uvm_page.c revision 1.158 1 /* $NetBSD: uvm_page.c,v 1.158 2010/11/11 14:50:54 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 * Copyright (c) 1991, 1993, The Regents of the University of California.
32 *
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * The Mach Operating System project at Carnegie-Mellon University.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Charles D. Cranor,
49 * Washington University, the University of California, Berkeley and
50 * its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 *
70 *
71 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Permission to use, copy, modify and distribute this software and
75 * its documentation is hereby granted, provided that both the copyright
76 * notice and this permission notice appear in all copies of the
77 * software, derivative works or modified versions, and any portions
78 * thereof, and that both notices appear in supporting documentation.
79 *
80 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 *
84 * Carnegie Mellon requests users of this software to return to
85 *
86 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 * School of Computer Science
88 * Carnegie Mellon University
89 * Pittsburgh PA 15213-3890
90 *
91 * any improvements or extensions that they make and grant Carnegie the
92 * rights to redistribute these changes.
93 */
94
95 /*
96 * uvm_page.c: page ops.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.158 2010/11/11 14:50:54 uebayasi Exp $");
101
102 #include "opt_ddb.h"
103 #include "opt_uvmhist.h"
104 #include "opt_readahead.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/malloc.h>
109 #include <sys/sched.h>
110 #include <sys/kernel.h>
111 #include <sys/vnode.h>
112 #include <sys/proc.h>
113 #include <sys/atomic.h>
114 #include <sys/cpu.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119
120 /*
121 * global vars... XXXCDC: move to uvm. structure.
122 */
123
124 /*
125 * physical memory config is stored in vm_physmem.
126 */
127
128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130 #define vm_nphysmem vm_nphysseg
131
132 /*
133 * Some supported CPUs in a given architecture don't support all
134 * of the things necessary to do idle page zero'ing efficiently.
135 * We therefore provide a way to enable it from machdep code here.
136 */
137 bool vm_page_zero_enable = false;
138
139 /*
140 * number of pages per-CPU to reserve for the kernel.
141 */
142 int vm_page_reserve_kernel = 5;
143
144 /*
145 * physical memory size;
146 */
147 int physmem;
148
149 /*
150 * local variables
151 */
152
153 /*
154 * these variables record the values returned by vm_page_bootstrap,
155 * for debugging purposes. The implementation of uvm_pageboot_alloc
156 * and pmap_startup here also uses them internally.
157 */
158
159 static vaddr_t virtual_space_start;
160 static vaddr_t virtual_space_end;
161
162 /*
163 * we allocate an initial number of page colors in uvm_page_init(),
164 * and remember them. We may re-color pages as cache sizes are
165 * discovered during the autoconfiguration phase. But we can never
166 * free the initial set of buckets, since they are allocated using
167 * uvm_pageboot_alloc().
168 */
169
170 static bool have_recolored_pages /* = false */;
171
172 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
173
174 #ifdef DEBUG
175 vaddr_t uvm_zerocheckkva;
176 #endif /* DEBUG */
177
178 /*
179 * local prototypes
180 */
181
182 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
183 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
184
185 /*
186 * per-object tree of pages
187 */
188
189 static signed int
190 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
191 {
192 const struct vm_page *pg1 = n1;
193 const struct vm_page *pg2 = n2;
194 const voff_t a = pg1->offset;
195 const voff_t b = pg2->offset;
196
197 if (a < b)
198 return -1;
199 if (a > b)
200 return 1;
201 return 0;
202 }
203
204 static signed int
205 uvm_page_compare_key(void *ctx, const void *n, const void *key)
206 {
207 const struct vm_page *pg = n;
208 const voff_t a = pg->offset;
209 const voff_t b = *(const voff_t *)key;
210
211 if (a < b)
212 return -1;
213 if (a > b)
214 return 1;
215 return 0;
216 }
217
218 const rb_tree_ops_t uvm_page_tree_ops = {
219 .rbto_compare_nodes = uvm_page_compare_nodes,
220 .rbto_compare_key = uvm_page_compare_key,
221 .rbto_node_offset = offsetof(struct vm_page, rb_node),
222 .rbto_context = NULL
223 };
224
225 /*
226 * inline functions
227 */
228
229 /*
230 * uvm_pageinsert: insert a page in the object.
231 *
232 * => caller must lock object
233 * => caller must lock page queues
234 * => call should have already set pg's object and offset pointers
235 * and bumped the version counter
236 */
237
238 static inline void
239 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
240 struct vm_page *where)
241 {
242
243 KASSERT(uobj == pg->uobject);
244 KASSERT(mutex_owned(&uobj->vmobjlock));
245 KASSERT((pg->flags & PG_TABLED) == 0);
246 KASSERT(where == NULL || (where->flags & PG_TABLED));
247 KASSERT(where == NULL || (where->uobject == uobj));
248
249 if (UVM_OBJ_IS_VNODE(uobj)) {
250 if (uobj->uo_npages == 0) {
251 struct vnode *vp = (struct vnode *)uobj;
252
253 vholdl(vp);
254 }
255 if (UVM_OBJ_IS_VTEXT(uobj)) {
256 atomic_inc_uint(&uvmexp.execpages);
257 } else {
258 atomic_inc_uint(&uvmexp.filepages);
259 }
260 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
261 atomic_inc_uint(&uvmexp.anonpages);
262 }
263
264 if (where)
265 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
266 else
267 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
268 pg->flags |= PG_TABLED;
269 uobj->uo_npages++;
270 }
271
272
273 static inline void
274 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
275 {
276 struct vm_page *ret;
277
278 KASSERT(uobj == pg->uobject);
279 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
280 KASSERT(ret == pg);
281 }
282
283 static inline void
284 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
285 {
286
287 KDASSERT(uobj != NULL);
288 uvm_pageinsert_tree(uobj, pg);
289 uvm_pageinsert_list(uobj, pg, NULL);
290 }
291
292 /*
293 * uvm_page_remove: remove page from object.
294 *
295 * => caller must lock object
296 * => caller must lock page queues
297 */
298
299 static inline void
300 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
301 {
302
303 KASSERT(uobj == pg->uobject);
304 KASSERT(mutex_owned(&uobj->vmobjlock));
305 KASSERT(pg->flags & PG_TABLED);
306
307 if (UVM_OBJ_IS_VNODE(uobj)) {
308 if (uobj->uo_npages == 1) {
309 struct vnode *vp = (struct vnode *)uobj;
310
311 holdrelel(vp);
312 }
313 if (UVM_OBJ_IS_VTEXT(uobj)) {
314 atomic_dec_uint(&uvmexp.execpages);
315 } else {
316 atomic_dec_uint(&uvmexp.filepages);
317 }
318 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
319 atomic_dec_uint(&uvmexp.anonpages);
320 }
321
322 /* object should be locked */
323 uobj->uo_npages--;
324 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
325 pg->flags &= ~PG_TABLED;
326 pg->uobject = NULL;
327 }
328
329 static inline void
330 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
331 {
332
333 KASSERT(uobj == pg->uobject);
334 rb_tree_remove_node(&uobj->rb_tree, pg);
335 }
336
337 static inline void
338 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
339 {
340
341 KDASSERT(uobj != NULL);
342 uvm_pageremove_tree(uobj, pg);
343 uvm_pageremove_list(uobj, pg);
344 }
345
346 static void
347 uvm_page_init_buckets(struct pgfreelist *pgfl)
348 {
349 int color, i;
350
351 for (color = 0; color < uvmexp.ncolors; color++) {
352 for (i = 0; i < PGFL_NQUEUES; i++) {
353 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
354 }
355 }
356 }
357
358 /*
359 * uvm_page_init: init the page system. called from uvm_init().
360 *
361 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
362 */
363
364 void
365 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
366 {
367 static struct uvm_cpu boot_cpu;
368 psize_t freepages, pagecount, bucketcount, n;
369 struct pgflbucket *bucketarray, *cpuarray;
370 struct vm_page *pagearray;
371 struct vm_physseg *seg;
372 int lcv;
373 u_int i;
374 paddr_t paddr;
375
376 KASSERT(ncpu <= 1);
377 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
378
379 /*
380 * init the page queues and page queue locks, except the free
381 * list; we allocate that later (with the initial vm_page
382 * structures).
383 */
384
385 uvm.cpus[0] = &boot_cpu;
386 curcpu()->ci_data.cpu_uvm = &boot_cpu;
387 uvm_reclaim_init();
388 uvmpdpol_init();
389 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
390 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
391
392 /*
393 * allocate vm_page structures.
394 */
395
396 /*
397 * sanity check:
398 * before calling this function the MD code is expected to register
399 * some free RAM with the uvm_page_physload() function. our job
400 * now is to allocate vm_page structures for this memory.
401 */
402
403 if (vm_nphysmem == 0)
404 panic("uvm_page_bootstrap: no memory pre-allocated");
405
406 /*
407 * first calculate the number of free pages...
408 *
409 * note that we use start/end rather than avail_start/avail_end.
410 * this allows us to allocate extra vm_page structures in case we
411 * want to return some memory to the pool after booting.
412 */
413
414 freepages = 0;
415 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
416 seg = VM_PHYSMEM_PTR(lcv);
417 freepages += (seg->end - seg->start);
418 }
419
420 /*
421 * Let MD code initialize the number of colors, or default
422 * to 1 color if MD code doesn't care.
423 */
424 if (uvmexp.ncolors == 0)
425 uvmexp.ncolors = 1;
426 uvmexp.colormask = uvmexp.ncolors - 1;
427
428 /*
429 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
430 * use. for each page of memory we use we need a vm_page structure.
431 * thus, the total number of pages we can use is the total size of
432 * the memory divided by the PAGE_SIZE plus the size of the vm_page
433 * structure. we add one to freepages as a fudge factor to avoid
434 * truncation errors (since we can only allocate in terms of whole
435 * pages).
436 */
437
438 bucketcount = uvmexp.ncolors * VM_NFREELIST;
439 pagecount = ((freepages + 1) << PAGE_SHIFT) /
440 (PAGE_SIZE + sizeof(struct vm_page));
441
442 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
443 sizeof(struct pgflbucket) * 2) + (pagecount *
444 sizeof(struct vm_page)));
445 cpuarray = bucketarray + bucketcount;
446 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
447
448 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
449 uvm.page_free[lcv].pgfl_buckets =
450 (bucketarray + (lcv * uvmexp.ncolors));
451 uvm_page_init_buckets(&uvm.page_free[lcv]);
452 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
453 (cpuarray + (lcv * uvmexp.ncolors));
454 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
455 }
456 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
457
458 /*
459 * init the vm_page structures and put them in the correct place.
460 */
461
462 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
463 seg = VM_PHYSMEM_PTR(lcv);
464 n = seg->end - seg->start;
465
466 /* set up page array pointers */
467 seg->pgs = pagearray;
468 pagearray += n;
469 pagecount -= n;
470 seg->lastpg = seg->pgs + (n - 1);
471
472 /* init and free vm_pages (we've already zeroed them) */
473 paddr = ctob(seg->start);
474 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
475 seg->pgs[i].phys_addr = paddr;
476 #ifdef __HAVE_VM_PAGE_MD
477 VM_MDPAGE_INIT(&seg->pgs[i]);
478 #endif
479 if (atop(paddr) >= seg->avail_start &&
480 atop(paddr) <= seg->avail_end) {
481 uvmexp.npages++;
482 /* add page to free pool */
483 uvm_pagefree(&seg->pgs[i]);
484 }
485 }
486 }
487
488 /*
489 * pass up the values of virtual_space_start and
490 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
491 * layers of the VM.
492 */
493
494 *kvm_startp = round_page(virtual_space_start);
495 *kvm_endp = trunc_page(virtual_space_end);
496 #ifdef DEBUG
497 /*
498 * steal kva for uvm_pagezerocheck().
499 */
500 uvm_zerocheckkva = *kvm_startp;
501 *kvm_startp += PAGE_SIZE;
502 #endif /* DEBUG */
503
504 /*
505 * init various thresholds.
506 */
507
508 uvmexp.reserve_pagedaemon = 1;
509 uvmexp.reserve_kernel = vm_page_reserve_kernel;
510
511 /*
512 * determine if we should zero pages in the idle loop.
513 */
514
515 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
516
517 /*
518 * done!
519 */
520
521 uvm.page_init_done = true;
522 }
523
524 /*
525 * uvm_setpagesize: set the page size
526 *
527 * => sets page_shift and page_mask from uvmexp.pagesize.
528 */
529
530 void
531 uvm_setpagesize(void)
532 {
533
534 /*
535 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
536 * to be a constant (indicated by being a non-zero value).
537 */
538 if (uvmexp.pagesize == 0) {
539 if (PAGE_SIZE == 0)
540 panic("uvm_setpagesize: uvmexp.pagesize not set");
541 uvmexp.pagesize = PAGE_SIZE;
542 }
543 uvmexp.pagemask = uvmexp.pagesize - 1;
544 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
545 panic("uvm_setpagesize: page size not a power of two");
546 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
547 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
548 break;
549 }
550
551 /*
552 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
553 */
554
555 vaddr_t
556 uvm_pageboot_alloc(vsize_t size)
557 {
558 static bool initialized = false;
559 vaddr_t addr;
560 #if !defined(PMAP_STEAL_MEMORY)
561 vaddr_t vaddr;
562 paddr_t paddr;
563 #endif
564
565 /*
566 * on first call to this function, initialize ourselves.
567 */
568 if (initialized == false) {
569 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
570
571 /* round it the way we like it */
572 virtual_space_start = round_page(virtual_space_start);
573 virtual_space_end = trunc_page(virtual_space_end);
574
575 initialized = true;
576 }
577
578 /* round to page size */
579 size = round_page(size);
580
581 #if defined(PMAP_STEAL_MEMORY)
582
583 /*
584 * defer bootstrap allocation to MD code (it may want to allocate
585 * from a direct-mapped segment). pmap_steal_memory should adjust
586 * virtual_space_start/virtual_space_end if necessary.
587 */
588
589 addr = pmap_steal_memory(size, &virtual_space_start,
590 &virtual_space_end);
591
592 return(addr);
593
594 #else /* !PMAP_STEAL_MEMORY */
595
596 /*
597 * allocate virtual memory for this request
598 */
599 if (virtual_space_start == virtual_space_end ||
600 (virtual_space_end - virtual_space_start) < size)
601 panic("uvm_pageboot_alloc: out of virtual space");
602
603 addr = virtual_space_start;
604
605 #ifdef PMAP_GROWKERNEL
606 /*
607 * If the kernel pmap can't map the requested space,
608 * then allocate more resources for it.
609 */
610 if (uvm_maxkaddr < (addr + size)) {
611 uvm_maxkaddr = pmap_growkernel(addr + size);
612 if (uvm_maxkaddr < (addr + size))
613 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
614 }
615 #endif
616
617 virtual_space_start += size;
618
619 /*
620 * allocate and mapin physical pages to back new virtual pages
621 */
622
623 for (vaddr = round_page(addr) ; vaddr < addr + size ;
624 vaddr += PAGE_SIZE) {
625
626 if (!uvm_page_physget(&paddr))
627 panic("uvm_pageboot_alloc: out of memory");
628
629 /*
630 * Note this memory is no longer managed, so using
631 * pmap_kenter is safe.
632 */
633 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
634 }
635 pmap_update(pmap_kernel());
636 return(addr);
637 #endif /* PMAP_STEAL_MEMORY */
638 }
639
640 #if !defined(PMAP_STEAL_MEMORY)
641 /*
642 * uvm_page_physget: "steal" one page from the vm_physmem structure.
643 *
644 * => attempt to allocate it off the end of a segment in which the "avail"
645 * values match the start/end values. if we can't do that, then we
646 * will advance both values (making them equal, and removing some
647 * vm_page structures from the non-avail area).
648 * => return false if out of memory.
649 */
650
651 /* subroutine: try to allocate from memory chunks on the specified freelist */
652 static bool uvm_page_physget_freelist(paddr_t *, int);
653
654 static bool
655 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
656 {
657 int lcv, x;
658
659 /* pass 1: try allocating from a matching end */
660 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
661 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
662 #else
663 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
664 #endif
665 {
666
667 if (uvm.page_init_done == true)
668 panic("uvm_page_physget: called _after_ bootstrap");
669
670 if (vm_physmem[lcv].free_list != freelist)
671 continue;
672
673 /* try from front */
674 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
675 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
676 *paddrp = ctob(vm_physmem[lcv].avail_start);
677 vm_physmem[lcv].avail_start++;
678 vm_physmem[lcv].start++;
679 /* nothing left? nuke it */
680 if (vm_physmem[lcv].avail_start ==
681 vm_physmem[lcv].end) {
682 if (vm_nphysmem == 1)
683 panic("uvm_page_physget: out of memory!");
684 vm_nphysmem--;
685 for (x = lcv ; x < vm_nphysmem ; x++)
686 /* structure copy */
687 VM_PHYSMEM_PTR_SWAP(x, x + 1);
688 }
689 return (true);
690 }
691
692 /* try from rear */
693 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
694 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
695 *paddrp = ctob(vm_physmem[lcv].avail_end - 1);
696 vm_physmem[lcv].avail_end--;
697 vm_physmem[lcv].end--;
698 /* nothing left? nuke it */
699 if (vm_physmem[lcv].avail_end ==
700 vm_physmem[lcv].start) {
701 if (vm_nphysmem == 1)
702 panic("uvm_page_physget: out of memory!");
703 vm_nphysmem--;
704 for (x = lcv ; x < vm_nphysmem ; x++)
705 /* structure copy */
706 VM_PHYSMEM_PTR_SWAP(x, x + 1);
707 }
708 return (true);
709 }
710 }
711
712 /* pass2: forget about matching ends, just allocate something */
713 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
714 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
715 #else
716 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
717 #endif
718 {
719
720 /* any room in this bank? */
721 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
722 continue; /* nope */
723
724 *paddrp = ctob(vm_physmem[lcv].avail_start);
725 vm_physmem[lcv].avail_start++;
726 /* truncate! */
727 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
728
729 /* nothing left? nuke it */
730 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
731 if (vm_nphysmem == 1)
732 panic("uvm_page_physget: out of memory!");
733 vm_nphysmem--;
734 for (x = lcv ; x < vm_nphysmem ; x++)
735 /* structure copy */
736 VM_PHYSMEM_PTR_SWAP(x, x + 1);
737 }
738 return (true);
739 }
740
741 return (false); /* whoops! */
742 }
743
744 bool
745 uvm_page_physget(paddr_t *paddrp)
746 {
747 int i;
748
749 /* try in the order of freelist preference */
750 for (i = 0; i < VM_NFREELIST; i++)
751 if (uvm_page_physget_freelist(paddrp, i) == true)
752 return (true);
753 return (false);
754 }
755 #endif /* PMAP_STEAL_MEMORY */
756
757 /*
758 * uvm_page_physload: load physical memory into VM system
759 *
760 * => all args are PFs
761 * => all pages in start/end get vm_page structures
762 * => areas marked by avail_start/avail_end get added to the free page pool
763 * => we are limited to VM_PHYSSEG_MAX physical memory segments
764 */
765
766 void
767 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
768 paddr_t avail_end, int free_list)
769 {
770 int preload, lcv;
771 psize_t npages;
772 struct vm_page *pgs;
773 struct vm_physseg *ps;
774
775 if (uvmexp.pagesize == 0)
776 panic("uvm_page_physload: page size not set!");
777 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
778 panic("uvm_page_physload: bad free list %d", free_list);
779 if (start >= end)
780 panic("uvm_page_physload: start >= end");
781
782 /*
783 * do we have room?
784 */
785
786 if (vm_nphysmem == VM_PHYSSEG_MAX) {
787 printf("uvm_page_physload: unable to load physical memory "
788 "segment\n");
789 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
790 VM_PHYSSEG_MAX, (long long)start, (long long)end);
791 printf("\tincrease VM_PHYSSEG_MAX\n");
792 return;
793 }
794
795 /*
796 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
797 * called yet, so malloc is not available).
798 */
799
800 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
801 if (vm_physmem[lcv].pgs)
802 break;
803 }
804 preload = (lcv == vm_nphysmem);
805
806 /*
807 * if VM is already running, attempt to malloc() vm_page structures
808 */
809
810 if (!preload) {
811 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
812 } else {
813 pgs = NULL;
814 npages = 0;
815 }
816
817 /*
818 * now insert us in the proper place in vm_physmem[]
819 */
820
821 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
822 /* random: put it at the end (easy!) */
823 ps = &vm_physmem[vm_nphysmem];
824 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
825 {
826 int x;
827 /* sort by address for binary search */
828 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
829 if (start < vm_physmem[lcv].start)
830 break;
831 ps = &vm_physmem[lcv];
832 /* move back other entries, if necessary ... */
833 for (x = vm_nphysmem ; x > lcv ; x--)
834 /* structure copy */
835 VM_PHYSMEM_PTR_SWAP(x, x - 1);
836 }
837 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
838 {
839 int x;
840 /* sort by largest segment first */
841 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
842 if ((end - start) >
843 (vm_physmem[lcv].end - vm_physmem[lcv].start))
844 break;
845 ps = &vm_physmem[lcv];
846 /* move back other entries, if necessary ... */
847 for (x = vm_nphysmem ; x > lcv ; x--)
848 /* structure copy */
849 VM_PHYSMEM_PTR_SWAP(x, x - 1);
850 }
851 #else
852 panic("uvm_page_physload: unknown physseg strategy selected!");
853 #endif
854
855 ps->start = start;
856 ps->end = end;
857 ps->avail_start = avail_start;
858 ps->avail_end = avail_end;
859 if (preload) {
860 ps->pgs = NULL;
861 } else {
862 ps->pgs = pgs;
863 ps->lastpg = pgs + npages - 1;
864 }
865 ps->free_list = free_list;
866 vm_nphysmem++;
867
868 if (!preload) {
869 uvmpdpol_reinit();
870 }
871 }
872
873 /*
874 * uvm_page_recolor: Recolor the pages if the new bucket count is
875 * larger than the old one.
876 */
877
878 void
879 uvm_page_recolor(int newncolors)
880 {
881 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
882 struct pgfreelist gpgfl, pgfl;
883 struct vm_page *pg;
884 vsize_t bucketcount;
885 int lcv, color, i, ocolors;
886 struct uvm_cpu *ucpu;
887
888 if (newncolors <= uvmexp.ncolors)
889 return;
890
891 if (uvm.page_init_done == false) {
892 uvmexp.ncolors = newncolors;
893 return;
894 }
895
896 bucketcount = newncolors * VM_NFREELIST;
897 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
898 M_VMPAGE, M_NOWAIT);
899 cpuarray = bucketarray + bucketcount;
900 if (bucketarray == NULL) {
901 printf("WARNING: unable to allocate %ld page color buckets\n",
902 (long) bucketcount);
903 return;
904 }
905
906 mutex_spin_enter(&uvm_fpageqlock);
907
908 /* Make sure we should still do this. */
909 if (newncolors <= uvmexp.ncolors) {
910 mutex_spin_exit(&uvm_fpageqlock);
911 free(bucketarray, M_VMPAGE);
912 return;
913 }
914
915 oldbucketarray = uvm.page_free[0].pgfl_buckets;
916 ocolors = uvmexp.ncolors;
917
918 uvmexp.ncolors = newncolors;
919 uvmexp.colormask = uvmexp.ncolors - 1;
920
921 ucpu = curcpu()->ci_data.cpu_uvm;
922 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
923 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
924 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
925 uvm_page_init_buckets(&gpgfl);
926 uvm_page_init_buckets(&pgfl);
927 for (color = 0; color < ocolors; color++) {
928 for (i = 0; i < PGFL_NQUEUES; i++) {
929 while ((pg = LIST_FIRST(&uvm.page_free[
930 lcv].pgfl_buckets[color].pgfl_queues[i]))
931 != NULL) {
932 LIST_REMOVE(pg, pageq.list); /* global */
933 LIST_REMOVE(pg, listq.list); /* cpu */
934 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
935 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
936 i], pg, pageq.list);
937 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
938 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
939 i], pg, listq.list);
940 }
941 }
942 }
943 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
944 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
945 }
946
947 if (have_recolored_pages) {
948 mutex_spin_exit(&uvm_fpageqlock);
949 free(oldbucketarray, M_VMPAGE);
950 return;
951 }
952
953 have_recolored_pages = true;
954 mutex_spin_exit(&uvm_fpageqlock);
955 }
956
957 /*
958 * uvm_cpu_attach: initialize per-CPU data structures.
959 */
960
961 void
962 uvm_cpu_attach(struct cpu_info *ci)
963 {
964 struct pgflbucket *bucketarray;
965 struct pgfreelist pgfl;
966 struct uvm_cpu *ucpu;
967 vsize_t bucketcount;
968 int lcv;
969
970 if (CPU_IS_PRIMARY(ci)) {
971 /* Already done in uvm_page_init(). */
972 return;
973 }
974
975 /* Add more reserve pages for this CPU. */
976 uvmexp.reserve_kernel += vm_page_reserve_kernel;
977
978 /* Configure this CPU's free lists. */
979 bucketcount = uvmexp.ncolors * VM_NFREELIST;
980 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
981 M_VMPAGE, M_WAITOK);
982 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
983 uvm.cpus[cpu_index(ci)] = ucpu;
984 ci->ci_data.cpu_uvm = ucpu;
985 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
986 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
987 uvm_page_init_buckets(&pgfl);
988 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
989 }
990 }
991
992 /*
993 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
994 */
995
996 static struct vm_page *
997 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
998 int *trycolorp)
999 {
1000 struct pgflist *freeq;
1001 struct vm_page *pg;
1002 int color, trycolor = *trycolorp;
1003 struct pgfreelist *gpgfl, *pgfl;
1004
1005 KASSERT(mutex_owned(&uvm_fpageqlock));
1006
1007 color = trycolor;
1008 pgfl = &ucpu->page_free[flist];
1009 gpgfl = &uvm.page_free[flist];
1010 do {
1011 /* cpu, try1 */
1012 if ((pg = LIST_FIRST((freeq =
1013 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1014 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1015 uvmexp.cpuhit++;
1016 goto gotit;
1017 }
1018 /* global, try1 */
1019 if ((pg = LIST_FIRST((freeq =
1020 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1021 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1022 uvmexp.cpumiss++;
1023 goto gotit;
1024 }
1025 /* cpu, try2 */
1026 if ((pg = LIST_FIRST((freeq =
1027 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1028 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1029 uvmexp.cpuhit++;
1030 goto gotit;
1031 }
1032 /* global, try2 */
1033 if ((pg = LIST_FIRST((freeq =
1034 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1035 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1036 uvmexp.cpumiss++;
1037 goto gotit;
1038 }
1039 color = (color + 1) & uvmexp.colormask;
1040 } while (color != trycolor);
1041
1042 return (NULL);
1043
1044 gotit:
1045 LIST_REMOVE(pg, pageq.list); /* global list */
1046 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1047 uvmexp.free--;
1048
1049 /* update zero'd page count */
1050 if (pg->flags & PG_ZERO)
1051 uvmexp.zeropages--;
1052
1053 if (color == trycolor)
1054 uvmexp.colorhit++;
1055 else {
1056 uvmexp.colormiss++;
1057 *trycolorp = color;
1058 }
1059
1060 return (pg);
1061 }
1062
1063 /*
1064 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1065 *
1066 * => return null if no pages free
1067 * => wake up pagedaemon if number of free pages drops below low water mark
1068 * => if obj != NULL, obj must be locked (to put in obj's tree)
1069 * => if anon != NULL, anon must be locked (to put in anon)
1070 * => only one of obj or anon can be non-null
1071 * => caller must activate/deactivate page if it is not wired.
1072 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1073 * => policy decision: it is more important to pull a page off of the
1074 * appropriate priority free list than it is to get a zero'd or
1075 * unknown contents page. This is because we live with the
1076 * consequences of a bad free list decision for the entire
1077 * lifetime of the page, e.g. if the page comes from memory that
1078 * is slower to access.
1079 */
1080
1081 struct vm_page *
1082 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1083 int flags, int strat, int free_list)
1084 {
1085 int lcv, try1, try2, zeroit = 0, color;
1086 struct uvm_cpu *ucpu;
1087 struct vm_page *pg;
1088 lwp_t *l;
1089
1090 KASSERT(obj == NULL || anon == NULL);
1091 KASSERT(anon == NULL || off == 0);
1092 KASSERT(off == trunc_page(off));
1093 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1094 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1095
1096 mutex_spin_enter(&uvm_fpageqlock);
1097
1098 /*
1099 * This implements a global round-robin page coloring
1100 * algorithm.
1101 *
1102 * XXXJRT: What about virtually-indexed caches?
1103 */
1104
1105 ucpu = curcpu()->ci_data.cpu_uvm;
1106 color = ucpu->page_free_nextcolor;
1107
1108 /*
1109 * check to see if we need to generate some free pages waking
1110 * the pagedaemon.
1111 */
1112
1113 uvm_kick_pdaemon();
1114
1115 /*
1116 * fail if any of these conditions is true:
1117 * [1] there really are no free pages, or
1118 * [2] only kernel "reserved" pages remain and
1119 * reserved pages have not been requested.
1120 * [3] only pagedaemon "reserved" pages remain and
1121 * the requestor isn't the pagedaemon.
1122 * we make kernel reserve pages available if called by a
1123 * kernel thread or a realtime thread.
1124 */
1125 l = curlwp;
1126 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1127 flags |= UVM_PGA_USERESERVE;
1128 }
1129 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1130 (flags & UVM_PGA_USERESERVE) == 0) ||
1131 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1132 curlwp != uvm.pagedaemon_lwp))
1133 goto fail;
1134
1135 #if PGFL_NQUEUES != 2
1136 #error uvm_pagealloc_strat needs to be updated
1137 #endif
1138
1139 /*
1140 * If we want a zero'd page, try the ZEROS queue first, otherwise
1141 * we try the UNKNOWN queue first.
1142 */
1143 if (flags & UVM_PGA_ZERO) {
1144 try1 = PGFL_ZEROS;
1145 try2 = PGFL_UNKNOWN;
1146 } else {
1147 try1 = PGFL_UNKNOWN;
1148 try2 = PGFL_ZEROS;
1149 }
1150
1151 again:
1152 switch (strat) {
1153 case UVM_PGA_STRAT_NORMAL:
1154 /* Check freelists: descending priority (ascending id) order */
1155 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1156 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1157 try1, try2, &color);
1158 if (pg != NULL)
1159 goto gotit;
1160 }
1161
1162 /* No pages free! */
1163 goto fail;
1164
1165 case UVM_PGA_STRAT_ONLY:
1166 case UVM_PGA_STRAT_FALLBACK:
1167 /* Attempt to allocate from the specified free list. */
1168 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1169 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1170 try1, try2, &color);
1171 if (pg != NULL)
1172 goto gotit;
1173
1174 /* Fall back, if possible. */
1175 if (strat == UVM_PGA_STRAT_FALLBACK) {
1176 strat = UVM_PGA_STRAT_NORMAL;
1177 goto again;
1178 }
1179
1180 /* No pages free! */
1181 goto fail;
1182
1183 default:
1184 panic("uvm_pagealloc_strat: bad strat %d", strat);
1185 /* NOTREACHED */
1186 }
1187
1188 gotit:
1189 /*
1190 * We now know which color we actually allocated from; set
1191 * the next color accordingly.
1192 */
1193
1194 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1195
1196 /*
1197 * update allocation statistics and remember if we have to
1198 * zero the page
1199 */
1200
1201 if (flags & UVM_PGA_ZERO) {
1202 if (pg->flags & PG_ZERO) {
1203 uvmexp.pga_zerohit++;
1204 zeroit = 0;
1205 } else {
1206 uvmexp.pga_zeromiss++;
1207 zeroit = 1;
1208 }
1209 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1210 ucpu->page_idle_zero = vm_page_zero_enable;
1211 }
1212 }
1213 KASSERT(pg->pqflags == PQ_FREE);
1214
1215 pg->offset = off;
1216 pg->uobject = obj;
1217 pg->uanon = anon;
1218 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1219 if (anon) {
1220 anon->an_page = pg;
1221 pg->pqflags = PQ_ANON;
1222 atomic_inc_uint(&uvmexp.anonpages);
1223 } else {
1224 if (obj) {
1225 uvm_pageinsert(obj, pg);
1226 }
1227 pg->pqflags = 0;
1228 }
1229 mutex_spin_exit(&uvm_fpageqlock);
1230
1231 #if defined(UVM_PAGE_TRKOWN)
1232 pg->owner_tag = NULL;
1233 #endif
1234 UVM_PAGE_OWN(pg, "new alloc");
1235
1236 if (flags & UVM_PGA_ZERO) {
1237 /*
1238 * A zero'd page is not clean. If we got a page not already
1239 * zero'd, then we have to zero it ourselves.
1240 */
1241 pg->flags &= ~PG_CLEAN;
1242 if (zeroit)
1243 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1244 }
1245
1246 return(pg);
1247
1248 fail:
1249 mutex_spin_exit(&uvm_fpageqlock);
1250 return (NULL);
1251 }
1252
1253 /*
1254 * uvm_pagereplace: replace a page with another
1255 *
1256 * => object must be locked
1257 */
1258
1259 void
1260 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1261 {
1262 struct uvm_object *uobj = oldpg->uobject;
1263
1264 KASSERT((oldpg->flags & PG_TABLED) != 0);
1265 KASSERT(uobj != NULL);
1266 KASSERT((newpg->flags & PG_TABLED) == 0);
1267 KASSERT(newpg->uobject == NULL);
1268 KASSERT(mutex_owned(&uobj->vmobjlock));
1269
1270 newpg->uobject = uobj;
1271 newpg->offset = oldpg->offset;
1272
1273 uvm_pageremove_tree(uobj, oldpg);
1274 uvm_pageinsert_tree(uobj, newpg);
1275 uvm_pageinsert_list(uobj, newpg, oldpg);
1276 uvm_pageremove_list(uobj, oldpg);
1277 }
1278
1279 /*
1280 * uvm_pagerealloc: reallocate a page from one object to another
1281 *
1282 * => both objects must be locked
1283 */
1284
1285 void
1286 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1287 {
1288 /*
1289 * remove it from the old object
1290 */
1291
1292 if (pg->uobject) {
1293 uvm_pageremove(pg->uobject, pg);
1294 }
1295
1296 /*
1297 * put it in the new object
1298 */
1299
1300 if (newobj) {
1301 pg->uobject = newobj;
1302 pg->offset = newoff;
1303 uvm_pageinsert(newobj, pg);
1304 }
1305 }
1306
1307 #ifdef DEBUG
1308 /*
1309 * check if page is zero-filled
1310 *
1311 * - called with free page queue lock held.
1312 */
1313 void
1314 uvm_pagezerocheck(struct vm_page *pg)
1315 {
1316 int *p, *ep;
1317
1318 KASSERT(uvm_zerocheckkva != 0);
1319 KASSERT(mutex_owned(&uvm_fpageqlock));
1320
1321 /*
1322 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1323 * uvm page allocator.
1324 *
1325 * it might be better to have "CPU-local temporary map" pmap interface.
1326 */
1327 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1328 p = (int *)uvm_zerocheckkva;
1329 ep = (int *)((char *)p + PAGE_SIZE);
1330 pmap_update(pmap_kernel());
1331 while (p < ep) {
1332 if (*p != 0)
1333 panic("PG_ZERO page isn't zero-filled");
1334 p++;
1335 }
1336 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1337 /*
1338 * pmap_update() is not necessary here because no one except us
1339 * uses this VA.
1340 */
1341 }
1342 #endif /* DEBUG */
1343
1344 /*
1345 * uvm_pagefree: free page
1346 *
1347 * => erase page's identity (i.e. remove from object)
1348 * => put page on free list
1349 * => caller must lock owning object (either anon or uvm_object)
1350 * => caller must lock page queues
1351 * => assumes all valid mappings of pg are gone
1352 */
1353
1354 void
1355 uvm_pagefree(struct vm_page *pg)
1356 {
1357 struct pgflist *pgfl;
1358 struct uvm_cpu *ucpu;
1359 int index, color, queue;
1360 bool iszero;
1361
1362 #ifdef DEBUG
1363 if (pg->uobject == (void *)0xdeadbeef &&
1364 pg->uanon == (void *)0xdeadbeef) {
1365 panic("uvm_pagefree: freeing free page %p", pg);
1366 }
1367 #endif /* DEBUG */
1368
1369 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1370 KASSERT(!(pg->pqflags & PQ_FREE));
1371 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1372 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1373 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1374 mutex_owned(&pg->uanon->an_lock));
1375
1376 /*
1377 * if the page is loaned, resolve the loan instead of freeing.
1378 */
1379
1380 if (pg->loan_count) {
1381 KASSERT(pg->wire_count == 0);
1382
1383 /*
1384 * if the page is owned by an anon then we just want to
1385 * drop anon ownership. the kernel will free the page when
1386 * it is done with it. if the page is owned by an object,
1387 * remove it from the object and mark it dirty for the benefit
1388 * of possible anon owners.
1389 *
1390 * regardless of previous ownership, wakeup any waiters,
1391 * unbusy the page, and we're done.
1392 */
1393
1394 if (pg->uobject != NULL) {
1395 uvm_pageremove(pg->uobject, pg);
1396 pg->flags &= ~PG_CLEAN;
1397 } else if (pg->uanon != NULL) {
1398 if ((pg->pqflags & PQ_ANON) == 0) {
1399 pg->loan_count--;
1400 } else {
1401 pg->pqflags &= ~PQ_ANON;
1402 atomic_dec_uint(&uvmexp.anonpages);
1403 }
1404 pg->uanon->an_page = NULL;
1405 pg->uanon = NULL;
1406 }
1407 if (pg->flags & PG_WANTED) {
1408 wakeup(pg);
1409 }
1410 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1411 #ifdef UVM_PAGE_TRKOWN
1412 pg->owner_tag = NULL;
1413 #endif
1414 if (pg->loan_count) {
1415 KASSERT(pg->uobject == NULL);
1416 if (pg->uanon == NULL) {
1417 uvm_pagedequeue(pg);
1418 }
1419 return;
1420 }
1421 }
1422
1423 /*
1424 * remove page from its object or anon.
1425 */
1426
1427 if (pg->uobject != NULL) {
1428 uvm_pageremove(pg->uobject, pg);
1429 } else if (pg->uanon != NULL) {
1430 pg->uanon->an_page = NULL;
1431 atomic_dec_uint(&uvmexp.anonpages);
1432 }
1433
1434 /*
1435 * now remove the page from the queues.
1436 */
1437
1438 uvm_pagedequeue(pg);
1439
1440 /*
1441 * if the page was wired, unwire it now.
1442 */
1443
1444 if (pg->wire_count) {
1445 pg->wire_count = 0;
1446 uvmexp.wired--;
1447 }
1448
1449 /*
1450 * and put on free queue
1451 */
1452
1453 iszero = (pg->flags & PG_ZERO);
1454 index = uvm_page_lookup_freelist(pg);
1455 color = VM_PGCOLOR_BUCKET(pg);
1456 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1457
1458 #ifdef DEBUG
1459 pg->uobject = (void *)0xdeadbeef;
1460 pg->uanon = (void *)0xdeadbeef;
1461 #endif
1462
1463 mutex_spin_enter(&uvm_fpageqlock);
1464 pg->pqflags = PQ_FREE;
1465
1466 #ifdef DEBUG
1467 if (iszero)
1468 uvm_pagezerocheck(pg);
1469 #endif /* DEBUG */
1470
1471
1472 /* global list */
1473 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1474 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1475 uvmexp.free++;
1476 if (iszero) {
1477 uvmexp.zeropages++;
1478 }
1479
1480 /* per-cpu list */
1481 ucpu = curcpu()->ci_data.cpu_uvm;
1482 pg->offset = (uintptr_t)ucpu;
1483 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1484 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1485 ucpu->pages[queue]++;
1486 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1487 ucpu->page_idle_zero = vm_page_zero_enable;
1488 }
1489
1490 mutex_spin_exit(&uvm_fpageqlock);
1491 }
1492
1493 /*
1494 * uvm_page_unbusy: unbusy an array of pages.
1495 *
1496 * => pages must either all belong to the same object, or all belong to anons.
1497 * => if pages are object-owned, object must be locked.
1498 * => if pages are anon-owned, anons must be locked.
1499 * => caller must lock page queues if pages may be released.
1500 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1501 */
1502
1503 void
1504 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1505 {
1506 struct vm_page *pg;
1507 int i;
1508 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1509
1510 for (i = 0; i < npgs; i++) {
1511 pg = pgs[i];
1512 if (pg == NULL || pg == PGO_DONTCARE) {
1513 continue;
1514 }
1515
1516 KASSERT(pg->uobject == NULL ||
1517 mutex_owned(&pg->uobject->vmobjlock));
1518 KASSERT(pg->uobject != NULL ||
1519 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1520
1521 KASSERT(pg->flags & PG_BUSY);
1522 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1523 if (pg->flags & PG_WANTED) {
1524 wakeup(pg);
1525 }
1526 if (pg->flags & PG_RELEASED) {
1527 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1528 KASSERT(pg->uobject != NULL ||
1529 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1530 pg->flags &= ~PG_RELEASED;
1531 uvm_pagefree(pg);
1532 } else {
1533 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1534 KASSERT((pg->flags & PG_FAKE) == 0);
1535 pg->flags &= ~(PG_WANTED|PG_BUSY);
1536 UVM_PAGE_OWN(pg, NULL);
1537 }
1538 }
1539 }
1540
1541 #if defined(UVM_PAGE_TRKOWN)
1542 /*
1543 * uvm_page_own: set or release page ownership
1544 *
1545 * => this is a debugging function that keeps track of who sets PG_BUSY
1546 * and where they do it. it can be used to track down problems
1547 * such a process setting "PG_BUSY" and never releasing it.
1548 * => page's object [if any] must be locked
1549 * => if "tag" is NULL then we are releasing page ownership
1550 */
1551 void
1552 uvm_page_own(struct vm_page *pg, const char *tag)
1553 {
1554 struct uvm_object *uobj;
1555 struct vm_anon *anon;
1556
1557 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1558
1559 uobj = pg->uobject;
1560 anon = pg->uanon;
1561 if (uobj != NULL) {
1562 KASSERT(mutex_owned(&uobj->vmobjlock));
1563 } else if (anon != NULL) {
1564 KASSERT(mutex_owned(&anon->an_lock));
1565 }
1566
1567 KASSERT((pg->flags & PG_WANTED) == 0);
1568
1569 /* gain ownership? */
1570 if (tag) {
1571 KASSERT((pg->flags & PG_BUSY) != 0);
1572 if (pg->owner_tag) {
1573 printf("uvm_page_own: page %p already owned "
1574 "by proc %d [%s]\n", pg,
1575 pg->owner, pg->owner_tag);
1576 panic("uvm_page_own");
1577 }
1578 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1579 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1580 pg->owner_tag = tag;
1581 return;
1582 }
1583
1584 /* drop ownership */
1585 KASSERT((pg->flags & PG_BUSY) == 0);
1586 if (pg->owner_tag == NULL) {
1587 printf("uvm_page_own: dropping ownership of an non-owned "
1588 "page (%p)\n", pg);
1589 panic("uvm_page_own");
1590 }
1591 if (!uvmpdpol_pageisqueued_p(pg)) {
1592 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1593 pg->wire_count > 0);
1594 } else {
1595 KASSERT(pg->wire_count == 0);
1596 }
1597 pg->owner_tag = NULL;
1598 }
1599 #endif
1600
1601 /*
1602 * uvm_pageidlezero: zero free pages while the system is idle.
1603 *
1604 * => try to complete one color bucket at a time, to reduce our impact
1605 * on the CPU cache.
1606 * => we loop until we either reach the target or there is a lwp ready
1607 * to run, or MD code detects a reason to break early.
1608 */
1609 void
1610 uvm_pageidlezero(void)
1611 {
1612 struct vm_page *pg;
1613 struct pgfreelist *pgfl, *gpgfl;
1614 struct uvm_cpu *ucpu;
1615 int free_list, firstbucket, nextbucket;
1616
1617 ucpu = curcpu()->ci_data.cpu_uvm;
1618 if (!ucpu->page_idle_zero ||
1619 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1620 ucpu->page_idle_zero = false;
1621 return;
1622 }
1623 mutex_enter(&uvm_fpageqlock);
1624 firstbucket = ucpu->page_free_nextcolor;
1625 nextbucket = firstbucket;
1626 do {
1627 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1628 if (sched_curcpu_runnable_p()) {
1629 goto quit;
1630 }
1631 pgfl = &ucpu->page_free[free_list];
1632 gpgfl = &uvm.page_free[free_list];
1633 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1634 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1635 if (sched_curcpu_runnable_p()) {
1636 goto quit;
1637 }
1638 LIST_REMOVE(pg, pageq.list); /* global list */
1639 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1640 ucpu->pages[PGFL_UNKNOWN]--;
1641 uvmexp.free--;
1642 KASSERT(pg->pqflags == PQ_FREE);
1643 pg->pqflags = 0;
1644 mutex_spin_exit(&uvm_fpageqlock);
1645 #ifdef PMAP_PAGEIDLEZERO
1646 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1647
1648 /*
1649 * The machine-dependent code detected
1650 * some reason for us to abort zeroing
1651 * pages, probably because there is a
1652 * process now ready to run.
1653 */
1654
1655 mutex_spin_enter(&uvm_fpageqlock);
1656 pg->pqflags = PQ_FREE;
1657 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1658 nextbucket].pgfl_queues[
1659 PGFL_UNKNOWN], pg, pageq.list);
1660 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1661 nextbucket].pgfl_queues[
1662 PGFL_UNKNOWN], pg, listq.list);
1663 ucpu->pages[PGFL_UNKNOWN]++;
1664 uvmexp.free++;
1665 uvmexp.zeroaborts++;
1666 goto quit;
1667 }
1668 #else
1669 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1670 #endif /* PMAP_PAGEIDLEZERO */
1671 pg->flags |= PG_ZERO;
1672
1673 mutex_spin_enter(&uvm_fpageqlock);
1674 pg->pqflags = PQ_FREE;
1675 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1676 nextbucket].pgfl_queues[PGFL_ZEROS],
1677 pg, pageq.list);
1678 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1679 nextbucket].pgfl_queues[PGFL_ZEROS],
1680 pg, listq.list);
1681 ucpu->pages[PGFL_ZEROS]++;
1682 uvmexp.free++;
1683 uvmexp.zeropages++;
1684 }
1685 }
1686 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1687 break;
1688 }
1689 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1690 } while (nextbucket != firstbucket);
1691 ucpu->page_idle_zero = false;
1692 quit:
1693 mutex_spin_exit(&uvm_fpageqlock);
1694 }
1695
1696 /*
1697 * uvm_pagelookup: look up a page
1698 *
1699 * => caller should lock object to keep someone from pulling the page
1700 * out from under it
1701 */
1702
1703 struct vm_page *
1704 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1705 {
1706 struct vm_page *pg;
1707
1708 KASSERT(mutex_owned(&obj->vmobjlock));
1709
1710 pg = rb_tree_find_node(&obj->rb_tree, &off);
1711
1712 KASSERT(pg == NULL || obj->uo_npages != 0);
1713 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1714 (pg->flags & PG_BUSY) != 0);
1715 return pg;
1716 }
1717
1718 /*
1719 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1720 *
1721 * => caller must lock page queues
1722 */
1723
1724 void
1725 uvm_pagewire(struct vm_page *pg)
1726 {
1727 KASSERT(mutex_owned(&uvm_pageqlock));
1728 #if defined(READAHEAD_STATS)
1729 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1730 uvm_ra_hit.ev_count++;
1731 pg->pqflags &= ~PQ_READAHEAD;
1732 }
1733 #endif /* defined(READAHEAD_STATS) */
1734 if (pg->wire_count == 0) {
1735 uvm_pagedequeue(pg);
1736 uvmexp.wired++;
1737 }
1738 pg->wire_count++;
1739 }
1740
1741 /*
1742 * uvm_pageunwire: unwire the page.
1743 *
1744 * => activate if wire count goes to zero.
1745 * => caller must lock page queues
1746 */
1747
1748 void
1749 uvm_pageunwire(struct vm_page *pg)
1750 {
1751 KASSERT(mutex_owned(&uvm_pageqlock));
1752 pg->wire_count--;
1753 if (pg->wire_count == 0) {
1754 uvm_pageactivate(pg);
1755 uvmexp.wired--;
1756 }
1757 }
1758
1759 /*
1760 * uvm_pagedeactivate: deactivate page
1761 *
1762 * => caller must lock page queues
1763 * => caller must check to make sure page is not wired
1764 * => object that page belongs to must be locked (so we can adjust pg->flags)
1765 * => caller must clear the reference on the page before calling
1766 */
1767
1768 void
1769 uvm_pagedeactivate(struct vm_page *pg)
1770 {
1771
1772 KASSERT(mutex_owned(&uvm_pageqlock));
1773 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1774 uvmpdpol_pagedeactivate(pg);
1775 }
1776
1777 /*
1778 * uvm_pageactivate: activate page
1779 *
1780 * => caller must lock page queues
1781 */
1782
1783 void
1784 uvm_pageactivate(struct vm_page *pg)
1785 {
1786
1787 KASSERT(mutex_owned(&uvm_pageqlock));
1788 #if defined(READAHEAD_STATS)
1789 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1790 uvm_ra_hit.ev_count++;
1791 pg->pqflags &= ~PQ_READAHEAD;
1792 }
1793 #endif /* defined(READAHEAD_STATS) */
1794 if (pg->wire_count != 0) {
1795 return;
1796 }
1797 uvmpdpol_pageactivate(pg);
1798 }
1799
1800 /*
1801 * uvm_pagedequeue: remove a page from any paging queue
1802 */
1803
1804 void
1805 uvm_pagedequeue(struct vm_page *pg)
1806 {
1807
1808 if (uvmpdpol_pageisqueued_p(pg)) {
1809 KASSERT(mutex_owned(&uvm_pageqlock));
1810 }
1811
1812 uvmpdpol_pagedequeue(pg);
1813 }
1814
1815 /*
1816 * uvm_pageenqueue: add a page to a paging queue without activating.
1817 * used where a page is not really demanded (yet). eg. read-ahead
1818 */
1819
1820 void
1821 uvm_pageenqueue(struct vm_page *pg)
1822 {
1823
1824 KASSERT(mutex_owned(&uvm_pageqlock));
1825 if (pg->wire_count != 0) {
1826 return;
1827 }
1828 uvmpdpol_pageenqueue(pg);
1829 }
1830
1831 /*
1832 * uvm_pagezero: zero fill a page
1833 *
1834 * => if page is part of an object then the object should be locked
1835 * to protect pg->flags.
1836 */
1837
1838 void
1839 uvm_pagezero(struct vm_page *pg)
1840 {
1841 pg->flags &= ~PG_CLEAN;
1842 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1843 }
1844
1845 /*
1846 * uvm_pagecopy: copy a page
1847 *
1848 * => if page is part of an object then the object should be locked
1849 * to protect pg->flags.
1850 */
1851
1852 void
1853 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1854 {
1855
1856 dst->flags &= ~PG_CLEAN;
1857 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1858 }
1859
1860 /*
1861 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1862 */
1863
1864 bool
1865 uvm_pageismanaged(paddr_t pa)
1866 {
1867
1868 return (vm_physseg_find(atop(pa), NULL) != -1);
1869 }
1870
1871 /*
1872 * uvm_page_lookup_freelist: look up the free list for the specified page
1873 */
1874
1875 int
1876 uvm_page_lookup_freelist(struct vm_page *pg)
1877 {
1878 int lcv;
1879
1880 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1881 KASSERT(lcv != -1);
1882 return (vm_physmem[lcv].free_list);
1883 }
1884
1885 #if defined(DDB) || defined(DEBUGPRINT)
1886
1887 /*
1888 * uvm_page_printit: actually print the page
1889 */
1890
1891 static const char page_flagbits[] = UVM_PGFLAGBITS;
1892 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1893
1894 void
1895 uvm_page_printit(struct vm_page *pg, bool full,
1896 void (*pr)(const char *, ...))
1897 {
1898 struct vm_page *tpg;
1899 struct uvm_object *uobj;
1900 struct pgflist *pgl;
1901 char pgbuf[128];
1902 char pqbuf[128];
1903
1904 (*pr)("PAGE %p:\n", pg);
1905 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1906 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1907 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1908 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1909 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1910 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1911 #if defined(UVM_PAGE_TRKOWN)
1912 if (pg->flags & PG_BUSY)
1913 (*pr)(" owning process = %d, tag=%s\n",
1914 pg->owner, pg->owner_tag);
1915 else
1916 (*pr)(" page not busy, no owner\n");
1917 #else
1918 (*pr)(" [page ownership tracking disabled]\n");
1919 #endif
1920
1921 if (!full)
1922 return;
1923
1924 /* cross-verify object/anon */
1925 if ((pg->pqflags & PQ_FREE) == 0) {
1926 if (pg->pqflags & PQ_ANON) {
1927 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1928 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1929 (pg->uanon) ? pg->uanon->an_page : NULL);
1930 else
1931 (*pr)(" anon backpointer is OK\n");
1932 } else {
1933 uobj = pg->uobject;
1934 if (uobj) {
1935 (*pr)(" checking object list\n");
1936 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1937 if (tpg == pg) {
1938 break;
1939 }
1940 }
1941 if (tpg)
1942 (*pr)(" page found on object list\n");
1943 else
1944 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1945 }
1946 }
1947 }
1948
1949 /* cross-verify page queue */
1950 if (pg->pqflags & PQ_FREE) {
1951 int fl = uvm_page_lookup_freelist(pg);
1952 int color = VM_PGCOLOR_BUCKET(pg);
1953 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1954 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1955 } else {
1956 pgl = NULL;
1957 }
1958
1959 if (pgl) {
1960 (*pr)(" checking pageq list\n");
1961 LIST_FOREACH(tpg, pgl, pageq.list) {
1962 if (tpg == pg) {
1963 break;
1964 }
1965 }
1966 if (tpg)
1967 (*pr)(" page found on pageq list\n");
1968 else
1969 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1970 }
1971 }
1972
1973 /*
1974 * uvm_pages_printthem - print a summary of all managed pages
1975 */
1976
1977 void
1978 uvm_page_printall(void (*pr)(const char *, ...))
1979 {
1980 unsigned i;
1981 struct vm_page *pg;
1982
1983 (*pr)("%18s %4s %4s %18s %18s"
1984 #ifdef UVM_PAGE_TRKOWN
1985 " OWNER"
1986 #endif
1987 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1988 for (i = 0; i < vm_nphysmem; i++) {
1989 for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
1990 (*pr)("%18p %04x %04x %18p %18p",
1991 pg, pg->flags, pg->pqflags, pg->uobject,
1992 pg->uanon);
1993 #ifdef UVM_PAGE_TRKOWN
1994 if (pg->flags & PG_BUSY)
1995 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1996 #endif
1997 (*pr)("\n");
1998 }
1999 }
2000 }
2001
2002 #endif /* DDB || DEBUGPRINT */
2003