uvm_page.c revision 1.150 1 /* $NetBSD: uvm_page.c,v 1.150 2009/08/18 18:06:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.150 2009/08/18 18:06:53 thorpej Exp $");
75
76 #include "opt_uvmhist.h"
77 #include "opt_readahead.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/sched.h>
83 #include <sys/kernel.h>
84 #include <sys/vnode.h>
85 #include <sys/proc.h>
86 #include <sys/atomic.h>
87 #include <sys/cpu.h>
88
89 #include <uvm/uvm.h>
90 #include <uvm/uvm_pdpolicy.h>
91
92 /*
93 * global vars... XXXCDC: move to uvm. structure.
94 */
95
96 /*
97 * physical memory config is stored in vm_physmem.
98 */
99
100 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
101 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
102
103 /*
104 * Some supported CPUs in a given architecture don't support all
105 * of the things necessary to do idle page zero'ing efficiently.
106 * We therefore provide a way to disable it from machdep code here.
107 */
108 /*
109 * XXX disabled until we can find a way to do this without causing
110 * problems for either CPU caches or DMA latency.
111 */
112 bool vm_page_zero_enable = false;
113
114 /*
115 * number of pages per-CPU to reserve for the kernel.
116 */
117 int vm_page_reserve_kernel = 5;
118
119 /*
120 * physical memory size;
121 */
122 int physmem;
123
124 /*
125 * local variables
126 */
127
128 /*
129 * these variables record the values returned by vm_page_bootstrap,
130 * for debugging purposes. The implementation of uvm_pageboot_alloc
131 * and pmap_startup here also uses them internally.
132 */
133
134 static vaddr_t virtual_space_start;
135 static vaddr_t virtual_space_end;
136
137 /*
138 * we allocate an initial number of page colors in uvm_page_init(),
139 * and remember them. We may re-color pages as cache sizes are
140 * discovered during the autoconfiguration phase. But we can never
141 * free the initial set of buckets, since they are allocated using
142 * uvm_pageboot_alloc().
143 */
144
145 static bool have_recolored_pages /* = false */;
146
147 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
148
149 #ifdef DEBUG
150 vaddr_t uvm_zerocheckkva;
151 #endif /* DEBUG */
152
153 /*
154 * local prototypes
155 */
156
157 static void uvm_pageinsert(struct vm_page *);
158 static void uvm_pageremove(struct vm_page *);
159
160 /*
161 * per-object tree of pages
162 */
163
164 static signed int
165 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
166 {
167 const struct vm_page *pg1 = (const void *)n1;
168 const struct vm_page *pg2 = (const void *)n2;
169 const voff_t a = pg1->offset;
170 const voff_t b = pg2->offset;
171
172 if (a < b)
173 return 1;
174 if (a > b)
175 return -1;
176 return 0;
177 }
178
179 static signed int
180 uvm_page_compare_key(const struct rb_node *n, const void *key)
181 {
182 const struct vm_page *pg = (const void *)n;
183 const voff_t a = pg->offset;
184 const voff_t b = *(const voff_t *)key;
185
186 if (a < b)
187 return 1;
188 if (a > b)
189 return -1;
190 return 0;
191 }
192
193 const struct rb_tree_ops uvm_page_tree_ops = {
194 .rbto_compare_nodes = uvm_page_compare_nodes,
195 .rbto_compare_key = uvm_page_compare_key,
196 };
197
198 /*
199 * inline functions
200 */
201
202 /*
203 * uvm_pageinsert: insert a page in the object.
204 *
205 * => caller must lock object
206 * => caller must lock page queues
207 * => call should have already set pg's object and offset pointers
208 * and bumped the version counter
209 */
210
211 static inline void
212 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
213 struct vm_page *where)
214 {
215
216 KASSERT(uobj == pg->uobject);
217 KASSERT(mutex_owned(&uobj->vmobjlock));
218 KASSERT((pg->flags & PG_TABLED) == 0);
219 KASSERT(where == NULL || (where->flags & PG_TABLED));
220 KASSERT(where == NULL || (where->uobject == uobj));
221
222 if (UVM_OBJ_IS_VNODE(uobj)) {
223 if (uobj->uo_npages == 0) {
224 struct vnode *vp = (struct vnode *)uobj;
225
226 vholdl(vp);
227 }
228 if (UVM_OBJ_IS_VTEXT(uobj)) {
229 atomic_inc_uint(&uvmexp.execpages);
230 } else {
231 atomic_inc_uint(&uvmexp.filepages);
232 }
233 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
234 atomic_inc_uint(&uvmexp.anonpages);
235 }
236
237 if (where)
238 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
239 else
240 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
241 pg->flags |= PG_TABLED;
242 uobj->uo_npages++;
243 }
244
245
246 static inline void
247 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
248 {
249 bool success;
250
251 KASSERT(uobj == pg->uobject);
252 success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
253 KASSERT(success);
254 }
255
256 static inline void
257 uvm_pageinsert(struct vm_page *pg)
258 {
259 struct uvm_object *uobj = pg->uobject;
260
261 uvm_pageinsert_tree(uobj, pg);
262 uvm_pageinsert_list(uobj, pg, NULL);
263 }
264
265 /*
266 * uvm_page_remove: remove page from object.
267 *
268 * => caller must lock object
269 * => caller must lock page queues
270 */
271
272 static inline void
273 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
274 {
275
276 KASSERT(uobj == pg->uobject);
277 KASSERT(mutex_owned(&uobj->vmobjlock));
278 KASSERT(pg->flags & PG_TABLED);
279
280 if (UVM_OBJ_IS_VNODE(uobj)) {
281 if (uobj->uo_npages == 1) {
282 struct vnode *vp = (struct vnode *)uobj;
283
284 holdrelel(vp);
285 }
286 if (UVM_OBJ_IS_VTEXT(uobj)) {
287 atomic_dec_uint(&uvmexp.execpages);
288 } else {
289 atomic_dec_uint(&uvmexp.filepages);
290 }
291 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
292 atomic_dec_uint(&uvmexp.anonpages);
293 }
294
295 /* object should be locked */
296 uobj->uo_npages--;
297 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
298 pg->flags &= ~PG_TABLED;
299 pg->uobject = NULL;
300 }
301
302 static inline void
303 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
304 {
305
306 KASSERT(uobj == pg->uobject);
307 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
308 }
309
310 static inline void
311 uvm_pageremove(struct vm_page *pg)
312 {
313 struct uvm_object *uobj = pg->uobject;
314
315 uvm_pageremove_tree(uobj, pg);
316 uvm_pageremove_list(uobj, pg);
317 }
318
319 static void
320 uvm_page_init_buckets(struct pgfreelist *pgfl)
321 {
322 int color, i;
323
324 for (color = 0; color < uvmexp.ncolors; color++) {
325 for (i = 0; i < PGFL_NQUEUES; i++) {
326 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
327 }
328 }
329 }
330
331 /*
332 * uvm_page_init: init the page system. called from uvm_init().
333 *
334 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
335 */
336
337 void
338 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
339 {
340 vsize_t freepages, pagecount, bucketcount, n;
341 struct pgflbucket *bucketarray, *cpuarray;
342 struct vm_page *pagearray;
343 int lcv;
344 u_int i;
345 paddr_t paddr;
346
347 KASSERT(ncpu <= 1);
348 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
349
350 /*
351 * init the page queues and page queue locks, except the free
352 * list; we allocate that later (with the initial vm_page
353 * structures).
354 */
355
356 curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
357 uvm_reclaim_init();
358 uvmpdpol_init();
359 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
360 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
361
362 /*
363 * allocate vm_page structures.
364 */
365
366 /*
367 * sanity check:
368 * before calling this function the MD code is expected to register
369 * some free RAM with the uvm_page_physload() function. our job
370 * now is to allocate vm_page structures for this memory.
371 */
372
373 if (vm_nphysseg == 0)
374 panic("uvm_page_bootstrap: no memory pre-allocated");
375
376 /*
377 * first calculate the number of free pages...
378 *
379 * note that we use start/end rather than avail_start/avail_end.
380 * this allows us to allocate extra vm_page structures in case we
381 * want to return some memory to the pool after booting.
382 */
383
384 freepages = 0;
385 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
386 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
387
388 /*
389 * Let MD code initialize the number of colors, or default
390 * to 1 color if MD code doesn't care.
391 */
392 if (uvmexp.ncolors == 0)
393 uvmexp.ncolors = 1;
394 uvmexp.colormask = uvmexp.ncolors - 1;
395
396 /*
397 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
398 * use. for each page of memory we use we need a vm_page structure.
399 * thus, the total number of pages we can use is the total size of
400 * the memory divided by the PAGE_SIZE plus the size of the vm_page
401 * structure. we add one to freepages as a fudge factor to avoid
402 * truncation errors (since we can only allocate in terms of whole
403 * pages).
404 */
405
406 bucketcount = uvmexp.ncolors * VM_NFREELIST;
407 pagecount = ((freepages + 1) << PAGE_SHIFT) /
408 (PAGE_SIZE + sizeof(struct vm_page));
409
410 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
411 sizeof(struct pgflbucket) * 2) + (pagecount *
412 sizeof(struct vm_page)));
413 cpuarray = bucketarray + bucketcount;
414 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
415
416 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
417 uvm.page_free[lcv].pgfl_buckets =
418 (bucketarray + (lcv * uvmexp.ncolors));
419 uvm_page_init_buckets(&uvm.page_free[lcv]);
420 uvm.cpus[0].page_free[lcv].pgfl_buckets =
421 (cpuarray + (lcv * uvmexp.ncolors));
422 uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
423 }
424 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
425
426 /*
427 * init the vm_page structures and put them in the correct place.
428 */
429
430 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
431 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
432
433 /* set up page array pointers */
434 vm_physmem[lcv].pgs = pagearray;
435 pagearray += n;
436 pagecount -= n;
437 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
438
439 /* init and free vm_pages (we've already zeroed them) */
440 paddr = ptoa(vm_physmem[lcv].start);
441 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
442 vm_physmem[lcv].pgs[i].phys_addr = paddr;
443 #ifdef __HAVE_VM_PAGE_MD
444 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
445 #endif
446 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
447 atop(paddr) <= vm_physmem[lcv].avail_end) {
448 uvmexp.npages++;
449 /* add page to free pool */
450 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
451 }
452 }
453 }
454
455 /*
456 * pass up the values of virtual_space_start and
457 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
458 * layers of the VM.
459 */
460
461 *kvm_startp = round_page(virtual_space_start);
462 *kvm_endp = trunc_page(virtual_space_end);
463 #ifdef DEBUG
464 /*
465 * steal kva for uvm_pagezerocheck().
466 */
467 uvm_zerocheckkva = *kvm_startp;
468 *kvm_startp += PAGE_SIZE;
469 #endif /* DEBUG */
470
471 /*
472 * init various thresholds.
473 */
474
475 uvmexp.reserve_pagedaemon = 1;
476 uvmexp.reserve_kernel = vm_page_reserve_kernel;
477
478 /*
479 * determine if we should zero pages in the idle loop.
480 */
481
482 uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
483
484 /*
485 * done!
486 */
487
488 uvm.page_init_done = true;
489 }
490
491 /*
492 * uvm_setpagesize: set the page size
493 *
494 * => sets page_shift and page_mask from uvmexp.pagesize.
495 */
496
497 void
498 uvm_setpagesize(void)
499 {
500
501 /*
502 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
503 * to be a constant (indicated by being a non-zero value).
504 */
505 if (uvmexp.pagesize == 0) {
506 if (PAGE_SIZE == 0)
507 panic("uvm_setpagesize: uvmexp.pagesize not set");
508 uvmexp.pagesize = PAGE_SIZE;
509 }
510 uvmexp.pagemask = uvmexp.pagesize - 1;
511 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
512 panic("uvm_setpagesize: page size not a power of two");
513 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
514 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
515 break;
516 }
517
518 /*
519 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
520 */
521
522 vaddr_t
523 uvm_pageboot_alloc(vsize_t size)
524 {
525 static bool initialized = false;
526 vaddr_t addr;
527 #if !defined(PMAP_STEAL_MEMORY)
528 vaddr_t vaddr;
529 paddr_t paddr;
530 #endif
531
532 /*
533 * on first call to this function, initialize ourselves.
534 */
535 if (initialized == false) {
536 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
537
538 /* round it the way we like it */
539 virtual_space_start = round_page(virtual_space_start);
540 virtual_space_end = trunc_page(virtual_space_end);
541
542 initialized = true;
543 }
544
545 /* round to page size */
546 size = round_page(size);
547
548 #if defined(PMAP_STEAL_MEMORY)
549
550 /*
551 * defer bootstrap allocation to MD code (it may want to allocate
552 * from a direct-mapped segment). pmap_steal_memory should adjust
553 * virtual_space_start/virtual_space_end if necessary.
554 */
555
556 addr = pmap_steal_memory(size, &virtual_space_start,
557 &virtual_space_end);
558
559 return(addr);
560
561 #else /* !PMAP_STEAL_MEMORY */
562
563 /*
564 * allocate virtual memory for this request
565 */
566 if (virtual_space_start == virtual_space_end ||
567 (virtual_space_end - virtual_space_start) < size)
568 panic("uvm_pageboot_alloc: out of virtual space");
569
570 addr = virtual_space_start;
571
572 #ifdef PMAP_GROWKERNEL
573 /*
574 * If the kernel pmap can't map the requested space,
575 * then allocate more resources for it.
576 */
577 if (uvm_maxkaddr < (addr + size)) {
578 uvm_maxkaddr = pmap_growkernel(addr + size);
579 if (uvm_maxkaddr < (addr + size))
580 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
581 }
582 #endif
583
584 virtual_space_start += size;
585
586 /*
587 * allocate and mapin physical pages to back new virtual pages
588 */
589
590 for (vaddr = round_page(addr) ; vaddr < addr + size ;
591 vaddr += PAGE_SIZE) {
592
593 if (!uvm_page_physget(&paddr))
594 panic("uvm_pageboot_alloc: out of memory");
595
596 /*
597 * Note this memory is no longer managed, so using
598 * pmap_kenter is safe.
599 */
600 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
601 }
602 pmap_update(pmap_kernel());
603 return(addr);
604 #endif /* PMAP_STEAL_MEMORY */
605 }
606
607 #if !defined(PMAP_STEAL_MEMORY)
608 /*
609 * uvm_page_physget: "steal" one page from the vm_physmem structure.
610 *
611 * => attempt to allocate it off the end of a segment in which the "avail"
612 * values match the start/end values. if we can't do that, then we
613 * will advance both values (making them equal, and removing some
614 * vm_page structures from the non-avail area).
615 * => return false if out of memory.
616 */
617
618 /* subroutine: try to allocate from memory chunks on the specified freelist */
619 static bool uvm_page_physget_freelist(paddr_t *, int);
620
621 static bool
622 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
623 {
624 int lcv, x;
625
626 /* pass 1: try allocating from a matching end */
627 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
628 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
629 #else
630 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
631 #endif
632 {
633
634 if (uvm.page_init_done == true)
635 panic("uvm_page_physget: called _after_ bootstrap");
636
637 if (vm_physmem[lcv].free_list != freelist)
638 continue;
639
640 /* try from front */
641 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
642 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
643 *paddrp = ptoa(vm_physmem[lcv].avail_start);
644 vm_physmem[lcv].avail_start++;
645 vm_physmem[lcv].start++;
646 /* nothing left? nuke it */
647 if (vm_physmem[lcv].avail_start ==
648 vm_physmem[lcv].end) {
649 if (vm_nphysseg == 1)
650 panic("uvm_page_physget: out of memory!");
651 vm_nphysseg--;
652 for (x = lcv ; x < vm_nphysseg ; x++)
653 /* structure copy */
654 vm_physmem[x] = vm_physmem[x+1];
655 }
656 return (true);
657 }
658
659 /* try from rear */
660 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
661 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
662 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
663 vm_physmem[lcv].avail_end--;
664 vm_physmem[lcv].end--;
665 /* nothing left? nuke it */
666 if (vm_physmem[lcv].avail_end ==
667 vm_physmem[lcv].start) {
668 if (vm_nphysseg == 1)
669 panic("uvm_page_physget: out of memory!");
670 vm_nphysseg--;
671 for (x = lcv ; x < vm_nphysseg ; x++)
672 /* structure copy */
673 vm_physmem[x] = vm_physmem[x+1];
674 }
675 return (true);
676 }
677 }
678
679 /* pass2: forget about matching ends, just allocate something */
680 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
681 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
682 #else
683 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
684 #endif
685 {
686
687 /* any room in this bank? */
688 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
689 continue; /* nope */
690
691 *paddrp = ptoa(vm_physmem[lcv].avail_start);
692 vm_physmem[lcv].avail_start++;
693 /* truncate! */
694 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
695
696 /* nothing left? nuke it */
697 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
698 if (vm_nphysseg == 1)
699 panic("uvm_page_physget: out of memory!");
700 vm_nphysseg--;
701 for (x = lcv ; x < vm_nphysseg ; x++)
702 /* structure copy */
703 vm_physmem[x] = vm_physmem[x+1];
704 }
705 return (true);
706 }
707
708 return (false); /* whoops! */
709 }
710
711 bool
712 uvm_page_physget(paddr_t *paddrp)
713 {
714 int i;
715
716 /* try in the order of freelist preference */
717 for (i = 0; i < VM_NFREELIST; i++)
718 if (uvm_page_physget_freelist(paddrp, i) == true)
719 return (true);
720 return (false);
721 }
722 #endif /* PMAP_STEAL_MEMORY */
723
724 /*
725 * uvm_page_physload: load physical memory into VM system
726 *
727 * => all args are PFs
728 * => all pages in start/end get vm_page structures
729 * => areas marked by avail_start/avail_end get added to the free page pool
730 * => we are limited to VM_PHYSSEG_MAX physical memory segments
731 */
732
733 void
734 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
735 paddr_t avail_end, int free_list)
736 {
737 int preload, lcv;
738 psize_t npages;
739 struct vm_page *pgs;
740 struct vm_physseg *ps;
741
742 if (uvmexp.pagesize == 0)
743 panic("uvm_page_physload: page size not set!");
744 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
745 panic("uvm_page_physload: bad free list %d", free_list);
746 if (start >= end)
747 panic("uvm_page_physload: start >= end");
748
749 /*
750 * do we have room?
751 */
752
753 if (vm_nphysseg == VM_PHYSSEG_MAX) {
754 printf("uvm_page_physload: unable to load physical memory "
755 "segment\n");
756 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
757 VM_PHYSSEG_MAX, (long long)start, (long long)end);
758 printf("\tincrease VM_PHYSSEG_MAX\n");
759 return;
760 }
761
762 /*
763 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
764 * called yet, so malloc is not available).
765 */
766
767 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
768 if (vm_physmem[lcv].pgs)
769 break;
770 }
771 preload = (lcv == vm_nphysseg);
772
773 /*
774 * if VM is already running, attempt to malloc() vm_page structures
775 */
776
777 if (!preload) {
778 #if defined(VM_PHYSSEG_NOADD)
779 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
780 #else
781 /* XXXCDC: need some sort of lockout for this case */
782 paddr_t paddr;
783 npages = end - start; /* # of pages */
784 pgs = malloc(sizeof(struct vm_page) * npages,
785 M_VMPAGE, M_NOWAIT);
786 if (pgs == NULL) {
787 printf("uvm_page_physload: can not malloc vm_page "
788 "structs for segment\n");
789 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
790 return;
791 }
792 /* zero data, init phys_addr and free_list, and free pages */
793 memset(pgs, 0, sizeof(struct vm_page) * npages);
794 for (lcv = 0, paddr = ptoa(start) ;
795 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
796 pgs[lcv].phys_addr = paddr;
797 pgs[lcv].free_list = free_list;
798 if (atop(paddr) >= avail_start &&
799 atop(paddr) <= avail_end)
800 uvm_pagefree(&pgs[lcv]);
801 }
802 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
803 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
804 #endif
805 } else {
806 pgs = NULL;
807 npages = 0;
808 }
809
810 /*
811 * now insert us in the proper place in vm_physmem[]
812 */
813
814 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
815 /* random: put it at the end (easy!) */
816 ps = &vm_physmem[vm_nphysseg];
817 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
818 {
819 int x;
820 /* sort by address for binary search */
821 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
822 if (start < vm_physmem[lcv].start)
823 break;
824 ps = &vm_physmem[lcv];
825 /* move back other entries, if necessary ... */
826 for (x = vm_nphysseg ; x > lcv ; x--)
827 /* structure copy */
828 vm_physmem[x] = vm_physmem[x - 1];
829 }
830 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
831 {
832 int x;
833 /* sort by largest segment first */
834 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
835 if ((end - start) >
836 (vm_physmem[lcv].end - vm_physmem[lcv].start))
837 break;
838 ps = &vm_physmem[lcv];
839 /* move back other entries, if necessary ... */
840 for (x = vm_nphysseg ; x > lcv ; x--)
841 /* structure copy */
842 vm_physmem[x] = vm_physmem[x - 1];
843 }
844 #else
845 panic("uvm_page_physload: unknown physseg strategy selected!");
846 #endif
847
848 ps->start = start;
849 ps->end = end;
850 ps->avail_start = avail_start;
851 ps->avail_end = avail_end;
852 if (preload) {
853 ps->pgs = NULL;
854 } else {
855 ps->pgs = pgs;
856 ps->lastpg = pgs + npages - 1;
857 }
858 ps->free_list = free_list;
859 vm_nphysseg++;
860
861 if (!preload) {
862 uvmpdpol_reinit();
863 }
864 }
865
866 /*
867 * uvm_page_recolor: Recolor the pages if the new bucket count is
868 * larger than the old one.
869 */
870
871 void
872 uvm_page_recolor(int newncolors)
873 {
874 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
875 struct pgfreelist gpgfl, pgfl;
876 struct vm_page *pg;
877 vsize_t bucketcount;
878 int lcv, color, i, ocolors;
879 struct uvm_cpu *ucpu;
880
881 if (newncolors <= uvmexp.ncolors)
882 return;
883
884 if (uvm.page_init_done == false) {
885 uvmexp.ncolors = newncolors;
886 return;
887 }
888
889 bucketcount = newncolors * VM_NFREELIST;
890 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
891 M_VMPAGE, M_NOWAIT);
892 cpuarray = bucketarray + bucketcount;
893 if (bucketarray == NULL) {
894 printf("WARNING: unable to allocate %ld page color buckets\n",
895 (long) bucketcount);
896 return;
897 }
898
899 mutex_spin_enter(&uvm_fpageqlock);
900
901 /* Make sure we should still do this. */
902 if (newncolors <= uvmexp.ncolors) {
903 mutex_spin_exit(&uvm_fpageqlock);
904 free(bucketarray, M_VMPAGE);
905 return;
906 }
907
908 oldbucketarray = uvm.page_free[0].pgfl_buckets;
909 ocolors = uvmexp.ncolors;
910
911 uvmexp.ncolors = newncolors;
912 uvmexp.colormask = uvmexp.ncolors - 1;
913
914 ucpu = curcpu()->ci_data.cpu_uvm;
915 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
916 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
917 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
918 uvm_page_init_buckets(&gpgfl);
919 uvm_page_init_buckets(&pgfl);
920 for (color = 0; color < ocolors; color++) {
921 for (i = 0; i < PGFL_NQUEUES; i++) {
922 while ((pg = LIST_FIRST(&uvm.page_free[
923 lcv].pgfl_buckets[color].pgfl_queues[i]))
924 != NULL) {
925 LIST_REMOVE(pg, pageq.list); /* global */
926 LIST_REMOVE(pg, listq.list); /* cpu */
927 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
928 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
929 i], pg, pageq.list);
930 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
931 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
932 i], pg, listq.list);
933 }
934 }
935 }
936 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
937 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
938 }
939
940 if (have_recolored_pages) {
941 mutex_spin_exit(&uvm_fpageqlock);
942 free(oldbucketarray, M_VMPAGE);
943 return;
944 }
945
946 have_recolored_pages = true;
947 mutex_spin_exit(&uvm_fpageqlock);
948 }
949
950 /*
951 * uvm_cpu_attach: initialize per-CPU data structures.
952 */
953
954 void
955 uvm_cpu_attach(struct cpu_info *ci)
956 {
957 struct pgflbucket *bucketarray;
958 struct pgfreelist pgfl;
959 struct uvm_cpu *ucpu;
960 vsize_t bucketcount;
961 int lcv;
962
963 if (CPU_IS_PRIMARY(ci)) {
964 /* Already done in uvm_page_init(). */
965 return;
966 }
967
968 /* Add more reserve pages for this CPU. */
969 uvmexp.reserve_kernel += vm_page_reserve_kernel;
970
971 /* Configure this CPU's free lists. */
972 bucketcount = uvmexp.ncolors * VM_NFREELIST;
973 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
974 M_VMPAGE, M_WAITOK);
975 ucpu = &uvm.cpus[cpu_index(ci)];
976 ci->ci_data.cpu_uvm = ucpu;
977 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
978 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
979 uvm_page_init_buckets(&pgfl);
980 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
981 }
982 }
983
984 /*
985 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
986 */
987
988 static struct vm_page *
989 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
990 int *trycolorp)
991 {
992 struct pgflist *freeq;
993 struct vm_page *pg;
994 int color, trycolor = *trycolorp;
995 struct pgfreelist *gpgfl, *pgfl;
996
997 KASSERT(mutex_owned(&uvm_fpageqlock));
998
999 color = trycolor;
1000 pgfl = &ucpu->page_free[flist];
1001 gpgfl = &uvm.page_free[flist];
1002 do {
1003 /* cpu, try1 */
1004 if ((pg = LIST_FIRST((freeq =
1005 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1006 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1007 uvmexp.cpuhit++;
1008 goto gotit;
1009 }
1010 /* global, try1 */
1011 if ((pg = LIST_FIRST((freeq =
1012 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1013 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1014 uvmexp.cpumiss++;
1015 goto gotit;
1016 }
1017 /* cpu, try2 */
1018 if ((pg = LIST_FIRST((freeq =
1019 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1020 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1021 uvmexp.cpuhit++;
1022 goto gotit;
1023 }
1024 /* global, try2 */
1025 if ((pg = LIST_FIRST((freeq =
1026 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1027 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1028 uvmexp.cpumiss++;
1029 goto gotit;
1030 }
1031 color = (color + 1) & uvmexp.colormask;
1032 } while (color != trycolor);
1033
1034 return (NULL);
1035
1036 gotit:
1037 LIST_REMOVE(pg, pageq.list); /* global list */
1038 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1039 uvmexp.free--;
1040
1041 /* update zero'd page count */
1042 if (pg->flags & PG_ZERO)
1043 uvmexp.zeropages--;
1044
1045 if (color == trycolor)
1046 uvmexp.colorhit++;
1047 else {
1048 uvmexp.colormiss++;
1049 *trycolorp = color;
1050 }
1051
1052 return (pg);
1053 }
1054
1055 /*
1056 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1057 *
1058 * => return null if no pages free
1059 * => wake up pagedaemon if number of free pages drops below low water mark
1060 * => if obj != NULL, obj must be locked (to put in obj's tree)
1061 * => if anon != NULL, anon must be locked (to put in anon)
1062 * => only one of obj or anon can be non-null
1063 * => caller must activate/deactivate page if it is not wired.
1064 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1065 * => policy decision: it is more important to pull a page off of the
1066 * appropriate priority free list than it is to get a zero'd or
1067 * unknown contents page. This is because we live with the
1068 * consequences of a bad free list decision for the entire
1069 * lifetime of the page, e.g. if the page comes from memory that
1070 * is slower to access.
1071 */
1072
1073 struct vm_page *
1074 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1075 int flags, int strat, int free_list)
1076 {
1077 int lcv, try1, try2, zeroit = 0, color;
1078 struct uvm_cpu *ucpu;
1079 struct vm_page *pg;
1080 lwp_t *l;
1081
1082 KASSERT(obj == NULL || anon == NULL);
1083 KASSERT(anon == NULL || off == 0);
1084 KASSERT(off == trunc_page(off));
1085 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1086 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1087
1088 mutex_spin_enter(&uvm_fpageqlock);
1089
1090 /*
1091 * This implements a global round-robin page coloring
1092 * algorithm.
1093 *
1094 * XXXJRT: What about virtually-indexed caches?
1095 */
1096
1097 ucpu = curcpu()->ci_data.cpu_uvm;
1098 color = ucpu->page_free_nextcolor;
1099
1100 /*
1101 * check to see if we need to generate some free pages waking
1102 * the pagedaemon.
1103 */
1104
1105 uvm_kick_pdaemon();
1106
1107 /*
1108 * fail if any of these conditions is true:
1109 * [1] there really are no free pages, or
1110 * [2] only kernel "reserved" pages remain and
1111 * reserved pages have not been requested.
1112 * [3] only pagedaemon "reserved" pages remain and
1113 * the requestor isn't the pagedaemon.
1114 * we make kernel reserve pages available if called by a
1115 * kernel thread or a realtime thread.
1116 */
1117 l = curlwp;
1118 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1119 flags |= UVM_PGA_USERESERVE;
1120 }
1121 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1122 (flags & UVM_PGA_USERESERVE) == 0) ||
1123 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1124 curlwp != uvm.pagedaemon_lwp))
1125 goto fail;
1126
1127 #if PGFL_NQUEUES != 2
1128 #error uvm_pagealloc_strat needs to be updated
1129 #endif
1130
1131 /*
1132 * If we want a zero'd page, try the ZEROS queue first, otherwise
1133 * we try the UNKNOWN queue first.
1134 */
1135 if (flags & UVM_PGA_ZERO) {
1136 try1 = PGFL_ZEROS;
1137 try2 = PGFL_UNKNOWN;
1138 } else {
1139 try1 = PGFL_UNKNOWN;
1140 try2 = PGFL_ZEROS;
1141 }
1142
1143 again:
1144 switch (strat) {
1145 case UVM_PGA_STRAT_NORMAL:
1146 /* Check freelists: descending priority (ascending id) order */
1147 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1148 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1149 try1, try2, &color);
1150 if (pg != NULL)
1151 goto gotit;
1152 }
1153
1154 /* No pages free! */
1155 goto fail;
1156
1157 case UVM_PGA_STRAT_ONLY:
1158 case UVM_PGA_STRAT_FALLBACK:
1159 /* Attempt to allocate from the specified free list. */
1160 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1161 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1162 try1, try2, &color);
1163 if (pg != NULL)
1164 goto gotit;
1165
1166 /* Fall back, if possible. */
1167 if (strat == UVM_PGA_STRAT_FALLBACK) {
1168 strat = UVM_PGA_STRAT_NORMAL;
1169 goto again;
1170 }
1171
1172 /* No pages free! */
1173 goto fail;
1174
1175 default:
1176 panic("uvm_pagealloc_strat: bad strat %d", strat);
1177 /* NOTREACHED */
1178 }
1179
1180 gotit:
1181 /*
1182 * We now know which color we actually allocated from; set
1183 * the next color accordingly.
1184 */
1185
1186 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1187
1188 /*
1189 * update allocation statistics and remember if we have to
1190 * zero the page
1191 */
1192
1193 if (flags & UVM_PGA_ZERO) {
1194 if (pg->flags & PG_ZERO) {
1195 uvmexp.pga_zerohit++;
1196 zeroit = 0;
1197 } else {
1198 uvmexp.pga_zeromiss++;
1199 zeroit = 1;
1200 }
1201 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1202 ucpu->page_idle_zero = vm_page_zero_enable;
1203 }
1204 }
1205 KASSERT(pg->pqflags == PQ_FREE);
1206
1207 pg->offset = off;
1208 pg->uobject = obj;
1209 pg->uanon = anon;
1210 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1211 if (anon) {
1212 anon->an_page = pg;
1213 pg->pqflags = PQ_ANON;
1214 atomic_inc_uint(&uvmexp.anonpages);
1215 } else {
1216 if (obj) {
1217 uvm_pageinsert(pg);
1218 }
1219 pg->pqflags = 0;
1220 }
1221 mutex_spin_exit(&uvm_fpageqlock);
1222
1223 #if defined(UVM_PAGE_TRKOWN)
1224 pg->owner_tag = NULL;
1225 #endif
1226 UVM_PAGE_OWN(pg, "new alloc");
1227
1228 if (flags & UVM_PGA_ZERO) {
1229 /*
1230 * A zero'd page is not clean. If we got a page not already
1231 * zero'd, then we have to zero it ourselves.
1232 */
1233 pg->flags &= ~PG_CLEAN;
1234 if (zeroit)
1235 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1236 }
1237
1238 return(pg);
1239
1240 fail:
1241 mutex_spin_exit(&uvm_fpageqlock);
1242 return (NULL);
1243 }
1244
1245 /*
1246 * uvm_pagereplace: replace a page with another
1247 *
1248 * => object must be locked
1249 */
1250
1251 void
1252 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1253 {
1254 struct uvm_object *uobj = oldpg->uobject;
1255
1256 KASSERT((oldpg->flags & PG_TABLED) != 0);
1257 KASSERT(uobj != NULL);
1258 KASSERT((newpg->flags & PG_TABLED) == 0);
1259 KASSERT(newpg->uobject == NULL);
1260 KASSERT(mutex_owned(&uobj->vmobjlock));
1261
1262 newpg->uobject = uobj;
1263 newpg->offset = oldpg->offset;
1264
1265 uvm_pageremove_tree(uobj, oldpg);
1266 uvm_pageinsert_tree(uobj, newpg);
1267 uvm_pageinsert_list(uobj, newpg, oldpg);
1268 uvm_pageremove_list(uobj, oldpg);
1269 }
1270
1271 /*
1272 * uvm_pagerealloc: reallocate a page from one object to another
1273 *
1274 * => both objects must be locked
1275 */
1276
1277 void
1278 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1279 {
1280 /*
1281 * remove it from the old object
1282 */
1283
1284 if (pg->uobject) {
1285 uvm_pageremove(pg);
1286 }
1287
1288 /*
1289 * put it in the new object
1290 */
1291
1292 if (newobj) {
1293 pg->uobject = newobj;
1294 pg->offset = newoff;
1295 uvm_pageinsert(pg);
1296 }
1297 }
1298
1299 #ifdef DEBUG
1300 /*
1301 * check if page is zero-filled
1302 *
1303 * - called with free page queue lock held.
1304 */
1305 void
1306 uvm_pagezerocheck(struct vm_page *pg)
1307 {
1308 int *p, *ep;
1309
1310 KASSERT(uvm_zerocheckkva != 0);
1311 KASSERT(mutex_owned(&uvm_fpageqlock));
1312
1313 /*
1314 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1315 * uvm page allocator.
1316 *
1317 * it might be better to have "CPU-local temporary map" pmap interface.
1318 */
1319 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1320 p = (int *)uvm_zerocheckkva;
1321 ep = (int *)((char *)p + PAGE_SIZE);
1322 pmap_update(pmap_kernel());
1323 while (p < ep) {
1324 if (*p != 0)
1325 panic("PG_ZERO page isn't zero-filled");
1326 p++;
1327 }
1328 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1329 /*
1330 * pmap_update() is not necessary here because no one except us
1331 * uses this VA.
1332 */
1333 }
1334 #endif /* DEBUG */
1335
1336 /*
1337 * uvm_pagefree: free page
1338 *
1339 * => erase page's identity (i.e. remove from object)
1340 * => put page on free list
1341 * => caller must lock owning object (either anon or uvm_object)
1342 * => caller must lock page queues
1343 * => assumes all valid mappings of pg are gone
1344 */
1345
1346 void
1347 uvm_pagefree(struct vm_page *pg)
1348 {
1349 struct pgflist *pgfl;
1350 struct uvm_cpu *ucpu;
1351 int index, color, queue;
1352 bool iszero;
1353
1354 #ifdef DEBUG
1355 if (pg->uobject == (void *)0xdeadbeef &&
1356 pg->uanon == (void *)0xdeadbeef) {
1357 panic("uvm_pagefree: freeing free page %p", pg);
1358 }
1359 #endif /* DEBUG */
1360
1361 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1362 KASSERT(!(pg->pqflags & PQ_FREE));
1363 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1364 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1365 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1366 mutex_owned(&pg->uanon->an_lock));
1367
1368 /*
1369 * if the page is loaned, resolve the loan instead of freeing.
1370 */
1371
1372 if (pg->loan_count) {
1373 KASSERT(pg->wire_count == 0);
1374
1375 /*
1376 * if the page is owned by an anon then we just want to
1377 * drop anon ownership. the kernel will free the page when
1378 * it is done with it. if the page is owned by an object,
1379 * remove it from the object and mark it dirty for the benefit
1380 * of possible anon owners.
1381 *
1382 * regardless of previous ownership, wakeup any waiters,
1383 * unbusy the page, and we're done.
1384 */
1385
1386 if (pg->uobject != NULL) {
1387 uvm_pageremove(pg);
1388 pg->flags &= ~PG_CLEAN;
1389 } else if (pg->uanon != NULL) {
1390 if ((pg->pqflags & PQ_ANON) == 0) {
1391 pg->loan_count--;
1392 } else {
1393 pg->pqflags &= ~PQ_ANON;
1394 atomic_dec_uint(&uvmexp.anonpages);
1395 }
1396 pg->uanon->an_page = NULL;
1397 pg->uanon = NULL;
1398 }
1399 if (pg->flags & PG_WANTED) {
1400 wakeup(pg);
1401 }
1402 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1403 #ifdef UVM_PAGE_TRKOWN
1404 pg->owner_tag = NULL;
1405 #endif
1406 if (pg->loan_count) {
1407 KASSERT(pg->uobject == NULL);
1408 if (pg->uanon == NULL) {
1409 uvm_pagedequeue(pg);
1410 }
1411 return;
1412 }
1413 }
1414
1415 /*
1416 * remove page from its object or anon.
1417 */
1418
1419 if (pg->uobject != NULL) {
1420 uvm_pageremove(pg);
1421 } else if (pg->uanon != NULL) {
1422 pg->uanon->an_page = NULL;
1423 atomic_dec_uint(&uvmexp.anonpages);
1424 }
1425
1426 /*
1427 * now remove the page from the queues.
1428 */
1429
1430 uvm_pagedequeue(pg);
1431
1432 /*
1433 * if the page was wired, unwire it now.
1434 */
1435
1436 if (pg->wire_count) {
1437 pg->wire_count = 0;
1438 uvmexp.wired--;
1439 }
1440
1441 /*
1442 * and put on free queue
1443 */
1444
1445 iszero = (pg->flags & PG_ZERO);
1446 index = uvm_page_lookup_freelist(pg);
1447 color = VM_PGCOLOR_BUCKET(pg);
1448 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1449
1450 #ifdef DEBUG
1451 pg->uobject = (void *)0xdeadbeef;
1452 pg->uanon = (void *)0xdeadbeef;
1453 #endif
1454
1455 mutex_spin_enter(&uvm_fpageqlock);
1456 pg->pqflags = PQ_FREE;
1457
1458 #ifdef DEBUG
1459 if (iszero)
1460 uvm_pagezerocheck(pg);
1461 #endif /* DEBUG */
1462
1463
1464 /* global list */
1465 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1466 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1467 uvmexp.free++;
1468 if (iszero) {
1469 uvmexp.zeropages++;
1470 }
1471
1472 /* per-cpu list */
1473 ucpu = curcpu()->ci_data.cpu_uvm;
1474 pg->offset = (uintptr_t)ucpu;
1475 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1476 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1477 ucpu->pages[queue]++;
1478 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1479 ucpu->page_idle_zero = vm_page_zero_enable;
1480 }
1481
1482 mutex_spin_exit(&uvm_fpageqlock);
1483 }
1484
1485 /*
1486 * uvm_page_unbusy: unbusy an array of pages.
1487 *
1488 * => pages must either all belong to the same object, or all belong to anons.
1489 * => if pages are object-owned, object must be locked.
1490 * => if pages are anon-owned, anons must be locked.
1491 * => caller must lock page queues if pages may be released.
1492 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1493 */
1494
1495 void
1496 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1497 {
1498 struct vm_page *pg;
1499 int i;
1500 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1501
1502 for (i = 0; i < npgs; i++) {
1503 pg = pgs[i];
1504 if (pg == NULL || pg == PGO_DONTCARE) {
1505 continue;
1506 }
1507
1508 KASSERT(pg->uobject == NULL ||
1509 mutex_owned(&pg->uobject->vmobjlock));
1510 KASSERT(pg->uobject != NULL ||
1511 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1512
1513 KASSERT(pg->flags & PG_BUSY);
1514 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1515 if (pg->flags & PG_WANTED) {
1516 wakeup(pg);
1517 }
1518 if (pg->flags & PG_RELEASED) {
1519 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1520 KASSERT(pg->uobject != NULL ||
1521 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1522 pg->flags &= ~PG_RELEASED;
1523 uvm_pagefree(pg);
1524 } else {
1525 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1526 KASSERT((pg->flags & PG_FAKE) == 0);
1527 pg->flags &= ~(PG_WANTED|PG_BUSY);
1528 UVM_PAGE_OWN(pg, NULL);
1529 }
1530 }
1531 }
1532
1533 #if defined(UVM_PAGE_TRKOWN)
1534 /*
1535 * uvm_page_own: set or release page ownership
1536 *
1537 * => this is a debugging function that keeps track of who sets PG_BUSY
1538 * and where they do it. it can be used to track down problems
1539 * such a process setting "PG_BUSY" and never releasing it.
1540 * => page's object [if any] must be locked
1541 * => if "tag" is NULL then we are releasing page ownership
1542 */
1543 void
1544 uvm_page_own(struct vm_page *pg, const char *tag)
1545 {
1546 struct uvm_object *uobj;
1547 struct vm_anon *anon;
1548
1549 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1550
1551 uobj = pg->uobject;
1552 anon = pg->uanon;
1553 if (uobj != NULL) {
1554 KASSERT(mutex_owned(&uobj->vmobjlock));
1555 } else if (anon != NULL) {
1556 KASSERT(mutex_owned(&anon->an_lock));
1557 }
1558
1559 KASSERT((pg->flags & PG_WANTED) == 0);
1560
1561 /* gain ownership? */
1562 if (tag) {
1563 KASSERT((pg->flags & PG_BUSY) != 0);
1564 if (pg->owner_tag) {
1565 printf("uvm_page_own: page %p already owned "
1566 "by proc %d [%s]\n", pg,
1567 pg->owner, pg->owner_tag);
1568 panic("uvm_page_own");
1569 }
1570 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1571 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1572 pg->owner_tag = tag;
1573 return;
1574 }
1575
1576 /* drop ownership */
1577 KASSERT((pg->flags & PG_BUSY) == 0);
1578 if (pg->owner_tag == NULL) {
1579 printf("uvm_page_own: dropping ownership of an non-owned "
1580 "page (%p)\n", pg);
1581 panic("uvm_page_own");
1582 }
1583 if (!uvmpdpol_pageisqueued_p(pg)) {
1584 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1585 pg->wire_count > 0);
1586 } else {
1587 KASSERT(pg->wire_count == 0);
1588 }
1589 pg->owner_tag = NULL;
1590 }
1591 #endif
1592
1593 /*
1594 * uvm_pageidlezero: zero free pages while the system is idle.
1595 *
1596 * => try to complete one color bucket at a time, to reduce our impact
1597 * on the CPU cache.
1598 * => we loop until we either reach the target or there is a lwp ready
1599 * to run, or MD code detects a reason to break early.
1600 */
1601 void
1602 uvm_pageidlezero(void)
1603 {
1604 struct vm_page *pg;
1605 struct pgfreelist *pgfl, *gpgfl;
1606 struct uvm_cpu *ucpu;
1607 int free_list, firstbucket, nextbucket;
1608
1609 ucpu = curcpu()->ci_data.cpu_uvm;
1610 if (!ucpu->page_idle_zero ||
1611 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1612 ucpu->page_idle_zero = false;
1613 return;
1614 }
1615 mutex_enter(&uvm_fpageqlock);
1616 firstbucket = ucpu->page_free_nextcolor;
1617 nextbucket = firstbucket;
1618 do {
1619 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1620 if (sched_curcpu_runnable_p()) {
1621 goto quit;
1622 }
1623 pgfl = &ucpu->page_free[free_list];
1624 gpgfl = &uvm.page_free[free_list];
1625 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1626 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1627 if (sched_curcpu_runnable_p()) {
1628 goto quit;
1629 }
1630 LIST_REMOVE(pg, pageq.list); /* global list */
1631 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1632 ucpu->pages[PGFL_UNKNOWN]--;
1633 uvmexp.free--;
1634 KASSERT(pg->pqflags == PQ_FREE);
1635 pg->pqflags = 0;
1636 mutex_spin_exit(&uvm_fpageqlock);
1637 #ifdef PMAP_PAGEIDLEZERO
1638 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1639
1640 /*
1641 * The machine-dependent code detected
1642 * some reason for us to abort zeroing
1643 * pages, probably because there is a
1644 * process now ready to run.
1645 */
1646
1647 mutex_spin_enter(&uvm_fpageqlock);
1648 pg->pqflags = PQ_FREE;
1649 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1650 nextbucket].pgfl_queues[
1651 PGFL_UNKNOWN], pg, pageq.list);
1652 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1653 nextbucket].pgfl_queues[
1654 PGFL_UNKNOWN], pg, listq.list);
1655 ucpu->pages[PGFL_UNKNOWN]++;
1656 uvmexp.free++;
1657 uvmexp.zeroaborts++;
1658 goto quit;
1659 }
1660 #else
1661 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1662 #endif /* PMAP_PAGEIDLEZERO */
1663 pg->flags |= PG_ZERO;
1664
1665 mutex_spin_enter(&uvm_fpageqlock);
1666 pg->pqflags = PQ_FREE;
1667 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1668 nextbucket].pgfl_queues[PGFL_ZEROS],
1669 pg, pageq.list);
1670 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1671 nextbucket].pgfl_queues[PGFL_ZEROS],
1672 pg, listq.list);
1673 ucpu->pages[PGFL_ZEROS]++;
1674 uvmexp.free++;
1675 uvmexp.zeropages++;
1676 }
1677 }
1678 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1679 break;
1680 }
1681 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1682 } while (nextbucket != firstbucket);
1683 ucpu->page_idle_zero = false;
1684 quit:
1685 mutex_spin_exit(&uvm_fpageqlock);
1686 }
1687
1688 /*
1689 * uvm_pagelookup: look up a page
1690 *
1691 * => caller should lock object to keep someone from pulling the page
1692 * out from under it
1693 */
1694
1695 struct vm_page *
1696 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1697 {
1698 struct vm_page *pg;
1699
1700 KASSERT(mutex_owned(&obj->vmobjlock));
1701
1702 pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1703
1704 KASSERT(pg == NULL || obj->uo_npages != 0);
1705 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1706 (pg->flags & PG_BUSY) != 0);
1707 return(pg);
1708 }
1709
1710 /*
1711 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1712 *
1713 * => caller must lock page queues
1714 */
1715
1716 void
1717 uvm_pagewire(struct vm_page *pg)
1718 {
1719 KASSERT(mutex_owned(&uvm_pageqlock));
1720 #if defined(READAHEAD_STATS)
1721 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1722 uvm_ra_hit.ev_count++;
1723 pg->pqflags &= ~PQ_READAHEAD;
1724 }
1725 #endif /* defined(READAHEAD_STATS) */
1726 if (pg->wire_count == 0) {
1727 uvm_pagedequeue(pg);
1728 uvmexp.wired++;
1729 }
1730 pg->wire_count++;
1731 }
1732
1733 /*
1734 * uvm_pageunwire: unwire the page.
1735 *
1736 * => activate if wire count goes to zero.
1737 * => caller must lock page queues
1738 */
1739
1740 void
1741 uvm_pageunwire(struct vm_page *pg)
1742 {
1743 KASSERT(mutex_owned(&uvm_pageqlock));
1744 pg->wire_count--;
1745 if (pg->wire_count == 0) {
1746 uvm_pageactivate(pg);
1747 uvmexp.wired--;
1748 }
1749 }
1750
1751 /*
1752 * uvm_pagedeactivate: deactivate page
1753 *
1754 * => caller must lock page queues
1755 * => caller must check to make sure page is not wired
1756 * => object that page belongs to must be locked (so we can adjust pg->flags)
1757 * => caller must clear the reference on the page before calling
1758 */
1759
1760 void
1761 uvm_pagedeactivate(struct vm_page *pg)
1762 {
1763
1764 KASSERT(mutex_owned(&uvm_pageqlock));
1765 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1766 uvmpdpol_pagedeactivate(pg);
1767 }
1768
1769 /*
1770 * uvm_pageactivate: activate page
1771 *
1772 * => caller must lock page queues
1773 */
1774
1775 void
1776 uvm_pageactivate(struct vm_page *pg)
1777 {
1778
1779 KASSERT(mutex_owned(&uvm_pageqlock));
1780 #if defined(READAHEAD_STATS)
1781 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1782 uvm_ra_hit.ev_count++;
1783 pg->pqflags &= ~PQ_READAHEAD;
1784 }
1785 #endif /* defined(READAHEAD_STATS) */
1786 if (pg->wire_count != 0) {
1787 return;
1788 }
1789 uvmpdpol_pageactivate(pg);
1790 }
1791
1792 /*
1793 * uvm_pagedequeue: remove a page from any paging queue
1794 */
1795
1796 void
1797 uvm_pagedequeue(struct vm_page *pg)
1798 {
1799
1800 if (uvmpdpol_pageisqueued_p(pg)) {
1801 KASSERT(mutex_owned(&uvm_pageqlock));
1802 }
1803
1804 uvmpdpol_pagedequeue(pg);
1805 }
1806
1807 /*
1808 * uvm_pageenqueue: add a page to a paging queue without activating.
1809 * used where a page is not really demanded (yet). eg. read-ahead
1810 */
1811
1812 void
1813 uvm_pageenqueue(struct vm_page *pg)
1814 {
1815
1816 KASSERT(mutex_owned(&uvm_pageqlock));
1817 if (pg->wire_count != 0) {
1818 return;
1819 }
1820 uvmpdpol_pageenqueue(pg);
1821 }
1822
1823 /*
1824 * uvm_pagezero: zero fill a page
1825 *
1826 * => if page is part of an object then the object should be locked
1827 * to protect pg->flags.
1828 */
1829
1830 void
1831 uvm_pagezero(struct vm_page *pg)
1832 {
1833 pg->flags &= ~PG_CLEAN;
1834 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1835 }
1836
1837 /*
1838 * uvm_pagecopy: copy a page
1839 *
1840 * => if page is part of an object then the object should be locked
1841 * to protect pg->flags.
1842 */
1843
1844 void
1845 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1846 {
1847
1848 dst->flags &= ~PG_CLEAN;
1849 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1850 }
1851
1852 /*
1853 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1854 */
1855
1856 bool
1857 uvm_pageismanaged(paddr_t pa)
1858 {
1859
1860 return (vm_physseg_find(atop(pa), NULL) != -1);
1861 }
1862
1863 /*
1864 * uvm_page_lookup_freelist: look up the free list for the specified page
1865 */
1866
1867 int
1868 uvm_page_lookup_freelist(struct vm_page *pg)
1869 {
1870 int lcv;
1871
1872 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1873 KASSERT(lcv != -1);
1874 return (vm_physmem[lcv].free_list);
1875 }
1876