uvm_page.c revision 1.157 1 /* $NetBSD: uvm_page.c,v 1.157 2010/11/06 15:42:43 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 * Copyright (c) 1991, 1993, The Regents of the University of California.
32 *
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * The Mach Operating System project at Carnegie-Mellon University.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Charles D. Cranor,
49 * Washington University, the University of California, Berkeley and
50 * its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 *
70 *
71 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Permission to use, copy, modify and distribute this software and
75 * its documentation is hereby granted, provided that both the copyright
76 * notice and this permission notice appear in all copies of the
77 * software, derivative works or modified versions, and any portions
78 * thereof, and that both notices appear in supporting documentation.
79 *
80 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 *
84 * Carnegie Mellon requests users of this software to return to
85 *
86 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 * School of Computer Science
88 * Carnegie Mellon University
89 * Pittsburgh PA 15213-3890
90 *
91 * any improvements or extensions that they make and grant Carnegie the
92 * rights to redistribute these changes.
93 */
94
95 /*
96 * uvm_page.c: page ops.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.157 2010/11/06 15:42:43 uebayasi Exp $");
101
102 #include "opt_ddb.h"
103 #include "opt_uvmhist.h"
104 #include "opt_readahead.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/malloc.h>
109 #include <sys/sched.h>
110 #include <sys/kernel.h>
111 #include <sys/vnode.h>
112 #include <sys/proc.h>
113 #include <sys/atomic.h>
114 #include <sys/cpu.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119
120 /*
121 * global vars... XXXCDC: move to uvm. structure.
122 */
123
124 /*
125 * physical memory config is stored in vm_physmem.
126 */
127
128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130
131 /*
132 * Some supported CPUs in a given architecture don't support all
133 * of the things necessary to do idle page zero'ing efficiently.
134 * We therefore provide a way to enable it from machdep code here.
135 */
136 bool vm_page_zero_enable = false;
137
138 /*
139 * number of pages per-CPU to reserve for the kernel.
140 */
141 int vm_page_reserve_kernel = 5;
142
143 /*
144 * physical memory size;
145 */
146 int physmem;
147
148 /*
149 * local variables
150 */
151
152 /*
153 * these variables record the values returned by vm_page_bootstrap,
154 * for debugging purposes. The implementation of uvm_pageboot_alloc
155 * and pmap_startup here also uses them internally.
156 */
157
158 static vaddr_t virtual_space_start;
159 static vaddr_t virtual_space_end;
160
161 /*
162 * we allocate an initial number of page colors in uvm_page_init(),
163 * and remember them. We may re-color pages as cache sizes are
164 * discovered during the autoconfiguration phase. But we can never
165 * free the initial set of buckets, since they are allocated using
166 * uvm_pageboot_alloc().
167 */
168
169 static bool have_recolored_pages /* = false */;
170
171 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
172
173 #ifdef DEBUG
174 vaddr_t uvm_zerocheckkva;
175 #endif /* DEBUG */
176
177 /*
178 * local prototypes
179 */
180
181 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
182 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
183
184 /*
185 * per-object tree of pages
186 */
187
188 static signed int
189 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
190 {
191 const struct vm_page *pg1 = n1;
192 const struct vm_page *pg2 = n2;
193 const voff_t a = pg1->offset;
194 const voff_t b = pg2->offset;
195
196 if (a < b)
197 return -1;
198 if (a > b)
199 return 1;
200 return 0;
201 }
202
203 static signed int
204 uvm_page_compare_key(void *ctx, const void *n, const void *key)
205 {
206 const struct vm_page *pg = n;
207 const voff_t a = pg->offset;
208 const voff_t b = *(const voff_t *)key;
209
210 if (a < b)
211 return -1;
212 if (a > b)
213 return 1;
214 return 0;
215 }
216
217 const rb_tree_ops_t uvm_page_tree_ops = {
218 .rbto_compare_nodes = uvm_page_compare_nodes,
219 .rbto_compare_key = uvm_page_compare_key,
220 .rbto_node_offset = offsetof(struct vm_page, rb_node),
221 .rbto_context = NULL
222 };
223
224 /*
225 * inline functions
226 */
227
228 /*
229 * uvm_pageinsert: insert a page in the object.
230 *
231 * => caller must lock object
232 * => caller must lock page queues
233 * => call should have already set pg's object and offset pointers
234 * and bumped the version counter
235 */
236
237 static inline void
238 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
239 struct vm_page *where)
240 {
241
242 KASSERT(uobj == pg->uobject);
243 KASSERT(mutex_owned(&uobj->vmobjlock));
244 KASSERT((pg->flags & PG_TABLED) == 0);
245 KASSERT(where == NULL || (where->flags & PG_TABLED));
246 KASSERT(where == NULL || (where->uobject == uobj));
247
248 if (UVM_OBJ_IS_VNODE(uobj)) {
249 if (uobj->uo_npages == 0) {
250 struct vnode *vp = (struct vnode *)uobj;
251
252 vholdl(vp);
253 }
254 if (UVM_OBJ_IS_VTEXT(uobj)) {
255 atomic_inc_uint(&uvmexp.execpages);
256 } else {
257 atomic_inc_uint(&uvmexp.filepages);
258 }
259 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
260 atomic_inc_uint(&uvmexp.anonpages);
261 }
262
263 if (where)
264 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
265 else
266 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
267 pg->flags |= PG_TABLED;
268 uobj->uo_npages++;
269 }
270
271
272 static inline void
273 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
274 {
275 struct vm_page *ret;
276
277 KASSERT(uobj == pg->uobject);
278 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
279 KASSERT(ret == pg);
280 }
281
282 static inline void
283 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
284 {
285
286 KDASSERT(uobj != NULL);
287 uvm_pageinsert_tree(uobj, pg);
288 uvm_pageinsert_list(uobj, pg, NULL);
289 }
290
291 /*
292 * uvm_page_remove: remove page from object.
293 *
294 * => caller must lock object
295 * => caller must lock page queues
296 */
297
298 static inline void
299 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
300 {
301
302 KASSERT(uobj == pg->uobject);
303 KASSERT(mutex_owned(&uobj->vmobjlock));
304 KASSERT(pg->flags & PG_TABLED);
305
306 if (UVM_OBJ_IS_VNODE(uobj)) {
307 if (uobj->uo_npages == 1) {
308 struct vnode *vp = (struct vnode *)uobj;
309
310 holdrelel(vp);
311 }
312 if (UVM_OBJ_IS_VTEXT(uobj)) {
313 atomic_dec_uint(&uvmexp.execpages);
314 } else {
315 atomic_dec_uint(&uvmexp.filepages);
316 }
317 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
318 atomic_dec_uint(&uvmexp.anonpages);
319 }
320
321 /* object should be locked */
322 uobj->uo_npages--;
323 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
324 pg->flags &= ~PG_TABLED;
325 pg->uobject = NULL;
326 }
327
328 static inline void
329 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
330 {
331
332 KASSERT(uobj == pg->uobject);
333 rb_tree_remove_node(&uobj->rb_tree, pg);
334 }
335
336 static inline void
337 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
338 {
339
340 KDASSERT(uobj != NULL);
341 uvm_pageremove_tree(uobj, pg);
342 uvm_pageremove_list(uobj, pg);
343 }
344
345 static void
346 uvm_page_init_buckets(struct pgfreelist *pgfl)
347 {
348 int color, i;
349
350 for (color = 0; color < uvmexp.ncolors; color++) {
351 for (i = 0; i < PGFL_NQUEUES; i++) {
352 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
353 }
354 }
355 }
356
357 /*
358 * uvm_page_init: init the page system. called from uvm_init().
359 *
360 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
361 */
362
363 void
364 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
365 {
366 static struct uvm_cpu boot_cpu;
367 psize_t freepages, pagecount, bucketcount, n;
368 struct pgflbucket *bucketarray, *cpuarray;
369 struct vm_page *pagearray;
370 int lcv;
371 u_int i;
372 paddr_t paddr;
373
374 KASSERT(ncpu <= 1);
375 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
376
377 /*
378 * init the page queues and page queue locks, except the free
379 * list; we allocate that later (with the initial vm_page
380 * structures).
381 */
382
383 uvm.cpus[0] = &boot_cpu;
384 curcpu()->ci_data.cpu_uvm = &boot_cpu;
385 uvm_reclaim_init();
386 uvmpdpol_init();
387 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
388 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
389
390 /*
391 * allocate vm_page structures.
392 */
393
394 /*
395 * sanity check:
396 * before calling this function the MD code is expected to register
397 * some free RAM with the uvm_page_physload() function. our job
398 * now is to allocate vm_page structures for this memory.
399 */
400
401 if (vm_nphysseg == 0)
402 panic("uvm_page_bootstrap: no memory pre-allocated");
403
404 /*
405 * first calculate the number of free pages...
406 *
407 * note that we use start/end rather than avail_start/avail_end.
408 * this allows us to allocate extra vm_page structures in case we
409 * want to return some memory to the pool after booting.
410 */
411
412 freepages = 0;
413 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
414 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
415
416 /*
417 * Let MD code initialize the number of colors, or default
418 * to 1 color if MD code doesn't care.
419 */
420 if (uvmexp.ncolors == 0)
421 uvmexp.ncolors = 1;
422 uvmexp.colormask = uvmexp.ncolors - 1;
423
424 /*
425 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
426 * use. for each page of memory we use we need a vm_page structure.
427 * thus, the total number of pages we can use is the total size of
428 * the memory divided by the PAGE_SIZE plus the size of the vm_page
429 * structure. we add one to freepages as a fudge factor to avoid
430 * truncation errors (since we can only allocate in terms of whole
431 * pages).
432 */
433
434 bucketcount = uvmexp.ncolors * VM_NFREELIST;
435 pagecount = ((freepages + 1) << PAGE_SHIFT) /
436 (PAGE_SIZE + sizeof(struct vm_page));
437
438 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
439 sizeof(struct pgflbucket) * 2) + (pagecount *
440 sizeof(struct vm_page)));
441 cpuarray = bucketarray + bucketcount;
442 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
443
444 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
445 uvm.page_free[lcv].pgfl_buckets =
446 (bucketarray + (lcv * uvmexp.ncolors));
447 uvm_page_init_buckets(&uvm.page_free[lcv]);
448 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
449 (cpuarray + (lcv * uvmexp.ncolors));
450 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
451 }
452 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
453
454 /*
455 * init the vm_page structures and put them in the correct place.
456 */
457
458 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
459 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
460
461 /* set up page array pointers */
462 vm_physmem[lcv].pgs = pagearray;
463 pagearray += n;
464 pagecount -= n;
465 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
466
467 /* init and free vm_pages (we've already zeroed them) */
468 paddr = ctob(vm_physmem[lcv].start);
469 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
470 vm_physmem[lcv].pgs[i].phys_addr = paddr;
471 #ifdef __HAVE_VM_PAGE_MD
472 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
473 #endif
474 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
475 atop(paddr) <= vm_physmem[lcv].avail_end) {
476 uvmexp.npages++;
477 /* add page to free pool */
478 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
479 }
480 }
481 }
482
483 /*
484 * pass up the values of virtual_space_start and
485 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
486 * layers of the VM.
487 */
488
489 *kvm_startp = round_page(virtual_space_start);
490 *kvm_endp = trunc_page(virtual_space_end);
491 #ifdef DEBUG
492 /*
493 * steal kva for uvm_pagezerocheck().
494 */
495 uvm_zerocheckkva = *kvm_startp;
496 *kvm_startp += PAGE_SIZE;
497 #endif /* DEBUG */
498
499 /*
500 * init various thresholds.
501 */
502
503 uvmexp.reserve_pagedaemon = 1;
504 uvmexp.reserve_kernel = vm_page_reserve_kernel;
505
506 /*
507 * determine if we should zero pages in the idle loop.
508 */
509
510 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
511
512 /*
513 * done!
514 */
515
516 uvm.page_init_done = true;
517 }
518
519 /*
520 * uvm_setpagesize: set the page size
521 *
522 * => sets page_shift and page_mask from uvmexp.pagesize.
523 */
524
525 void
526 uvm_setpagesize(void)
527 {
528
529 /*
530 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
531 * to be a constant (indicated by being a non-zero value).
532 */
533 if (uvmexp.pagesize == 0) {
534 if (PAGE_SIZE == 0)
535 panic("uvm_setpagesize: uvmexp.pagesize not set");
536 uvmexp.pagesize = PAGE_SIZE;
537 }
538 uvmexp.pagemask = uvmexp.pagesize - 1;
539 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
540 panic("uvm_setpagesize: page size not a power of two");
541 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
542 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
543 break;
544 }
545
546 /*
547 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
548 */
549
550 vaddr_t
551 uvm_pageboot_alloc(vsize_t size)
552 {
553 static bool initialized = false;
554 vaddr_t addr;
555 #if !defined(PMAP_STEAL_MEMORY)
556 vaddr_t vaddr;
557 paddr_t paddr;
558 #endif
559
560 /*
561 * on first call to this function, initialize ourselves.
562 */
563 if (initialized == false) {
564 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
565
566 /* round it the way we like it */
567 virtual_space_start = round_page(virtual_space_start);
568 virtual_space_end = trunc_page(virtual_space_end);
569
570 initialized = true;
571 }
572
573 /* round to page size */
574 size = round_page(size);
575
576 #if defined(PMAP_STEAL_MEMORY)
577
578 /*
579 * defer bootstrap allocation to MD code (it may want to allocate
580 * from a direct-mapped segment). pmap_steal_memory should adjust
581 * virtual_space_start/virtual_space_end if necessary.
582 */
583
584 addr = pmap_steal_memory(size, &virtual_space_start,
585 &virtual_space_end);
586
587 return(addr);
588
589 #else /* !PMAP_STEAL_MEMORY */
590
591 /*
592 * allocate virtual memory for this request
593 */
594 if (virtual_space_start == virtual_space_end ||
595 (virtual_space_end - virtual_space_start) < size)
596 panic("uvm_pageboot_alloc: out of virtual space");
597
598 addr = virtual_space_start;
599
600 #ifdef PMAP_GROWKERNEL
601 /*
602 * If the kernel pmap can't map the requested space,
603 * then allocate more resources for it.
604 */
605 if (uvm_maxkaddr < (addr + size)) {
606 uvm_maxkaddr = pmap_growkernel(addr + size);
607 if (uvm_maxkaddr < (addr + size))
608 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
609 }
610 #endif
611
612 virtual_space_start += size;
613
614 /*
615 * allocate and mapin physical pages to back new virtual pages
616 */
617
618 for (vaddr = round_page(addr) ; vaddr < addr + size ;
619 vaddr += PAGE_SIZE) {
620
621 if (!uvm_page_physget(&paddr))
622 panic("uvm_pageboot_alloc: out of memory");
623
624 /*
625 * Note this memory is no longer managed, so using
626 * pmap_kenter is safe.
627 */
628 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
629 }
630 pmap_update(pmap_kernel());
631 return(addr);
632 #endif /* PMAP_STEAL_MEMORY */
633 }
634
635 #if !defined(PMAP_STEAL_MEMORY)
636 /*
637 * uvm_page_physget: "steal" one page from the vm_physmem structure.
638 *
639 * => attempt to allocate it off the end of a segment in which the "avail"
640 * values match the start/end values. if we can't do that, then we
641 * will advance both values (making them equal, and removing some
642 * vm_page structures from the non-avail area).
643 * => return false if out of memory.
644 */
645
646 /* subroutine: try to allocate from memory chunks on the specified freelist */
647 static bool uvm_page_physget_freelist(paddr_t *, int);
648
649 static bool
650 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
651 {
652 int lcv, x;
653
654 /* pass 1: try allocating from a matching end */
655 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
656 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
657 #else
658 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
659 #endif
660 {
661
662 if (uvm.page_init_done == true)
663 panic("uvm_page_physget: called _after_ bootstrap");
664
665 if (vm_physmem[lcv].free_list != freelist)
666 continue;
667
668 /* try from front */
669 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
670 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
671 *paddrp = ctob(vm_physmem[lcv].avail_start);
672 vm_physmem[lcv].avail_start++;
673 vm_physmem[lcv].start++;
674 /* nothing left? nuke it */
675 if (vm_physmem[lcv].avail_start ==
676 vm_physmem[lcv].end) {
677 if (vm_nphysseg == 1)
678 panic("uvm_page_physget: out of memory!");
679 vm_nphysseg--;
680 for (x = lcv ; x < vm_nphysseg ; x++)
681 /* structure copy */
682 vm_physmem[x] = vm_physmem[x+1];
683 }
684 return (true);
685 }
686
687 /* try from rear */
688 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
689 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
690 *paddrp = ctob(vm_physmem[lcv].avail_end - 1);
691 vm_physmem[lcv].avail_end--;
692 vm_physmem[lcv].end--;
693 /* nothing left? nuke it */
694 if (vm_physmem[lcv].avail_end ==
695 vm_physmem[lcv].start) {
696 if (vm_nphysseg == 1)
697 panic("uvm_page_physget: out of memory!");
698 vm_nphysseg--;
699 for (x = lcv ; x < vm_nphysseg ; x++)
700 /* structure copy */
701 vm_physmem[x] = vm_physmem[x+1];
702 }
703 return (true);
704 }
705 }
706
707 /* pass2: forget about matching ends, just allocate something */
708 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
709 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
710 #else
711 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712 #endif
713 {
714
715 /* any room in this bank? */
716 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
717 continue; /* nope */
718
719 *paddrp = ctob(vm_physmem[lcv].avail_start);
720 vm_physmem[lcv].avail_start++;
721 /* truncate! */
722 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
723
724 /* nothing left? nuke it */
725 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
726 if (vm_nphysseg == 1)
727 panic("uvm_page_physget: out of memory!");
728 vm_nphysseg--;
729 for (x = lcv ; x < vm_nphysseg ; x++)
730 /* structure copy */
731 vm_physmem[x] = vm_physmem[x+1];
732 }
733 return (true);
734 }
735
736 return (false); /* whoops! */
737 }
738
739 bool
740 uvm_page_physget(paddr_t *paddrp)
741 {
742 int i;
743
744 /* try in the order of freelist preference */
745 for (i = 0; i < VM_NFREELIST; i++)
746 if (uvm_page_physget_freelist(paddrp, i) == true)
747 return (true);
748 return (false);
749 }
750 #endif /* PMAP_STEAL_MEMORY */
751
752 /*
753 * uvm_page_physload: load physical memory into VM system
754 *
755 * => all args are PFs
756 * => all pages in start/end get vm_page structures
757 * => areas marked by avail_start/avail_end get added to the free page pool
758 * => we are limited to VM_PHYSSEG_MAX physical memory segments
759 */
760
761 void
762 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
763 paddr_t avail_end, int free_list)
764 {
765 int preload, lcv;
766 psize_t npages;
767 struct vm_page *pgs;
768 struct vm_physseg *ps;
769
770 if (uvmexp.pagesize == 0)
771 panic("uvm_page_physload: page size not set!");
772 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
773 panic("uvm_page_physload: bad free list %d", free_list);
774 if (start >= end)
775 panic("uvm_page_physload: start >= end");
776
777 /*
778 * do we have room?
779 */
780
781 if (vm_nphysseg == VM_PHYSSEG_MAX) {
782 printf("uvm_page_physload: unable to load physical memory "
783 "segment\n");
784 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
785 VM_PHYSSEG_MAX, (long long)start, (long long)end);
786 printf("\tincrease VM_PHYSSEG_MAX\n");
787 return;
788 }
789
790 /*
791 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
792 * called yet, so malloc is not available).
793 */
794
795 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
796 if (vm_physmem[lcv].pgs)
797 break;
798 }
799 preload = (lcv == vm_nphysseg);
800
801 /*
802 * if VM is already running, attempt to malloc() vm_page structures
803 */
804
805 if (!preload) {
806 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
807 } else {
808 pgs = NULL;
809 npages = 0;
810 }
811
812 /*
813 * now insert us in the proper place in vm_physmem[]
814 */
815
816 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
817 /* random: put it at the end (easy!) */
818 ps = &vm_physmem[vm_nphysseg];
819 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
820 {
821 int x;
822 /* sort by address for binary search */
823 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
824 if (start < vm_physmem[lcv].start)
825 break;
826 ps = &vm_physmem[lcv];
827 /* move back other entries, if necessary ... */
828 for (x = vm_nphysseg ; x > lcv ; x--)
829 /* structure copy */
830 vm_physmem[x] = vm_physmem[x - 1];
831 }
832 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
833 {
834 int x;
835 /* sort by largest segment first */
836 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
837 if ((end - start) >
838 (vm_physmem[lcv].end - vm_physmem[lcv].start))
839 break;
840 ps = &vm_physmem[lcv];
841 /* move back other entries, if necessary ... */
842 for (x = vm_nphysseg ; x > lcv ; x--)
843 /* structure copy */
844 vm_physmem[x] = vm_physmem[x - 1];
845 }
846 #else
847 panic("uvm_page_physload: unknown physseg strategy selected!");
848 #endif
849
850 ps->start = start;
851 ps->end = end;
852 ps->avail_start = avail_start;
853 ps->avail_end = avail_end;
854 if (preload) {
855 ps->pgs = NULL;
856 } else {
857 ps->pgs = pgs;
858 ps->lastpg = pgs + npages - 1;
859 }
860 ps->free_list = free_list;
861 vm_nphysseg++;
862
863 if (!preload) {
864 uvmpdpol_reinit();
865 }
866 }
867
868 /*
869 * uvm_page_recolor: Recolor the pages if the new bucket count is
870 * larger than the old one.
871 */
872
873 void
874 uvm_page_recolor(int newncolors)
875 {
876 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
877 struct pgfreelist gpgfl, pgfl;
878 struct vm_page *pg;
879 vsize_t bucketcount;
880 int lcv, color, i, ocolors;
881 struct uvm_cpu *ucpu;
882
883 if (newncolors <= uvmexp.ncolors)
884 return;
885
886 if (uvm.page_init_done == false) {
887 uvmexp.ncolors = newncolors;
888 return;
889 }
890
891 bucketcount = newncolors * VM_NFREELIST;
892 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
893 M_VMPAGE, M_NOWAIT);
894 cpuarray = bucketarray + bucketcount;
895 if (bucketarray == NULL) {
896 printf("WARNING: unable to allocate %ld page color buckets\n",
897 (long) bucketcount);
898 return;
899 }
900
901 mutex_spin_enter(&uvm_fpageqlock);
902
903 /* Make sure we should still do this. */
904 if (newncolors <= uvmexp.ncolors) {
905 mutex_spin_exit(&uvm_fpageqlock);
906 free(bucketarray, M_VMPAGE);
907 return;
908 }
909
910 oldbucketarray = uvm.page_free[0].pgfl_buckets;
911 ocolors = uvmexp.ncolors;
912
913 uvmexp.ncolors = newncolors;
914 uvmexp.colormask = uvmexp.ncolors - 1;
915
916 ucpu = curcpu()->ci_data.cpu_uvm;
917 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
918 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
919 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
920 uvm_page_init_buckets(&gpgfl);
921 uvm_page_init_buckets(&pgfl);
922 for (color = 0; color < ocolors; color++) {
923 for (i = 0; i < PGFL_NQUEUES; i++) {
924 while ((pg = LIST_FIRST(&uvm.page_free[
925 lcv].pgfl_buckets[color].pgfl_queues[i]))
926 != NULL) {
927 LIST_REMOVE(pg, pageq.list); /* global */
928 LIST_REMOVE(pg, listq.list); /* cpu */
929 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
930 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
931 i], pg, pageq.list);
932 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
933 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
934 i], pg, listq.list);
935 }
936 }
937 }
938 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
939 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
940 }
941
942 if (have_recolored_pages) {
943 mutex_spin_exit(&uvm_fpageqlock);
944 free(oldbucketarray, M_VMPAGE);
945 return;
946 }
947
948 have_recolored_pages = true;
949 mutex_spin_exit(&uvm_fpageqlock);
950 }
951
952 /*
953 * uvm_cpu_attach: initialize per-CPU data structures.
954 */
955
956 void
957 uvm_cpu_attach(struct cpu_info *ci)
958 {
959 struct pgflbucket *bucketarray;
960 struct pgfreelist pgfl;
961 struct uvm_cpu *ucpu;
962 vsize_t bucketcount;
963 int lcv;
964
965 if (CPU_IS_PRIMARY(ci)) {
966 /* Already done in uvm_page_init(). */
967 return;
968 }
969
970 /* Add more reserve pages for this CPU. */
971 uvmexp.reserve_kernel += vm_page_reserve_kernel;
972
973 /* Configure this CPU's free lists. */
974 bucketcount = uvmexp.ncolors * VM_NFREELIST;
975 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
976 M_VMPAGE, M_WAITOK);
977 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
978 uvm.cpus[cpu_index(ci)] = ucpu;
979 ci->ci_data.cpu_uvm = ucpu;
980 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
981 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
982 uvm_page_init_buckets(&pgfl);
983 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
984 }
985 }
986
987 /*
988 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
989 */
990
991 static struct vm_page *
992 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
993 int *trycolorp)
994 {
995 struct pgflist *freeq;
996 struct vm_page *pg;
997 int color, trycolor = *trycolorp;
998 struct pgfreelist *gpgfl, *pgfl;
999
1000 KASSERT(mutex_owned(&uvm_fpageqlock));
1001
1002 color = trycolor;
1003 pgfl = &ucpu->page_free[flist];
1004 gpgfl = &uvm.page_free[flist];
1005 do {
1006 /* cpu, try1 */
1007 if ((pg = LIST_FIRST((freeq =
1008 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1009 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1010 uvmexp.cpuhit++;
1011 goto gotit;
1012 }
1013 /* global, try1 */
1014 if ((pg = LIST_FIRST((freeq =
1015 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1016 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1017 uvmexp.cpumiss++;
1018 goto gotit;
1019 }
1020 /* cpu, try2 */
1021 if ((pg = LIST_FIRST((freeq =
1022 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1023 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1024 uvmexp.cpuhit++;
1025 goto gotit;
1026 }
1027 /* global, try2 */
1028 if ((pg = LIST_FIRST((freeq =
1029 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1030 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1031 uvmexp.cpumiss++;
1032 goto gotit;
1033 }
1034 color = (color + 1) & uvmexp.colormask;
1035 } while (color != trycolor);
1036
1037 return (NULL);
1038
1039 gotit:
1040 LIST_REMOVE(pg, pageq.list); /* global list */
1041 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1042 uvmexp.free--;
1043
1044 /* update zero'd page count */
1045 if (pg->flags & PG_ZERO)
1046 uvmexp.zeropages--;
1047
1048 if (color == trycolor)
1049 uvmexp.colorhit++;
1050 else {
1051 uvmexp.colormiss++;
1052 *trycolorp = color;
1053 }
1054
1055 return (pg);
1056 }
1057
1058 /*
1059 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1060 *
1061 * => return null if no pages free
1062 * => wake up pagedaemon if number of free pages drops below low water mark
1063 * => if obj != NULL, obj must be locked (to put in obj's tree)
1064 * => if anon != NULL, anon must be locked (to put in anon)
1065 * => only one of obj or anon can be non-null
1066 * => caller must activate/deactivate page if it is not wired.
1067 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1068 * => policy decision: it is more important to pull a page off of the
1069 * appropriate priority free list than it is to get a zero'd or
1070 * unknown contents page. This is because we live with the
1071 * consequences of a bad free list decision for the entire
1072 * lifetime of the page, e.g. if the page comes from memory that
1073 * is slower to access.
1074 */
1075
1076 struct vm_page *
1077 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1078 int flags, int strat, int free_list)
1079 {
1080 int lcv, try1, try2, zeroit = 0, color;
1081 struct uvm_cpu *ucpu;
1082 struct vm_page *pg;
1083 lwp_t *l;
1084
1085 KASSERT(obj == NULL || anon == NULL);
1086 KASSERT(anon == NULL || off == 0);
1087 KASSERT(off == trunc_page(off));
1088 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1089 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1090
1091 mutex_spin_enter(&uvm_fpageqlock);
1092
1093 /*
1094 * This implements a global round-robin page coloring
1095 * algorithm.
1096 *
1097 * XXXJRT: What about virtually-indexed caches?
1098 */
1099
1100 ucpu = curcpu()->ci_data.cpu_uvm;
1101 color = ucpu->page_free_nextcolor;
1102
1103 /*
1104 * check to see if we need to generate some free pages waking
1105 * the pagedaemon.
1106 */
1107
1108 uvm_kick_pdaemon();
1109
1110 /*
1111 * fail if any of these conditions is true:
1112 * [1] there really are no free pages, or
1113 * [2] only kernel "reserved" pages remain and
1114 * reserved pages have not been requested.
1115 * [3] only pagedaemon "reserved" pages remain and
1116 * the requestor isn't the pagedaemon.
1117 * we make kernel reserve pages available if called by a
1118 * kernel thread or a realtime thread.
1119 */
1120 l = curlwp;
1121 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1122 flags |= UVM_PGA_USERESERVE;
1123 }
1124 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1125 (flags & UVM_PGA_USERESERVE) == 0) ||
1126 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1127 curlwp != uvm.pagedaemon_lwp))
1128 goto fail;
1129
1130 #if PGFL_NQUEUES != 2
1131 #error uvm_pagealloc_strat needs to be updated
1132 #endif
1133
1134 /*
1135 * If we want a zero'd page, try the ZEROS queue first, otherwise
1136 * we try the UNKNOWN queue first.
1137 */
1138 if (flags & UVM_PGA_ZERO) {
1139 try1 = PGFL_ZEROS;
1140 try2 = PGFL_UNKNOWN;
1141 } else {
1142 try1 = PGFL_UNKNOWN;
1143 try2 = PGFL_ZEROS;
1144 }
1145
1146 again:
1147 switch (strat) {
1148 case UVM_PGA_STRAT_NORMAL:
1149 /* Check freelists: descending priority (ascending id) order */
1150 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1151 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1152 try1, try2, &color);
1153 if (pg != NULL)
1154 goto gotit;
1155 }
1156
1157 /* No pages free! */
1158 goto fail;
1159
1160 case UVM_PGA_STRAT_ONLY:
1161 case UVM_PGA_STRAT_FALLBACK:
1162 /* Attempt to allocate from the specified free list. */
1163 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1164 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1165 try1, try2, &color);
1166 if (pg != NULL)
1167 goto gotit;
1168
1169 /* Fall back, if possible. */
1170 if (strat == UVM_PGA_STRAT_FALLBACK) {
1171 strat = UVM_PGA_STRAT_NORMAL;
1172 goto again;
1173 }
1174
1175 /* No pages free! */
1176 goto fail;
1177
1178 default:
1179 panic("uvm_pagealloc_strat: bad strat %d", strat);
1180 /* NOTREACHED */
1181 }
1182
1183 gotit:
1184 /*
1185 * We now know which color we actually allocated from; set
1186 * the next color accordingly.
1187 */
1188
1189 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1190
1191 /*
1192 * update allocation statistics and remember if we have to
1193 * zero the page
1194 */
1195
1196 if (flags & UVM_PGA_ZERO) {
1197 if (pg->flags & PG_ZERO) {
1198 uvmexp.pga_zerohit++;
1199 zeroit = 0;
1200 } else {
1201 uvmexp.pga_zeromiss++;
1202 zeroit = 1;
1203 }
1204 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1205 ucpu->page_idle_zero = vm_page_zero_enable;
1206 }
1207 }
1208 KASSERT(pg->pqflags == PQ_FREE);
1209
1210 pg->offset = off;
1211 pg->uobject = obj;
1212 pg->uanon = anon;
1213 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1214 if (anon) {
1215 anon->an_page = pg;
1216 pg->pqflags = PQ_ANON;
1217 atomic_inc_uint(&uvmexp.anonpages);
1218 } else {
1219 if (obj) {
1220 uvm_pageinsert(obj, pg);
1221 }
1222 pg->pqflags = 0;
1223 }
1224 mutex_spin_exit(&uvm_fpageqlock);
1225
1226 #if defined(UVM_PAGE_TRKOWN)
1227 pg->owner_tag = NULL;
1228 #endif
1229 UVM_PAGE_OWN(pg, "new alloc");
1230
1231 if (flags & UVM_PGA_ZERO) {
1232 /*
1233 * A zero'd page is not clean. If we got a page not already
1234 * zero'd, then we have to zero it ourselves.
1235 */
1236 pg->flags &= ~PG_CLEAN;
1237 if (zeroit)
1238 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1239 }
1240
1241 return(pg);
1242
1243 fail:
1244 mutex_spin_exit(&uvm_fpageqlock);
1245 return (NULL);
1246 }
1247
1248 /*
1249 * uvm_pagereplace: replace a page with another
1250 *
1251 * => object must be locked
1252 */
1253
1254 void
1255 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1256 {
1257 struct uvm_object *uobj = oldpg->uobject;
1258
1259 KASSERT((oldpg->flags & PG_TABLED) != 0);
1260 KASSERT(uobj != NULL);
1261 KASSERT((newpg->flags & PG_TABLED) == 0);
1262 KASSERT(newpg->uobject == NULL);
1263 KASSERT(mutex_owned(&uobj->vmobjlock));
1264
1265 newpg->uobject = uobj;
1266 newpg->offset = oldpg->offset;
1267
1268 uvm_pageremove_tree(uobj, oldpg);
1269 uvm_pageinsert_tree(uobj, newpg);
1270 uvm_pageinsert_list(uobj, newpg, oldpg);
1271 uvm_pageremove_list(uobj, oldpg);
1272 }
1273
1274 /*
1275 * uvm_pagerealloc: reallocate a page from one object to another
1276 *
1277 * => both objects must be locked
1278 */
1279
1280 void
1281 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1282 {
1283 /*
1284 * remove it from the old object
1285 */
1286
1287 if (pg->uobject) {
1288 uvm_pageremove(pg->uobject, pg);
1289 }
1290
1291 /*
1292 * put it in the new object
1293 */
1294
1295 if (newobj) {
1296 pg->uobject = newobj;
1297 pg->offset = newoff;
1298 uvm_pageinsert(newobj, pg);
1299 }
1300 }
1301
1302 #ifdef DEBUG
1303 /*
1304 * check if page is zero-filled
1305 *
1306 * - called with free page queue lock held.
1307 */
1308 void
1309 uvm_pagezerocheck(struct vm_page *pg)
1310 {
1311 int *p, *ep;
1312
1313 KASSERT(uvm_zerocheckkva != 0);
1314 KASSERT(mutex_owned(&uvm_fpageqlock));
1315
1316 /*
1317 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1318 * uvm page allocator.
1319 *
1320 * it might be better to have "CPU-local temporary map" pmap interface.
1321 */
1322 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1323 p = (int *)uvm_zerocheckkva;
1324 ep = (int *)((char *)p + PAGE_SIZE);
1325 pmap_update(pmap_kernel());
1326 while (p < ep) {
1327 if (*p != 0)
1328 panic("PG_ZERO page isn't zero-filled");
1329 p++;
1330 }
1331 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1332 /*
1333 * pmap_update() is not necessary here because no one except us
1334 * uses this VA.
1335 */
1336 }
1337 #endif /* DEBUG */
1338
1339 /*
1340 * uvm_pagefree: free page
1341 *
1342 * => erase page's identity (i.e. remove from object)
1343 * => put page on free list
1344 * => caller must lock owning object (either anon or uvm_object)
1345 * => caller must lock page queues
1346 * => assumes all valid mappings of pg are gone
1347 */
1348
1349 void
1350 uvm_pagefree(struct vm_page *pg)
1351 {
1352 struct pgflist *pgfl;
1353 struct uvm_cpu *ucpu;
1354 int index, color, queue;
1355 bool iszero;
1356
1357 #ifdef DEBUG
1358 if (pg->uobject == (void *)0xdeadbeef &&
1359 pg->uanon == (void *)0xdeadbeef) {
1360 panic("uvm_pagefree: freeing free page %p", pg);
1361 }
1362 #endif /* DEBUG */
1363
1364 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1365 KASSERT(!(pg->pqflags & PQ_FREE));
1366 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1367 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1368 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1369 mutex_owned(&pg->uanon->an_lock));
1370
1371 /*
1372 * if the page is loaned, resolve the loan instead of freeing.
1373 */
1374
1375 if (pg->loan_count) {
1376 KASSERT(pg->wire_count == 0);
1377
1378 /*
1379 * if the page is owned by an anon then we just want to
1380 * drop anon ownership. the kernel will free the page when
1381 * it is done with it. if the page is owned by an object,
1382 * remove it from the object and mark it dirty for the benefit
1383 * of possible anon owners.
1384 *
1385 * regardless of previous ownership, wakeup any waiters,
1386 * unbusy the page, and we're done.
1387 */
1388
1389 if (pg->uobject != NULL) {
1390 uvm_pageremove(pg->uobject, pg);
1391 pg->flags &= ~PG_CLEAN;
1392 } else if (pg->uanon != NULL) {
1393 if ((pg->pqflags & PQ_ANON) == 0) {
1394 pg->loan_count--;
1395 } else {
1396 pg->pqflags &= ~PQ_ANON;
1397 atomic_dec_uint(&uvmexp.anonpages);
1398 }
1399 pg->uanon->an_page = NULL;
1400 pg->uanon = NULL;
1401 }
1402 if (pg->flags & PG_WANTED) {
1403 wakeup(pg);
1404 }
1405 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1406 #ifdef UVM_PAGE_TRKOWN
1407 pg->owner_tag = NULL;
1408 #endif
1409 if (pg->loan_count) {
1410 KASSERT(pg->uobject == NULL);
1411 if (pg->uanon == NULL) {
1412 uvm_pagedequeue(pg);
1413 }
1414 return;
1415 }
1416 }
1417
1418 /*
1419 * remove page from its object or anon.
1420 */
1421
1422 if (pg->uobject != NULL) {
1423 uvm_pageremove(pg->uobject, pg);
1424 } else if (pg->uanon != NULL) {
1425 pg->uanon->an_page = NULL;
1426 atomic_dec_uint(&uvmexp.anonpages);
1427 }
1428
1429 /*
1430 * now remove the page from the queues.
1431 */
1432
1433 uvm_pagedequeue(pg);
1434
1435 /*
1436 * if the page was wired, unwire it now.
1437 */
1438
1439 if (pg->wire_count) {
1440 pg->wire_count = 0;
1441 uvmexp.wired--;
1442 }
1443
1444 /*
1445 * and put on free queue
1446 */
1447
1448 iszero = (pg->flags & PG_ZERO);
1449 index = uvm_page_lookup_freelist(pg);
1450 color = VM_PGCOLOR_BUCKET(pg);
1451 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1452
1453 #ifdef DEBUG
1454 pg->uobject = (void *)0xdeadbeef;
1455 pg->uanon = (void *)0xdeadbeef;
1456 #endif
1457
1458 mutex_spin_enter(&uvm_fpageqlock);
1459 pg->pqflags = PQ_FREE;
1460
1461 #ifdef DEBUG
1462 if (iszero)
1463 uvm_pagezerocheck(pg);
1464 #endif /* DEBUG */
1465
1466
1467 /* global list */
1468 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1469 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1470 uvmexp.free++;
1471 if (iszero) {
1472 uvmexp.zeropages++;
1473 }
1474
1475 /* per-cpu list */
1476 ucpu = curcpu()->ci_data.cpu_uvm;
1477 pg->offset = (uintptr_t)ucpu;
1478 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1479 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1480 ucpu->pages[queue]++;
1481 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1482 ucpu->page_idle_zero = vm_page_zero_enable;
1483 }
1484
1485 mutex_spin_exit(&uvm_fpageqlock);
1486 }
1487
1488 /*
1489 * uvm_page_unbusy: unbusy an array of pages.
1490 *
1491 * => pages must either all belong to the same object, or all belong to anons.
1492 * => if pages are object-owned, object must be locked.
1493 * => if pages are anon-owned, anons must be locked.
1494 * => caller must lock page queues if pages may be released.
1495 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1496 */
1497
1498 void
1499 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1500 {
1501 struct vm_page *pg;
1502 int i;
1503 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1504
1505 for (i = 0; i < npgs; i++) {
1506 pg = pgs[i];
1507 if (pg == NULL || pg == PGO_DONTCARE) {
1508 continue;
1509 }
1510
1511 KASSERT(pg->uobject == NULL ||
1512 mutex_owned(&pg->uobject->vmobjlock));
1513 KASSERT(pg->uobject != NULL ||
1514 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1515
1516 KASSERT(pg->flags & PG_BUSY);
1517 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1518 if (pg->flags & PG_WANTED) {
1519 wakeup(pg);
1520 }
1521 if (pg->flags & PG_RELEASED) {
1522 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1523 KASSERT(pg->uobject != NULL ||
1524 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1525 pg->flags &= ~PG_RELEASED;
1526 uvm_pagefree(pg);
1527 } else {
1528 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1529 KASSERT((pg->flags & PG_FAKE) == 0);
1530 pg->flags &= ~(PG_WANTED|PG_BUSY);
1531 UVM_PAGE_OWN(pg, NULL);
1532 }
1533 }
1534 }
1535
1536 #if defined(UVM_PAGE_TRKOWN)
1537 /*
1538 * uvm_page_own: set or release page ownership
1539 *
1540 * => this is a debugging function that keeps track of who sets PG_BUSY
1541 * and where they do it. it can be used to track down problems
1542 * such a process setting "PG_BUSY" and never releasing it.
1543 * => page's object [if any] must be locked
1544 * => if "tag" is NULL then we are releasing page ownership
1545 */
1546 void
1547 uvm_page_own(struct vm_page *pg, const char *tag)
1548 {
1549 struct uvm_object *uobj;
1550 struct vm_anon *anon;
1551
1552 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1553
1554 uobj = pg->uobject;
1555 anon = pg->uanon;
1556 if (uobj != NULL) {
1557 KASSERT(mutex_owned(&uobj->vmobjlock));
1558 } else if (anon != NULL) {
1559 KASSERT(mutex_owned(&anon->an_lock));
1560 }
1561
1562 KASSERT((pg->flags & PG_WANTED) == 0);
1563
1564 /* gain ownership? */
1565 if (tag) {
1566 KASSERT((pg->flags & PG_BUSY) != 0);
1567 if (pg->owner_tag) {
1568 printf("uvm_page_own: page %p already owned "
1569 "by proc %d [%s]\n", pg,
1570 pg->owner, pg->owner_tag);
1571 panic("uvm_page_own");
1572 }
1573 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1574 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1575 pg->owner_tag = tag;
1576 return;
1577 }
1578
1579 /* drop ownership */
1580 KASSERT((pg->flags & PG_BUSY) == 0);
1581 if (pg->owner_tag == NULL) {
1582 printf("uvm_page_own: dropping ownership of an non-owned "
1583 "page (%p)\n", pg);
1584 panic("uvm_page_own");
1585 }
1586 if (!uvmpdpol_pageisqueued_p(pg)) {
1587 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1588 pg->wire_count > 0);
1589 } else {
1590 KASSERT(pg->wire_count == 0);
1591 }
1592 pg->owner_tag = NULL;
1593 }
1594 #endif
1595
1596 /*
1597 * uvm_pageidlezero: zero free pages while the system is idle.
1598 *
1599 * => try to complete one color bucket at a time, to reduce our impact
1600 * on the CPU cache.
1601 * => we loop until we either reach the target or there is a lwp ready
1602 * to run, or MD code detects a reason to break early.
1603 */
1604 void
1605 uvm_pageidlezero(void)
1606 {
1607 struct vm_page *pg;
1608 struct pgfreelist *pgfl, *gpgfl;
1609 struct uvm_cpu *ucpu;
1610 int free_list, firstbucket, nextbucket;
1611
1612 ucpu = curcpu()->ci_data.cpu_uvm;
1613 if (!ucpu->page_idle_zero ||
1614 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1615 ucpu->page_idle_zero = false;
1616 return;
1617 }
1618 mutex_enter(&uvm_fpageqlock);
1619 firstbucket = ucpu->page_free_nextcolor;
1620 nextbucket = firstbucket;
1621 do {
1622 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1623 if (sched_curcpu_runnable_p()) {
1624 goto quit;
1625 }
1626 pgfl = &ucpu->page_free[free_list];
1627 gpgfl = &uvm.page_free[free_list];
1628 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1629 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1630 if (sched_curcpu_runnable_p()) {
1631 goto quit;
1632 }
1633 LIST_REMOVE(pg, pageq.list); /* global list */
1634 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1635 ucpu->pages[PGFL_UNKNOWN]--;
1636 uvmexp.free--;
1637 KASSERT(pg->pqflags == PQ_FREE);
1638 pg->pqflags = 0;
1639 mutex_spin_exit(&uvm_fpageqlock);
1640 #ifdef PMAP_PAGEIDLEZERO
1641 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1642
1643 /*
1644 * The machine-dependent code detected
1645 * some reason for us to abort zeroing
1646 * pages, probably because there is a
1647 * process now ready to run.
1648 */
1649
1650 mutex_spin_enter(&uvm_fpageqlock);
1651 pg->pqflags = PQ_FREE;
1652 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1653 nextbucket].pgfl_queues[
1654 PGFL_UNKNOWN], pg, pageq.list);
1655 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1656 nextbucket].pgfl_queues[
1657 PGFL_UNKNOWN], pg, listq.list);
1658 ucpu->pages[PGFL_UNKNOWN]++;
1659 uvmexp.free++;
1660 uvmexp.zeroaborts++;
1661 goto quit;
1662 }
1663 #else
1664 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1665 #endif /* PMAP_PAGEIDLEZERO */
1666 pg->flags |= PG_ZERO;
1667
1668 mutex_spin_enter(&uvm_fpageqlock);
1669 pg->pqflags = PQ_FREE;
1670 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1671 nextbucket].pgfl_queues[PGFL_ZEROS],
1672 pg, pageq.list);
1673 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1674 nextbucket].pgfl_queues[PGFL_ZEROS],
1675 pg, listq.list);
1676 ucpu->pages[PGFL_ZEROS]++;
1677 uvmexp.free++;
1678 uvmexp.zeropages++;
1679 }
1680 }
1681 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1682 break;
1683 }
1684 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1685 } while (nextbucket != firstbucket);
1686 ucpu->page_idle_zero = false;
1687 quit:
1688 mutex_spin_exit(&uvm_fpageqlock);
1689 }
1690
1691 /*
1692 * uvm_pagelookup: look up a page
1693 *
1694 * => caller should lock object to keep someone from pulling the page
1695 * out from under it
1696 */
1697
1698 struct vm_page *
1699 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1700 {
1701 struct vm_page *pg;
1702
1703 KASSERT(mutex_owned(&obj->vmobjlock));
1704
1705 pg = rb_tree_find_node(&obj->rb_tree, &off);
1706
1707 KASSERT(pg == NULL || obj->uo_npages != 0);
1708 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1709 (pg->flags & PG_BUSY) != 0);
1710 return pg;
1711 }
1712
1713 /*
1714 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1715 *
1716 * => caller must lock page queues
1717 */
1718
1719 void
1720 uvm_pagewire(struct vm_page *pg)
1721 {
1722 KASSERT(mutex_owned(&uvm_pageqlock));
1723 #if defined(READAHEAD_STATS)
1724 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1725 uvm_ra_hit.ev_count++;
1726 pg->pqflags &= ~PQ_READAHEAD;
1727 }
1728 #endif /* defined(READAHEAD_STATS) */
1729 if (pg->wire_count == 0) {
1730 uvm_pagedequeue(pg);
1731 uvmexp.wired++;
1732 }
1733 pg->wire_count++;
1734 }
1735
1736 /*
1737 * uvm_pageunwire: unwire the page.
1738 *
1739 * => activate if wire count goes to zero.
1740 * => caller must lock page queues
1741 */
1742
1743 void
1744 uvm_pageunwire(struct vm_page *pg)
1745 {
1746 KASSERT(mutex_owned(&uvm_pageqlock));
1747 pg->wire_count--;
1748 if (pg->wire_count == 0) {
1749 uvm_pageactivate(pg);
1750 uvmexp.wired--;
1751 }
1752 }
1753
1754 /*
1755 * uvm_pagedeactivate: deactivate page
1756 *
1757 * => caller must lock page queues
1758 * => caller must check to make sure page is not wired
1759 * => object that page belongs to must be locked (so we can adjust pg->flags)
1760 * => caller must clear the reference on the page before calling
1761 */
1762
1763 void
1764 uvm_pagedeactivate(struct vm_page *pg)
1765 {
1766
1767 KASSERT(mutex_owned(&uvm_pageqlock));
1768 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1769 uvmpdpol_pagedeactivate(pg);
1770 }
1771
1772 /*
1773 * uvm_pageactivate: activate page
1774 *
1775 * => caller must lock page queues
1776 */
1777
1778 void
1779 uvm_pageactivate(struct vm_page *pg)
1780 {
1781
1782 KASSERT(mutex_owned(&uvm_pageqlock));
1783 #if defined(READAHEAD_STATS)
1784 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1785 uvm_ra_hit.ev_count++;
1786 pg->pqflags &= ~PQ_READAHEAD;
1787 }
1788 #endif /* defined(READAHEAD_STATS) */
1789 if (pg->wire_count != 0) {
1790 return;
1791 }
1792 uvmpdpol_pageactivate(pg);
1793 }
1794
1795 /*
1796 * uvm_pagedequeue: remove a page from any paging queue
1797 */
1798
1799 void
1800 uvm_pagedequeue(struct vm_page *pg)
1801 {
1802
1803 if (uvmpdpol_pageisqueued_p(pg)) {
1804 KASSERT(mutex_owned(&uvm_pageqlock));
1805 }
1806
1807 uvmpdpol_pagedequeue(pg);
1808 }
1809
1810 /*
1811 * uvm_pageenqueue: add a page to a paging queue without activating.
1812 * used where a page is not really demanded (yet). eg. read-ahead
1813 */
1814
1815 void
1816 uvm_pageenqueue(struct vm_page *pg)
1817 {
1818
1819 KASSERT(mutex_owned(&uvm_pageqlock));
1820 if (pg->wire_count != 0) {
1821 return;
1822 }
1823 uvmpdpol_pageenqueue(pg);
1824 }
1825
1826 /*
1827 * uvm_pagezero: zero fill a page
1828 *
1829 * => if page is part of an object then the object should be locked
1830 * to protect pg->flags.
1831 */
1832
1833 void
1834 uvm_pagezero(struct vm_page *pg)
1835 {
1836 pg->flags &= ~PG_CLEAN;
1837 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1838 }
1839
1840 /*
1841 * uvm_pagecopy: copy a page
1842 *
1843 * => if page is part of an object then the object should be locked
1844 * to protect pg->flags.
1845 */
1846
1847 void
1848 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1849 {
1850
1851 dst->flags &= ~PG_CLEAN;
1852 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1853 }
1854
1855 /*
1856 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1857 */
1858
1859 bool
1860 uvm_pageismanaged(paddr_t pa)
1861 {
1862
1863 return (vm_physseg_find(atop(pa), NULL) != -1);
1864 }
1865
1866 /*
1867 * uvm_page_lookup_freelist: look up the free list for the specified page
1868 */
1869
1870 int
1871 uvm_page_lookup_freelist(struct vm_page *pg)
1872 {
1873 int lcv;
1874
1875 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1876 KASSERT(lcv != -1);
1877 return (vm_physmem[lcv].free_list);
1878 }
1879
1880 #if defined(DDB) || defined(DEBUGPRINT)
1881
1882 /*
1883 * uvm_page_printit: actually print the page
1884 */
1885
1886 static const char page_flagbits[] = UVM_PGFLAGBITS;
1887 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1888
1889 void
1890 uvm_page_printit(struct vm_page *pg, bool full,
1891 void (*pr)(const char *, ...))
1892 {
1893 struct vm_page *tpg;
1894 struct uvm_object *uobj;
1895 struct pgflist *pgl;
1896 char pgbuf[128];
1897 char pqbuf[128];
1898
1899 (*pr)("PAGE %p:\n", pg);
1900 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1901 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1902 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1903 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1904 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1905 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1906 #if defined(UVM_PAGE_TRKOWN)
1907 if (pg->flags & PG_BUSY)
1908 (*pr)(" owning process = %d, tag=%s\n",
1909 pg->owner, pg->owner_tag);
1910 else
1911 (*pr)(" page not busy, no owner\n");
1912 #else
1913 (*pr)(" [page ownership tracking disabled]\n");
1914 #endif
1915
1916 if (!full)
1917 return;
1918
1919 /* cross-verify object/anon */
1920 if ((pg->pqflags & PQ_FREE) == 0) {
1921 if (pg->pqflags & PQ_ANON) {
1922 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1923 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1924 (pg->uanon) ? pg->uanon->an_page : NULL);
1925 else
1926 (*pr)(" anon backpointer is OK\n");
1927 } else {
1928 uobj = pg->uobject;
1929 if (uobj) {
1930 (*pr)(" checking object list\n");
1931 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1932 if (tpg == pg) {
1933 break;
1934 }
1935 }
1936 if (tpg)
1937 (*pr)(" page found on object list\n");
1938 else
1939 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1940 }
1941 }
1942 }
1943
1944 /* cross-verify page queue */
1945 if (pg->pqflags & PQ_FREE) {
1946 int fl = uvm_page_lookup_freelist(pg);
1947 int color = VM_PGCOLOR_BUCKET(pg);
1948 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1949 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1950 } else {
1951 pgl = NULL;
1952 }
1953
1954 if (pgl) {
1955 (*pr)(" checking pageq list\n");
1956 LIST_FOREACH(tpg, pgl, pageq.list) {
1957 if (tpg == pg) {
1958 break;
1959 }
1960 }
1961 if (tpg)
1962 (*pr)(" page found on pageq list\n");
1963 else
1964 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1965 }
1966 }
1967
1968 /*
1969 * uvm_pages_printthem - print a summary of all managed pages
1970 */
1971
1972 void
1973 uvm_page_printall(void (*pr)(const char *, ...))
1974 {
1975 unsigned i;
1976 struct vm_page *pg;
1977
1978 (*pr)("%18s %4s %4s %18s %18s"
1979 #ifdef UVM_PAGE_TRKOWN
1980 " OWNER"
1981 #endif
1982 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1983 for (i = 0; i < vm_nphysseg; i++) {
1984 for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
1985 (*pr)("%18p %04x %04x %18p %18p",
1986 pg, pg->flags, pg->pqflags, pg->uobject,
1987 pg->uanon);
1988 #ifdef UVM_PAGE_TRKOWN
1989 if (pg->flags & PG_BUSY)
1990 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1991 #endif
1992 (*pr)("\n");
1993 }
1994 }
1995 }
1996
1997 #endif /* DDB || DEBUGPRINT */
1998