Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.146
      1 /*	$NetBSD: uvm_page.c,v 1.146 2009/08/10 23:17:29 haad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.146 2009/08/10 23:17:29 haad Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 #include "opt_readahead.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/sched.h>
     83 #include <sys/kernel.h>
     84 #include <sys/vnode.h>
     85 #include <sys/proc.h>
     86 #include <sys/atomic.h>
     87 #include <sys/cpu.h>
     88 
     89 #include <uvm/uvm.h>
     90 #include <uvm/uvm_pdpolicy.h>
     91 
     92 /*
     93  * global vars... XXXCDC: move to uvm. structure.
     94  */
     95 
     96 /*
     97  * physical memory config is stored in vm_physmem.
     98  */
     99 
    100 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    101 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    102 
    103 /*
    104  * Some supported CPUs in a given architecture don't support all
    105  * of the things necessary to do idle page zero'ing efficiently.
    106  * We therefore provide a way to disable it from machdep code here.
    107  */
    108 /*
    109  * XXX disabled until we can find a way to do this without causing
    110  * problems for either CPU caches or DMA latency.
    111  */
    112 bool vm_page_zero_enable = false;
    113 
    114 /*
    115  * number of pages per-CPU to reserve for the kernel.
    116  */
    117 int vm_page_reserve_kernel = 5;
    118 
    119 /* Physical memory size */
    120 uintptr_t physmem;
    121 
    122 /*
    123  * local variables
    124  */
    125 
    126 /*
    127  * these variables record the values returned by vm_page_bootstrap,
    128  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    129  * and pmap_startup here also uses them internally.
    130  */
    131 
    132 static vaddr_t      virtual_space_start;
    133 static vaddr_t      virtual_space_end;
    134 
    135 /*
    136  * we allocate an initial number of page colors in uvm_page_init(),
    137  * and remember them.  We may re-color pages as cache sizes are
    138  * discovered during the autoconfiguration phase.  But we can never
    139  * free the initial set of buckets, since they are allocated using
    140  * uvm_pageboot_alloc().
    141  */
    142 
    143 static bool have_recolored_pages /* = false */;
    144 
    145 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    146 
    147 #ifdef DEBUG
    148 vaddr_t uvm_zerocheckkva;
    149 #endif /* DEBUG */
    150 
    151 /*
    152  * local prototypes
    153  */
    154 
    155 static void uvm_pageinsert(struct vm_page *);
    156 static void uvm_pageremove(struct vm_page *);
    157 
    158 /*
    159  * per-object tree of pages
    160  */
    161 
    162 static signed int
    163 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    164 {
    165 	const struct vm_page *pg1 = (const void *)n1;
    166 	const struct vm_page *pg2 = (const void *)n2;
    167 	const voff_t a = pg1->offset;
    168 	const voff_t b = pg2->offset;
    169 
    170 	if (a < b)
    171 		return 1;
    172 	if (a > b)
    173 		return -1;
    174 	return 0;
    175 }
    176 
    177 static signed int
    178 uvm_page_compare_key(const struct rb_node *n, const void *key)
    179 {
    180 	const struct vm_page *pg = (const void *)n;
    181 	const voff_t a = pg->offset;
    182 	const voff_t b = *(const voff_t *)key;
    183 
    184 	if (a < b)
    185 		return 1;
    186 	if (a > b)
    187 		return -1;
    188 	return 0;
    189 }
    190 
    191 const struct rb_tree_ops uvm_page_tree_ops = {
    192 	.rbto_compare_nodes = uvm_page_compare_nodes,
    193 	.rbto_compare_key = uvm_page_compare_key,
    194 };
    195 
    196 /*
    197  * inline functions
    198  */
    199 
    200 /*
    201  * uvm_pageinsert: insert a page in the object.
    202  *
    203  * => caller must lock object
    204  * => caller must lock page queues
    205  * => call should have already set pg's object and offset pointers
    206  *    and bumped the version counter
    207  */
    208 
    209 static inline void
    210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    211     struct vm_page *where)
    212 {
    213 
    214 	KASSERT(uobj == pg->uobject);
    215 	KASSERT(mutex_owned(&uobj->vmobjlock));
    216 	KASSERT((pg->flags & PG_TABLED) == 0);
    217 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    218 	KASSERT(where == NULL || (where->uobject == uobj));
    219 
    220 	if (UVM_OBJ_IS_VNODE(uobj)) {
    221 		if (uobj->uo_npages == 0) {
    222 			struct vnode *vp = (struct vnode *)uobj;
    223 
    224 			vholdl(vp);
    225 		}
    226 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    227 			atomic_inc_uint(&uvmexp.execpages);
    228 		} else {
    229 			atomic_inc_uint(&uvmexp.filepages);
    230 		}
    231 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    232 		atomic_inc_uint(&uvmexp.anonpages);
    233 	}
    234 
    235 	if (where)
    236 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    237 	else
    238 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    239 	pg->flags |= PG_TABLED;
    240 	uobj->uo_npages++;
    241 }
    242 
    243 
    244 static inline void
    245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    246 {
    247 	bool success;
    248 
    249 	KASSERT(uobj == pg->uobject);
    250 	success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    251 	KASSERT(success);
    252 }
    253 
    254 static inline void
    255 uvm_pageinsert(struct vm_page *pg)
    256 {
    257 	struct uvm_object *uobj = pg->uobject;
    258 
    259 	uvm_pageinsert_tree(uobj, pg);
    260 	uvm_pageinsert_list(uobj, pg, NULL);
    261 }
    262 
    263 /*
    264  * uvm_page_remove: remove page from object.
    265  *
    266  * => caller must lock object
    267  * => caller must lock page queues
    268  */
    269 
    270 static inline void
    271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    272 {
    273 
    274 	KASSERT(uobj == pg->uobject);
    275 	KASSERT(mutex_owned(&uobj->vmobjlock));
    276 	KASSERT(pg->flags & PG_TABLED);
    277 
    278 	if (UVM_OBJ_IS_VNODE(uobj)) {
    279 		if (uobj->uo_npages == 1) {
    280 			struct vnode *vp = (struct vnode *)uobj;
    281 
    282 			holdrelel(vp);
    283 		}
    284 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    285 			atomic_dec_uint(&uvmexp.execpages);
    286 		} else {
    287 			atomic_dec_uint(&uvmexp.filepages);
    288 		}
    289 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    290 		atomic_dec_uint(&uvmexp.anonpages);
    291 	}
    292 
    293 	/* object should be locked */
    294 	uobj->uo_npages--;
    295 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    296 	pg->flags &= ~PG_TABLED;
    297 	pg->uobject = NULL;
    298 }
    299 
    300 static inline void
    301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    302 {
    303 
    304 	KASSERT(uobj == pg->uobject);
    305 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    306 }
    307 
    308 static inline void
    309 uvm_pageremove(struct vm_page *pg)
    310 {
    311 	struct uvm_object *uobj = pg->uobject;
    312 
    313 	uvm_pageremove_tree(uobj, pg);
    314 	uvm_pageremove_list(uobj, pg);
    315 }
    316 
    317 static void
    318 uvm_page_init_buckets(struct pgfreelist *pgfl)
    319 {
    320 	int color, i;
    321 
    322 	for (color = 0; color < uvmexp.ncolors; color++) {
    323 		for (i = 0; i < PGFL_NQUEUES; i++) {
    324 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    325 		}
    326 	}
    327 }
    328 
    329 /*
    330  * uvm_page_init: init the page system.   called from uvm_init().
    331  *
    332  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    333  */
    334 
    335 void
    336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    337 {
    338 	vsize_t freepages, pagecount, bucketcount, n;
    339 	struct pgflbucket *bucketarray, *cpuarray;
    340 	struct vm_page *pagearray;
    341 	int lcv;
    342 	u_int i;
    343 	paddr_t paddr;
    344 
    345 	KASSERT(ncpu <= 1);
    346 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    347 
    348 	/*
    349 	 * init the page queues and page queue locks, except the free
    350 	 * list; we allocate that later (with the initial vm_page
    351 	 * structures).
    352 	 */
    353 
    354 	curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
    355 	uvm_reclaim_init();
    356 	uvmpdpol_init();
    357 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    358 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    359 
    360 	/*
    361 	 * allocate vm_page structures.
    362 	 */
    363 
    364 	/*
    365 	 * sanity check:
    366 	 * before calling this function the MD code is expected to register
    367 	 * some free RAM with the uvm_page_physload() function.   our job
    368 	 * now is to allocate vm_page structures for this memory.
    369 	 */
    370 
    371 	if (vm_nphysseg == 0)
    372 		panic("uvm_page_bootstrap: no memory pre-allocated");
    373 
    374 	/*
    375 	 * first calculate the number of free pages...
    376 	 *
    377 	 * note that we use start/end rather than avail_start/avail_end.
    378 	 * this allows us to allocate extra vm_page structures in case we
    379 	 * want to return some memory to the pool after booting.
    380 	 */
    381 
    382 	freepages = 0;
    383 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    384 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    385 
    386 	/*
    387 	 * Let MD code initialize the number of colors, or default
    388 	 * to 1 color if MD code doesn't care.
    389 	 */
    390 	if (uvmexp.ncolors == 0)
    391 		uvmexp.ncolors = 1;
    392 	uvmexp.colormask = uvmexp.ncolors - 1;
    393 
    394 	/*
    395 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    396 	 * use.   for each page of memory we use we need a vm_page structure.
    397 	 * thus, the total number of pages we can use is the total size of
    398 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    399 	 * structure.   we add one to freepages as a fudge factor to avoid
    400 	 * truncation errors (since we can only allocate in terms of whole
    401 	 * pages).
    402 	 */
    403 
    404 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    405 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    406 	    (PAGE_SIZE + sizeof(struct vm_page));
    407 
    408 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    409 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    410 	    sizeof(struct vm_page)));
    411 	cpuarray = bucketarray + bucketcount;
    412 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    413 
    414 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    415 		uvm.page_free[lcv].pgfl_buckets =
    416 		    (bucketarray + (lcv * uvmexp.ncolors));
    417 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    418 		uvm.cpus[0].page_free[lcv].pgfl_buckets =
    419 		    (cpuarray + (lcv * uvmexp.ncolors));
    420 		uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
    421 	}
    422 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    423 
    424 	/*
    425 	 * init the vm_page structures and put them in the correct place.
    426 	 */
    427 
    428 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    429 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    430 
    431 		/* set up page array pointers */
    432 		vm_physmem[lcv].pgs = pagearray;
    433 		pagearray += n;
    434 		pagecount -= n;
    435 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    436 
    437 		/* init and free vm_pages (we've already zeroed them) */
    438 		paddr = ptoa(vm_physmem[lcv].start);
    439 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    440 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    441 #ifdef __HAVE_VM_PAGE_MD
    442 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    443 #endif
    444 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    445 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    446 				uvmexp.npages++;
    447 				/* add page to free pool */
    448 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    449 			}
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * pass up the values of virtual_space_start and
    455 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    456 	 * layers of the VM.
    457 	 */
    458 
    459 	*kvm_startp = round_page(virtual_space_start);
    460 	*kvm_endp = trunc_page(virtual_space_end);
    461 #ifdef DEBUG
    462 	/*
    463 	 * steal kva for uvm_pagezerocheck().
    464 	 */
    465 	uvm_zerocheckkva = *kvm_startp;
    466 	*kvm_startp += PAGE_SIZE;
    467 #endif /* DEBUG */
    468 
    469 	/*
    470 	 * init various thresholds.
    471 	 */
    472 
    473 	uvmexp.reserve_pagedaemon = 1;
    474 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    475 
    476 	/*
    477 	 * determine if we should zero pages in the idle loop.
    478 	 */
    479 
    480 	uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
    481 
    482 	/*
    483 	 * done!
    484 	 */
    485 
    486 	uvm.page_init_done = true;
    487 }
    488 
    489 /*
    490  * uvm_setpagesize: set the page size
    491  *
    492  * => sets page_shift and page_mask from uvmexp.pagesize.
    493  */
    494 
    495 void
    496 uvm_setpagesize(void)
    497 {
    498 
    499 	/*
    500 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    501 	 * to be a constant (indicated by being a non-zero value).
    502 	 */
    503 	if (uvmexp.pagesize == 0) {
    504 		if (PAGE_SIZE == 0)
    505 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    506 		uvmexp.pagesize = PAGE_SIZE;
    507 	}
    508 	uvmexp.pagemask = uvmexp.pagesize - 1;
    509 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    510 		panic("uvm_setpagesize: page size not a power of two");
    511 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    512 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    513 			break;
    514 }
    515 
    516 /*
    517  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    518  */
    519 
    520 vaddr_t
    521 uvm_pageboot_alloc(vsize_t size)
    522 {
    523 	static bool initialized = false;
    524 	vaddr_t addr;
    525 #if !defined(PMAP_STEAL_MEMORY)
    526 	vaddr_t vaddr;
    527 	paddr_t paddr;
    528 #endif
    529 
    530 	/*
    531 	 * on first call to this function, initialize ourselves.
    532 	 */
    533 	if (initialized == false) {
    534 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    535 
    536 		/* round it the way we like it */
    537 		virtual_space_start = round_page(virtual_space_start);
    538 		virtual_space_end = trunc_page(virtual_space_end);
    539 
    540 		initialized = true;
    541 	}
    542 
    543 	/* round to page size */
    544 	size = round_page(size);
    545 
    546 #if defined(PMAP_STEAL_MEMORY)
    547 
    548 	/*
    549 	 * defer bootstrap allocation to MD code (it may want to allocate
    550 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    551 	 * virtual_space_start/virtual_space_end if necessary.
    552 	 */
    553 
    554 	addr = pmap_steal_memory(size, &virtual_space_start,
    555 	    &virtual_space_end);
    556 
    557 	return(addr);
    558 
    559 #else /* !PMAP_STEAL_MEMORY */
    560 
    561 	/*
    562 	 * allocate virtual memory for this request
    563 	 */
    564 	if (virtual_space_start == virtual_space_end ||
    565 	    (virtual_space_end - virtual_space_start) < size)
    566 		panic("uvm_pageboot_alloc: out of virtual space");
    567 
    568 	addr = virtual_space_start;
    569 
    570 #ifdef PMAP_GROWKERNEL
    571 	/*
    572 	 * If the kernel pmap can't map the requested space,
    573 	 * then allocate more resources for it.
    574 	 */
    575 	if (uvm_maxkaddr < (addr + size)) {
    576 		uvm_maxkaddr = pmap_growkernel(addr + size);
    577 		if (uvm_maxkaddr < (addr + size))
    578 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    579 	}
    580 #endif
    581 
    582 	virtual_space_start += size;
    583 
    584 	/*
    585 	 * allocate and mapin physical pages to back new virtual pages
    586 	 */
    587 
    588 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    589 	    vaddr += PAGE_SIZE) {
    590 
    591 		if (!uvm_page_physget(&paddr))
    592 			panic("uvm_pageboot_alloc: out of memory");
    593 
    594 		/*
    595 		 * Note this memory is no longer managed, so using
    596 		 * pmap_kenter is safe.
    597 		 */
    598 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    599 	}
    600 	pmap_update(pmap_kernel());
    601 	return(addr);
    602 #endif	/* PMAP_STEAL_MEMORY */
    603 }
    604 
    605 #if !defined(PMAP_STEAL_MEMORY)
    606 /*
    607  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    608  *
    609  * => attempt to allocate it off the end of a segment in which the "avail"
    610  *    values match the start/end values.   if we can't do that, then we
    611  *    will advance both values (making them equal, and removing some
    612  *    vm_page structures from the non-avail area).
    613  * => return false if out of memory.
    614  */
    615 
    616 /* subroutine: try to allocate from memory chunks on the specified freelist */
    617 static bool uvm_page_physget_freelist(paddr_t *, int);
    618 
    619 static bool
    620 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    621 {
    622 	int lcv, x;
    623 
    624 	/* pass 1: try allocating from a matching end */
    625 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    626 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    627 #else
    628 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    629 #endif
    630 	{
    631 
    632 		if (uvm.page_init_done == true)
    633 			panic("uvm_page_physget: called _after_ bootstrap");
    634 
    635 		if (vm_physmem[lcv].free_list != freelist)
    636 			continue;
    637 
    638 		/* try from front */
    639 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    640 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    641 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    642 			vm_physmem[lcv].avail_start++;
    643 			vm_physmem[lcv].start++;
    644 			/* nothing left?   nuke it */
    645 			if (vm_physmem[lcv].avail_start ==
    646 			    vm_physmem[lcv].end) {
    647 				if (vm_nphysseg == 1)
    648 				    panic("uvm_page_physget: out of memory!");
    649 				vm_nphysseg--;
    650 				for (x = lcv ; x < vm_nphysseg ; x++)
    651 					/* structure copy */
    652 					vm_physmem[x] = vm_physmem[x+1];
    653 			}
    654 			return (true);
    655 		}
    656 
    657 		/* try from rear */
    658 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    659 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    660 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    661 			vm_physmem[lcv].avail_end--;
    662 			vm_physmem[lcv].end--;
    663 			/* nothing left?   nuke it */
    664 			if (vm_physmem[lcv].avail_end ==
    665 			    vm_physmem[lcv].start) {
    666 				if (vm_nphysseg == 1)
    667 				    panic("uvm_page_physget: out of memory!");
    668 				vm_nphysseg--;
    669 				for (x = lcv ; x < vm_nphysseg ; x++)
    670 					/* structure copy */
    671 					vm_physmem[x] = vm_physmem[x+1];
    672 			}
    673 			return (true);
    674 		}
    675 	}
    676 
    677 	/* pass2: forget about matching ends, just allocate something */
    678 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    679 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    680 #else
    681 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    682 #endif
    683 	{
    684 
    685 		/* any room in this bank? */
    686 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    687 			continue;  /* nope */
    688 
    689 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    690 		vm_physmem[lcv].avail_start++;
    691 		/* truncate! */
    692 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    693 
    694 		/* nothing left?   nuke it */
    695 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    696 			if (vm_nphysseg == 1)
    697 				panic("uvm_page_physget: out of memory!");
    698 			vm_nphysseg--;
    699 			for (x = lcv ; x < vm_nphysseg ; x++)
    700 				/* structure copy */
    701 				vm_physmem[x] = vm_physmem[x+1];
    702 		}
    703 		return (true);
    704 	}
    705 
    706 	return (false);        /* whoops! */
    707 }
    708 
    709 bool
    710 uvm_page_physget(paddr_t *paddrp)
    711 {
    712 	int i;
    713 
    714 	/* try in the order of freelist preference */
    715 	for (i = 0; i < VM_NFREELIST; i++)
    716 		if (uvm_page_physget_freelist(paddrp, i) == true)
    717 			return (true);
    718 	return (false);
    719 }
    720 #endif /* PMAP_STEAL_MEMORY */
    721 
    722 /*
    723  * uvm_page_physload: load physical memory into VM system
    724  *
    725  * => all args are PFs
    726  * => all pages in start/end get vm_page structures
    727  * => areas marked by avail_start/avail_end get added to the free page pool
    728  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    729  */
    730 
    731 void
    732 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    733     paddr_t avail_end, int free_list)
    734 {
    735 	int preload, lcv;
    736 	psize_t npages;
    737 	struct vm_page *pgs;
    738 	struct vm_physseg *ps;
    739 
    740 	if (uvmexp.pagesize == 0)
    741 		panic("uvm_page_physload: page size not set!");
    742 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    743 		panic("uvm_page_physload: bad free list %d", free_list);
    744 	if (start >= end)
    745 		panic("uvm_page_physload: start >= end");
    746 
    747 	/*
    748 	 * do we have room?
    749 	 */
    750 
    751 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    752 		printf("uvm_page_physload: unable to load physical memory "
    753 		    "segment\n");
    754 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    755 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    756 		printf("\tincrease VM_PHYSSEG_MAX\n");
    757 		return;
    758 	}
    759 
    760 	/*
    761 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    762 	 * called yet, so malloc is not available).
    763 	 */
    764 
    765 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    766 		if (vm_physmem[lcv].pgs)
    767 			break;
    768 	}
    769 	preload = (lcv == vm_nphysseg);
    770 
    771 	/*
    772 	 * if VM is already running, attempt to malloc() vm_page structures
    773 	 */
    774 
    775 	if (!preload) {
    776 #if defined(VM_PHYSSEG_NOADD)
    777 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    778 #else
    779 		/* XXXCDC: need some sort of lockout for this case */
    780 		paddr_t paddr;
    781 		npages = end - start;  /* # of pages */
    782 		pgs = malloc(sizeof(struct vm_page) * npages,
    783 		    M_VMPAGE, M_NOWAIT);
    784 		if (pgs == NULL) {
    785 			printf("uvm_page_physload: can not malloc vm_page "
    786 			    "structs for segment\n");
    787 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    788 			return;
    789 		}
    790 		/* zero data, init phys_addr and free_list, and free pages */
    791 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    792 		for (lcv = 0, paddr = ptoa(start) ;
    793 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    794 			pgs[lcv].phys_addr = paddr;
    795 			pgs[lcv].free_list = free_list;
    796 			if (atop(paddr) >= avail_start &&
    797 			    atop(paddr) <= avail_end)
    798 				uvm_pagefree(&pgs[lcv]);
    799 		}
    800 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    801 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    802 #endif
    803 	} else {
    804 		pgs = NULL;
    805 		npages = 0;
    806 	}
    807 
    808 	/*
    809 	 * now insert us in the proper place in vm_physmem[]
    810 	 */
    811 
    812 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    813 	/* random: put it at the end (easy!) */
    814 	ps = &vm_physmem[vm_nphysseg];
    815 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    816 	{
    817 		int x;
    818 		/* sort by address for binary search */
    819 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    820 			if (start < vm_physmem[lcv].start)
    821 				break;
    822 		ps = &vm_physmem[lcv];
    823 		/* move back other entries, if necessary ... */
    824 		for (x = vm_nphysseg ; x > lcv ; x--)
    825 			/* structure copy */
    826 			vm_physmem[x] = vm_physmem[x - 1];
    827 	}
    828 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    829 	{
    830 		int x;
    831 		/* sort by largest segment first */
    832 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    833 			if ((end - start) >
    834 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    835 				break;
    836 		ps = &vm_physmem[lcv];
    837 		/* move back other entries, if necessary ... */
    838 		for (x = vm_nphysseg ; x > lcv ; x--)
    839 			/* structure copy */
    840 			vm_physmem[x] = vm_physmem[x - 1];
    841 	}
    842 #else
    843 	panic("uvm_page_physload: unknown physseg strategy selected!");
    844 #endif
    845 
    846 	ps->start = start;
    847 	ps->end = end;
    848 	ps->avail_start = avail_start;
    849 	ps->avail_end = avail_end;
    850 	if (preload) {
    851 		ps->pgs = NULL;
    852 	} else {
    853 		ps->pgs = pgs;
    854 		ps->lastpg = pgs + npages - 1;
    855 	}
    856 	ps->free_list = free_list;
    857 	vm_nphysseg++;
    858 
    859 	if (!preload) {
    860 		uvmpdpol_reinit();
    861 	}
    862 }
    863 
    864 /*
    865  * uvm_page_recolor: Recolor the pages if the new bucket count is
    866  * larger than the old one.
    867  */
    868 
    869 void
    870 uvm_page_recolor(int newncolors)
    871 {
    872 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    873 	struct pgfreelist gpgfl, pgfl;
    874 	struct vm_page *pg;
    875 	vsize_t bucketcount;
    876 	int lcv, color, i, ocolors;
    877 	struct uvm_cpu *ucpu;
    878 
    879 	if (newncolors <= uvmexp.ncolors)
    880 		return;
    881 
    882 	if (uvm.page_init_done == false) {
    883 		uvmexp.ncolors = newncolors;
    884 		return;
    885 	}
    886 
    887 	bucketcount = newncolors * VM_NFREELIST;
    888 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    889 	    M_VMPAGE, M_NOWAIT);
    890 	cpuarray = bucketarray + bucketcount;
    891 	if (bucketarray == NULL) {
    892 		printf("WARNING: unable to allocate %ld page color buckets\n",
    893 		    (long) bucketcount);
    894 		return;
    895 	}
    896 
    897 	mutex_spin_enter(&uvm_fpageqlock);
    898 
    899 	/* Make sure we should still do this. */
    900 	if (newncolors <= uvmexp.ncolors) {
    901 		mutex_spin_exit(&uvm_fpageqlock);
    902 		free(bucketarray, M_VMPAGE);
    903 		return;
    904 	}
    905 
    906 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    907 	ocolors = uvmexp.ncolors;
    908 
    909 	uvmexp.ncolors = newncolors;
    910 	uvmexp.colormask = uvmexp.ncolors - 1;
    911 
    912 	ucpu = curcpu()->ci_data.cpu_uvm;
    913 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    914 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    915 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    916 		uvm_page_init_buckets(&gpgfl);
    917 		uvm_page_init_buckets(&pgfl);
    918 		for (color = 0; color < ocolors; color++) {
    919 			for (i = 0; i < PGFL_NQUEUES; i++) {
    920 				while ((pg = LIST_FIRST(&uvm.page_free[
    921 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    922 				    != NULL) {
    923 					LIST_REMOVE(pg, pageq.list); /* global */
    924 					LIST_REMOVE(pg, listq.list); /* cpu */
    925 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    926 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    927 					    i], pg, pageq.list);
    928 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    929 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    930 					    i], pg, listq.list);
    931 				}
    932 			}
    933 		}
    934 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    935 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    936 	}
    937 
    938 	if (have_recolored_pages) {
    939 		mutex_spin_exit(&uvm_fpageqlock);
    940 		free(oldbucketarray, M_VMPAGE);
    941 		return;
    942 	}
    943 
    944 	have_recolored_pages = true;
    945 	mutex_spin_exit(&uvm_fpageqlock);
    946 }
    947 
    948 /*
    949  * uvm_cpu_attach: initialize per-CPU data structures.
    950  */
    951 
    952 void
    953 uvm_cpu_attach(struct cpu_info *ci)
    954 {
    955 	struct pgflbucket *bucketarray;
    956 	struct pgfreelist pgfl;
    957 	struct uvm_cpu *ucpu;
    958 	vsize_t bucketcount;
    959 	int lcv;
    960 
    961 	if (CPU_IS_PRIMARY(ci)) {
    962 		/* Already done in uvm_page_init(). */
    963 		return;
    964 	}
    965 
    966 	/* Add more reserve pages for this CPU. */
    967 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    968 
    969 	/* Configure this CPU's free lists. */
    970 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    971 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    972 	    M_VMPAGE, M_WAITOK);
    973 	ucpu = &uvm.cpus[cpu_index(ci)];
    974 	ci->ci_data.cpu_uvm = ucpu;
    975 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    976 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    977 		uvm_page_init_buckets(&pgfl);
    978 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    979 	}
    980 }
    981 
    982 /*
    983  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    984  */
    985 
    986 static struct vm_page *
    987 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    988     int *trycolorp)
    989 {
    990 	struct pgflist *freeq;
    991 	struct vm_page *pg;
    992 	int color, trycolor = *trycolorp;
    993 	struct pgfreelist *gpgfl, *pgfl;
    994 
    995 	KASSERT(mutex_owned(&uvm_fpageqlock));
    996 
    997 	color = trycolor;
    998 	pgfl = &ucpu->page_free[flist];
    999 	gpgfl = &uvm.page_free[flist];
   1000 	do {
   1001 		/* cpu, try1 */
   1002 		if ((pg = LIST_FIRST((freeq =
   1003 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1004 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1005 		    	uvmexp.cpuhit++;
   1006 			goto gotit;
   1007 		}
   1008 		/* global, try1 */
   1009 		if ((pg = LIST_FIRST((freeq =
   1010 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1011 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1012 		    	uvmexp.cpumiss++;
   1013 			goto gotit;
   1014 		}
   1015 		/* cpu, try2 */
   1016 		if ((pg = LIST_FIRST((freeq =
   1017 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1018 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1019 		    	uvmexp.cpuhit++;
   1020 			goto gotit;
   1021 		}
   1022 		/* global, try2 */
   1023 		if ((pg = LIST_FIRST((freeq =
   1024 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1025 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1026 		    	uvmexp.cpumiss++;
   1027 			goto gotit;
   1028 		}
   1029 		color = (color + 1) & uvmexp.colormask;
   1030 	} while (color != trycolor);
   1031 
   1032 	return (NULL);
   1033 
   1034  gotit:
   1035 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1036 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1037 	uvmexp.free--;
   1038 
   1039 	/* update zero'd page count */
   1040 	if (pg->flags & PG_ZERO)
   1041 		uvmexp.zeropages--;
   1042 
   1043 	if (color == trycolor)
   1044 		uvmexp.colorhit++;
   1045 	else {
   1046 		uvmexp.colormiss++;
   1047 		*trycolorp = color;
   1048 	}
   1049 
   1050 	return (pg);
   1051 }
   1052 
   1053 /*
   1054  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1055  *
   1056  * => return null if no pages free
   1057  * => wake up pagedaemon if number of free pages drops below low water mark
   1058  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1059  * => if anon != NULL, anon must be locked (to put in anon)
   1060  * => only one of obj or anon can be non-null
   1061  * => caller must activate/deactivate page if it is not wired.
   1062  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1063  * => policy decision: it is more important to pull a page off of the
   1064  *	appropriate priority free list than it is to get a zero'd or
   1065  *	unknown contents page.  This is because we live with the
   1066  *	consequences of a bad free list decision for the entire
   1067  *	lifetime of the page, e.g. if the page comes from memory that
   1068  *	is slower to access.
   1069  */
   1070 
   1071 struct vm_page *
   1072 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1073     int flags, int strat, int free_list)
   1074 {
   1075 	int lcv, try1, try2, zeroit = 0, color;
   1076 	struct uvm_cpu *ucpu;
   1077 	struct vm_page *pg;
   1078 	lwp_t *l;
   1079 
   1080 	KASSERT(obj == NULL || anon == NULL);
   1081 	KASSERT(anon == NULL || off == 0);
   1082 	KASSERT(off == trunc_page(off));
   1083 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1084 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1085 
   1086 	mutex_spin_enter(&uvm_fpageqlock);
   1087 
   1088 	/*
   1089 	 * This implements a global round-robin page coloring
   1090 	 * algorithm.
   1091 	 *
   1092 	 * XXXJRT: What about virtually-indexed caches?
   1093 	 */
   1094 
   1095 	ucpu = curcpu()->ci_data.cpu_uvm;
   1096 	color = ucpu->page_free_nextcolor;
   1097 
   1098 	/*
   1099 	 * check to see if we need to generate some free pages waking
   1100 	 * the pagedaemon.
   1101 	 */
   1102 
   1103 	uvm_kick_pdaemon();
   1104 
   1105 	/*
   1106 	 * fail if any of these conditions is true:
   1107 	 * [1]  there really are no free pages, or
   1108 	 * [2]  only kernel "reserved" pages remain and
   1109 	 *        reserved pages have not been requested.
   1110 	 * [3]  only pagedaemon "reserved" pages remain and
   1111 	 *        the requestor isn't the pagedaemon.
   1112 	 * we make kernel reserve pages available if called by a
   1113 	 * kernel thread or a realtime thread.
   1114 	 */
   1115 	l = curlwp;
   1116 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1117 		flags |= UVM_PGA_USERESERVE;
   1118 	}
   1119 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1120 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1121 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1122 	     curlwp != uvm.pagedaemon_lwp))
   1123 		goto fail;
   1124 
   1125 #if PGFL_NQUEUES != 2
   1126 #error uvm_pagealloc_strat needs to be updated
   1127 #endif
   1128 
   1129 	/*
   1130 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1131 	 * we try the UNKNOWN queue first.
   1132 	 */
   1133 	if (flags & UVM_PGA_ZERO) {
   1134 		try1 = PGFL_ZEROS;
   1135 		try2 = PGFL_UNKNOWN;
   1136 	} else {
   1137 		try1 = PGFL_UNKNOWN;
   1138 		try2 = PGFL_ZEROS;
   1139 	}
   1140 
   1141  again:
   1142 	switch (strat) {
   1143 	case UVM_PGA_STRAT_NORMAL:
   1144 		/* Check freelists: descending priority (ascending id) order */
   1145 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1146 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1147 			    try1, try2, &color);
   1148 			if (pg != NULL)
   1149 				goto gotit;
   1150 		}
   1151 
   1152 		/* No pages free! */
   1153 		goto fail;
   1154 
   1155 	case UVM_PGA_STRAT_ONLY:
   1156 	case UVM_PGA_STRAT_FALLBACK:
   1157 		/* Attempt to allocate from the specified free list. */
   1158 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1159 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1160 		    try1, try2, &color);
   1161 		if (pg != NULL)
   1162 			goto gotit;
   1163 
   1164 		/* Fall back, if possible. */
   1165 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1166 			strat = UVM_PGA_STRAT_NORMAL;
   1167 			goto again;
   1168 		}
   1169 
   1170 		/* No pages free! */
   1171 		goto fail;
   1172 
   1173 	default:
   1174 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1175 		/* NOTREACHED */
   1176 	}
   1177 
   1178  gotit:
   1179 	/*
   1180 	 * We now know which color we actually allocated from; set
   1181 	 * the next color accordingly.
   1182 	 */
   1183 
   1184 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1185 
   1186 	/*
   1187 	 * update allocation statistics and remember if we have to
   1188 	 * zero the page
   1189 	 */
   1190 
   1191 	if (flags & UVM_PGA_ZERO) {
   1192 		if (pg->flags & PG_ZERO) {
   1193 			uvmexp.pga_zerohit++;
   1194 			zeroit = 0;
   1195 		} else {
   1196 			uvmexp.pga_zeromiss++;
   1197 			zeroit = 1;
   1198 		}
   1199 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1200 			ucpu->page_idle_zero = vm_page_zero_enable;
   1201 		}
   1202 	}
   1203 	KASSERT(pg->pqflags == PQ_FREE);
   1204 
   1205 	pg->offset = off;
   1206 	pg->uobject = obj;
   1207 	pg->uanon = anon;
   1208 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1209 	if (anon) {
   1210 		anon->an_page = pg;
   1211 		pg->pqflags = PQ_ANON;
   1212 		atomic_inc_uint(&uvmexp.anonpages);
   1213 	} else {
   1214 		if (obj) {
   1215 			uvm_pageinsert(pg);
   1216 		}
   1217 		pg->pqflags = 0;
   1218 	}
   1219 	mutex_spin_exit(&uvm_fpageqlock);
   1220 
   1221 #if defined(UVM_PAGE_TRKOWN)
   1222 	pg->owner_tag = NULL;
   1223 #endif
   1224 	UVM_PAGE_OWN(pg, "new alloc");
   1225 
   1226 	if (flags & UVM_PGA_ZERO) {
   1227 		/*
   1228 		 * A zero'd page is not clean.  If we got a page not already
   1229 		 * zero'd, then we have to zero it ourselves.
   1230 		 */
   1231 		pg->flags &= ~PG_CLEAN;
   1232 		if (zeroit)
   1233 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1234 	}
   1235 
   1236 	return(pg);
   1237 
   1238  fail:
   1239 	mutex_spin_exit(&uvm_fpageqlock);
   1240 	return (NULL);
   1241 }
   1242 
   1243 /*
   1244  * uvm_pagereplace: replace a page with another
   1245  *
   1246  * => object must be locked
   1247  */
   1248 
   1249 void
   1250 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1251 {
   1252 	struct uvm_object *uobj = oldpg->uobject;
   1253 
   1254 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1255 	KASSERT(uobj != NULL);
   1256 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1257 	KASSERT(newpg->uobject == NULL);
   1258 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1259 
   1260 	newpg->uobject = uobj;
   1261 	newpg->offset = oldpg->offset;
   1262 
   1263 	uvm_pageremove_tree(uobj, oldpg);
   1264 	uvm_pageinsert_tree(uobj, newpg);
   1265 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1266 	uvm_pageremove_list(uobj, oldpg);
   1267 }
   1268 
   1269 /*
   1270  * uvm_pagerealloc: reallocate a page from one object to another
   1271  *
   1272  * => both objects must be locked
   1273  */
   1274 
   1275 void
   1276 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1277 {
   1278 	/*
   1279 	 * remove it from the old object
   1280 	 */
   1281 
   1282 	if (pg->uobject) {
   1283 		uvm_pageremove(pg);
   1284 	}
   1285 
   1286 	/*
   1287 	 * put it in the new object
   1288 	 */
   1289 
   1290 	if (newobj) {
   1291 		pg->uobject = newobj;
   1292 		pg->offset = newoff;
   1293 		uvm_pageinsert(pg);
   1294 	}
   1295 }
   1296 
   1297 #ifdef DEBUG
   1298 /*
   1299  * check if page is zero-filled
   1300  *
   1301  *  - called with free page queue lock held.
   1302  */
   1303 void
   1304 uvm_pagezerocheck(struct vm_page *pg)
   1305 {
   1306 	int *p, *ep;
   1307 
   1308 	KASSERT(uvm_zerocheckkva != 0);
   1309 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1310 
   1311 	/*
   1312 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1313 	 * uvm page allocator.
   1314 	 *
   1315 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1316 	 */
   1317 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1318 	p = (int *)uvm_zerocheckkva;
   1319 	ep = (int *)((char *)p + PAGE_SIZE);
   1320 	pmap_update(pmap_kernel());
   1321 	while (p < ep) {
   1322 		if (*p != 0)
   1323 			panic("PG_ZERO page isn't zero-filled");
   1324 		p++;
   1325 	}
   1326 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1327 	/*
   1328 	 * pmap_update() is not necessary here because no one except us
   1329 	 * uses this VA.
   1330 	 */
   1331 }
   1332 #endif /* DEBUG */
   1333 
   1334 /*
   1335  * uvm_pagefree: free page
   1336  *
   1337  * => erase page's identity (i.e. remove from object)
   1338  * => put page on free list
   1339  * => caller must lock owning object (either anon or uvm_object)
   1340  * => caller must lock page queues
   1341  * => assumes all valid mappings of pg are gone
   1342  */
   1343 
   1344 void
   1345 uvm_pagefree(struct vm_page *pg)
   1346 {
   1347 	struct pgflist *pgfl;
   1348 	struct uvm_cpu *ucpu;
   1349 	int index, color, queue;
   1350 	bool iszero;
   1351 
   1352 #ifdef DEBUG
   1353 	if (pg->uobject == (void *)0xdeadbeef &&
   1354 	    pg->uanon == (void *)0xdeadbeef) {
   1355 		panic("uvm_pagefree: freeing free page %p", pg);
   1356 	}
   1357 #endif /* DEBUG */
   1358 
   1359 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1360 	KASSERT(!(pg->pqflags & PQ_FREE));
   1361 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1362 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1363 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1364 		mutex_owned(&pg->uanon->an_lock));
   1365 
   1366 	/*
   1367 	 * if the page is loaned, resolve the loan instead of freeing.
   1368 	 */
   1369 
   1370 	if (pg->loan_count) {
   1371 		KASSERT(pg->wire_count == 0);
   1372 
   1373 		/*
   1374 		 * if the page is owned by an anon then we just want to
   1375 		 * drop anon ownership.  the kernel will free the page when
   1376 		 * it is done with it.  if the page is owned by an object,
   1377 		 * remove it from the object and mark it dirty for the benefit
   1378 		 * of possible anon owners.
   1379 		 *
   1380 		 * regardless of previous ownership, wakeup any waiters,
   1381 		 * unbusy the page, and we're done.
   1382 		 */
   1383 
   1384 		if (pg->uobject != NULL) {
   1385 			uvm_pageremove(pg);
   1386 			pg->flags &= ~PG_CLEAN;
   1387 		} else if (pg->uanon != NULL) {
   1388 			if ((pg->pqflags & PQ_ANON) == 0) {
   1389 				pg->loan_count--;
   1390 			} else {
   1391 				pg->pqflags &= ~PQ_ANON;
   1392 				atomic_dec_uint(&uvmexp.anonpages);
   1393 			}
   1394 			pg->uanon->an_page = NULL;
   1395 			pg->uanon = NULL;
   1396 		}
   1397 		if (pg->flags & PG_WANTED) {
   1398 			wakeup(pg);
   1399 		}
   1400 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1401 #ifdef UVM_PAGE_TRKOWN
   1402 		pg->owner_tag = NULL;
   1403 #endif
   1404 		if (pg->loan_count) {
   1405 			KASSERT(pg->uobject == NULL);
   1406 			if (pg->uanon == NULL) {
   1407 				uvm_pagedequeue(pg);
   1408 			}
   1409 			return;
   1410 		}
   1411 	}
   1412 
   1413 	/*
   1414 	 * remove page from its object or anon.
   1415 	 */
   1416 
   1417 	if (pg->uobject != NULL) {
   1418 		uvm_pageremove(pg);
   1419 	} else if (pg->uanon != NULL) {
   1420 		pg->uanon->an_page = NULL;
   1421 		atomic_dec_uint(&uvmexp.anonpages);
   1422 	}
   1423 
   1424 	/*
   1425 	 * now remove the page from the queues.
   1426 	 */
   1427 
   1428 	uvm_pagedequeue(pg);
   1429 
   1430 	/*
   1431 	 * if the page was wired, unwire it now.
   1432 	 */
   1433 
   1434 	if (pg->wire_count) {
   1435 		pg->wire_count = 0;
   1436 		uvmexp.wired--;
   1437 	}
   1438 
   1439 	/*
   1440 	 * and put on free queue
   1441 	 */
   1442 
   1443 	iszero = (pg->flags & PG_ZERO);
   1444 	index = uvm_page_lookup_freelist(pg);
   1445 	color = VM_PGCOLOR_BUCKET(pg);
   1446 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1447 
   1448 #ifdef DEBUG
   1449 	pg->uobject = (void *)0xdeadbeef;
   1450 	pg->uanon = (void *)0xdeadbeef;
   1451 #endif
   1452 
   1453 	mutex_spin_enter(&uvm_fpageqlock);
   1454 	pg->pqflags = PQ_FREE;
   1455 
   1456 #ifdef DEBUG
   1457 	if (iszero)
   1458 		uvm_pagezerocheck(pg);
   1459 #endif /* DEBUG */
   1460 
   1461 
   1462 	/* global list */
   1463 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1464 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1465 	uvmexp.free++;
   1466 	if (iszero) {
   1467 		uvmexp.zeropages++;
   1468 	}
   1469 
   1470 	/* per-cpu list */
   1471 	ucpu = curcpu()->ci_data.cpu_uvm;
   1472 	pg->offset = (uintptr_t)ucpu;
   1473 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1474 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1475 	ucpu->pages[queue]++;
   1476 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1477 		ucpu->page_idle_zero = vm_page_zero_enable;
   1478 	}
   1479 
   1480 	mutex_spin_exit(&uvm_fpageqlock);
   1481 }
   1482 
   1483 /*
   1484  * uvm_page_unbusy: unbusy an array of pages.
   1485  *
   1486  * => pages must either all belong to the same object, or all belong to anons.
   1487  * => if pages are object-owned, object must be locked.
   1488  * => if pages are anon-owned, anons must be locked.
   1489  * => caller must lock page queues if pages may be released.
   1490  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1491  */
   1492 
   1493 void
   1494 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1495 {
   1496 	struct vm_page *pg;
   1497 	int i;
   1498 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1499 
   1500 	for (i = 0; i < npgs; i++) {
   1501 		pg = pgs[i];
   1502 		if (pg == NULL || pg == PGO_DONTCARE) {
   1503 			continue;
   1504 		}
   1505 
   1506 		KASSERT(pg->uobject == NULL ||
   1507 		    mutex_owned(&pg->uobject->vmobjlock));
   1508 		KASSERT(pg->uobject != NULL ||
   1509 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1510 
   1511 		KASSERT(pg->flags & PG_BUSY);
   1512 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1513 		if (pg->flags & PG_WANTED) {
   1514 			wakeup(pg);
   1515 		}
   1516 		if (pg->flags & PG_RELEASED) {
   1517 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1518 			KASSERT(pg->uobject != NULL ||
   1519 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1520 			pg->flags &= ~PG_RELEASED;
   1521 			uvm_pagefree(pg);
   1522 		} else {
   1523 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1524 			KASSERT((pg->flags & PG_FAKE) == 0);
   1525 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1526 			UVM_PAGE_OWN(pg, NULL);
   1527 		}
   1528 	}
   1529 }
   1530 
   1531 #if defined(UVM_PAGE_TRKOWN)
   1532 /*
   1533  * uvm_page_own: set or release page ownership
   1534  *
   1535  * => this is a debugging function that keeps track of who sets PG_BUSY
   1536  *	and where they do it.   it can be used to track down problems
   1537  *	such a process setting "PG_BUSY" and never releasing it.
   1538  * => page's object [if any] must be locked
   1539  * => if "tag" is NULL then we are releasing page ownership
   1540  */
   1541 void
   1542 uvm_page_own(struct vm_page *pg, const char *tag)
   1543 {
   1544 	struct uvm_object *uobj;
   1545 	struct vm_anon *anon;
   1546 
   1547 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1548 
   1549 	uobj = pg->uobject;
   1550 	anon = pg->uanon;
   1551 	if (uobj != NULL) {
   1552 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1553 	} else if (anon != NULL) {
   1554 		KASSERT(mutex_owned(&anon->an_lock));
   1555 	}
   1556 
   1557 	KASSERT((pg->flags & PG_WANTED) == 0);
   1558 
   1559 	/* gain ownership? */
   1560 	if (tag) {
   1561 		KASSERT((pg->flags & PG_BUSY) != 0);
   1562 		if (pg->owner_tag) {
   1563 			printf("uvm_page_own: page %p already owned "
   1564 			    "by proc %d [%s]\n", pg,
   1565 			    pg->owner, pg->owner_tag);
   1566 			panic("uvm_page_own");
   1567 		}
   1568 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1569 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1570 		pg->owner_tag = tag;
   1571 		return;
   1572 	}
   1573 
   1574 	/* drop ownership */
   1575 	KASSERT((pg->flags & PG_BUSY) == 0);
   1576 	if (pg->owner_tag == NULL) {
   1577 		printf("uvm_page_own: dropping ownership of an non-owned "
   1578 		    "page (%p)\n", pg);
   1579 		panic("uvm_page_own");
   1580 	}
   1581 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1582 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1583 		    pg->wire_count > 0);
   1584 	} else {
   1585 		KASSERT(pg->wire_count == 0);
   1586 	}
   1587 	pg->owner_tag = NULL;
   1588 }
   1589 #endif
   1590 
   1591 /*
   1592  * uvm_pageidlezero: zero free pages while the system is idle.
   1593  *
   1594  * => try to complete one color bucket at a time, to reduce our impact
   1595  *	on the CPU cache.
   1596  * => we loop until we either reach the target or there is a lwp ready
   1597  *      to run, or MD code detects a reason to break early.
   1598  */
   1599 void
   1600 uvm_pageidlezero(void)
   1601 {
   1602 	struct vm_page *pg;
   1603 	struct pgfreelist *pgfl, *gpgfl;
   1604 	struct uvm_cpu *ucpu;
   1605 	int free_list, firstbucket, nextbucket;
   1606 
   1607 	ucpu = curcpu()->ci_data.cpu_uvm;
   1608 	if (!ucpu->page_idle_zero ||
   1609 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1610 	    	ucpu->page_idle_zero = false;
   1611 		return;
   1612 	}
   1613 	mutex_enter(&uvm_fpageqlock);
   1614 	firstbucket = ucpu->page_free_nextcolor;
   1615 	nextbucket = firstbucket;
   1616 	do {
   1617 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1618 			if (sched_curcpu_runnable_p()) {
   1619 				goto quit;
   1620 			}
   1621 			pgfl = &ucpu->page_free[free_list];
   1622 			gpgfl = &uvm.page_free[free_list];
   1623 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1624 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1625 				if (sched_curcpu_runnable_p()) {
   1626 					goto quit;
   1627 				}
   1628 				LIST_REMOVE(pg, pageq.list); /* global list */
   1629 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1630 				ucpu->pages[PGFL_UNKNOWN]--;
   1631 				uvmexp.free--;
   1632 				KASSERT(pg->pqflags == PQ_FREE);
   1633 				pg->pqflags = 0;
   1634 				mutex_spin_exit(&uvm_fpageqlock);
   1635 #ifdef PMAP_PAGEIDLEZERO
   1636 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1637 
   1638 					/*
   1639 					 * The machine-dependent code detected
   1640 					 * some reason for us to abort zeroing
   1641 					 * pages, probably because there is a
   1642 					 * process now ready to run.
   1643 					 */
   1644 
   1645 					mutex_spin_enter(&uvm_fpageqlock);
   1646 					pg->pqflags = PQ_FREE;
   1647 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1648 					    nextbucket].pgfl_queues[
   1649 					    PGFL_UNKNOWN], pg, pageq.list);
   1650 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1651 					    nextbucket].pgfl_queues[
   1652 					    PGFL_UNKNOWN], pg, listq.list);
   1653 					ucpu->pages[PGFL_UNKNOWN]++;
   1654 					uvmexp.free++;
   1655 					uvmexp.zeroaborts++;
   1656 					goto quit;
   1657 				}
   1658 #else
   1659 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1660 #endif /* PMAP_PAGEIDLEZERO */
   1661 				pg->flags |= PG_ZERO;
   1662 
   1663 				mutex_spin_enter(&uvm_fpageqlock);
   1664 				pg->pqflags = PQ_FREE;
   1665 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1666 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1667 				    pg, pageq.list);
   1668 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1669 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1670 				    pg, listq.list);
   1671 				ucpu->pages[PGFL_ZEROS]++;
   1672 				uvmexp.free++;
   1673 				uvmexp.zeropages++;
   1674 			}
   1675 		}
   1676 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1677 			break;
   1678 		}
   1679 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1680 	} while (nextbucket != firstbucket);
   1681 	ucpu->page_idle_zero = false;
   1682  quit:
   1683 	mutex_spin_exit(&uvm_fpageqlock);
   1684 }
   1685 
   1686 /*
   1687  * uvm_pagelookup: look up a page
   1688  *
   1689  * => caller should lock object to keep someone from pulling the page
   1690  *	out from under it
   1691  */
   1692 
   1693 struct vm_page *
   1694 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1695 {
   1696 	struct vm_page *pg;
   1697 
   1698 	KASSERT(mutex_owned(&obj->vmobjlock));
   1699 
   1700 	pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
   1701 
   1702 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1703 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1704 		(pg->flags & PG_BUSY) != 0);
   1705 	return(pg);
   1706 }
   1707 
   1708 /*
   1709  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1710  *
   1711  * => caller must lock page queues
   1712  */
   1713 
   1714 void
   1715 uvm_pagewire(struct vm_page *pg)
   1716 {
   1717 	KASSERT(mutex_owned(&uvm_pageqlock));
   1718 #if defined(READAHEAD_STATS)
   1719 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1720 		uvm_ra_hit.ev_count++;
   1721 		pg->pqflags &= ~PQ_READAHEAD;
   1722 	}
   1723 #endif /* defined(READAHEAD_STATS) */
   1724 	if (pg->wire_count == 0) {
   1725 		uvm_pagedequeue(pg);
   1726 		uvmexp.wired++;
   1727 	}
   1728 	pg->wire_count++;
   1729 }
   1730 
   1731 /*
   1732  * uvm_pageunwire: unwire the page.
   1733  *
   1734  * => activate if wire count goes to zero.
   1735  * => caller must lock page queues
   1736  */
   1737 
   1738 void
   1739 uvm_pageunwire(struct vm_page *pg)
   1740 {
   1741 	KASSERT(mutex_owned(&uvm_pageqlock));
   1742 	pg->wire_count--;
   1743 	if (pg->wire_count == 0) {
   1744 		uvm_pageactivate(pg);
   1745 		uvmexp.wired--;
   1746 	}
   1747 }
   1748 
   1749 /*
   1750  * uvm_pagedeactivate: deactivate page
   1751  *
   1752  * => caller must lock page queues
   1753  * => caller must check to make sure page is not wired
   1754  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1755  * => caller must clear the reference on the page before calling
   1756  */
   1757 
   1758 void
   1759 uvm_pagedeactivate(struct vm_page *pg)
   1760 {
   1761 
   1762 	KASSERT(mutex_owned(&uvm_pageqlock));
   1763 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1764 	uvmpdpol_pagedeactivate(pg);
   1765 }
   1766 
   1767 /*
   1768  * uvm_pageactivate: activate page
   1769  *
   1770  * => caller must lock page queues
   1771  */
   1772 
   1773 void
   1774 uvm_pageactivate(struct vm_page *pg)
   1775 {
   1776 
   1777 	KASSERT(mutex_owned(&uvm_pageqlock));
   1778 #if defined(READAHEAD_STATS)
   1779 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1780 		uvm_ra_hit.ev_count++;
   1781 		pg->pqflags &= ~PQ_READAHEAD;
   1782 	}
   1783 #endif /* defined(READAHEAD_STATS) */
   1784 	if (pg->wire_count != 0) {
   1785 		return;
   1786 	}
   1787 	uvmpdpol_pageactivate(pg);
   1788 }
   1789 
   1790 /*
   1791  * uvm_pagedequeue: remove a page from any paging queue
   1792  */
   1793 
   1794 void
   1795 uvm_pagedequeue(struct vm_page *pg)
   1796 {
   1797 
   1798 	if (uvmpdpol_pageisqueued_p(pg)) {
   1799 		KASSERT(mutex_owned(&uvm_pageqlock));
   1800 	}
   1801 
   1802 	uvmpdpol_pagedequeue(pg);
   1803 }
   1804 
   1805 /*
   1806  * uvm_pageenqueue: add a page to a paging queue without activating.
   1807  * used where a page is not really demanded (yet).  eg. read-ahead
   1808  */
   1809 
   1810 void
   1811 uvm_pageenqueue(struct vm_page *pg)
   1812 {
   1813 
   1814 	KASSERT(mutex_owned(&uvm_pageqlock));
   1815 	if (pg->wire_count != 0) {
   1816 		return;
   1817 	}
   1818 	uvmpdpol_pageenqueue(pg);
   1819 }
   1820 
   1821 /*
   1822  * uvm_pagezero: zero fill a page
   1823  *
   1824  * => if page is part of an object then the object should be locked
   1825  *	to protect pg->flags.
   1826  */
   1827 
   1828 void
   1829 uvm_pagezero(struct vm_page *pg)
   1830 {
   1831 	pg->flags &= ~PG_CLEAN;
   1832 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1833 }
   1834 
   1835 /*
   1836  * uvm_pagecopy: copy a page
   1837  *
   1838  * => if page is part of an object then the object should be locked
   1839  *	to protect pg->flags.
   1840  */
   1841 
   1842 void
   1843 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1844 {
   1845 
   1846 	dst->flags &= ~PG_CLEAN;
   1847 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1848 }
   1849 
   1850 /*
   1851  * uvm_page_lookup_freelist: look up the free list for the specified page
   1852  */
   1853 
   1854 int
   1855 uvm_page_lookup_freelist(struct vm_page *pg)
   1856 {
   1857 	int lcv;
   1858 
   1859 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1860 	KASSERT(lcv != -1);
   1861 	return (vm_physmem[lcv].free_list);
   1862 }
   1863