uvm_page.c revision 1.155 1 /* $NetBSD: uvm_page.c,v 1.155 2010/04/25 15:54:14 ad Exp $ */
2
3 /*
4 * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 * Copyright (c) 1991, 1993, The Regents of the University of California.
32 *
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * The Mach Operating System project at Carnegie-Mellon University.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Charles D. Cranor,
49 * Washington University, the University of California, Berkeley and
50 * its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 *
70 *
71 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Permission to use, copy, modify and distribute this software and
75 * its documentation is hereby granted, provided that both the copyright
76 * notice and this permission notice appear in all copies of the
77 * software, derivative works or modified versions, and any portions
78 * thereof, and that both notices appear in supporting documentation.
79 *
80 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 *
84 * Carnegie Mellon requests users of this software to return to
85 *
86 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 * School of Computer Science
88 * Carnegie Mellon University
89 * Pittsburgh PA 15213-3890
90 *
91 * any improvements or extensions that they make and grant Carnegie the
92 * rights to redistribute these changes.
93 */
94
95 /*
96 * uvm_page.c: page ops.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.155 2010/04/25 15:54:14 ad Exp $");
101
102 #include "opt_ddb.h"
103 #include "opt_uvmhist.h"
104 #include "opt_readahead.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/malloc.h>
109 #include <sys/sched.h>
110 #include <sys/kernel.h>
111 #include <sys/vnode.h>
112 #include <sys/proc.h>
113 #include <sys/atomic.h>
114 #include <sys/cpu.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119
120 /*
121 * global vars... XXXCDC: move to uvm. structure.
122 */
123
124 /*
125 * physical memory config is stored in vm_physmem.
126 */
127
128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130
131 /*
132 * Some supported CPUs in a given architecture don't support all
133 * of the things necessary to do idle page zero'ing efficiently.
134 * We therefore provide a way to enable it from machdep code here.
135 */
136 bool vm_page_zero_enable = false;
137
138 /*
139 * number of pages per-CPU to reserve for the kernel.
140 */
141 int vm_page_reserve_kernel = 5;
142
143 /*
144 * physical memory size;
145 */
146 int physmem;
147
148 /*
149 * local variables
150 */
151
152 /*
153 * these variables record the values returned by vm_page_bootstrap,
154 * for debugging purposes. The implementation of uvm_pageboot_alloc
155 * and pmap_startup here also uses them internally.
156 */
157
158 static vaddr_t virtual_space_start;
159 static vaddr_t virtual_space_end;
160
161 /*
162 * we allocate an initial number of page colors in uvm_page_init(),
163 * and remember them. We may re-color pages as cache sizes are
164 * discovered during the autoconfiguration phase. But we can never
165 * free the initial set of buckets, since they are allocated using
166 * uvm_pageboot_alloc().
167 */
168
169 static bool have_recolored_pages /* = false */;
170
171 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
172
173 #ifdef DEBUG
174 vaddr_t uvm_zerocheckkva;
175 #endif /* DEBUG */
176
177 /*
178 * local prototypes
179 */
180
181 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
182 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
183
184 /*
185 * per-object tree of pages
186 */
187
188 static signed int
189 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
190 {
191 const struct vm_page *pg1 = (const void *)n1;
192 const struct vm_page *pg2 = (const void *)n2;
193 const voff_t a = pg1->offset;
194 const voff_t b = pg2->offset;
195
196 if (a < b)
197 return 1;
198 if (a > b)
199 return -1;
200 return 0;
201 }
202
203 static signed int
204 uvm_page_compare_key(const struct rb_node *n, const void *key)
205 {
206 const struct vm_page *pg = (const void *)n;
207 const voff_t a = pg->offset;
208 const voff_t b = *(const voff_t *)key;
209
210 if (a < b)
211 return 1;
212 if (a > b)
213 return -1;
214 return 0;
215 }
216
217 const struct rb_tree_ops uvm_page_tree_ops = {
218 .rbto_compare_nodes = uvm_page_compare_nodes,
219 .rbto_compare_key = uvm_page_compare_key,
220 };
221
222 /*
223 * inline functions
224 */
225
226 /*
227 * uvm_pageinsert: insert a page in the object.
228 *
229 * => caller must lock object
230 * => caller must lock page queues
231 * => call should have already set pg's object and offset pointers
232 * and bumped the version counter
233 */
234
235 static inline void
236 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
237 struct vm_page *where)
238 {
239
240 KASSERT(uobj == pg->uobject);
241 KASSERT(mutex_owned(&uobj->vmobjlock));
242 KASSERT((pg->flags & PG_TABLED) == 0);
243 KASSERT(where == NULL || (where->flags & PG_TABLED));
244 KASSERT(where == NULL || (where->uobject == uobj));
245
246 if (UVM_OBJ_IS_VNODE(uobj)) {
247 if (uobj->uo_npages == 0) {
248 struct vnode *vp = (struct vnode *)uobj;
249
250 vholdl(vp);
251 }
252 if (UVM_OBJ_IS_VTEXT(uobj)) {
253 atomic_inc_uint(&uvmexp.execpages);
254 } else {
255 atomic_inc_uint(&uvmexp.filepages);
256 }
257 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
258 atomic_inc_uint(&uvmexp.anonpages);
259 }
260
261 if (where)
262 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
263 else
264 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
265 pg->flags |= PG_TABLED;
266 uobj->uo_npages++;
267 }
268
269
270 static inline void
271 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
272 {
273 bool success;
274
275 KASSERT(uobj == pg->uobject);
276 success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
277 KASSERT(success);
278 }
279
280 static inline void
281 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
282 {
283
284 KDASSERT(uobj != NULL);
285 uvm_pageinsert_tree(uobj, pg);
286 uvm_pageinsert_list(uobj, pg, NULL);
287 }
288
289 /*
290 * uvm_page_remove: remove page from object.
291 *
292 * => caller must lock object
293 * => caller must lock page queues
294 */
295
296 static inline void
297 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
298 {
299
300 KASSERT(uobj == pg->uobject);
301 KASSERT(mutex_owned(&uobj->vmobjlock));
302 KASSERT(pg->flags & PG_TABLED);
303
304 if (UVM_OBJ_IS_VNODE(uobj)) {
305 if (uobj->uo_npages == 1) {
306 struct vnode *vp = (struct vnode *)uobj;
307
308 holdrelel(vp);
309 }
310 if (UVM_OBJ_IS_VTEXT(uobj)) {
311 atomic_dec_uint(&uvmexp.execpages);
312 } else {
313 atomic_dec_uint(&uvmexp.filepages);
314 }
315 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
316 atomic_dec_uint(&uvmexp.anonpages);
317 }
318
319 /* object should be locked */
320 uobj->uo_npages--;
321 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
322 pg->flags &= ~PG_TABLED;
323 pg->uobject = NULL;
324 }
325
326 static inline void
327 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
328 {
329
330 KASSERT(uobj == pg->uobject);
331 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
332 }
333
334 static inline void
335 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
336 {
337
338 KDASSERT(uobj != NULL);
339 uvm_pageremove_tree(uobj, pg);
340 uvm_pageremove_list(uobj, pg);
341 }
342
343 static void
344 uvm_page_init_buckets(struct pgfreelist *pgfl)
345 {
346 int color, i;
347
348 for (color = 0; color < uvmexp.ncolors; color++) {
349 for (i = 0; i < PGFL_NQUEUES; i++) {
350 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
351 }
352 }
353 }
354
355 /*
356 * uvm_page_init: init the page system. called from uvm_init().
357 *
358 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
359 */
360
361 void
362 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
363 {
364 static struct uvm_cpu boot_cpu;
365 psize_t freepages, pagecount, bucketcount, n;
366 struct pgflbucket *bucketarray, *cpuarray;
367 struct vm_page *pagearray;
368 int lcv;
369 u_int i;
370 paddr_t paddr;
371
372 KASSERT(ncpu <= 1);
373 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
374
375 /*
376 * init the page queues and page queue locks, except the free
377 * list; we allocate that later (with the initial vm_page
378 * structures).
379 */
380
381 uvm.cpus[0] = &boot_cpu;
382 curcpu()->ci_data.cpu_uvm = &boot_cpu;
383 uvm_reclaim_init();
384 uvmpdpol_init();
385 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
386 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
387
388 /*
389 * allocate vm_page structures.
390 */
391
392 /*
393 * sanity check:
394 * before calling this function the MD code is expected to register
395 * some free RAM with the uvm_page_physload() function. our job
396 * now is to allocate vm_page structures for this memory.
397 */
398
399 if (vm_nphysseg == 0)
400 panic("uvm_page_bootstrap: no memory pre-allocated");
401
402 /*
403 * first calculate the number of free pages...
404 *
405 * note that we use start/end rather than avail_start/avail_end.
406 * this allows us to allocate extra vm_page structures in case we
407 * want to return some memory to the pool after booting.
408 */
409
410 freepages = 0;
411 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
412 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
413
414 /*
415 * Let MD code initialize the number of colors, or default
416 * to 1 color if MD code doesn't care.
417 */
418 if (uvmexp.ncolors == 0)
419 uvmexp.ncolors = 1;
420 uvmexp.colormask = uvmexp.ncolors - 1;
421
422 /*
423 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
424 * use. for each page of memory we use we need a vm_page structure.
425 * thus, the total number of pages we can use is the total size of
426 * the memory divided by the PAGE_SIZE plus the size of the vm_page
427 * structure. we add one to freepages as a fudge factor to avoid
428 * truncation errors (since we can only allocate in terms of whole
429 * pages).
430 */
431
432 bucketcount = uvmexp.ncolors * VM_NFREELIST;
433 pagecount = ((freepages + 1) << PAGE_SHIFT) /
434 (PAGE_SIZE + sizeof(struct vm_page));
435
436 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
437 sizeof(struct pgflbucket) * 2) + (pagecount *
438 sizeof(struct vm_page)));
439 cpuarray = bucketarray + bucketcount;
440 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
441
442 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
443 uvm.page_free[lcv].pgfl_buckets =
444 (bucketarray + (lcv * uvmexp.ncolors));
445 uvm_page_init_buckets(&uvm.page_free[lcv]);
446 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
447 (cpuarray + (lcv * uvmexp.ncolors));
448 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
449 }
450 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
451
452 /*
453 * init the vm_page structures and put them in the correct place.
454 */
455
456 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
457 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
458
459 /* set up page array pointers */
460 vm_physmem[lcv].pgs = pagearray;
461 pagearray += n;
462 pagecount -= n;
463 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
464
465 /* init and free vm_pages (we've already zeroed them) */
466 paddr = ctob(vm_physmem[lcv].start);
467 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
468 vm_physmem[lcv].pgs[i].phys_addr = paddr;
469 #ifdef __HAVE_VM_PAGE_MD
470 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
471 #endif
472 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
473 atop(paddr) <= vm_physmem[lcv].avail_end) {
474 uvmexp.npages++;
475 /* add page to free pool */
476 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
477 }
478 }
479 }
480
481 /*
482 * pass up the values of virtual_space_start and
483 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
484 * layers of the VM.
485 */
486
487 *kvm_startp = round_page(virtual_space_start);
488 *kvm_endp = trunc_page(virtual_space_end);
489 #ifdef DEBUG
490 /*
491 * steal kva for uvm_pagezerocheck().
492 */
493 uvm_zerocheckkva = *kvm_startp;
494 *kvm_startp += PAGE_SIZE;
495 #endif /* DEBUG */
496
497 /*
498 * init various thresholds.
499 */
500
501 uvmexp.reserve_pagedaemon = 1;
502 uvmexp.reserve_kernel = vm_page_reserve_kernel;
503
504 /*
505 * determine if we should zero pages in the idle loop.
506 */
507
508 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
509
510 /*
511 * done!
512 */
513
514 uvm.page_init_done = true;
515 }
516
517 /*
518 * uvm_setpagesize: set the page size
519 *
520 * => sets page_shift and page_mask from uvmexp.pagesize.
521 */
522
523 void
524 uvm_setpagesize(void)
525 {
526
527 /*
528 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
529 * to be a constant (indicated by being a non-zero value).
530 */
531 if (uvmexp.pagesize == 0) {
532 if (PAGE_SIZE == 0)
533 panic("uvm_setpagesize: uvmexp.pagesize not set");
534 uvmexp.pagesize = PAGE_SIZE;
535 }
536 uvmexp.pagemask = uvmexp.pagesize - 1;
537 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
538 panic("uvm_setpagesize: page size not a power of two");
539 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
540 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
541 break;
542 }
543
544 /*
545 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
546 */
547
548 vaddr_t
549 uvm_pageboot_alloc(vsize_t size)
550 {
551 static bool initialized = false;
552 vaddr_t addr;
553 #if !defined(PMAP_STEAL_MEMORY)
554 vaddr_t vaddr;
555 paddr_t paddr;
556 #endif
557
558 /*
559 * on first call to this function, initialize ourselves.
560 */
561 if (initialized == false) {
562 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
563
564 /* round it the way we like it */
565 virtual_space_start = round_page(virtual_space_start);
566 virtual_space_end = trunc_page(virtual_space_end);
567
568 initialized = true;
569 }
570
571 /* round to page size */
572 size = round_page(size);
573
574 #if defined(PMAP_STEAL_MEMORY)
575
576 /*
577 * defer bootstrap allocation to MD code (it may want to allocate
578 * from a direct-mapped segment). pmap_steal_memory should adjust
579 * virtual_space_start/virtual_space_end if necessary.
580 */
581
582 addr = pmap_steal_memory(size, &virtual_space_start,
583 &virtual_space_end);
584
585 return(addr);
586
587 #else /* !PMAP_STEAL_MEMORY */
588
589 /*
590 * allocate virtual memory for this request
591 */
592 if (virtual_space_start == virtual_space_end ||
593 (virtual_space_end - virtual_space_start) < size)
594 panic("uvm_pageboot_alloc: out of virtual space");
595
596 addr = virtual_space_start;
597
598 #ifdef PMAP_GROWKERNEL
599 /*
600 * If the kernel pmap can't map the requested space,
601 * then allocate more resources for it.
602 */
603 if (uvm_maxkaddr < (addr + size)) {
604 uvm_maxkaddr = pmap_growkernel(addr + size);
605 if (uvm_maxkaddr < (addr + size))
606 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
607 }
608 #endif
609
610 virtual_space_start += size;
611
612 /*
613 * allocate and mapin physical pages to back new virtual pages
614 */
615
616 for (vaddr = round_page(addr) ; vaddr < addr + size ;
617 vaddr += PAGE_SIZE) {
618
619 if (!uvm_page_physget(&paddr))
620 panic("uvm_pageboot_alloc: out of memory");
621
622 /*
623 * Note this memory is no longer managed, so using
624 * pmap_kenter is safe.
625 */
626 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
627 }
628 pmap_update(pmap_kernel());
629 return(addr);
630 #endif /* PMAP_STEAL_MEMORY */
631 }
632
633 #if !defined(PMAP_STEAL_MEMORY)
634 /*
635 * uvm_page_physget: "steal" one page from the vm_physmem structure.
636 *
637 * => attempt to allocate it off the end of a segment in which the "avail"
638 * values match the start/end values. if we can't do that, then we
639 * will advance both values (making them equal, and removing some
640 * vm_page structures from the non-avail area).
641 * => return false if out of memory.
642 */
643
644 /* subroutine: try to allocate from memory chunks on the specified freelist */
645 static bool uvm_page_physget_freelist(paddr_t *, int);
646
647 static bool
648 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
649 {
650 int lcv, x;
651
652 /* pass 1: try allocating from a matching end */
653 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
654 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
655 #else
656 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
657 #endif
658 {
659
660 if (uvm.page_init_done == true)
661 panic("uvm_page_physget: called _after_ bootstrap");
662
663 if (vm_physmem[lcv].free_list != freelist)
664 continue;
665
666 /* try from front */
667 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
668 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
669 *paddrp = ctob(vm_physmem[lcv].avail_start);
670 vm_physmem[lcv].avail_start++;
671 vm_physmem[lcv].start++;
672 /* nothing left? nuke it */
673 if (vm_physmem[lcv].avail_start ==
674 vm_physmem[lcv].end) {
675 if (vm_nphysseg == 1)
676 panic("uvm_page_physget: out of memory!");
677 vm_nphysseg--;
678 for (x = lcv ; x < vm_nphysseg ; x++)
679 /* structure copy */
680 vm_physmem[x] = vm_physmem[x+1];
681 }
682 return (true);
683 }
684
685 /* try from rear */
686 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
687 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
688 *paddrp = ctob(vm_physmem[lcv].avail_end - 1);
689 vm_physmem[lcv].avail_end--;
690 vm_physmem[lcv].end--;
691 /* nothing left? nuke it */
692 if (vm_physmem[lcv].avail_end ==
693 vm_physmem[lcv].start) {
694 if (vm_nphysseg == 1)
695 panic("uvm_page_physget: out of memory!");
696 vm_nphysseg--;
697 for (x = lcv ; x < vm_nphysseg ; x++)
698 /* structure copy */
699 vm_physmem[x] = vm_physmem[x+1];
700 }
701 return (true);
702 }
703 }
704
705 /* pass2: forget about matching ends, just allocate something */
706 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
707 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
708 #else
709 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
710 #endif
711 {
712
713 /* any room in this bank? */
714 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
715 continue; /* nope */
716
717 *paddrp = ctob(vm_physmem[lcv].avail_start);
718 vm_physmem[lcv].avail_start++;
719 /* truncate! */
720 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
721
722 /* nothing left? nuke it */
723 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
724 if (vm_nphysseg == 1)
725 panic("uvm_page_physget: out of memory!");
726 vm_nphysseg--;
727 for (x = lcv ; x < vm_nphysseg ; x++)
728 /* structure copy */
729 vm_physmem[x] = vm_physmem[x+1];
730 }
731 return (true);
732 }
733
734 return (false); /* whoops! */
735 }
736
737 bool
738 uvm_page_physget(paddr_t *paddrp)
739 {
740 int i;
741
742 /* try in the order of freelist preference */
743 for (i = 0; i < VM_NFREELIST; i++)
744 if (uvm_page_physget_freelist(paddrp, i) == true)
745 return (true);
746 return (false);
747 }
748 #endif /* PMAP_STEAL_MEMORY */
749
750 /*
751 * uvm_page_physload: load physical memory into VM system
752 *
753 * => all args are PFs
754 * => all pages in start/end get vm_page structures
755 * => areas marked by avail_start/avail_end get added to the free page pool
756 * => we are limited to VM_PHYSSEG_MAX physical memory segments
757 */
758
759 void
760 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
761 paddr_t avail_end, int free_list)
762 {
763 int preload, lcv;
764 psize_t npages;
765 struct vm_page *pgs;
766 struct vm_physseg *ps;
767
768 if (uvmexp.pagesize == 0)
769 panic("uvm_page_physload: page size not set!");
770 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
771 panic("uvm_page_physload: bad free list %d", free_list);
772 if (start >= end)
773 panic("uvm_page_physload: start >= end");
774
775 /*
776 * do we have room?
777 */
778
779 if (vm_nphysseg == VM_PHYSSEG_MAX) {
780 printf("uvm_page_physload: unable to load physical memory "
781 "segment\n");
782 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
783 VM_PHYSSEG_MAX, (long long)start, (long long)end);
784 printf("\tincrease VM_PHYSSEG_MAX\n");
785 return;
786 }
787
788 /*
789 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
790 * called yet, so malloc is not available).
791 */
792
793 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
794 if (vm_physmem[lcv].pgs)
795 break;
796 }
797 preload = (lcv == vm_nphysseg);
798
799 /*
800 * if VM is already running, attempt to malloc() vm_page structures
801 */
802
803 if (!preload) {
804 #if defined(VM_PHYSSEG_NOADD)
805 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
806 #else
807 /* XXXCDC: need some sort of lockout for this case */
808 paddr_t paddr;
809 npages = end - start; /* # of pages */
810 pgs = malloc(sizeof(struct vm_page) * npages,
811 M_VMPAGE, M_NOWAIT);
812 if (pgs == NULL) {
813 printf("uvm_page_physload: can not malloc vm_page "
814 "structs for segment\n");
815 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
816 return;
817 }
818 /* zero data, init phys_addr and free_list, and free pages */
819 memset(pgs, 0, sizeof(struct vm_page) * npages);
820 for (lcv = 0, paddr = ctob(start) ;
821 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
822 pgs[lcv].phys_addr = paddr;
823 pgs[lcv].free_list = free_list;
824 if (atop(paddr) >= avail_start &&
825 atop(paddr) <= avail_end)
826 uvm_pagefree(&pgs[lcv]);
827 }
828 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
829 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
830 #endif
831 } else {
832 pgs = NULL;
833 npages = 0;
834 }
835
836 /*
837 * now insert us in the proper place in vm_physmem[]
838 */
839
840 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
841 /* random: put it at the end (easy!) */
842 ps = &vm_physmem[vm_nphysseg];
843 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
844 {
845 int x;
846 /* sort by address for binary search */
847 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
848 if (start < vm_physmem[lcv].start)
849 break;
850 ps = &vm_physmem[lcv];
851 /* move back other entries, if necessary ... */
852 for (x = vm_nphysseg ; x > lcv ; x--)
853 /* structure copy */
854 vm_physmem[x] = vm_physmem[x - 1];
855 }
856 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
857 {
858 int x;
859 /* sort by largest segment first */
860 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
861 if ((end - start) >
862 (vm_physmem[lcv].end - vm_physmem[lcv].start))
863 break;
864 ps = &vm_physmem[lcv];
865 /* move back other entries, if necessary ... */
866 for (x = vm_nphysseg ; x > lcv ; x--)
867 /* structure copy */
868 vm_physmem[x] = vm_physmem[x - 1];
869 }
870 #else
871 panic("uvm_page_physload: unknown physseg strategy selected!");
872 #endif
873
874 ps->start = start;
875 ps->end = end;
876 ps->avail_start = avail_start;
877 ps->avail_end = avail_end;
878 if (preload) {
879 ps->pgs = NULL;
880 } else {
881 ps->pgs = pgs;
882 ps->lastpg = pgs + npages - 1;
883 }
884 ps->free_list = free_list;
885 vm_nphysseg++;
886
887 if (!preload) {
888 uvmpdpol_reinit();
889 }
890 }
891
892 /*
893 * uvm_page_recolor: Recolor the pages if the new bucket count is
894 * larger than the old one.
895 */
896
897 void
898 uvm_page_recolor(int newncolors)
899 {
900 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
901 struct pgfreelist gpgfl, pgfl;
902 struct vm_page *pg;
903 vsize_t bucketcount;
904 int lcv, color, i, ocolors;
905 struct uvm_cpu *ucpu;
906
907 if (newncolors <= uvmexp.ncolors)
908 return;
909
910 if (uvm.page_init_done == false) {
911 uvmexp.ncolors = newncolors;
912 return;
913 }
914
915 bucketcount = newncolors * VM_NFREELIST;
916 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
917 M_VMPAGE, M_NOWAIT);
918 cpuarray = bucketarray + bucketcount;
919 if (bucketarray == NULL) {
920 printf("WARNING: unable to allocate %ld page color buckets\n",
921 (long) bucketcount);
922 return;
923 }
924
925 mutex_spin_enter(&uvm_fpageqlock);
926
927 /* Make sure we should still do this. */
928 if (newncolors <= uvmexp.ncolors) {
929 mutex_spin_exit(&uvm_fpageqlock);
930 free(bucketarray, M_VMPAGE);
931 return;
932 }
933
934 oldbucketarray = uvm.page_free[0].pgfl_buckets;
935 ocolors = uvmexp.ncolors;
936
937 uvmexp.ncolors = newncolors;
938 uvmexp.colormask = uvmexp.ncolors - 1;
939
940 ucpu = curcpu()->ci_data.cpu_uvm;
941 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
942 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
943 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
944 uvm_page_init_buckets(&gpgfl);
945 uvm_page_init_buckets(&pgfl);
946 for (color = 0; color < ocolors; color++) {
947 for (i = 0; i < PGFL_NQUEUES; i++) {
948 while ((pg = LIST_FIRST(&uvm.page_free[
949 lcv].pgfl_buckets[color].pgfl_queues[i]))
950 != NULL) {
951 LIST_REMOVE(pg, pageq.list); /* global */
952 LIST_REMOVE(pg, listq.list); /* cpu */
953 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
954 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
955 i], pg, pageq.list);
956 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
957 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
958 i], pg, listq.list);
959 }
960 }
961 }
962 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
963 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
964 }
965
966 if (have_recolored_pages) {
967 mutex_spin_exit(&uvm_fpageqlock);
968 free(oldbucketarray, M_VMPAGE);
969 return;
970 }
971
972 have_recolored_pages = true;
973 mutex_spin_exit(&uvm_fpageqlock);
974 }
975
976 /*
977 * uvm_cpu_attach: initialize per-CPU data structures.
978 */
979
980 void
981 uvm_cpu_attach(struct cpu_info *ci)
982 {
983 struct pgflbucket *bucketarray;
984 struct pgfreelist pgfl;
985 struct uvm_cpu *ucpu;
986 vsize_t bucketcount;
987 int lcv;
988
989 if (CPU_IS_PRIMARY(ci)) {
990 /* Already done in uvm_page_init(). */
991 return;
992 }
993
994 /* Add more reserve pages for this CPU. */
995 uvmexp.reserve_kernel += vm_page_reserve_kernel;
996
997 /* Configure this CPU's free lists. */
998 bucketcount = uvmexp.ncolors * VM_NFREELIST;
999 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1000 M_VMPAGE, M_WAITOK);
1001 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1002 uvm.cpus[cpu_index(ci)] = ucpu;
1003 ci->ci_data.cpu_uvm = ucpu;
1004 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1005 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1006 uvm_page_init_buckets(&pgfl);
1007 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1008 }
1009 }
1010
1011 /*
1012 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1013 */
1014
1015 static struct vm_page *
1016 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1017 int *trycolorp)
1018 {
1019 struct pgflist *freeq;
1020 struct vm_page *pg;
1021 int color, trycolor = *trycolorp;
1022 struct pgfreelist *gpgfl, *pgfl;
1023
1024 KASSERT(mutex_owned(&uvm_fpageqlock));
1025
1026 color = trycolor;
1027 pgfl = &ucpu->page_free[flist];
1028 gpgfl = &uvm.page_free[flist];
1029 do {
1030 /* cpu, try1 */
1031 if ((pg = LIST_FIRST((freeq =
1032 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1033 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1034 uvmexp.cpuhit++;
1035 goto gotit;
1036 }
1037 /* global, try1 */
1038 if ((pg = LIST_FIRST((freeq =
1039 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1040 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1041 uvmexp.cpumiss++;
1042 goto gotit;
1043 }
1044 /* cpu, try2 */
1045 if ((pg = LIST_FIRST((freeq =
1046 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1047 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1048 uvmexp.cpuhit++;
1049 goto gotit;
1050 }
1051 /* global, try2 */
1052 if ((pg = LIST_FIRST((freeq =
1053 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1054 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1055 uvmexp.cpumiss++;
1056 goto gotit;
1057 }
1058 color = (color + 1) & uvmexp.colormask;
1059 } while (color != trycolor);
1060
1061 return (NULL);
1062
1063 gotit:
1064 LIST_REMOVE(pg, pageq.list); /* global list */
1065 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1066 uvmexp.free--;
1067
1068 /* update zero'd page count */
1069 if (pg->flags & PG_ZERO)
1070 uvmexp.zeropages--;
1071
1072 if (color == trycolor)
1073 uvmexp.colorhit++;
1074 else {
1075 uvmexp.colormiss++;
1076 *trycolorp = color;
1077 }
1078
1079 return (pg);
1080 }
1081
1082 /*
1083 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1084 *
1085 * => return null if no pages free
1086 * => wake up pagedaemon if number of free pages drops below low water mark
1087 * => if obj != NULL, obj must be locked (to put in obj's tree)
1088 * => if anon != NULL, anon must be locked (to put in anon)
1089 * => only one of obj or anon can be non-null
1090 * => caller must activate/deactivate page if it is not wired.
1091 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1092 * => policy decision: it is more important to pull a page off of the
1093 * appropriate priority free list than it is to get a zero'd or
1094 * unknown contents page. This is because we live with the
1095 * consequences of a bad free list decision for the entire
1096 * lifetime of the page, e.g. if the page comes from memory that
1097 * is slower to access.
1098 */
1099
1100 struct vm_page *
1101 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1102 int flags, int strat, int free_list)
1103 {
1104 int lcv, try1, try2, zeroit = 0, color;
1105 struct uvm_cpu *ucpu;
1106 struct vm_page *pg;
1107 lwp_t *l;
1108
1109 KASSERT(obj == NULL || anon == NULL);
1110 KASSERT(anon == NULL || off == 0);
1111 KASSERT(off == trunc_page(off));
1112 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1113 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1114
1115 mutex_spin_enter(&uvm_fpageqlock);
1116
1117 /*
1118 * This implements a global round-robin page coloring
1119 * algorithm.
1120 *
1121 * XXXJRT: What about virtually-indexed caches?
1122 */
1123
1124 ucpu = curcpu()->ci_data.cpu_uvm;
1125 color = ucpu->page_free_nextcolor;
1126
1127 /*
1128 * check to see if we need to generate some free pages waking
1129 * the pagedaemon.
1130 */
1131
1132 uvm_kick_pdaemon();
1133
1134 /*
1135 * fail if any of these conditions is true:
1136 * [1] there really are no free pages, or
1137 * [2] only kernel "reserved" pages remain and
1138 * reserved pages have not been requested.
1139 * [3] only pagedaemon "reserved" pages remain and
1140 * the requestor isn't the pagedaemon.
1141 * we make kernel reserve pages available if called by a
1142 * kernel thread or a realtime thread.
1143 */
1144 l = curlwp;
1145 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1146 flags |= UVM_PGA_USERESERVE;
1147 }
1148 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1149 (flags & UVM_PGA_USERESERVE) == 0) ||
1150 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1151 curlwp != uvm.pagedaemon_lwp))
1152 goto fail;
1153
1154 #if PGFL_NQUEUES != 2
1155 #error uvm_pagealloc_strat needs to be updated
1156 #endif
1157
1158 /*
1159 * If we want a zero'd page, try the ZEROS queue first, otherwise
1160 * we try the UNKNOWN queue first.
1161 */
1162 if (flags & UVM_PGA_ZERO) {
1163 try1 = PGFL_ZEROS;
1164 try2 = PGFL_UNKNOWN;
1165 } else {
1166 try1 = PGFL_UNKNOWN;
1167 try2 = PGFL_ZEROS;
1168 }
1169
1170 again:
1171 switch (strat) {
1172 case UVM_PGA_STRAT_NORMAL:
1173 /* Check freelists: descending priority (ascending id) order */
1174 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1175 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1176 try1, try2, &color);
1177 if (pg != NULL)
1178 goto gotit;
1179 }
1180
1181 /* No pages free! */
1182 goto fail;
1183
1184 case UVM_PGA_STRAT_ONLY:
1185 case UVM_PGA_STRAT_FALLBACK:
1186 /* Attempt to allocate from the specified free list. */
1187 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1188 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1189 try1, try2, &color);
1190 if (pg != NULL)
1191 goto gotit;
1192
1193 /* Fall back, if possible. */
1194 if (strat == UVM_PGA_STRAT_FALLBACK) {
1195 strat = UVM_PGA_STRAT_NORMAL;
1196 goto again;
1197 }
1198
1199 /* No pages free! */
1200 goto fail;
1201
1202 default:
1203 panic("uvm_pagealloc_strat: bad strat %d", strat);
1204 /* NOTREACHED */
1205 }
1206
1207 gotit:
1208 /*
1209 * We now know which color we actually allocated from; set
1210 * the next color accordingly.
1211 */
1212
1213 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1214
1215 /*
1216 * update allocation statistics and remember if we have to
1217 * zero the page
1218 */
1219
1220 if (flags & UVM_PGA_ZERO) {
1221 if (pg->flags & PG_ZERO) {
1222 uvmexp.pga_zerohit++;
1223 zeroit = 0;
1224 } else {
1225 uvmexp.pga_zeromiss++;
1226 zeroit = 1;
1227 }
1228 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1229 ucpu->page_idle_zero = vm_page_zero_enable;
1230 }
1231 }
1232 KASSERT(pg->pqflags == PQ_FREE);
1233
1234 pg->offset = off;
1235 pg->uobject = obj;
1236 pg->uanon = anon;
1237 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1238 if (anon) {
1239 anon->an_page = pg;
1240 pg->pqflags = PQ_ANON;
1241 atomic_inc_uint(&uvmexp.anonpages);
1242 } else {
1243 if (obj) {
1244 uvm_pageinsert(obj, pg);
1245 }
1246 pg->pqflags = 0;
1247 }
1248 mutex_spin_exit(&uvm_fpageqlock);
1249
1250 #if defined(UVM_PAGE_TRKOWN)
1251 pg->owner_tag = NULL;
1252 #endif
1253 UVM_PAGE_OWN(pg, "new alloc");
1254
1255 if (flags & UVM_PGA_ZERO) {
1256 /*
1257 * A zero'd page is not clean. If we got a page not already
1258 * zero'd, then we have to zero it ourselves.
1259 */
1260 pg->flags &= ~PG_CLEAN;
1261 if (zeroit)
1262 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1263 }
1264
1265 return(pg);
1266
1267 fail:
1268 mutex_spin_exit(&uvm_fpageqlock);
1269 return (NULL);
1270 }
1271
1272 /*
1273 * uvm_pagereplace: replace a page with another
1274 *
1275 * => object must be locked
1276 */
1277
1278 void
1279 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1280 {
1281 struct uvm_object *uobj = oldpg->uobject;
1282
1283 KASSERT((oldpg->flags & PG_TABLED) != 0);
1284 KASSERT(uobj != NULL);
1285 KASSERT((newpg->flags & PG_TABLED) == 0);
1286 KASSERT(newpg->uobject == NULL);
1287 KASSERT(mutex_owned(&uobj->vmobjlock));
1288
1289 newpg->uobject = uobj;
1290 newpg->offset = oldpg->offset;
1291
1292 uvm_pageremove_tree(uobj, oldpg);
1293 uvm_pageinsert_tree(uobj, newpg);
1294 uvm_pageinsert_list(uobj, newpg, oldpg);
1295 uvm_pageremove_list(uobj, oldpg);
1296 }
1297
1298 /*
1299 * uvm_pagerealloc: reallocate a page from one object to another
1300 *
1301 * => both objects must be locked
1302 */
1303
1304 void
1305 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1306 {
1307 /*
1308 * remove it from the old object
1309 */
1310
1311 if (pg->uobject) {
1312 uvm_pageremove(pg->uobject, pg);
1313 }
1314
1315 /*
1316 * put it in the new object
1317 */
1318
1319 if (newobj) {
1320 pg->uobject = newobj;
1321 pg->offset = newoff;
1322 uvm_pageinsert(newobj, pg);
1323 }
1324 }
1325
1326 #ifdef DEBUG
1327 /*
1328 * check if page is zero-filled
1329 *
1330 * - called with free page queue lock held.
1331 */
1332 void
1333 uvm_pagezerocheck(struct vm_page *pg)
1334 {
1335 int *p, *ep;
1336
1337 KASSERT(uvm_zerocheckkva != 0);
1338 KASSERT(mutex_owned(&uvm_fpageqlock));
1339
1340 /*
1341 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1342 * uvm page allocator.
1343 *
1344 * it might be better to have "CPU-local temporary map" pmap interface.
1345 */
1346 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1347 p = (int *)uvm_zerocheckkva;
1348 ep = (int *)((char *)p + PAGE_SIZE);
1349 pmap_update(pmap_kernel());
1350 while (p < ep) {
1351 if (*p != 0)
1352 panic("PG_ZERO page isn't zero-filled");
1353 p++;
1354 }
1355 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1356 /*
1357 * pmap_update() is not necessary here because no one except us
1358 * uses this VA.
1359 */
1360 }
1361 #endif /* DEBUG */
1362
1363 /*
1364 * uvm_pagefree: free page
1365 *
1366 * => erase page's identity (i.e. remove from object)
1367 * => put page on free list
1368 * => caller must lock owning object (either anon or uvm_object)
1369 * => caller must lock page queues
1370 * => assumes all valid mappings of pg are gone
1371 */
1372
1373 void
1374 uvm_pagefree(struct vm_page *pg)
1375 {
1376 struct pgflist *pgfl;
1377 struct uvm_cpu *ucpu;
1378 int index, color, queue;
1379 bool iszero;
1380
1381 #ifdef DEBUG
1382 if (pg->uobject == (void *)0xdeadbeef &&
1383 pg->uanon == (void *)0xdeadbeef) {
1384 panic("uvm_pagefree: freeing free page %p", pg);
1385 }
1386 #endif /* DEBUG */
1387
1388 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1389 KASSERT(!(pg->pqflags & PQ_FREE));
1390 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1391 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1392 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1393 mutex_owned(&pg->uanon->an_lock));
1394
1395 /*
1396 * if the page is loaned, resolve the loan instead of freeing.
1397 */
1398
1399 if (pg->loan_count) {
1400 KASSERT(pg->wire_count == 0);
1401
1402 /*
1403 * if the page is owned by an anon then we just want to
1404 * drop anon ownership. the kernel will free the page when
1405 * it is done with it. if the page is owned by an object,
1406 * remove it from the object and mark it dirty for the benefit
1407 * of possible anon owners.
1408 *
1409 * regardless of previous ownership, wakeup any waiters,
1410 * unbusy the page, and we're done.
1411 */
1412
1413 if (pg->uobject != NULL) {
1414 uvm_pageremove(pg->uobject, pg);
1415 pg->flags &= ~PG_CLEAN;
1416 } else if (pg->uanon != NULL) {
1417 if ((pg->pqflags & PQ_ANON) == 0) {
1418 pg->loan_count--;
1419 } else {
1420 pg->pqflags &= ~PQ_ANON;
1421 atomic_dec_uint(&uvmexp.anonpages);
1422 }
1423 pg->uanon->an_page = NULL;
1424 pg->uanon = NULL;
1425 }
1426 if (pg->flags & PG_WANTED) {
1427 wakeup(pg);
1428 }
1429 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1430 #ifdef UVM_PAGE_TRKOWN
1431 pg->owner_tag = NULL;
1432 #endif
1433 if (pg->loan_count) {
1434 KASSERT(pg->uobject == NULL);
1435 if (pg->uanon == NULL) {
1436 uvm_pagedequeue(pg);
1437 }
1438 return;
1439 }
1440 }
1441
1442 /*
1443 * remove page from its object or anon.
1444 */
1445
1446 if (pg->uobject != NULL) {
1447 uvm_pageremove(pg->uobject, pg);
1448 } else if (pg->uanon != NULL) {
1449 pg->uanon->an_page = NULL;
1450 atomic_dec_uint(&uvmexp.anonpages);
1451 }
1452
1453 /*
1454 * now remove the page from the queues.
1455 */
1456
1457 uvm_pagedequeue(pg);
1458
1459 /*
1460 * if the page was wired, unwire it now.
1461 */
1462
1463 if (pg->wire_count) {
1464 pg->wire_count = 0;
1465 uvmexp.wired--;
1466 }
1467
1468 /*
1469 * and put on free queue
1470 */
1471
1472 iszero = (pg->flags & PG_ZERO);
1473 index = uvm_page_lookup_freelist(pg);
1474 color = VM_PGCOLOR_BUCKET(pg);
1475 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1476
1477 #ifdef DEBUG
1478 pg->uobject = (void *)0xdeadbeef;
1479 pg->uanon = (void *)0xdeadbeef;
1480 #endif
1481
1482 mutex_spin_enter(&uvm_fpageqlock);
1483 pg->pqflags = PQ_FREE;
1484
1485 #ifdef DEBUG
1486 if (iszero)
1487 uvm_pagezerocheck(pg);
1488 #endif /* DEBUG */
1489
1490
1491 /* global list */
1492 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1493 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1494 uvmexp.free++;
1495 if (iszero) {
1496 uvmexp.zeropages++;
1497 }
1498
1499 /* per-cpu list */
1500 ucpu = curcpu()->ci_data.cpu_uvm;
1501 pg->offset = (uintptr_t)ucpu;
1502 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1503 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1504 ucpu->pages[queue]++;
1505 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1506 ucpu->page_idle_zero = vm_page_zero_enable;
1507 }
1508
1509 mutex_spin_exit(&uvm_fpageqlock);
1510 }
1511
1512 /*
1513 * uvm_page_unbusy: unbusy an array of pages.
1514 *
1515 * => pages must either all belong to the same object, or all belong to anons.
1516 * => if pages are object-owned, object must be locked.
1517 * => if pages are anon-owned, anons must be locked.
1518 * => caller must lock page queues if pages may be released.
1519 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1520 */
1521
1522 void
1523 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1524 {
1525 struct vm_page *pg;
1526 int i;
1527 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1528
1529 for (i = 0; i < npgs; i++) {
1530 pg = pgs[i];
1531 if (pg == NULL || pg == PGO_DONTCARE) {
1532 continue;
1533 }
1534
1535 KASSERT(pg->uobject == NULL ||
1536 mutex_owned(&pg->uobject->vmobjlock));
1537 KASSERT(pg->uobject != NULL ||
1538 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1539
1540 KASSERT(pg->flags & PG_BUSY);
1541 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1542 if (pg->flags & PG_WANTED) {
1543 wakeup(pg);
1544 }
1545 if (pg->flags & PG_RELEASED) {
1546 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1547 KASSERT(pg->uobject != NULL ||
1548 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1549 pg->flags &= ~PG_RELEASED;
1550 uvm_pagefree(pg);
1551 } else {
1552 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1553 KASSERT((pg->flags & PG_FAKE) == 0);
1554 pg->flags &= ~(PG_WANTED|PG_BUSY);
1555 UVM_PAGE_OWN(pg, NULL);
1556 }
1557 }
1558 }
1559
1560 #if defined(UVM_PAGE_TRKOWN)
1561 /*
1562 * uvm_page_own: set or release page ownership
1563 *
1564 * => this is a debugging function that keeps track of who sets PG_BUSY
1565 * and where they do it. it can be used to track down problems
1566 * such a process setting "PG_BUSY" and never releasing it.
1567 * => page's object [if any] must be locked
1568 * => if "tag" is NULL then we are releasing page ownership
1569 */
1570 void
1571 uvm_page_own(struct vm_page *pg, const char *tag)
1572 {
1573 struct uvm_object *uobj;
1574 struct vm_anon *anon;
1575
1576 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1577
1578 uobj = pg->uobject;
1579 anon = pg->uanon;
1580 if (uobj != NULL) {
1581 KASSERT(mutex_owned(&uobj->vmobjlock));
1582 } else if (anon != NULL) {
1583 KASSERT(mutex_owned(&anon->an_lock));
1584 }
1585
1586 KASSERT((pg->flags & PG_WANTED) == 0);
1587
1588 /* gain ownership? */
1589 if (tag) {
1590 KASSERT((pg->flags & PG_BUSY) != 0);
1591 if (pg->owner_tag) {
1592 printf("uvm_page_own: page %p already owned "
1593 "by proc %d [%s]\n", pg,
1594 pg->owner, pg->owner_tag);
1595 panic("uvm_page_own");
1596 }
1597 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1598 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1599 pg->owner_tag = tag;
1600 return;
1601 }
1602
1603 /* drop ownership */
1604 KASSERT((pg->flags & PG_BUSY) == 0);
1605 if (pg->owner_tag == NULL) {
1606 printf("uvm_page_own: dropping ownership of an non-owned "
1607 "page (%p)\n", pg);
1608 panic("uvm_page_own");
1609 }
1610 if (!uvmpdpol_pageisqueued_p(pg)) {
1611 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1612 pg->wire_count > 0);
1613 } else {
1614 KASSERT(pg->wire_count == 0);
1615 }
1616 pg->owner_tag = NULL;
1617 }
1618 #endif
1619
1620 /*
1621 * uvm_pageidlezero: zero free pages while the system is idle.
1622 *
1623 * => try to complete one color bucket at a time, to reduce our impact
1624 * on the CPU cache.
1625 * => we loop until we either reach the target or there is a lwp ready
1626 * to run, or MD code detects a reason to break early.
1627 */
1628 void
1629 uvm_pageidlezero(void)
1630 {
1631 struct vm_page *pg;
1632 struct pgfreelist *pgfl, *gpgfl;
1633 struct uvm_cpu *ucpu;
1634 int free_list, firstbucket, nextbucket;
1635
1636 ucpu = curcpu()->ci_data.cpu_uvm;
1637 if (!ucpu->page_idle_zero ||
1638 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1639 ucpu->page_idle_zero = false;
1640 return;
1641 }
1642 mutex_enter(&uvm_fpageqlock);
1643 firstbucket = ucpu->page_free_nextcolor;
1644 nextbucket = firstbucket;
1645 do {
1646 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1647 if (sched_curcpu_runnable_p()) {
1648 goto quit;
1649 }
1650 pgfl = &ucpu->page_free[free_list];
1651 gpgfl = &uvm.page_free[free_list];
1652 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1653 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1654 if (sched_curcpu_runnable_p()) {
1655 goto quit;
1656 }
1657 LIST_REMOVE(pg, pageq.list); /* global list */
1658 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1659 ucpu->pages[PGFL_UNKNOWN]--;
1660 uvmexp.free--;
1661 KASSERT(pg->pqflags == PQ_FREE);
1662 pg->pqflags = 0;
1663 mutex_spin_exit(&uvm_fpageqlock);
1664 #ifdef PMAP_PAGEIDLEZERO
1665 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1666
1667 /*
1668 * The machine-dependent code detected
1669 * some reason for us to abort zeroing
1670 * pages, probably because there is a
1671 * process now ready to run.
1672 */
1673
1674 mutex_spin_enter(&uvm_fpageqlock);
1675 pg->pqflags = PQ_FREE;
1676 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1677 nextbucket].pgfl_queues[
1678 PGFL_UNKNOWN], pg, pageq.list);
1679 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1680 nextbucket].pgfl_queues[
1681 PGFL_UNKNOWN], pg, listq.list);
1682 ucpu->pages[PGFL_UNKNOWN]++;
1683 uvmexp.free++;
1684 uvmexp.zeroaborts++;
1685 goto quit;
1686 }
1687 #else
1688 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1689 #endif /* PMAP_PAGEIDLEZERO */
1690 pg->flags |= PG_ZERO;
1691
1692 mutex_spin_enter(&uvm_fpageqlock);
1693 pg->pqflags = PQ_FREE;
1694 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1695 nextbucket].pgfl_queues[PGFL_ZEROS],
1696 pg, pageq.list);
1697 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1698 nextbucket].pgfl_queues[PGFL_ZEROS],
1699 pg, listq.list);
1700 ucpu->pages[PGFL_ZEROS]++;
1701 uvmexp.free++;
1702 uvmexp.zeropages++;
1703 }
1704 }
1705 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1706 break;
1707 }
1708 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1709 } while (nextbucket != firstbucket);
1710 ucpu->page_idle_zero = false;
1711 quit:
1712 mutex_spin_exit(&uvm_fpageqlock);
1713 }
1714
1715 /*
1716 * uvm_pagelookup: look up a page
1717 *
1718 * => caller should lock object to keep someone from pulling the page
1719 * out from under it
1720 */
1721
1722 struct vm_page *
1723 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1724 {
1725 struct vm_page *pg;
1726
1727 KASSERT(mutex_owned(&obj->vmobjlock));
1728
1729 pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1730
1731 KASSERT(pg == NULL || obj->uo_npages != 0);
1732 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1733 (pg->flags & PG_BUSY) != 0);
1734 return(pg);
1735 }
1736
1737 /*
1738 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1739 *
1740 * => caller must lock page queues
1741 */
1742
1743 void
1744 uvm_pagewire(struct vm_page *pg)
1745 {
1746 KASSERT(mutex_owned(&uvm_pageqlock));
1747 #if defined(READAHEAD_STATS)
1748 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1749 uvm_ra_hit.ev_count++;
1750 pg->pqflags &= ~PQ_READAHEAD;
1751 }
1752 #endif /* defined(READAHEAD_STATS) */
1753 if (pg->wire_count == 0) {
1754 uvm_pagedequeue(pg);
1755 uvmexp.wired++;
1756 }
1757 pg->wire_count++;
1758 }
1759
1760 /*
1761 * uvm_pageunwire: unwire the page.
1762 *
1763 * => activate if wire count goes to zero.
1764 * => caller must lock page queues
1765 */
1766
1767 void
1768 uvm_pageunwire(struct vm_page *pg)
1769 {
1770 KASSERT(mutex_owned(&uvm_pageqlock));
1771 pg->wire_count--;
1772 if (pg->wire_count == 0) {
1773 uvm_pageactivate(pg);
1774 uvmexp.wired--;
1775 }
1776 }
1777
1778 /*
1779 * uvm_pagedeactivate: deactivate page
1780 *
1781 * => caller must lock page queues
1782 * => caller must check to make sure page is not wired
1783 * => object that page belongs to must be locked (so we can adjust pg->flags)
1784 * => caller must clear the reference on the page before calling
1785 */
1786
1787 void
1788 uvm_pagedeactivate(struct vm_page *pg)
1789 {
1790
1791 KASSERT(mutex_owned(&uvm_pageqlock));
1792 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1793 uvmpdpol_pagedeactivate(pg);
1794 }
1795
1796 /*
1797 * uvm_pageactivate: activate page
1798 *
1799 * => caller must lock page queues
1800 */
1801
1802 void
1803 uvm_pageactivate(struct vm_page *pg)
1804 {
1805
1806 KASSERT(mutex_owned(&uvm_pageqlock));
1807 #if defined(READAHEAD_STATS)
1808 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1809 uvm_ra_hit.ev_count++;
1810 pg->pqflags &= ~PQ_READAHEAD;
1811 }
1812 #endif /* defined(READAHEAD_STATS) */
1813 if (pg->wire_count != 0) {
1814 return;
1815 }
1816 uvmpdpol_pageactivate(pg);
1817 }
1818
1819 /*
1820 * uvm_pagedequeue: remove a page from any paging queue
1821 */
1822
1823 void
1824 uvm_pagedequeue(struct vm_page *pg)
1825 {
1826
1827 if (uvmpdpol_pageisqueued_p(pg)) {
1828 KASSERT(mutex_owned(&uvm_pageqlock));
1829 }
1830
1831 uvmpdpol_pagedequeue(pg);
1832 }
1833
1834 /*
1835 * uvm_pageenqueue: add a page to a paging queue without activating.
1836 * used where a page is not really demanded (yet). eg. read-ahead
1837 */
1838
1839 void
1840 uvm_pageenqueue(struct vm_page *pg)
1841 {
1842
1843 KASSERT(mutex_owned(&uvm_pageqlock));
1844 if (pg->wire_count != 0) {
1845 return;
1846 }
1847 uvmpdpol_pageenqueue(pg);
1848 }
1849
1850 /*
1851 * uvm_pagezero: zero fill a page
1852 *
1853 * => if page is part of an object then the object should be locked
1854 * to protect pg->flags.
1855 */
1856
1857 void
1858 uvm_pagezero(struct vm_page *pg)
1859 {
1860 pg->flags &= ~PG_CLEAN;
1861 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1862 }
1863
1864 /*
1865 * uvm_pagecopy: copy a page
1866 *
1867 * => if page is part of an object then the object should be locked
1868 * to protect pg->flags.
1869 */
1870
1871 void
1872 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1873 {
1874
1875 dst->flags &= ~PG_CLEAN;
1876 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1877 }
1878
1879 /*
1880 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1881 */
1882
1883 bool
1884 uvm_pageismanaged(paddr_t pa)
1885 {
1886
1887 return (vm_physseg_find(atop(pa), NULL) != -1);
1888 }
1889
1890 /*
1891 * uvm_page_lookup_freelist: look up the free list for the specified page
1892 */
1893
1894 int
1895 uvm_page_lookup_freelist(struct vm_page *pg)
1896 {
1897 int lcv;
1898
1899 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1900 KASSERT(lcv != -1);
1901 return (vm_physmem[lcv].free_list);
1902 }
1903
1904 #if defined(DDB) || defined(DEBUGPRINT)
1905
1906 /*
1907 * uvm_page_printit: actually print the page
1908 */
1909
1910 static const char page_flagbits[] = UVM_PGFLAGBITS;
1911 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1912
1913 void
1914 uvm_page_printit(struct vm_page *pg, bool full,
1915 void (*pr)(const char *, ...))
1916 {
1917 struct vm_page *tpg;
1918 struct uvm_object *uobj;
1919 struct pgflist *pgl;
1920 char pgbuf[128];
1921 char pqbuf[128];
1922
1923 (*pr)("PAGE %p:\n", pg);
1924 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1925 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1926 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1927 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1928 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1929 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1930 #if defined(UVM_PAGE_TRKOWN)
1931 if (pg->flags & PG_BUSY)
1932 (*pr)(" owning process = %d, tag=%s\n",
1933 pg->owner, pg->owner_tag);
1934 else
1935 (*pr)(" page not busy, no owner\n");
1936 #else
1937 (*pr)(" [page ownership tracking disabled]\n");
1938 #endif
1939
1940 if (!full)
1941 return;
1942
1943 /* cross-verify object/anon */
1944 if ((pg->pqflags & PQ_FREE) == 0) {
1945 if (pg->pqflags & PQ_ANON) {
1946 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1947 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1948 (pg->uanon) ? pg->uanon->an_page : NULL);
1949 else
1950 (*pr)(" anon backpointer is OK\n");
1951 } else {
1952 uobj = pg->uobject;
1953 if (uobj) {
1954 (*pr)(" checking object list\n");
1955 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1956 if (tpg == pg) {
1957 break;
1958 }
1959 }
1960 if (tpg)
1961 (*pr)(" page found on object list\n");
1962 else
1963 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1964 }
1965 }
1966 }
1967
1968 /* cross-verify page queue */
1969 if (pg->pqflags & PQ_FREE) {
1970 int fl = uvm_page_lookup_freelist(pg);
1971 int color = VM_PGCOLOR_BUCKET(pg);
1972 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1973 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1974 } else {
1975 pgl = NULL;
1976 }
1977
1978 if (pgl) {
1979 (*pr)(" checking pageq list\n");
1980 LIST_FOREACH(tpg, pgl, pageq.list) {
1981 if (tpg == pg) {
1982 break;
1983 }
1984 }
1985 if (tpg)
1986 (*pr)(" page found on pageq list\n");
1987 else
1988 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1989 }
1990 }
1991
1992 /*
1993 * uvm_pages_printthem - print a summary of all managed pages
1994 */
1995
1996 void
1997 uvm_page_printall(void (*pr)(const char *, ...))
1998 {
1999 unsigned i;
2000 struct vm_page *pg;
2001
2002 (*pr)("%18s %4s %4s %18s %18s"
2003 #ifdef UVM_PAGE_TRKOWN
2004 " OWNER"
2005 #endif
2006 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2007 for (i = 0; i < vm_nphysseg; i++) {
2008 for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
2009 (*pr)("%18p %04x %04x %18p %18p",
2010 pg, pg->flags, pg->pqflags, pg->uobject,
2011 pg->uanon);
2012 #ifdef UVM_PAGE_TRKOWN
2013 if (pg->flags & PG_BUSY)
2014 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2015 #endif
2016 (*pr)("\n");
2017 }
2018 }
2019 }
2020
2021 #endif /* DDB || DEBUGPRINT */
2022