *pgs;
734 struct vm_physseg *ps;
735
736 if (uvmexp.pagesize == 0)
737 panic("uvm_page_physload: page size not set!");
738 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
739 panic("uvm_page_physload: bad free list %d", free_list);
740 if (start >= end)
741 panic("uvm_page_physload: start >= end");
742
743 /*
744 * do we have room?
745 */
746
747 if (vm_nphysseg == VM_PHYSSEG_MAX) {
748 printf("uvm_page_physload: unable to load physical memory "
749 "segment\n");
750 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
751 VM_PHYSSEG_MAX, (long long)start, (long long)end);
752 printf("\tincrease VM_PHYSSEG_MAX\n");
753 return;
754 }
755
756 /*
757 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
758 * called yet, so malloc is not available).
759 */
760
761 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
762 if (vm_physmem[lcv].pgs)
763 break;
764 }
765 preload = (lcv == vm_nphysseg);
766
767 /*
768 * if VM is already running, attempt to malloc() vm_page structures
769 */
770
771 if (!preload) {
772 #if defined(VM_PHYSSEG_NOADD)
773 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
774 #else
775 /* XXXCDC: need some sort of lockout for this case */
776 paddr_t paddr;
777 npages = end - start; /* # of pages */
778 pgs = malloc(sizeof(struct vm_page) * npages,
779 M_VMPAGE, M_NOWAIT);
780 if (pgs == NULL) {
781 printf("uvm_page_physload: can not malloc vm_page "
782 "structs for segment\n");
783 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
784 return;
785 }
786 /* zero data, init phys_addr and free_list, and free pages */
787 memset(pgs, 0, sizeof(struct vm_page) * npages);
788 for (lcv = 0, paddr = ptoa(start) ;
789 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
790 pgs[lcv].phys_addr = paddr;
791 pgs[lcv].free_list = free_list;
792 if (atop(paddr) >= avail_start &&
793 atop(paddr) <= avail_end)
794 uvm_pagefree(&pgs[lcv]);
795 }
796 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
797 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
798 #endif
799 } else {
800 pgs = NULL;
801 npages = 0;
802 }
803
804 /*
805 * now insert us in the proper place in vm_physmem[]
806 */
807
808 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
809 /* random: put it at the end (easy!) */
810 ps = &vm_physmem[vm_nphysseg];
811 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
812 {
813 int x;
814 /* sort by address for binary search */
815 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
816 if (start < vm_physmem[lcv].start)
817 break;
818 ps = &vm_physmem[lcv];
819 /* move back other entries, if necessary ... */
820 for (x = vm_nphysseg ; x > lcv ; x--)
821 /* structure copy */
822 vm_physmem[x] = vm_physmem[x - 1];
823 }
824 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
825 {
826 int x;
827 /* sort by largest segment first */
828 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
829 if ((end - start) >
830 (vm_physmem[lcv].end - vm_physmem[lcv].start))
831 break;
832 ps = &vm_physmem[lcv];
833 /* move back other entries, if necessary ... */
834 for (x = vm_nphysseg ; x > lcv ; x--)
835 /* structure copy */
836 vm_physmem[x] = vm_physmem[x - 1];
837 }
838 #else
839 panic("uvm_page_physload: unknown physseg strategy selected!");
840 #endif
841
842 ps->start = start;
843 ps->end = end;
844 ps->avail_start = avail_start;
845 ps->avail_end = avail_end;
846 if (preload) {
847 ps->pgs = NULL;
848 } else {
849 ps->pgs = pgs;
850 ps->lastpg = pgs + npages - 1;
851 }
852 ps->free_list = free_list;
853 vm_nphysseg++;
854
855 if (!preload) {
856 uvmpdpol_reinit();
857 }
858 }
859
860 /*
861 * uvm_page_recolor: Recolor the pages if the new bucket count is
862 * larger than the old one.
863 */
864
865 void
866 uvm_page_recolor(int newncolors)
867 {
868 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
869 struct pgfreelist gpgfl, pgfl;
870 struct vm_page *pg;
871 vsize_t bucketcount;
872 int lcv, color, i, ocolors;
873 struct uvm_cpu *ucpu;
874
875 if (newncolors <= uvmexp.ncolors)
876 return;
877
878 if (uvm.page_init_done == false) {
879 uvmexp.ncolors = newncolors;
880 return;
881 }
882
883 bucketcount = newncolors * VM_NFREELIST;
884 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
885 M_VMPAGE, M_NOWAIT);
886 cpuarray = bucketarray + bucketcount;
887 if (bucketarray == NULL) {
888 printf("WARNING: unable to allocate %ld page color buckets\n",
889 (long) bucketcount);
890 return;
891 }
892
893 mutex_spin_enter(&uvm_fpageqlock);
894
895 /* Make sure we should still do this. */
896 if (newncolors <= uvmexp.ncolors) {
897 mutex_spin_exit(&uvm_fpageqlock);
898 free(bucketarray, M_VMPAGE);
899 return;
900 }
901
902 oldbucketarray = uvm.page_free[0].pgfl_buckets;
903 ocolors = uvmexp.ncolors;
904
905 uvmexp.ncolors = newncolors;
906 uvmexp.colormask = uvmexp.ncolors - 1;
907
908 ucpu = curcpu()->ci_data.cpu_uvm;
909 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
910 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
911 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
912 uvm_page_init_buckets(&gpgfl);
913 uvm_page_init_buckets(&pgfl);
914 for (color = 0; color < ocolors; color++) {
915 for (i = 0; i < PGFL_NQUEUES; i++) {
916 while ((pg = LIST_FIRST(&uvm.page_free[
917 lcv].pgfl_buckets[color].pgfl_queues[i]))
918 != NULL) {
919 LIST_REMOVE(pg, pageq.list); /* global */
920 LIST_REMOVE(pg, listq.list); /* cpu */
921 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
922 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
923 i], pg, pageq.list);
924 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
925 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
926 i], pg, listq.list);
927 }
928 }
929 }
930 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
931 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
932 }
933
934 if (have_recolored_pages) {
935 mutex_spin_exit(&uvm_fpageqlock);
936 free(oldbucketarray, M_VMPAGE);
937 return;
938 }
939
940 have_recolored_pages = true;
941 mutex_spin_exit(&uvm_fpageqlock);
942 }
943
944 /*
945 * uvm_cpu_attach: initialize per-CPU data structures.
946 */
947
948 void
949 uvm_cpu_attach(struct cpu_info *ci)
950 {
951 struct pgflbucket *bucketarray;
952 struct pgfreelist pgfl;
953 struct uvm_cpu *ucpu;
954 vsize_t bucketcount;
955 int lcv;
956
957 if (CPU_IS_PRIMARY(ci)) {
958 /* Already done in uvm_page_init(). */
959 return;
960 }
961
962 /* Add more reserve pages for this CPU. */
963 uvmexp.reserve_kernel += vm_page_reserve_kernel;
964
965 /* Configure this CPU's free lists. */
966 bucketcount = uvmexp.ncolors * VM_NFREELIST;
967 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
968 M_VMPAGE, M_WAITOK);
969 ucpu = &uvm.cpus[cpu_index(ci)];
970 ci->ci_data.cpu_uvm = ucpu;
971 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
972 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
973 uvm_page_init_buckets(&pgfl);
974 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
975 }
976 }
977
978 /*
979 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
980 */
981
982 static struct vm_page *
983 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
984 int *trycolorp)
985 {
986 struct pgflist *freeq;
987 struct vm_page *pg;
988 int color, trycolor = *trycolorp;
989 struct pgfreelist *gpgfl, *pgfl;
990
991 KASSERT(mutex_owned(&uvm_fpageqlock));
992
993 color = trycolor;
994 pgfl = &ucpu->page_free[flist];
995 gpgfl = &uvm.page_free[flist];
996 do {
997 /* cpu, try1 */
998 if ((pg = LIST_FIRST((freeq =
999 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1000 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1001 uvmexp.cpuhit++;
1002 goto gotit;
1003 }
1004 /* global, try1 */
1005 if ((pg = LIST_FIRST((freeq =
1006 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1007 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1008 uvmexp.cpumiss++;
1009 goto gotit;
1010 }
1011 /* cpu, try2 */
1012 if ((pg = LIST_FIRST((freeq =
1013 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1014 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1015 uvmexp.cpuhit++;
1016 goto gotit;
1017 }
1018 /* global, try2 */
1019 if ((pg = LIST_FIRST((freeq =
1020 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1021 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1022 uvmexp.cpumiss++;
1023 goto gotit;
1024 }
1025 color = (color + 1) & uvmexp.colormask;
1026 } while (color != trycolor);
1027
1028 return (NULL);
1029
1030 gotit:
1031 LIST_REMOVE(pg, pageq.list); /* global list */
1032 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1033 uvmexp.free--;
1034
1035 /* update zero'd page count */
1036 if (pg->flags & PG_ZERO)
1037 uvmexp.zeropages--;
1038
1039 if (color == trycolor)
1040 uvmexp.colorhit++;
1041 else {
1042 uvmexp.colormiss++;
1043 *trycolorp = color;
1044 }
1045
1046 return (pg);
1047 }
1048
1049 /*
1050 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1051 *
1052 * => return null if no pages free
1053 * => wake up pagedaemon if number of free pages drops below low water mark
1054 * => if obj != NULL, obj must be locked (to put in obj's tree)
1055 * => if anon != NULL, anon must be locked (to put in anon)
1056 * => only one of obj or anon can be non-null
1057 * => caller must activate/deactivate page if it is not wired.
1058 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1059 * => policy decision: it is more important to pull a page off of the
1060 * appropriate priority free list than it is to get a zero'd or
1061 * unknown contents page. This is because we live with the
1062 * consequences of a bad free list decision for the entire
1063 * lifetime of the page, e.g. if the page comes from memory that
1064 * is slower to access.
1065 */
1066
1067 struct vm_page *
1068 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1069 int flags, int strat, int free_list)
1070 {
1071 int lcv, try1, try2, zeroit = 0, color;
1072 struct uvm_cpu *ucpu;
1073 struct vm_page *pg;
1074 lwp_t *l;
1075
1076 KASSERT(obj == NULL || anon == NULL);
1077 KASSERT(anon == NULL || off == 0);
1078 KASSERT(off == trunc_page(off));
1079 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1080 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1081
1082 mutex_spin_enter(&uvm_fpageqlock);
1083
1084 /*
1085 * This implements a global round-robin page coloring
1086 * algorithm.
1087 *
1088 * XXXJRT: What about virtually-indexed caches?
1089 */
1090
1091 ucpu = curcpu()->ci_data.cpu_uvm;
1092 color = ucpu->page_free_nextcolor;
1093
1094 /*
1095 * check to see if we need to generate some free pages waking
1096 * the pagedaemon.
1097 */
1098
1099 uvm_kick_pdaemon();
1100
1101 /*
1102 * fail if any of these conditions is true:
1103 * [1] there really are no free pages, or
1104 * [2] only kernel "reserved" pages remain and
1105 * reserved pages have not been requested.
1106 * [3] only pagedaemon "reserved" pages remain and
1107 * the requestor isn't the pagedaemon.
1108 * we make kernel reserve pages available if called by a
1109 * kernel thread or a realtime thread.
1110 */
1111 l = curlwp;
1112 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1113 flags |= UVM_PGA_USERESERVE;
1114 }
1115 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1116 (flags & UVM_PGA_USERESERVE) == 0) ||
1117 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1118 curlwp != uvm.pagedaemon_lwp))
1119 goto fail;
1120
1121 #if PGFL_NQUEUES != 2
1122 #error uvm_pagealloc_strat needs to be updated
1123 #endif
1124
1125 /*
1126 * If we want a zero'd page, try the ZEROS queue first, otherwise
1127 * we try the UNKNOWN queue first.
1128 */
1129 if (flags & UVM_PGA_ZERO) {
1130 try1 = PGFL_ZEROS;
1131 try2 = PGFL_UNKNOWN;
1132 } else {
1133 try1 = PGFL_UNKNOWN;
1134 try2 = PGFL_ZEROS;
1135 }
1136
1137 again:
1138 switch (strat) {
1139 case UVM_PGA_STRAT_NORMAL:
1140 /* Check all freelists in descending priority order. */
1141 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1142 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1143 try1, try2, &color);
1144 if (pg != NULL)
1145 goto gotit;
1146 }
1147
1148 /* No pages free! */
1149 goto fail;
1150
1151 case UVM_PGA_STRAT_ONLY:
1152 case UVM_PGA_STRAT_FALLBACK:
1153 /* Attempt to allocate from the specified free list. */
1154 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1155 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1156 try1, try2, &color);
1157 if (pg != NULL)
1158 goto gotit;
1159
1160 /* Fall back, if possible. */
1161 if (strat == UVM_PGA_STRAT_FALLBACK) {
1162 strat = UVM_PGA_STRAT_NORMAL;
1163 goto again;
1164 }
1165
1166 /* No pages free! */
1167 goto fail;
1168
1169 default:
1170 panic("uvm_pagealloc_strat: bad strat %d", strat);
1171 /* NOTREACHED */
1172 }
1173
1174 gotit:
1175 /*
1176 * We now know which color we actually allocated from; set
1177 * the next color accordingly.
1178 */
1179
1180 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1181
1182 /*
1183 * update allocation statistics and remember if we have to
1184 * zero the page
1185 */
1186
1187 if (flags & UVM_PGA_ZERO) {
1188 if (pg->flags & PG_ZERO) {
1189 uvmexp.pga_zerohit++;
1190 zeroit = 0;
1191 } else {
1192 uvmexp.pga_zeromiss++;
1193 zeroit = 1;
1194 }
1195 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1196 ucpu->page_idle_zero = vm_page_zero_enable;
1197 }
1198 }
1199 mutex_spin_exit(&uvm_fpageqlock);
1200
1201 pg->offset = off;
1202 pg->uobject = obj;
1203 pg->uanon = anon;
1204 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1205 if (anon) {
1206 anon->an_page = pg;
1207 pg->pqflags = PQ_ANON;
1208 atomic_inc_uint(&uvmexp.anonpages);
1209 } else {
1210 if (obj) {
1211 uvm_pageinsert(pg);
1212 }
1213 pg->pqflags = 0;
1214 }
1215 #if defined(UVM_PAGE_TRKOWN)
1216 pg->owner_tag = NULL;
1217 #endif
1218 UVM_PAGE_OWN(pg, "new alloc");
1219
1220 if (flags & UVM_PGA_ZERO) {
1221 /*
1222 * A zero'd page is not clean. If we got a page not already
1223 * zero'd, then we have to zero it ourselves.
1224 */
1225 pg->flags &= ~PG_CLEAN;
1226 if (zeroit)
1227 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1228 }
1229
1230 return(pg);
1231
1232 fail:
1233 mutex_spin_exit(&uvm_fpageqlock);
1234 return (NULL);
1235 }
1236
1237 /*
1238 * uvm_pagereplace: replace a page with another
1239 *
1240 * => object must be locked
1241 */
1242
1243 void
1244 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1245 {
1246 struct uvm_object *uobj = oldpg->uobject;
1247
1248 KASSERT((oldpg->flags & PG_TABLED) != 0);
1249 KASSERT(uobj != NULL);
1250 KASSERT((newpg->flags & PG_TABLED) == 0);
1251 KASSERT(newpg->uobject == NULL);
1252 KASSERT(mutex_owned(&uobj->vmobjlock));
1253
1254 newpg->uobject = uobj;
1255 newpg->offset = oldpg->offset;
1256
1257 uvm_pageremove_tree(uobj, oldpg);
1258 uvm_pageinsert_tree(uobj, newpg);
1259 uvm_pageinsert_list(uobj, newpg, oldpg);
1260 uvm_pageremove_list(uobj, oldpg);
1261 }
1262
1263 /*
1264 * uvm_pagerealloc: reallocate a page from one object to another
1265 *
1266 * => both objects must be locked
1267 */
1268
1269 void
1270 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1271 {
1272 /*
1273 * remove it from the old object
1274 */
1275
1276 if (pg->uobject) {
1277 uvm_pageremove(pg);
1278 }
1279
1280 /*
1281 * put it in the new object
1282 */
1283
1284 if (newobj) {
1285 pg->uobject = newobj;
1286 pg->offset = newoff;
1287 uvm_pageinsert(pg);
1288 }
1289 }
1290
1291 #ifdef DEBUG
1292 /*
1293 * check if page is zero-filled
1294 *
1295 * - called with free page queue lock held.
1296 */
1297 void
1298 uvm_pagezerocheck(struct vm_page *pg)
1299 {
1300 int *p, *ep;
1301
1302 KASSERT(uvm_zerocheckkva != 0);
1303 KASSERT(mutex_owned(&uvm_fpageqlock));
1304
1305 /*
1306 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1307 * uvm page allocator.
1308 *
1309 * it might be better to have "CPU-local temporary map" pmap interface.
1310 */
1311 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1312 p = (int *)uvm_zerocheckkva;
1313 ep = (int *)((char *)p + PAGE_SIZE);
1314 pmap_update(pmap_kernel());
1315 while (p < ep) {
1316 if (*p != 0)
1317 panic("PG_ZERO page isn't zero-filled");
1318 p++;
1319 }
1320 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1321 /*
1322 * pmap_update() is not necessary here because no one except us
1323 * uses this VA.
1324 */
1325 }
1326 #endif /* DEBUG */
1327
1328 /*
1329 * uvm_pagefree: free page
1330 *
1331 * => erase page's identity (i.e. remove from object)
1332 * => put page on free list
1333 * => caller must lock owning object (either anon or uvm_object)
1334 * => caller must lock page queues
1335 * => assumes all valid mappings of pg are gone
1336 */
1337
1338 void
1339 uvm_pagefree(struct vm_page *pg)
1340 {
1341 struct pgflist *pgfl;
1342 struct uvm_cpu *ucpu;
1343 int index, color, queue;
1344 bool iszero;
1345
1346 #ifdef DEBUG
1347 if (pg->uobject == (void *)0xdeadbeef &&
1348 pg->uanon == (void *)0xdeadbeef) {
1349 panic("uvm_pagefree: freeing free page %p", pg);
1350 }
1351 #endif /* DEBUG */
1352
1353 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1354 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1355 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1356 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1357 mutex_owned(&pg->uanon->an_lock));
1358
1359 /*
1360 * if the page is loaned, resolve the loan instead of freeing.
1361 */
1362
1363 if (pg->loan_count) {
1364 KASSERT(pg->wire_count == 0);
1365
1366 /*
1367 * if the page is owned by an anon then we just want to
1368 * drop anon ownership. the kernel will free the page when
1369 * it is done with it. if the page is owned by an object,
1370 * remove it from the object and mark it dirty for the benefit
1371 * of possible anon owners.
1372 *
1373 * regardless of previous ownership, wakeup any waiters,
1374 * unbusy the page, and we're done.
1375 */
1376
1377 if (pg->uobject != NULL) {
1378 uvm_pageremove(pg);
1379 pg->flags &= ~PG_CLEAN;
1380 } else if (pg->uanon != NULL) {
1381 if ((pg->pqflags & PQ_ANON) == 0) {
1382 pg->loan_count--;
1383 } else {
1384 pg->pqflags &= ~PQ_ANON;
1385 atomic_dec_uint(&uvmexp.anonpages);
1386 }
1387 pg->uanon->an_page = NULL;
1388 pg->uanon = NULL;
1389 }
1390 if (pg->flags & PG_WANTED) {
1391 wakeup(pg);
1392 }
1393 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1394 #ifdef UVM_PAGE_TRKOWN
1395 pg->owner_tag = NULL;
1396 #endif
1397 if (pg->loan_count) {
1398 KASSERT(pg->uobject == NULL);
1399 if (pg->uanon == NULL) {
1400 uvm_pagedequeue(pg);
1401 }
1402 return;
1403 }
1404 }
1405
1406 /*
1407 * remove page from its object or anon.
1408 */
1409
1410 if (pg->uobject != NULL) {
1411 uvm_pageremove(pg);
1412 } else if (pg->uanon != NULL) {
1413 pg->uanon->an_page = NULL;
1414 atomic_dec_uint(&uvmexp.anonpages);
1415 }
1416
1417 /*
1418 * now remove the page from the queues.
1419 */
1420
1421 uvm_pagedequeue(pg);
1422
1423 /*
1424 * if the page was wired, unwire it now.
1425 */
1426
1427 if (pg->wire_count) {
1428 pg->wire_count = 0;
1429 uvmexp.wired--;
1430 }
1431
1432 /*
1433 * and put on free queue
1434 */
1435
1436 iszero = (pg->flags & PG_ZERO);
1437 index = uvm_page_lookup_freelist(pg);
1438 color = VM_PGCOLOR_BUCKET(pg);
1439 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1440
1441 pg->pqflags = PQ_FREE;
1442 #ifdef DEBUG
1443 pg->uobject = (void *)0xdeadbeef;
1444 pg->uanon = (void *)0xdeadbeef;
1445 #endif
1446
1447 mutex_spin_enter(&uvm_fpageqlock);
1448
1449 #ifdef DEBUG
1450 if (iszero)
1451 uvm_pagezerocheck(pg);
1452 #endif /* DEBUG */
1453
1454
1455 /* global list */
1456 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1457 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1458 uvmexp.free++;
1459 if (iszero) {
1460 uvmexp.zeropages++;
1461 }
1462
1463 /* per-cpu list */
1464 ucpu = curcpu()->ci_data.cpu_uvm;
1465 pg->offset = (uintptr_t)ucpu;
1466 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1467 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1468 ucpu->pages[queue]++;
1469 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1470 ucpu->page_idle_zero = vm_page_zero_enable;
1471 }
1472
1473 mutex_spin_exit(&uvm_fpageqlock);
1474 }
1475
1476 /*
1477 * uvm_page_unbusy: unbusy an array of pages.
1478 *
1479 * => pages must either all belong to the same object, or all belong to anons.
1480 * => if pages are object-owned, object must be locked.
1481 * => if pages are anon-owned, anons must be locked.
1482 * => caller must lock page queues if pages may be released.
1483 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1484 */
1485
1486 void
1487 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1488 {
1489 struct vm_page *pg;
1490 int i;
1491 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1492
1493 for (i = 0; i < npgs; i++) {
1494 pg = pgs[i];
1495 if (pg == NULL || pg == PGO_DONTCARE) {
1496 continue;
1497 }
1498
1499 KASSERT(pg->uobject == NULL ||
1500 mutex_owned(&pg->uobject->vmobjlock));
1501 KASSERT(pg->uobject != NULL ||
1502 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1503
1504 KASSERT(pg->flags & PG_BUSY);
1505 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1506 if (pg->flags & PG_WANTED) {
1507 wakeup(pg);
1508 }
1509 if (pg->flags & PG_RELEASED) {
1510 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1511 KASSERT(pg->uobject != NULL ||
1512 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1513 pg->flags &= ~PG_RELEASED;
1514 uvm_pagefree(pg);
1515 } else {
1516 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1517 pg->flags &= ~(PG_WANTED|PG_BUSY);
1518 UVM_PAGE_OWN(pg, NULL);
1519 }
1520 }
1521 }
1522
1523 #if defined(UVM_PAGE_TRKOWN)
1524 /*
1525 * uvm_page_own: set or release page ownership
1526 *
1527 * => this is a debugging function that keeps track of who sets PG_BUSY
1528 * and where they do it. it can be used to track down problems
1529 * such a process setting "PG_BUSY" and never releasing it.
1530 * => page's object [if any] must be locked
1531 * => if "tag" is NULL then we are releasing page ownership
1532 */
1533 void
1534 uvm_page_own(struct vm_page *pg, const char *tag)
1535 {
1536 struct uvm_object *uobj;
1537 struct vm_anon *anon;
1538
1539 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1540
1541 uobj = pg->uobject;
1542 anon = pg->uanon;
1543 if (uobj != NULL) {
1544 KASSERT(mutex_owned(&uobj->vmobjlock));
1545 } else if (anon != NULL) {
1546 KASSERT(mutex_owned(&anon->an_lock));
1547 }
1548
1549 KASSERT((pg->flags & PG_WANTED) == 0);
1550
1551 /* gain ownership? */
1552 if (tag) {
1553 KASSERT((pg->flags & PG_BUSY) != 0);
1554 if (pg->owner_tag) {
1555 printf("uvm_page_own: page %p already owned "
1556 "by proc %d [%s]\n", pg,
1557 pg->owner, pg->owner_tag);
1558 panic("uvm_page_own");
1559 }
1560 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1561 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1562 pg->owner_tag = tag;
1563 return;
1564 }
1565
1566 /* drop ownership */
1567 KASSERT((pg->flags & PG_BUSY) == 0);
1568 if (pg->owner_tag == NULL) {
1569 printf("uvm_page_own: dropping ownership of an non-owned "
1570 "page (%p)\n", pg);
1571 panic("uvm_page_own");
1572 }
1573 if (!uvmpdpol_pageisqueued_p(pg)) {
1574 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1575 pg->wire_count > 0);
1576 } else {
1577 KASSERT(pg->wire_count == 0);
1578 }
1579 pg->owner_tag = NULL;
1580 }
1581 #endif
1582
1583 /*
1584 * uvm_pageidlezero: zero free pages while the system is idle.
1585 *
1586 * => try to complete one color bucket at a time, to reduce our impact
1587 * on the CPU cache.
1588 * => we loop until we either reach the target or there is a lwp ready
1589 * to run, or MD code detects a reason to break early.
1590 */
1591 void
1592 uvm_pageidlezero(void)
1593 {
1594 struct vm_page *pg;
1595 struct pgfreelist *pgfl, *gpgfl;
1596 struct uvm_cpu *ucpu;
1597 int free_list, firstbucket, nextbucket;
1598
1599 ucpu = curcpu()->ci_data.cpu_uvm;
1600 if (!ucpu->page_idle_zero ||
1601 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1602 ucpu->page_idle_zero = false;
1603 return;
1604 }
1605 mutex_enter(&uvm_fpageqlock);
1606 firstbucket = ucpu->page_free_nextcolor;
1607 nextbucket = firstbucket;
1608 do {
1609 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1610 if (sched_curcpu_runnable_p()) {
1611 goto quit;
1612 }
1613 pgfl = &ucpu->page_free[free_list];
1614 gpgfl = &uvm.page_free[free_list];
1615 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1616 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1617 if (sched_curcpu_runnable_p()) {
1618 goto quit;
1619 }
1620 LIST_REMOVE(pg, pageq.list); /* global list */
1621 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1622 ucpu->pages[PGFL_UNKNOWN]--;
1623 uvmexp.free--;
1624 mutex_spin_exit(&uvm_fpageqlock);
1625 #ifdef PMAP_PAGEIDLEZERO
1626 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1627
1628 /*
1629 * The machine-dependent code detected
1630 * some reason for us to abort zeroing
1631 * pages, probably because there is a
1632 * process now ready to run.
1633 */
1634
1635 mutex_spin_enter(&uvm_fpageqlock);
1636 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1637 nextbucket].pgfl_queues[
1638 PGFL_UNKNOWN], pg, pageq.list);
1639 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1640 nextbucket].pgfl_queues[
1641 PGFL_UNKNOWN], pg, listq.list);
1642 ucpu->pages[PGFL_UNKNOWN]++;
1643 uvmexp.free++;
1644 uvmexp.zeroaborts++;
1645 goto quit;
1646 }
1647 #else
1648 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1649 #endif /* PMAP_PAGEIDLEZERO */
1650 pg->flags |= PG_ZERO;
1651
1652 mutex_spin_enter(&uvm_fpageqlock);
1653 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1654 nextbucket].pgfl_queues[PGFL_ZEROS],
1655 pg, pageq.list);
1656 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1657 nextbucket].pgfl_queues[PGFL_ZEROS],
1658 pg, listq.list);
1659 ucpu->pages[PGFL_ZEROS]++;
1660 uvmexp.free++;
1661 uvmexp.zeropages++;
1662 }
1663 }
1664 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1665 break;
1666 }
1667 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1668 } while (nextbucket != firstbucket);
1669 ucpu->page_idle_zero = false;
1670 quit:
1671 mutex_spin_exit(&uvm_fpageqlock);
1672 }
1673
1674 /*
1675 * uvm_pagelookup: look up a page
1676 *
1677 * => caller should lock object to keep someone from pulling the page
1678 * out from under it
1679 */
1680
1681 struct vm_page *
1682 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1683 {
1684 struct vm_page *pg;
1685
1686 KASSERT(mutex_owned(&obj->vmobjlock));
1687
1688 pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1689
1690 KASSERT(pg == NULL || obj->uo_npages != 0);
1691 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1692 (pg->flags & PG_BUSY) != 0);
1693 return(pg);
1694 }
1695
1696 /*
1697 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1698 *
1699 * => caller must lock page queues
1700 */
1701
1702 void
1703 uvm_pagewire(struct vm_page *pg)
1704 {
1705 KASSERT(mutex_owned(&uvm_pageqlock));
1706 #if defined(READAHEAD_STATS)
1707 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1708 uvm_ra_hit.ev_count++;
1709 pg->pqflags &= ~PQ_READAHEAD;
1710 }
1711 #endif /* defined(READAHEAD_STATS) */
1712 if (pg->wire_count == 0) {
1713 uvm_pagedequeue(pg);
1714 uvmexp.wired++;
1715 }
1716 pg->wire_count++;
1717 }
1718
1719 /*
1720 * uvm_pageunwire: unwire the page.
1721 *
1722 * => activate if wire count goes to zero.
1723 * => caller must lock page queues
1724 */
1725
1726 void
1727 uvm_pageunwire(struct vm_page *pg)
1728 {
1729 KASSERT(mutex_owned(&uvm_pageqlock));
1730 pg->wire_count--;
1731 if (pg->wire_count == 0) {
1732 uvm_pageactivate(pg);
1733 uvmexp.wired--;
1734 }
1735 }
1736
1737 /*
1738 * uvm_pagedeactivate: deactivate page
1739 *
1740 * => caller must lock page queues
1741 * => caller must check to make sure page is not wired
1742 * => object that page belongs to must be locked (so we can adjust pg->flags)
1743 * => caller must clear the reference on the page before calling
1744 */
1745
1746 void
1747 uvm_pagedeactivate(struct vm_page *pg)
1748 {
1749
1750 KASSERT(mutex_owned(&uvm_pageqlock));
1751 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1752 uvmpdpol_pagedeactivate(pg);
1753 }
1754
1755 /*
1756 * uvm_pageactivate: activate page
1757 *
1758 * => caller must lock page queues
1759 */
1760
1761 void
1762 uvm_pageactivate(struct vm_page *pg)
1763 {
1764
1765 KASSERT(mutex_owned(&uvm_pageqlock));
1766 #if defined(READAHEAD_STATS)
1767 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1768 uvm_ra_hit.ev_count++;
1769 pg->pqflags &= ~PQ_READAHEAD;
1770 }
1771 #endif /* defined(READAHEAD_STATS) */
1772 if (pg->wire_count != 0) {
1773 return;
1774 }
1775 uvmpdpol_pageactivate(pg);
1776 }
1777
1778 /*
1779 * uvm_pagedequeue: remove a page from any paging queue
1780 */
1781
1782 void
1783 uvm_pagedequeue(struct vm_page *pg)
1784 {
1785
1786 if (uvmpdpol_pageisqueued_p(pg)) {
1787 KASSERT(mutex_owned(&uvm_pageqlock));
1788 }
1789
1790 uvmpdpol_pagedequeue(pg);
1791 }
1792
1793 /*
1794 * uvm_pageenqueue: add a page to a paging queue without activating.
1795 * used where a page is not really demanded (yet). eg. read-ahead
1796 */
1797
1798 void
1799 uvm_pageenqueue(struct vm_page *pg)
1800 {
1801
1802 KASSERT(mutex_owned(&uvm_pageqlock));
1803 if (pg->wire_count != 0) {
1804 return;
1805 }
1806 uvmpdpol_pageenqueue(pg);
1807 }
1808
1809 /*
1810 * uvm_pagezero: zero fill a page
1811 *
1812 * => if page is part of an object then the object should be locked
1813 * to protect pg->flags.
1814 */
1815
1816 void
1817 uvm_pagezero(struct vm_page *pg)
1818 {
1819 pg->flags &= ~PG_CLEAN;
1820 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1821 }
1822
1823 /*
1824 * uvm_pagecopy: copy a page
1825 *
1826 * => if page is part of an object then the object should be locked
1827 * to protect pg->flags.
1828 */
1829
1830 void
1831 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1832 {
1833
1834 dst->flags &= ~PG_CLEAN;
1835 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1836 }
1837
1838 /*
1839 * uvm_page_lookup_freelist: look up the free list for the specified page
1840 */
1841
1842 int
1843 uvm_page_lookup_freelist(struct vm_page *pg)
1844 {
1845 int lcv;
1846
1847 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1848 KASSERT(lcv != -1);
1849 return (vm_physmem[lcv].free_list);
1850 }
1851