Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.152
      1 /*	$NetBSD: uvm_page.c,v 1.152 2009/11/07 07:27:50 cegger Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.152 2009/11/07 07:27:50 cegger Exp $");
     75 
     76 #include "opt_ddb.h"
     77 #include "opt_uvmhist.h"
     78 #include "opt_readahead.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/malloc.h>
     83 #include <sys/sched.h>
     84 #include <sys/kernel.h>
     85 #include <sys/vnode.h>
     86 #include <sys/proc.h>
     87 #include <sys/atomic.h>
     88 #include <sys/cpu.h>
     89 
     90 #include <uvm/uvm.h>
     91 #include <uvm/uvm_ddb.h>
     92 #include <uvm/uvm_pdpolicy.h>
     93 
     94 /*
     95  * global vars... XXXCDC: move to uvm. structure.
     96  */
     97 
     98 /*
     99  * physical memory config is stored in vm_physmem.
    100  */
    101 
    102 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    103 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    104 
    105 /*
    106  * Some supported CPUs in a given architecture don't support all
    107  * of the things necessary to do idle page zero'ing efficiently.
    108  * We therefore provide a way to disable it from machdep code here.
    109  */
    110 /*
    111  * XXX disabled until we can find a way to do this without causing
    112  * problems for either CPU caches or DMA latency.
    113  */
    114 bool vm_page_zero_enable = false;
    115 
    116 /*
    117  * number of pages per-CPU to reserve for the kernel.
    118  */
    119 int vm_page_reserve_kernel = 5;
    120 
    121 /*
    122  * physical memory size;
    123  */
    124 int physmem;
    125 
    126 /*
    127  * local variables
    128  */
    129 
    130 /*
    131  * these variables record the values returned by vm_page_bootstrap,
    132  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    133  * and pmap_startup here also uses them internally.
    134  */
    135 
    136 static vaddr_t      virtual_space_start;
    137 static vaddr_t      virtual_space_end;
    138 
    139 /*
    140  * we allocate an initial number of page colors in uvm_page_init(),
    141  * and remember them.  We may re-color pages as cache sizes are
    142  * discovered during the autoconfiguration phase.  But we can never
    143  * free the initial set of buckets, since they are allocated using
    144  * uvm_pageboot_alloc().
    145  */
    146 
    147 static bool have_recolored_pages /* = false */;
    148 
    149 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    150 
    151 #ifdef DEBUG
    152 vaddr_t uvm_zerocheckkva;
    153 #endif /* DEBUG */
    154 
    155 /*
    156  * local prototypes
    157  */
    158 
    159 static void uvm_pageinsert(struct vm_page *);
    160 static void uvm_pageremove(struct vm_page *);
    161 
    162 /*
    163  * per-object tree of pages
    164  */
    165 
    166 static signed int
    167 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    168 {
    169 	const struct vm_page *pg1 = (const void *)n1;
    170 	const struct vm_page *pg2 = (const void *)n2;
    171 	const voff_t a = pg1->offset;
    172 	const voff_t b = pg2->offset;
    173 
    174 	if (a < b)
    175 		return 1;
    176 	if (a > b)
    177 		return -1;
    178 	return 0;
    179 }
    180 
    181 static signed int
    182 uvm_page_compare_key(const struct rb_node *n, const void *key)
    183 {
    184 	const struct vm_page *pg = (const void *)n;
    185 	const voff_t a = pg->offset;
    186 	const voff_t b = *(const voff_t *)key;
    187 
    188 	if (a < b)
    189 		return 1;
    190 	if (a > b)
    191 		return -1;
    192 	return 0;
    193 }
    194 
    195 const struct rb_tree_ops uvm_page_tree_ops = {
    196 	.rbto_compare_nodes = uvm_page_compare_nodes,
    197 	.rbto_compare_key = uvm_page_compare_key,
    198 };
    199 
    200 /*
    201  * inline functions
    202  */
    203 
    204 /*
    205  * uvm_pageinsert: insert a page in the object.
    206  *
    207  * => caller must lock object
    208  * => caller must lock page queues
    209  * => call should have already set pg's object and offset pointers
    210  *    and bumped the version counter
    211  */
    212 
    213 static inline void
    214 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    215     struct vm_page *where)
    216 {
    217 
    218 	KASSERT(uobj == pg->uobject);
    219 	KASSERT(mutex_owned(&uobj->vmobjlock));
    220 	KASSERT((pg->flags & PG_TABLED) == 0);
    221 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    222 	KASSERT(where == NULL || (where->uobject == uobj));
    223 
    224 	if (UVM_OBJ_IS_VNODE(uobj)) {
    225 		if (uobj->uo_npages == 0) {
    226 			struct vnode *vp = (struct vnode *)uobj;
    227 
    228 			vholdl(vp);
    229 		}
    230 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    231 			atomic_inc_uint(&uvmexp.execpages);
    232 		} else {
    233 			atomic_inc_uint(&uvmexp.filepages);
    234 		}
    235 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    236 		atomic_inc_uint(&uvmexp.anonpages);
    237 	}
    238 
    239 	if (where)
    240 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    241 	else
    242 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    243 	pg->flags |= PG_TABLED;
    244 	uobj->uo_npages++;
    245 }
    246 
    247 
    248 static inline void
    249 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    250 {
    251 	bool success;
    252 
    253 	KASSERT(uobj == pg->uobject);
    254 	success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    255 	KASSERT(success);
    256 }
    257 
    258 static inline void
    259 uvm_pageinsert(struct vm_page *pg)
    260 {
    261 	struct uvm_object *uobj = pg->uobject;
    262 
    263 	uvm_pageinsert_tree(uobj, pg);
    264 	uvm_pageinsert_list(uobj, pg, NULL);
    265 }
    266 
    267 /*
    268  * uvm_page_remove: remove page from object.
    269  *
    270  * => caller must lock object
    271  * => caller must lock page queues
    272  */
    273 
    274 static inline void
    275 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    276 {
    277 
    278 	KASSERT(uobj == pg->uobject);
    279 	KASSERT(mutex_owned(&uobj->vmobjlock));
    280 	KASSERT(pg->flags & PG_TABLED);
    281 
    282 	if (UVM_OBJ_IS_VNODE(uobj)) {
    283 		if (uobj->uo_npages == 1) {
    284 			struct vnode *vp = (struct vnode *)uobj;
    285 
    286 			holdrelel(vp);
    287 		}
    288 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    289 			atomic_dec_uint(&uvmexp.execpages);
    290 		} else {
    291 			atomic_dec_uint(&uvmexp.filepages);
    292 		}
    293 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    294 		atomic_dec_uint(&uvmexp.anonpages);
    295 	}
    296 
    297 	/* object should be locked */
    298 	uobj->uo_npages--;
    299 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    300 	pg->flags &= ~PG_TABLED;
    301 	pg->uobject = NULL;
    302 }
    303 
    304 static inline void
    305 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    306 {
    307 
    308 	KASSERT(uobj == pg->uobject);
    309 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    310 }
    311 
    312 static inline void
    313 uvm_pageremove(struct vm_page *pg)
    314 {
    315 	struct uvm_object *uobj = pg->uobject;
    316 
    317 	uvm_pageremove_tree(uobj, pg);
    318 	uvm_pageremove_list(uobj, pg);
    319 }
    320 
    321 static void
    322 uvm_page_init_buckets(struct pgfreelist *pgfl)
    323 {
    324 	int color, i;
    325 
    326 	for (color = 0; color < uvmexp.ncolors; color++) {
    327 		for (i = 0; i < PGFL_NQUEUES; i++) {
    328 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    329 		}
    330 	}
    331 }
    332 
    333 /*
    334  * uvm_page_init: init the page system.   called from uvm_init().
    335  *
    336  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    337  */
    338 
    339 void
    340 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    341 {
    342 	vsize_t freepages, pagecount, bucketcount, n;
    343 	struct pgflbucket *bucketarray, *cpuarray;
    344 	struct vm_page *pagearray;
    345 	int lcv;
    346 	u_int i;
    347 	paddr_t paddr;
    348 
    349 	KASSERT(ncpu <= 1);
    350 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    351 
    352 	/*
    353 	 * init the page queues and page queue locks, except the free
    354 	 * list; we allocate that later (with the initial vm_page
    355 	 * structures).
    356 	 */
    357 
    358 	curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
    359 	uvm_reclaim_init();
    360 	uvmpdpol_init();
    361 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    362 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    363 
    364 	/*
    365 	 * allocate vm_page structures.
    366 	 */
    367 
    368 	/*
    369 	 * sanity check:
    370 	 * before calling this function the MD code is expected to register
    371 	 * some free RAM with the uvm_page_physload() function.   our job
    372 	 * now is to allocate vm_page structures for this memory.
    373 	 */
    374 
    375 	if (vm_nphysseg == 0)
    376 		panic("uvm_page_bootstrap: no memory pre-allocated");
    377 
    378 	/*
    379 	 * first calculate the number of free pages...
    380 	 *
    381 	 * note that we use start/end rather than avail_start/avail_end.
    382 	 * this allows us to allocate extra vm_page structures in case we
    383 	 * want to return some memory to the pool after booting.
    384 	 */
    385 
    386 	freepages = 0;
    387 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    388 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    389 
    390 	/*
    391 	 * Let MD code initialize the number of colors, or default
    392 	 * to 1 color if MD code doesn't care.
    393 	 */
    394 	if (uvmexp.ncolors == 0)
    395 		uvmexp.ncolors = 1;
    396 	uvmexp.colormask = uvmexp.ncolors - 1;
    397 
    398 	/*
    399 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    400 	 * use.   for each page of memory we use we need a vm_page structure.
    401 	 * thus, the total number of pages we can use is the total size of
    402 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    403 	 * structure.   we add one to freepages as a fudge factor to avoid
    404 	 * truncation errors (since we can only allocate in terms of whole
    405 	 * pages).
    406 	 */
    407 
    408 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    409 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    410 	    (PAGE_SIZE + sizeof(struct vm_page));
    411 
    412 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    413 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    414 	    sizeof(struct vm_page)));
    415 	cpuarray = bucketarray + bucketcount;
    416 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    417 
    418 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    419 		uvm.page_free[lcv].pgfl_buckets =
    420 		    (bucketarray + (lcv * uvmexp.ncolors));
    421 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    422 		uvm.cpus[0].page_free[lcv].pgfl_buckets =
    423 		    (cpuarray + (lcv * uvmexp.ncolors));
    424 		uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
    425 	}
    426 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    427 
    428 	/*
    429 	 * init the vm_page structures and put them in the correct place.
    430 	 */
    431 
    432 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    433 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    434 
    435 		/* set up page array pointers */
    436 		vm_physmem[lcv].pgs = pagearray;
    437 		pagearray += n;
    438 		pagecount -= n;
    439 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    440 
    441 		/* init and free vm_pages (we've already zeroed them) */
    442 		paddr = ptoa(vm_physmem[lcv].start);
    443 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    444 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    445 #ifdef __HAVE_VM_PAGE_MD
    446 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    447 #endif
    448 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    449 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    450 				uvmexp.npages++;
    451 				/* add page to free pool */
    452 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    453 			}
    454 		}
    455 	}
    456 
    457 	/*
    458 	 * pass up the values of virtual_space_start and
    459 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    460 	 * layers of the VM.
    461 	 */
    462 
    463 	*kvm_startp = round_page(virtual_space_start);
    464 	*kvm_endp = trunc_page(virtual_space_end);
    465 #ifdef DEBUG
    466 	/*
    467 	 * steal kva for uvm_pagezerocheck().
    468 	 */
    469 	uvm_zerocheckkva = *kvm_startp;
    470 	*kvm_startp += PAGE_SIZE;
    471 #endif /* DEBUG */
    472 
    473 	/*
    474 	 * init various thresholds.
    475 	 */
    476 
    477 	uvmexp.reserve_pagedaemon = 1;
    478 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    479 
    480 	/*
    481 	 * determine if we should zero pages in the idle loop.
    482 	 */
    483 
    484 	uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
    485 
    486 	/*
    487 	 * done!
    488 	 */
    489 
    490 	uvm.page_init_done = true;
    491 }
    492 
    493 /*
    494  * uvm_setpagesize: set the page size
    495  *
    496  * => sets page_shift and page_mask from uvmexp.pagesize.
    497  */
    498 
    499 void
    500 uvm_setpagesize(void)
    501 {
    502 
    503 	/*
    504 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    505 	 * to be a constant (indicated by being a non-zero value).
    506 	 */
    507 	if (uvmexp.pagesize == 0) {
    508 		if (PAGE_SIZE == 0)
    509 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    510 		uvmexp.pagesize = PAGE_SIZE;
    511 	}
    512 	uvmexp.pagemask = uvmexp.pagesize - 1;
    513 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    514 		panic("uvm_setpagesize: page size not a power of two");
    515 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    516 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    517 			break;
    518 }
    519 
    520 /*
    521  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    522  */
    523 
    524 vaddr_t
    525 uvm_pageboot_alloc(vsize_t size)
    526 {
    527 	static bool initialized = false;
    528 	vaddr_t addr;
    529 #if !defined(PMAP_STEAL_MEMORY)
    530 	vaddr_t vaddr;
    531 	paddr_t paddr;
    532 #endif
    533 
    534 	/*
    535 	 * on first call to this function, initialize ourselves.
    536 	 */
    537 	if (initialized == false) {
    538 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    539 
    540 		/* round it the way we like it */
    541 		virtual_space_start = round_page(virtual_space_start);
    542 		virtual_space_end = trunc_page(virtual_space_end);
    543 
    544 		initialized = true;
    545 	}
    546 
    547 	/* round to page size */
    548 	size = round_page(size);
    549 
    550 #if defined(PMAP_STEAL_MEMORY)
    551 
    552 	/*
    553 	 * defer bootstrap allocation to MD code (it may want to allocate
    554 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    555 	 * virtual_space_start/virtual_space_end if necessary.
    556 	 */
    557 
    558 	addr = pmap_steal_memory(size, &virtual_space_start,
    559 	    &virtual_space_end);
    560 
    561 	return(addr);
    562 
    563 #else /* !PMAP_STEAL_MEMORY */
    564 
    565 	/*
    566 	 * allocate virtual memory for this request
    567 	 */
    568 	if (virtual_space_start == virtual_space_end ||
    569 	    (virtual_space_end - virtual_space_start) < size)
    570 		panic("uvm_pageboot_alloc: out of virtual space");
    571 
    572 	addr = virtual_space_start;
    573 
    574 #ifdef PMAP_GROWKERNEL
    575 	/*
    576 	 * If the kernel pmap can't map the requested space,
    577 	 * then allocate more resources for it.
    578 	 */
    579 	if (uvm_maxkaddr < (addr + size)) {
    580 		uvm_maxkaddr = pmap_growkernel(addr + size);
    581 		if (uvm_maxkaddr < (addr + size))
    582 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    583 	}
    584 #endif
    585 
    586 	virtual_space_start += size;
    587 
    588 	/*
    589 	 * allocate and mapin physical pages to back new virtual pages
    590 	 */
    591 
    592 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    593 	    vaddr += PAGE_SIZE) {
    594 
    595 		if (!uvm_page_physget(&paddr))
    596 			panic("uvm_pageboot_alloc: out of memory");
    597 
    598 		/*
    599 		 * Note this memory is no longer managed, so using
    600 		 * pmap_kenter is safe.
    601 		 */
    602 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    603 	}
    604 	pmap_update(pmap_kernel());
    605 	return(addr);
    606 #endif	/* PMAP_STEAL_MEMORY */
    607 }
    608 
    609 #if !defined(PMAP_STEAL_MEMORY)
    610 /*
    611  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    612  *
    613  * => attempt to allocate it off the end of a segment in which the "avail"
    614  *    values match the start/end values.   if we can't do that, then we
    615  *    will advance both values (making them equal, and removing some
    616  *    vm_page structures from the non-avail area).
    617  * => return false if out of memory.
    618  */
    619 
    620 /* subroutine: try to allocate from memory chunks on the specified freelist */
    621 static bool uvm_page_physget_freelist(paddr_t *, int);
    622 
    623 static bool
    624 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    625 {
    626 	int lcv, x;
    627 
    628 	/* pass 1: try allocating from a matching end */
    629 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    630 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    631 #else
    632 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    633 #endif
    634 	{
    635 
    636 		if (uvm.page_init_done == true)
    637 			panic("uvm_page_physget: called _after_ bootstrap");
    638 
    639 		if (vm_physmem[lcv].free_list != freelist)
    640 			continue;
    641 
    642 		/* try from front */
    643 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    644 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    645 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    646 			vm_physmem[lcv].avail_start++;
    647 			vm_physmem[lcv].start++;
    648 			/* nothing left?   nuke it */
    649 			if (vm_physmem[lcv].avail_start ==
    650 			    vm_physmem[lcv].end) {
    651 				if (vm_nphysseg == 1)
    652 				    panic("uvm_page_physget: out of memory!");
    653 				vm_nphysseg--;
    654 				for (x = lcv ; x < vm_nphysseg ; x++)
    655 					/* structure copy */
    656 					vm_physmem[x] = vm_physmem[x+1];
    657 			}
    658 			return (true);
    659 		}
    660 
    661 		/* try from rear */
    662 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    663 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    664 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    665 			vm_physmem[lcv].avail_end--;
    666 			vm_physmem[lcv].end--;
    667 			/* nothing left?   nuke it */
    668 			if (vm_physmem[lcv].avail_end ==
    669 			    vm_physmem[lcv].start) {
    670 				if (vm_nphysseg == 1)
    671 				    panic("uvm_page_physget: out of memory!");
    672 				vm_nphysseg--;
    673 				for (x = lcv ; x < vm_nphysseg ; x++)
    674 					/* structure copy */
    675 					vm_physmem[x] = vm_physmem[x+1];
    676 			}
    677 			return (true);
    678 		}
    679 	}
    680 
    681 	/* pass2: forget about matching ends, just allocate something */
    682 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    683 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    684 #else
    685 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    686 #endif
    687 	{
    688 
    689 		/* any room in this bank? */
    690 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    691 			continue;  /* nope */
    692 
    693 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    694 		vm_physmem[lcv].avail_start++;
    695 		/* truncate! */
    696 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    697 
    698 		/* nothing left?   nuke it */
    699 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    700 			if (vm_nphysseg == 1)
    701 				panic("uvm_page_physget: out of memory!");
    702 			vm_nphysseg--;
    703 			for (x = lcv ; x < vm_nphysseg ; x++)
    704 				/* structure copy */
    705 				vm_physmem[x] = vm_physmem[x+1];
    706 		}
    707 		return (true);
    708 	}
    709 
    710 	return (false);        /* whoops! */
    711 }
    712 
    713 bool
    714 uvm_page_physget(paddr_t *paddrp)
    715 {
    716 	int i;
    717 
    718 	/* try in the order of freelist preference */
    719 	for (i = 0; i < VM_NFREELIST; i++)
    720 		if (uvm_page_physget_freelist(paddrp, i) == true)
    721 			return (true);
    722 	return (false);
    723 }
    724 #endif /* PMAP_STEAL_MEMORY */
    725 
    726 /*
    727  * uvm_page_physload: load physical memory into VM system
    728  *
    729  * => all args are PFs
    730  * => all pages in start/end get vm_page structures
    731  * => areas marked by avail_start/avail_end get added to the free page pool
    732  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    733  */
    734 
    735 void
    736 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    737     paddr_t avail_end, int free_list)
    738 {
    739 	int preload, lcv;
    740 	psize_t npages;
    741 	struct vm_page *pgs;
    742 	struct vm_physseg *ps;
    743 
    744 	if (uvmexp.pagesize == 0)
    745 		panic("uvm_page_physload: page size not set!");
    746 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    747 		panic("uvm_page_physload: bad free list %d", free_list);
    748 	if (start >= end)
    749 		panic("uvm_page_physload: start >= end");
    750 
    751 	/*
    752 	 * do we have room?
    753 	 */
    754 
    755 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    756 		printf("uvm_page_physload: unable to load physical memory "
    757 		    "segment\n");
    758 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    759 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    760 		printf("\tincrease VM_PHYSSEG_MAX\n");
    761 		return;
    762 	}
    763 
    764 	/*
    765 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    766 	 * called yet, so malloc is not available).
    767 	 */
    768 
    769 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    770 		if (vm_physmem[lcv].pgs)
    771 			break;
    772 	}
    773 	preload = (lcv == vm_nphysseg);
    774 
    775 	/*
    776 	 * if VM is already running, attempt to malloc() vm_page structures
    777 	 */
    778 
    779 	if (!preload) {
    780 #if defined(VM_PHYSSEG_NOADD)
    781 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    782 #else
    783 		/* XXXCDC: need some sort of lockout for this case */
    784 		paddr_t paddr;
    785 		npages = end - start;  /* # of pages */
    786 		pgs = malloc(sizeof(struct vm_page) * npages,
    787 		    M_VMPAGE, M_NOWAIT);
    788 		if (pgs == NULL) {
    789 			printf("uvm_page_physload: can not malloc vm_page "
    790 			    "structs for segment\n");
    791 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    792 			return;
    793 		}
    794 		/* zero data, init phys_addr and free_list, and free pages */
    795 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    796 		for (lcv = 0, paddr = ptoa(start) ;
    797 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    798 			pgs[lcv].phys_addr = paddr;
    799 			pgs[lcv].free_list = free_list;
    800 			if (atop(paddr) >= avail_start &&
    801 			    atop(paddr) <= avail_end)
    802 				uvm_pagefree(&pgs[lcv]);
    803 		}
    804 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    805 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    806 #endif
    807 	} else {
    808 		pgs = NULL;
    809 		npages = 0;
    810 	}
    811 
    812 	/*
    813 	 * now insert us in the proper place in vm_physmem[]
    814 	 */
    815 
    816 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    817 	/* random: put it at the end (easy!) */
    818 	ps = &vm_physmem[vm_nphysseg];
    819 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    820 	{
    821 		int x;
    822 		/* sort by address for binary search */
    823 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    824 			if (start < vm_physmem[lcv].start)
    825 				break;
    826 		ps = &vm_physmem[lcv];
    827 		/* move back other entries, if necessary ... */
    828 		for (x = vm_nphysseg ; x > lcv ; x--)
    829 			/* structure copy */
    830 			vm_physmem[x] = vm_physmem[x - 1];
    831 	}
    832 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    833 	{
    834 		int x;
    835 		/* sort by largest segment first */
    836 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    837 			if ((end - start) >
    838 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    839 				break;
    840 		ps = &vm_physmem[lcv];
    841 		/* move back other entries, if necessary ... */
    842 		for (x = vm_nphysseg ; x > lcv ; x--)
    843 			/* structure copy */
    844 			vm_physmem[x] = vm_physmem[x - 1];
    845 	}
    846 #else
    847 	panic("uvm_page_physload: unknown physseg strategy selected!");
    848 #endif
    849 
    850 	ps->start = start;
    851 	ps->end = end;
    852 	ps->avail_start = avail_start;
    853 	ps->avail_end = avail_end;
    854 	if (preload) {
    855 		ps->pgs = NULL;
    856 	} else {
    857 		ps->pgs = pgs;
    858 		ps->lastpg = pgs + npages - 1;
    859 	}
    860 	ps->free_list = free_list;
    861 	vm_nphysseg++;
    862 
    863 	if (!preload) {
    864 		uvmpdpol_reinit();
    865 	}
    866 }
    867 
    868 /*
    869  * uvm_page_recolor: Recolor the pages if the new bucket count is
    870  * larger than the old one.
    871  */
    872 
    873 void
    874 uvm_page_recolor(int newncolors)
    875 {
    876 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    877 	struct pgfreelist gpgfl, pgfl;
    878 	struct vm_page *pg;
    879 	vsize_t bucketcount;
    880 	int lcv, color, i, ocolors;
    881 	struct uvm_cpu *ucpu;
    882 
    883 	if (newncolors <= uvmexp.ncolors)
    884 		return;
    885 
    886 	if (uvm.page_init_done == false) {
    887 		uvmexp.ncolors = newncolors;
    888 		return;
    889 	}
    890 
    891 	bucketcount = newncolors * VM_NFREELIST;
    892 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    893 	    M_VMPAGE, M_NOWAIT);
    894 	cpuarray = bucketarray + bucketcount;
    895 	if (bucketarray == NULL) {
    896 		printf("WARNING: unable to allocate %ld page color buckets\n",
    897 		    (long) bucketcount);
    898 		return;
    899 	}
    900 
    901 	mutex_spin_enter(&uvm_fpageqlock);
    902 
    903 	/* Make sure we should still do this. */
    904 	if (newncolors <= uvmexp.ncolors) {
    905 		mutex_spin_exit(&uvm_fpageqlock);
    906 		free(bucketarray, M_VMPAGE);
    907 		return;
    908 	}
    909 
    910 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    911 	ocolors = uvmexp.ncolors;
    912 
    913 	uvmexp.ncolors = newncolors;
    914 	uvmexp.colormask = uvmexp.ncolors - 1;
    915 
    916 	ucpu = curcpu()->ci_data.cpu_uvm;
    917 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    918 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    919 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    920 		uvm_page_init_buckets(&gpgfl);
    921 		uvm_page_init_buckets(&pgfl);
    922 		for (color = 0; color < ocolors; color++) {
    923 			for (i = 0; i < PGFL_NQUEUES; i++) {
    924 				while ((pg = LIST_FIRST(&uvm.page_free[
    925 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    926 				    != NULL) {
    927 					LIST_REMOVE(pg, pageq.list); /* global */
    928 					LIST_REMOVE(pg, listq.list); /* cpu */
    929 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    930 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    931 					    i], pg, pageq.list);
    932 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    933 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    934 					    i], pg, listq.list);
    935 				}
    936 			}
    937 		}
    938 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    939 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    940 	}
    941 
    942 	if (have_recolored_pages) {
    943 		mutex_spin_exit(&uvm_fpageqlock);
    944 		free(oldbucketarray, M_VMPAGE);
    945 		return;
    946 	}
    947 
    948 	have_recolored_pages = true;
    949 	mutex_spin_exit(&uvm_fpageqlock);
    950 }
    951 
    952 /*
    953  * uvm_cpu_attach: initialize per-CPU data structures.
    954  */
    955 
    956 void
    957 uvm_cpu_attach(struct cpu_info *ci)
    958 {
    959 	struct pgflbucket *bucketarray;
    960 	struct pgfreelist pgfl;
    961 	struct uvm_cpu *ucpu;
    962 	vsize_t bucketcount;
    963 	int lcv;
    964 
    965 	if (CPU_IS_PRIMARY(ci)) {
    966 		/* Already done in uvm_page_init(). */
    967 		return;
    968 	}
    969 
    970 	/* Add more reserve pages for this CPU. */
    971 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    972 
    973 	/* Configure this CPU's free lists. */
    974 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    975 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    976 	    M_VMPAGE, M_WAITOK);
    977 	ucpu = &uvm.cpus[cpu_index(ci)];
    978 	ci->ci_data.cpu_uvm = ucpu;
    979 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    980 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    981 		uvm_page_init_buckets(&pgfl);
    982 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    983 	}
    984 }
    985 
    986 /*
    987  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    988  */
    989 
    990 static struct vm_page *
    991 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    992     int *trycolorp)
    993 {
    994 	struct pgflist *freeq;
    995 	struct vm_page *pg;
    996 	int color, trycolor = *trycolorp;
    997 	struct pgfreelist *gpgfl, *pgfl;
    998 
    999 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1000 
   1001 	color = trycolor;
   1002 	pgfl = &ucpu->page_free[flist];
   1003 	gpgfl = &uvm.page_free[flist];
   1004 	do {
   1005 		/* cpu, try1 */
   1006 		if ((pg = LIST_FIRST((freeq =
   1007 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1008 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1009 		    	uvmexp.cpuhit++;
   1010 			goto gotit;
   1011 		}
   1012 		/* global, try1 */
   1013 		if ((pg = LIST_FIRST((freeq =
   1014 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1015 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1016 		    	uvmexp.cpumiss++;
   1017 			goto gotit;
   1018 		}
   1019 		/* cpu, try2 */
   1020 		if ((pg = LIST_FIRST((freeq =
   1021 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1022 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1023 		    	uvmexp.cpuhit++;
   1024 			goto gotit;
   1025 		}
   1026 		/* global, try2 */
   1027 		if ((pg = LIST_FIRST((freeq =
   1028 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1029 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1030 		    	uvmexp.cpumiss++;
   1031 			goto gotit;
   1032 		}
   1033 		color = (color + 1) & uvmexp.colormask;
   1034 	} while (color != trycolor);
   1035 
   1036 	return (NULL);
   1037 
   1038  gotit:
   1039 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1040 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1041 	uvmexp.free--;
   1042 
   1043 	/* update zero'd page count */
   1044 	if (pg->flags & PG_ZERO)
   1045 		uvmexp.zeropages--;
   1046 
   1047 	if (color == trycolor)
   1048 		uvmexp.colorhit++;
   1049 	else {
   1050 		uvmexp.colormiss++;
   1051 		*trycolorp = color;
   1052 	}
   1053 
   1054 	return (pg);
   1055 }
   1056 
   1057 /*
   1058  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1059  *
   1060  * => return null if no pages free
   1061  * => wake up pagedaemon if number of free pages drops below low water mark
   1062  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1063  * => if anon != NULL, anon must be locked (to put in anon)
   1064  * => only one of obj or anon can be non-null
   1065  * => caller must activate/deactivate page if it is not wired.
   1066  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1067  * => policy decision: it is more important to pull a page off of the
   1068  *	appropriate priority free list than it is to get a zero'd or
   1069  *	unknown contents page.  This is because we live with the
   1070  *	consequences of a bad free list decision for the entire
   1071  *	lifetime of the page, e.g. if the page comes from memory that
   1072  *	is slower to access.
   1073  */
   1074 
   1075 struct vm_page *
   1076 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1077     int flags, int strat, int free_list)
   1078 {
   1079 	int lcv, try1, try2, zeroit = 0, color;
   1080 	struct uvm_cpu *ucpu;
   1081 	struct vm_page *pg;
   1082 	lwp_t *l;
   1083 
   1084 	KASSERT(obj == NULL || anon == NULL);
   1085 	KASSERT(anon == NULL || off == 0);
   1086 	KASSERT(off == trunc_page(off));
   1087 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1088 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1089 
   1090 	mutex_spin_enter(&uvm_fpageqlock);
   1091 
   1092 	/*
   1093 	 * This implements a global round-robin page coloring
   1094 	 * algorithm.
   1095 	 *
   1096 	 * XXXJRT: What about virtually-indexed caches?
   1097 	 */
   1098 
   1099 	ucpu = curcpu()->ci_data.cpu_uvm;
   1100 	color = ucpu->page_free_nextcolor;
   1101 
   1102 	/*
   1103 	 * check to see if we need to generate some free pages waking
   1104 	 * the pagedaemon.
   1105 	 */
   1106 
   1107 	uvm_kick_pdaemon();
   1108 
   1109 	/*
   1110 	 * fail if any of these conditions is true:
   1111 	 * [1]  there really are no free pages, or
   1112 	 * [2]  only kernel "reserved" pages remain and
   1113 	 *        reserved pages have not been requested.
   1114 	 * [3]  only pagedaemon "reserved" pages remain and
   1115 	 *        the requestor isn't the pagedaemon.
   1116 	 * we make kernel reserve pages available if called by a
   1117 	 * kernel thread or a realtime thread.
   1118 	 */
   1119 	l = curlwp;
   1120 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1121 		flags |= UVM_PGA_USERESERVE;
   1122 	}
   1123 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1124 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1125 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1126 	     curlwp != uvm.pagedaemon_lwp))
   1127 		goto fail;
   1128 
   1129 #if PGFL_NQUEUES != 2
   1130 #error uvm_pagealloc_strat needs to be updated
   1131 #endif
   1132 
   1133 	/*
   1134 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1135 	 * we try the UNKNOWN queue first.
   1136 	 */
   1137 	if (flags & UVM_PGA_ZERO) {
   1138 		try1 = PGFL_ZEROS;
   1139 		try2 = PGFL_UNKNOWN;
   1140 	} else {
   1141 		try1 = PGFL_UNKNOWN;
   1142 		try2 = PGFL_ZEROS;
   1143 	}
   1144 
   1145  again:
   1146 	switch (strat) {
   1147 	case UVM_PGA_STRAT_NORMAL:
   1148 		/* Check freelists: descending priority (ascending id) order */
   1149 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1150 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1151 			    try1, try2, &color);
   1152 			if (pg != NULL)
   1153 				goto gotit;
   1154 		}
   1155 
   1156 		/* No pages free! */
   1157 		goto fail;
   1158 
   1159 	case UVM_PGA_STRAT_ONLY:
   1160 	case UVM_PGA_STRAT_FALLBACK:
   1161 		/* Attempt to allocate from the specified free list. */
   1162 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1163 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1164 		    try1, try2, &color);
   1165 		if (pg != NULL)
   1166 			goto gotit;
   1167 
   1168 		/* Fall back, if possible. */
   1169 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1170 			strat = UVM_PGA_STRAT_NORMAL;
   1171 			goto again;
   1172 		}
   1173 
   1174 		/* No pages free! */
   1175 		goto fail;
   1176 
   1177 	default:
   1178 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1179 		/* NOTREACHED */
   1180 	}
   1181 
   1182  gotit:
   1183 	/*
   1184 	 * We now know which color we actually allocated from; set
   1185 	 * the next color accordingly.
   1186 	 */
   1187 
   1188 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1189 
   1190 	/*
   1191 	 * update allocation statistics and remember if we have to
   1192 	 * zero the page
   1193 	 */
   1194 
   1195 	if (flags & UVM_PGA_ZERO) {
   1196 		if (pg->flags & PG_ZERO) {
   1197 			uvmexp.pga_zerohit++;
   1198 			zeroit = 0;
   1199 		} else {
   1200 			uvmexp.pga_zeromiss++;
   1201 			zeroit = 1;
   1202 		}
   1203 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1204 			ucpu->page_idle_zero = vm_page_zero_enable;
   1205 		}
   1206 	}
   1207 	KASSERT(pg->pqflags == PQ_FREE);
   1208 
   1209 	pg->offset = off;
   1210 	pg->uobject = obj;
   1211 	pg->uanon = anon;
   1212 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1213 	if (anon) {
   1214 		anon->an_page = pg;
   1215 		pg->pqflags = PQ_ANON;
   1216 		atomic_inc_uint(&uvmexp.anonpages);
   1217 	} else {
   1218 		if (obj) {
   1219 			uvm_pageinsert(pg);
   1220 		}
   1221 		pg->pqflags = 0;
   1222 	}
   1223 	mutex_spin_exit(&uvm_fpageqlock);
   1224 
   1225 #if defined(UVM_PAGE_TRKOWN)
   1226 	pg->owner_tag = NULL;
   1227 #endif
   1228 	UVM_PAGE_OWN(pg, "new alloc");
   1229 
   1230 	if (flags & UVM_PGA_ZERO) {
   1231 		/*
   1232 		 * A zero'd page is not clean.  If we got a page not already
   1233 		 * zero'd, then we have to zero it ourselves.
   1234 		 */
   1235 		pg->flags &= ~PG_CLEAN;
   1236 		if (zeroit)
   1237 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1238 	}
   1239 
   1240 	return(pg);
   1241 
   1242  fail:
   1243 	mutex_spin_exit(&uvm_fpageqlock);
   1244 	return (NULL);
   1245 }
   1246 
   1247 /*
   1248  * uvm_pagereplace: replace a page with another
   1249  *
   1250  * => object must be locked
   1251  */
   1252 
   1253 void
   1254 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1255 {
   1256 	struct uvm_object *uobj = oldpg->uobject;
   1257 
   1258 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1259 	KASSERT(uobj != NULL);
   1260 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1261 	KASSERT(newpg->uobject == NULL);
   1262 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1263 
   1264 	newpg->uobject = uobj;
   1265 	newpg->offset = oldpg->offset;
   1266 
   1267 	uvm_pageremove_tree(uobj, oldpg);
   1268 	uvm_pageinsert_tree(uobj, newpg);
   1269 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1270 	uvm_pageremove_list(uobj, oldpg);
   1271 }
   1272 
   1273 /*
   1274  * uvm_pagerealloc: reallocate a page from one object to another
   1275  *
   1276  * => both objects must be locked
   1277  */
   1278 
   1279 void
   1280 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1281 {
   1282 	/*
   1283 	 * remove it from the old object
   1284 	 */
   1285 
   1286 	if (pg->uobject) {
   1287 		uvm_pageremove(pg);
   1288 	}
   1289 
   1290 	/*
   1291 	 * put it in the new object
   1292 	 */
   1293 
   1294 	if (newobj) {
   1295 		pg->uobject = newobj;
   1296 		pg->offset = newoff;
   1297 		uvm_pageinsert(pg);
   1298 	}
   1299 }
   1300 
   1301 #ifdef DEBUG
   1302 /*
   1303  * check if page is zero-filled
   1304  *
   1305  *  - called with free page queue lock held.
   1306  */
   1307 void
   1308 uvm_pagezerocheck(struct vm_page *pg)
   1309 {
   1310 	int *p, *ep;
   1311 
   1312 	KASSERT(uvm_zerocheckkva != 0);
   1313 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1314 
   1315 	/*
   1316 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1317 	 * uvm page allocator.
   1318 	 *
   1319 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1320 	 */
   1321 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1322 	p = (int *)uvm_zerocheckkva;
   1323 	ep = (int *)((char *)p + PAGE_SIZE);
   1324 	pmap_update(pmap_kernel());
   1325 	while (p < ep) {
   1326 		if (*p != 0)
   1327 			panic("PG_ZERO page isn't zero-filled");
   1328 		p++;
   1329 	}
   1330 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1331 	/*
   1332 	 * pmap_update() is not necessary here because no one except us
   1333 	 * uses this VA.
   1334 	 */
   1335 }
   1336 #endif /* DEBUG */
   1337 
   1338 /*
   1339  * uvm_pagefree: free page
   1340  *
   1341  * => erase page's identity (i.e. remove from object)
   1342  * => put page on free list
   1343  * => caller must lock owning object (either anon or uvm_object)
   1344  * => caller must lock page queues
   1345  * => assumes all valid mappings of pg are gone
   1346  */
   1347 
   1348 void
   1349 uvm_pagefree(struct vm_page *pg)
   1350 {
   1351 	struct pgflist *pgfl;
   1352 	struct uvm_cpu *ucpu;
   1353 	int index, color, queue;
   1354 	bool iszero;
   1355 
   1356 #ifdef DEBUG
   1357 	if (pg->uobject == (void *)0xdeadbeef &&
   1358 	    pg->uanon == (void *)0xdeadbeef) {
   1359 		panic("uvm_pagefree: freeing free page %p", pg);
   1360 	}
   1361 #endif /* DEBUG */
   1362 
   1363 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1364 	KASSERT(!(pg->pqflags & PQ_FREE));
   1365 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1366 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1367 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1368 		mutex_owned(&pg->uanon->an_lock));
   1369 
   1370 	/*
   1371 	 * if the page is loaned, resolve the loan instead of freeing.
   1372 	 */
   1373 
   1374 	if (pg->loan_count) {
   1375 		KASSERT(pg->wire_count == 0);
   1376 
   1377 		/*
   1378 		 * if the page is owned by an anon then we just want to
   1379 		 * drop anon ownership.  the kernel will free the page when
   1380 		 * it is done with it.  if the page is owned by an object,
   1381 		 * remove it from the object and mark it dirty for the benefit
   1382 		 * of possible anon owners.
   1383 		 *
   1384 		 * regardless of previous ownership, wakeup any waiters,
   1385 		 * unbusy the page, and we're done.
   1386 		 */
   1387 
   1388 		if (pg->uobject != NULL) {
   1389 			uvm_pageremove(pg);
   1390 			pg->flags &= ~PG_CLEAN;
   1391 		} else if (pg->uanon != NULL) {
   1392 			if ((pg->pqflags & PQ_ANON) == 0) {
   1393 				pg->loan_count--;
   1394 			} else {
   1395 				pg->pqflags &= ~PQ_ANON;
   1396 				atomic_dec_uint(&uvmexp.anonpages);
   1397 			}
   1398 			pg->uanon->an_page = NULL;
   1399 			pg->uanon = NULL;
   1400 		}
   1401 		if (pg->flags & PG_WANTED) {
   1402 			wakeup(pg);
   1403 		}
   1404 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1405 #ifdef UVM_PAGE_TRKOWN
   1406 		pg->owner_tag = NULL;
   1407 #endif
   1408 		if (pg->loan_count) {
   1409 			KASSERT(pg->uobject == NULL);
   1410 			if (pg->uanon == NULL) {
   1411 				uvm_pagedequeue(pg);
   1412 			}
   1413 			return;
   1414 		}
   1415 	}
   1416 
   1417 	/*
   1418 	 * remove page from its object or anon.
   1419 	 */
   1420 
   1421 	if (pg->uobject != NULL) {
   1422 		uvm_pageremove(pg);
   1423 	} else if (pg->uanon != NULL) {
   1424 		pg->uanon->an_page = NULL;
   1425 		atomic_dec_uint(&uvmexp.anonpages);
   1426 	}
   1427 
   1428 	/*
   1429 	 * now remove the page from the queues.
   1430 	 */
   1431 
   1432 	uvm_pagedequeue(pg);
   1433 
   1434 	/*
   1435 	 * if the page was wired, unwire it now.
   1436 	 */
   1437 
   1438 	if (pg->wire_count) {
   1439 		pg->wire_count = 0;
   1440 		uvmexp.wired--;
   1441 	}
   1442 
   1443 	/*
   1444 	 * and put on free queue
   1445 	 */
   1446 
   1447 	iszero = (pg->flags & PG_ZERO);
   1448 	index = uvm_page_lookup_freelist(pg);
   1449 	color = VM_PGCOLOR_BUCKET(pg);
   1450 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1451 
   1452 #ifdef DEBUG
   1453 	pg->uobject = (void *)0xdeadbeef;
   1454 	pg->uanon = (void *)0xdeadbeef;
   1455 #endif
   1456 
   1457 	mutex_spin_enter(&uvm_fpageqlock);
   1458 	pg->pqflags = PQ_FREE;
   1459 
   1460 #ifdef DEBUG
   1461 	if (iszero)
   1462 		uvm_pagezerocheck(pg);
   1463 #endif /* DEBUG */
   1464 
   1465 
   1466 	/* global list */
   1467 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1468 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1469 	uvmexp.free++;
   1470 	if (iszero) {
   1471 		uvmexp.zeropages++;
   1472 	}
   1473 
   1474 	/* per-cpu list */
   1475 	ucpu = curcpu()->ci_data.cpu_uvm;
   1476 	pg->offset = (uintptr_t)ucpu;
   1477 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1478 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1479 	ucpu->pages[queue]++;
   1480 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1481 		ucpu->page_idle_zero = vm_page_zero_enable;
   1482 	}
   1483 
   1484 	mutex_spin_exit(&uvm_fpageqlock);
   1485 }
   1486 
   1487 /*
   1488  * uvm_page_unbusy: unbusy an array of pages.
   1489  *
   1490  * => pages must either all belong to the same object, or all belong to anons.
   1491  * => if pages are object-owned, object must be locked.
   1492  * => if pages are anon-owned, anons must be locked.
   1493  * => caller must lock page queues if pages may be released.
   1494  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1495  */
   1496 
   1497 void
   1498 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1499 {
   1500 	struct vm_page *pg;
   1501 	int i;
   1502 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1503 
   1504 	for (i = 0; i < npgs; i++) {
   1505 		pg = pgs[i];
   1506 		if (pg == NULL || pg == PGO_DONTCARE) {
   1507 			continue;
   1508 		}
   1509 
   1510 		KASSERT(pg->uobject == NULL ||
   1511 		    mutex_owned(&pg->uobject->vmobjlock));
   1512 		KASSERT(pg->uobject != NULL ||
   1513 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1514 
   1515 		KASSERT(pg->flags & PG_BUSY);
   1516 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1517 		if (pg->flags & PG_WANTED) {
   1518 			wakeup(pg);
   1519 		}
   1520 		if (pg->flags & PG_RELEASED) {
   1521 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1522 			KASSERT(pg->uobject != NULL ||
   1523 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1524 			pg->flags &= ~PG_RELEASED;
   1525 			uvm_pagefree(pg);
   1526 		} else {
   1527 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1528 			KASSERT((pg->flags & PG_FAKE) == 0);
   1529 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1530 			UVM_PAGE_OWN(pg, NULL);
   1531 		}
   1532 	}
   1533 }
   1534 
   1535 #if defined(UVM_PAGE_TRKOWN)
   1536 /*
   1537  * uvm_page_own: set or release page ownership
   1538  *
   1539  * => this is a debugging function that keeps track of who sets PG_BUSY
   1540  *	and where they do it.   it can be used to track down problems
   1541  *	such a process setting "PG_BUSY" and never releasing it.
   1542  * => page's object [if any] must be locked
   1543  * => if "tag" is NULL then we are releasing page ownership
   1544  */
   1545 void
   1546 uvm_page_own(struct vm_page *pg, const char *tag)
   1547 {
   1548 	struct uvm_object *uobj;
   1549 	struct vm_anon *anon;
   1550 
   1551 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1552 
   1553 	uobj = pg->uobject;
   1554 	anon = pg->uanon;
   1555 	if (uobj != NULL) {
   1556 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1557 	} else if (anon != NULL) {
   1558 		KASSERT(mutex_owned(&anon->an_lock));
   1559 	}
   1560 
   1561 	KASSERT((pg->flags & PG_WANTED) == 0);
   1562 
   1563 	/* gain ownership? */
   1564 	if (tag) {
   1565 		KASSERT((pg->flags & PG_BUSY) != 0);
   1566 		if (pg->owner_tag) {
   1567 			printf("uvm_page_own: page %p already owned "
   1568 			    "by proc %d [%s]\n", pg,
   1569 			    pg->owner, pg->owner_tag);
   1570 			panic("uvm_page_own");
   1571 		}
   1572 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1573 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1574 		pg->owner_tag = tag;
   1575 		return;
   1576 	}
   1577 
   1578 	/* drop ownership */
   1579 	KASSERT((pg->flags & PG_BUSY) == 0);
   1580 	if (pg->owner_tag == NULL) {
   1581 		printf("uvm_page_own: dropping ownership of an non-owned "
   1582 		    "page (%p)\n", pg);
   1583 		panic("uvm_page_own");
   1584 	}
   1585 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1586 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1587 		    pg->wire_count > 0);
   1588 	} else {
   1589 		KASSERT(pg->wire_count == 0);
   1590 	}
   1591 	pg->owner_tag = NULL;
   1592 }
   1593 #endif
   1594 
   1595 /*
   1596  * uvm_pageidlezero: zero free pages while the system is idle.
   1597  *
   1598  * => try to complete one color bucket at a time, to reduce our impact
   1599  *	on the CPU cache.
   1600  * => we loop until we either reach the target or there is a lwp ready
   1601  *      to run, or MD code detects a reason to break early.
   1602  */
   1603 void
   1604 uvm_pageidlezero(void)
   1605 {
   1606 	struct vm_page *pg;
   1607 	struct pgfreelist *pgfl, *gpgfl;
   1608 	struct uvm_cpu *ucpu;
   1609 	int free_list, firstbucket, nextbucket;
   1610 
   1611 	ucpu = curcpu()->ci_data.cpu_uvm;
   1612 	if (!ucpu->page_idle_zero ||
   1613 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1614 	    	ucpu->page_idle_zero = false;
   1615 		return;
   1616 	}
   1617 	mutex_enter(&uvm_fpageqlock);
   1618 	firstbucket = ucpu->page_free_nextcolor;
   1619 	nextbucket = firstbucket;
   1620 	do {
   1621 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1622 			if (sched_curcpu_runnable_p()) {
   1623 				goto quit;
   1624 			}
   1625 			pgfl = &ucpu->page_free[free_list];
   1626 			gpgfl = &uvm.page_free[free_list];
   1627 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1628 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1629 				if (sched_curcpu_runnable_p()) {
   1630 					goto quit;
   1631 				}
   1632 				LIST_REMOVE(pg, pageq.list); /* global list */
   1633 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1634 				ucpu->pages[PGFL_UNKNOWN]--;
   1635 				uvmexp.free--;
   1636 				KASSERT(pg->pqflags == PQ_FREE);
   1637 				pg->pqflags = 0;
   1638 				mutex_spin_exit(&uvm_fpageqlock);
   1639 #ifdef PMAP_PAGEIDLEZERO
   1640 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1641 
   1642 					/*
   1643 					 * The machine-dependent code detected
   1644 					 * some reason for us to abort zeroing
   1645 					 * pages, probably because there is a
   1646 					 * process now ready to run.
   1647 					 */
   1648 
   1649 					mutex_spin_enter(&uvm_fpageqlock);
   1650 					pg->pqflags = PQ_FREE;
   1651 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1652 					    nextbucket].pgfl_queues[
   1653 					    PGFL_UNKNOWN], pg, pageq.list);
   1654 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1655 					    nextbucket].pgfl_queues[
   1656 					    PGFL_UNKNOWN], pg, listq.list);
   1657 					ucpu->pages[PGFL_UNKNOWN]++;
   1658 					uvmexp.free++;
   1659 					uvmexp.zeroaborts++;
   1660 					goto quit;
   1661 				}
   1662 #else
   1663 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1664 #endif /* PMAP_PAGEIDLEZERO */
   1665 				pg->flags |= PG_ZERO;
   1666 
   1667 				mutex_spin_enter(&uvm_fpageqlock);
   1668 				pg->pqflags = PQ_FREE;
   1669 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1670 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1671 				    pg, pageq.list);
   1672 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1673 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1674 				    pg, listq.list);
   1675 				ucpu->pages[PGFL_ZEROS]++;
   1676 				uvmexp.free++;
   1677 				uvmexp.zeropages++;
   1678 			}
   1679 		}
   1680 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1681 			break;
   1682 		}
   1683 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1684 	} while (nextbucket != firstbucket);
   1685 	ucpu->page_idle_zero = false;
   1686  quit:
   1687 	mutex_spin_exit(&uvm_fpageqlock);
   1688 }
   1689 
   1690 /*
   1691  * uvm_pagelookup: look up a page
   1692  *
   1693  * => caller should lock object to keep someone from pulling the page
   1694  *	out from under it
   1695  */
   1696 
   1697 struct vm_page *
   1698 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1699 {
   1700 	struct vm_page *pg;
   1701 
   1702 	KASSERT(mutex_owned(&obj->vmobjlock));
   1703 
   1704 	pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
   1705 
   1706 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1707 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1708 		(pg->flags & PG_BUSY) != 0);
   1709 	return(pg);
   1710 }
   1711 
   1712 /*
   1713  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1714  *
   1715  * => caller must lock page queues
   1716  */
   1717 
   1718 void
   1719 uvm_pagewire(struct vm_page *pg)
   1720 {
   1721 	KASSERT(mutex_owned(&uvm_pageqlock));
   1722 #if defined(READAHEAD_STATS)
   1723 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1724 		uvm_ra_hit.ev_count++;
   1725 		pg->pqflags &= ~PQ_READAHEAD;
   1726 	}
   1727 #endif /* defined(READAHEAD_STATS) */
   1728 	if (pg->wire_count == 0) {
   1729 		uvm_pagedequeue(pg);
   1730 		uvmexp.wired++;
   1731 	}
   1732 	pg->wire_count++;
   1733 }
   1734 
   1735 /*
   1736  * uvm_pageunwire: unwire the page.
   1737  *
   1738  * => activate if wire count goes to zero.
   1739  * => caller must lock page queues
   1740  */
   1741 
   1742 void
   1743 uvm_pageunwire(struct vm_page *pg)
   1744 {
   1745 	KASSERT(mutex_owned(&uvm_pageqlock));
   1746 	pg->wire_count--;
   1747 	if (pg->wire_count == 0) {
   1748 		uvm_pageactivate(pg);
   1749 		uvmexp.wired--;
   1750 	}
   1751 }
   1752 
   1753 /*
   1754  * uvm_pagedeactivate: deactivate page
   1755  *
   1756  * => caller must lock page queues
   1757  * => caller must check to make sure page is not wired
   1758  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1759  * => caller must clear the reference on the page before calling
   1760  */
   1761 
   1762 void
   1763 uvm_pagedeactivate(struct vm_page *pg)
   1764 {
   1765 
   1766 	KASSERT(mutex_owned(&uvm_pageqlock));
   1767 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1768 	uvmpdpol_pagedeactivate(pg);
   1769 }
   1770 
   1771 /*
   1772  * uvm_pageactivate: activate page
   1773  *
   1774  * => caller must lock page queues
   1775  */
   1776 
   1777 void
   1778 uvm_pageactivate(struct vm_page *pg)
   1779 {
   1780 
   1781 	KASSERT(mutex_owned(&uvm_pageqlock));
   1782 #if defined(READAHEAD_STATS)
   1783 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1784 		uvm_ra_hit.ev_count++;
   1785 		pg->pqflags &= ~PQ_READAHEAD;
   1786 	}
   1787 #endif /* defined(READAHEAD_STATS) */
   1788 	if (pg->wire_count != 0) {
   1789 		return;
   1790 	}
   1791 	uvmpdpol_pageactivate(pg);
   1792 }
   1793 
   1794 /*
   1795  * uvm_pagedequeue: remove a page from any paging queue
   1796  */
   1797 
   1798 void
   1799 uvm_pagedequeue(struct vm_page *pg)
   1800 {
   1801 
   1802 	if (uvmpdpol_pageisqueued_p(pg)) {
   1803 		KASSERT(mutex_owned(&uvm_pageqlock));
   1804 	}
   1805 
   1806 	uvmpdpol_pagedequeue(pg);
   1807 }
   1808 
   1809 /*
   1810  * uvm_pageenqueue: add a page to a paging queue without activating.
   1811  * used where a page is not really demanded (yet).  eg. read-ahead
   1812  */
   1813 
   1814 void
   1815 uvm_pageenqueue(struct vm_page *pg)
   1816 {
   1817 
   1818 	KASSERT(mutex_owned(&uvm_pageqlock));
   1819 	if (pg->wire_count != 0) {
   1820 		return;
   1821 	}
   1822 	uvmpdpol_pageenqueue(pg);
   1823 }
   1824 
   1825 /*
   1826  * uvm_pagezero: zero fill a page
   1827  *
   1828  * => if page is part of an object then the object should be locked
   1829  *	to protect pg->flags.
   1830  */
   1831 
   1832 void
   1833 uvm_pagezero(struct vm_page *pg)
   1834 {
   1835 	pg->flags &= ~PG_CLEAN;
   1836 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1837 }
   1838 
   1839 /*
   1840  * uvm_pagecopy: copy a page
   1841  *
   1842  * => if page is part of an object then the object should be locked
   1843  *	to protect pg->flags.
   1844  */
   1845 
   1846 void
   1847 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1848 {
   1849 
   1850 	dst->flags &= ~PG_CLEAN;
   1851 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1852 }
   1853 
   1854 /*
   1855  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1856  */
   1857 
   1858 bool
   1859 uvm_pageismanaged(paddr_t pa)
   1860 {
   1861 
   1862 	return (vm_physseg_find(atop(pa), NULL) != -1);
   1863 }
   1864 
   1865 /*
   1866  * uvm_page_lookup_freelist: look up the free list for the specified page
   1867  */
   1868 
   1869 int
   1870 uvm_page_lookup_freelist(struct vm_page *pg)
   1871 {
   1872 	int lcv;
   1873 
   1874 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1875 	KASSERT(lcv != -1);
   1876 	return (vm_physmem[lcv].free_list);
   1877 }
   1878 
   1879 #if defined(DDB) || defined(DEBUGPRINT)
   1880 
   1881 /*
   1882  * uvm_page_printit: actually print the page
   1883  */
   1884 
   1885 static const char page_flagbits[] = UVM_PGFLAGBITS;
   1886 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   1887 
   1888 void
   1889 uvm_page_printit(struct vm_page *pg, bool full,
   1890     void (*pr)(const char *, ...))
   1891 {
   1892 	struct vm_page *tpg;
   1893 	struct uvm_object *uobj;
   1894 	struct pgflist *pgl;
   1895 	char pgbuf[128];
   1896 	char pqbuf[128];
   1897 
   1898 	(*pr)("PAGE %p:\n", pg);
   1899 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1900 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   1901 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   1902 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1903 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1904 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1905 #if defined(UVM_PAGE_TRKOWN)
   1906 	if (pg->flags & PG_BUSY)
   1907 		(*pr)("  owning process = %d, tag=%s\n",
   1908 		    pg->owner, pg->owner_tag);
   1909 	else
   1910 		(*pr)("  page not busy, no owner\n");
   1911 #else
   1912 	(*pr)("  [page ownership tracking disabled]\n");
   1913 #endif
   1914 
   1915 	if (!full)
   1916 		return;
   1917 
   1918 	/* cross-verify object/anon */
   1919 	if ((pg->pqflags & PQ_FREE) == 0) {
   1920 		if (pg->pqflags & PQ_ANON) {
   1921 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1922 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1923 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1924 			else
   1925 				(*pr)("  anon backpointer is OK\n");
   1926 		} else {
   1927 			uobj = pg->uobject;
   1928 			if (uobj) {
   1929 				(*pr)("  checking object list\n");
   1930 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   1931 					if (tpg == pg) {
   1932 						break;
   1933 					}
   1934 				}
   1935 				if (tpg)
   1936 					(*pr)("  page found on object list\n");
   1937 				else
   1938 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1939 			}
   1940 		}
   1941 	}
   1942 
   1943 	/* cross-verify page queue */
   1944 	if (pg->pqflags & PQ_FREE) {
   1945 		int fl = uvm_page_lookup_freelist(pg);
   1946 		int color = VM_PGCOLOR_BUCKET(pg);
   1947 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1948 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1949 	} else {
   1950 		pgl = NULL;
   1951 	}
   1952 
   1953 	if (pgl) {
   1954 		(*pr)("  checking pageq list\n");
   1955 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1956 			if (tpg == pg) {
   1957 				break;
   1958 			}
   1959 		}
   1960 		if (tpg)
   1961 			(*pr)("  page found on pageq list\n");
   1962 		else
   1963 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1964 	}
   1965 }
   1966 
   1967 /*
   1968  * uvm_pages_printthem - print a summary of all managed pages
   1969  */
   1970 
   1971 void
   1972 uvm_page_printall(void (*pr)(const char *, ...))
   1973 {
   1974 	unsigned i;
   1975 	struct vm_page *pg;
   1976 
   1977 	(*pr)("%18s %4s %4s %18s %18s"
   1978 #ifdef UVM_PAGE_TRKOWN
   1979 	    " OWNER"
   1980 #endif
   1981 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1982 	for (i = 0; i < vm_nphysseg; i++) {
   1983 		for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
   1984 			(*pr)("%18p %04x %04x %18p %18p",
   1985 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1986 			    pg->uanon);
   1987 #ifdef UVM_PAGE_TRKOWN
   1988 			if (pg->flags & PG_BUSY)
   1989 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1990 #endif
   1991 			(*pr)("\n");
   1992 		}
   1993 	}
   1994 }
   1995 
   1996 #endif /* DDB || DEBUGPRINT */
   1997